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Abstract

As an extension of the Four-Color Theorem it is conjectured by the first author that
every planar graph of odd-girth at least 2k + 1 admits a homomorphism to the projective
cube of dimension 2k, i.e., the Cayley graph PC(2k) = (Z2k

2 , {e1, e2, · · · , e2k, J}) where ei’s
are the standard basis vectors of Zd

2 and J is the all 1 vector. Noting that PC(2k) itself is
of odd-girth 2k + 1, in this work we show that if the conjecture is true, then PC(2k) is an
optimal such graph both with respect to the number of vertices and the number of edges.
The result is obtained using the notion of walk-power of graphs and their clique numbers.

An analogous result is proved for bipartite signed planar graphs of unbalanced-girth 2k.
The work is presented in the uniform framework of planar consistent signed graphs.

1 Introduction

The projective cube of dimension d, denoted PC(d), is defined to be the graph obtained from the
hypercube of dimension d+ 1 by identifying antipodal vertices. It is easy to show that PC(d) is
the Cayley graph (Zd

2, {e1, e2, · · · , ed, J}) where J is the all 1 vector.
It is conjectured by the first author that:

Conjecture 1. [Na07] Every planar graph of odd-girth at least 2k+ 1 admits a homomorphism
to PC(2k).

Recall that homomorphism of graphs is an edge-preserving mapping of vertices. Since PC(2)
is isomorphic to K4, the case k = 1 of the conjecture is a restatement of the Four-Color Theorem
and thus the conjecture is one of the venues to extend the most well known theorem of the theory
of graphs.

The conjecture was motivated by a question of J. Nešetřil who asked in [Ne99]: is there a
triangle-free graph to which every triangle-free planar graph admit a homomorphism?

This question was settled in a more general setting by P. Ossona de Mendez and J. Nešetřil:

Theorem 2. [NO08] Given a set H = {H1, H2, · · · , Hk} of connected graphs and a minor closed
family C of graphs, there exist a graph F (C,H) such that (i) no Hi, i = 1, 2, · · · , k, admits a
homomorphism to F (C,H), (ii) any member of C which does not admit a homomorphism from
any Hi admits a homomorphism to F (C,H).

∗Corresponding author, supported by CSC. E-mail address: sun@lri.fr(Q. Sun).
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An optimization question that follows is: what is the smallest possible order of F (C,H)?
This question captures a large number of coloring problems in minor closed families. One

of the most notable such questions is the Hadwiger conjecture which claims: every graph with
no Kn minor is (n − 1)-colorable. If we let C to be the class of graphs with no Kn-minor and
H = {Kn}, then the Hadwiger conjecture is equivalent to saying that the smallest possible order
of F (C,H) is n− 1.

When C is the class of planar graphs and H = {C2k−1}, since PC(2k) has odd-girth 2k + 1
(see [Na07]), Conjecture 1 suggests that projective cubes are examples of F (C,H). Furthermore,
it is conjectured (and proved for special case) by the first author [Na13] that if the conjecture
holds, then projective cubes give the smallest possible order and size of an F (C,H).

In this work we prove this latter claim. We also prove a similar result for the bipartite
analogue of Conjecture 1, introduced by B. Guenin [Gu05]. Our work is presented in the general
frame work of homomorphisms of (consistent) signed graphs, thus we shall introduce some
notations, terminologies and background.

2 Notations and terminologies

For standard notations and terminologies of graph theory we follow [BM76]. We denote the
clique number and minimum degree of a graph G by ω(G) and δ(G), respectively. The length
of a cycle, a path or a walk is its number of edges. The odd-girth of a graph is the length of its
shortest odd-cycle. A thread of a graph G is a path P = uv1v2 . . . vrw, for some r ≥ 1, where
u, v have degree at least 3 and v1, v2, . . . , vr have degree exactly 2 in G.

2.1 Signed graphs

A signed graph is a graph where each edge is assigned one of the two signs positive (+) and
negative (−). Assuming Σ is the set of negative edges we will use (G,Σ) to denote a signed
graph. A notion of essential importance for signed graphs is the notion of unbalanced cycle, that
is a cycle with an odd number of negative edges. A subgraph with no unbalanced cycle is called
a balanced subgraph. In particular a balanced cycle is a cycle with even number of negative
edges. The unbalanced-girth of a signed graph is the length of a shortest unbalanced cycle.

Another notion of importance is the notion of re-signing ; that is to switch the signs of all
edges in an edge-cut of G. Given two signatures Σ1 and Σ2 of G, we say Σ2 is equivalent to Σ1

if it is obtained from a re-signing of Σ1. In such a case we may also say (G,Σ1) is equivalent
to (G,Σ2). It is easily observed that re-signing does not change balance of a cycle. A stronger
relation is provided by the following theorem of Zaslavsky:

Theorem 3 (Zaslavsky [Za82]). Two signed graphs (G,Σ1) and (G,Σ2) are equivalent if and
only if they have the same set of balanced (equivalently, unbalanced) cycles.

The set of all equivalent signed graphs will be denoted by [G,Σ] where (G,Σ) is any member
of the class and will be called switch class.

In this work we will only consider the subclasses of consistent signed graphs which itself
consist of two subclasses. That is the class of signed graphs in which every balanced cycle is
of even length and all unbalanced cycles are of a same parity. Thus there are two types of
consistent signed graphs [NRS13]:

(i) when all unbalanced cycles are of odd length, in this case by Theorem 3 (G,Σ) is equivalent
to (G,E(G)), such a signed graph will be referred to as an anti-balanced signed graph.
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(ii) when all unbalanced cycles are of even length, this would be the case if and only if G is
bipartite, such a signed graph thus will be referred to as a signed bipartite graph.

2.2 Homomorphisms and bounds

Given two switch classes [G,Σ] and [H,Π], a homomorphism of [G,Σ] to [H,Π] is a mapping
φ of V (G) to V (H) such that for some representations (G,Σ′) and (H,Π′) of [G,Σ] and [H,Π]
(respectively) the mapping φ preserves both adjacency and signs of edges (with respect to Σ′

and Π′). While the existence of such a mapping depends on the choice of Σ′, it is independent of
the choice of Π′. We say there is a homomorphism of (G,Σ) to (H,Π) and write (G,Σ)→ (H,Π)
if there exist a homomorphism of [G,Σ] to [H,Π].

The length of shortest (even or odd) unbalanced cycle provides the first no homomorphism
lemma:

Lemma 4. [NRS13] Given two unbalanced cycles UCr and UCl we have UCr → UCl if and
only if

• r ≡ l (mod 2),

• r ≥ l.

We note that for consistent signed graphs, which are the main focus of this work, we only
have one parity for unbalanced cycles.

Given a class C of signed graphs, a signed graph (H,Π) is said to bound C if for every
member (G,Σ) of C we have (G,Σ)→ (H,Π). It implies from Lemma 4 that in such a case (odd
and even) unbalanced-girth of each member (G,Σ) of C is bounded below by (odd and even)
unbalanced-girth of (H,Π).

2.3 Signed projective cubes

Recall that the projective cube of dimension d, denoted PC(d), is the Cayley graph (Zd
2, {e1, e2, · · · , ed, J})

where ei’s are the standard basis vectors of Zd
2 and J is the all 1 vector.

We define the signed projective cube of dimension d, denoted SPC(d), to be the signed graph
obtained from PC(d) by assigning + to each edge corresponding to an ei vector and − to each
edge corresponding to the J vector. In other words SPC(d) is obtained from the hypercube of
dimension d with all edges assigned positive sign and then adding a negative edge between each
pair of antipodal vertices.

Projective cubes, also known as folded cubes, are well-studied graphs. We refer to [NRS13]
and references there for some properties of signed projective cubes and for proofs of the following
two theorems:

Theorem 5. The signed projective cube of dimension d is a consistent signed graph and has
unbalanced-girth d+ 1.

It follows that if a signed graph admits a homomorphism to a signed projective cube, it must
be a consistent signed graph. The existence of such a homomorphism then becomes equivalent
to a packing problem as the following theorem claims:

Theorem 6. A consistent signed graph (G,Σ) admits a homomorphism to SPC(d) if and only
if the edge set of G can be partitioned into d+ 1 disjoint sets each of which induces a signature
equivalent to Σ.
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The following conjecture, introduced in [Na07] and [Gu05] (see also [NRS12]) is the focus of
this work:

Conjecture 7. Given d ≥ 2, every planar consistent signed graph of unbalanced-girth d + 1
admits a homomorphism to SPC(d).

Using the folding lemmas of [KZ00, NRS12] one can replace the condition of unbalanced-
girth exactly d + 1 with unbalanced-girth at least d + 1 as long we remain in the same type of
consistent planar signed graphs as the signed projective cube. Thus the conjecture is formed of
two parts: for even values of d (by considering the signature in which all edges are negative) it
claims that every planar graph of odd-girth at least d + 1 admits a homomorphism to PC(d).
For odd values of d it claims that every planar signed bipartite graph of unbalanced-girth at
least d+ 1 admits a homomorphism to SPC(d). Since PC(2) is isomorphic to K4, the very first
case of this conjecture is the Four-Color Theorem.

2.4 Walk-power

We will use two notions of graph powers, one for each type of consistent signed graphs. Since the
homomorphism of anti-balanced signed graphs are reduced to graph homomorphism problems,
we use the terminology of graphs for this case.

Given a graph G and a positive integer k, we define the k-th walk-power of G, denoted G(k),
to be the graph whose vertex set is also V (G) with two vertices x and y being adjacent if there
is a walk of length k connecting x and y in G. Assuming G has at least one edge G(k) is loopless
if and only if k is odd and G has odd-girth at least k + 2. As an example we have:

Lemma 8. We have PC(2d−1)2d
∼= K

22d
.

Proof. It follows from the fact that each pair of vertices of PC2d belong to a cycle of length
2d+ 1 (see for example [NRS12]).

A property of walk-power, which is important for our work, is that:

Lemma 9. If φ is a homomorphism of a graph G to a graph H, then φ is also a homomorphism
of G(r) to H(r) for any positive integer r.

Note that for odd values of r if we consider a pair x, y of adjacent vertices in G(r) and identify
them in G, then there will be a cycle of odd-length at most r in the resulting graph. This is
a key tool for us and we define power of signed bipartite graph to have an analogous property.
For this case we shall use the notion of unbalanced cycles instead of odd-cycles.

Given a signed bipartite graph (G,Σ) and an even integer r ≥ 2 we define (G,Σ)(r) to be a
graph (not signed) on vertex set V (G) where vertices x and y are adjacent if the following two
conditions satisfy:

• x and y are in a same part of bipartite graph G,

• if x and y are identified in (G,Σ), then there will be a (new) unbalanced cycle of (even)
length at most r.

Note that second condition is equivalent to saying that there are x, y-paths P1 and P2 (con-
necting x and y), each of length at most r, such that one has an odd number of negative edges
and the other has an even number of negative edges.

Using the fact that each pair of vertices from the same part in SPC2d+1 belong to an unbal-
anced cycle of length 2d+ 2 we have the following bipartite analogue of Lemma 8.
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Lemma 10. We have SPC(2d)2d+1
∼= 2K

22d
.

Here 2K
22d

means two disjoint copies of K
22d

. The homomorphism property also holds the
same:

Lemma 11. Given a positive integer r, if φ is a homomorphism of a signed bipartite graph
(G,Σ) to a singed bipartite graph (H,Π), then φ is also a homomorphism of the graph (G,Σ)(2r)

to the graph (H,Π)(2r).

2.5 In this paper

We show that if Conjecture 7 holds, then the proposed projective cube is an optimal bound
of the given unbalanced girth both in terms of number of vertices and number of edges. More
precisely we prove the following.

Theorem 12. If (B,Ω) is a consistent signed graph of unbalanced-girth d which bounds the
class of consistent signed planar graphs of unbalanced-girth d, then B has at least 2d−1 vertices.
Furthermore, if no subgraph of (B,Ω) bounds the same class, then minimum degree of B is at
least d, and therefore, B has at least d2d−2 edges.

The first part of this theorem will follow from the following theorems (to be proved in the
next two sections) and Lemmas 8, 9, 10 and 11.

Theorem 13. There exists a planar graph G of odd-girth 2k + 1 with ω(G(2k−1)) ≥ 22k.

Theorem 14. There exists a planar signed bipartite graph (G,Σ) of unbalanced-girth 2k for
which there are two cliques of order 22k−2 in (G,Σ)(2k−2), one for each part (induced by the
bipartition) of G.

Our proof of both theorems are constructive and we provide a concrete construction.

3 Bounding anti-balanced signed graphs

In this section we prove Theorem 13. Since this is for anti-balanced signed graphs, the ho-
momorphism problem is equivalent to the homomorphisms of graphs. Thus, we will use the
terminology of graphs rather than signed graph in this section.

As mentioned, our proof is constructive and we will build an example of a planar graph G of
odd-girth 2k + 1 for which we have ω(G(2k)) ≥ 22k. The construction is based on the following
local construction.

Lemma 15. Let G be the graph obtained by subdividing edges of K4 such that in a planar
embedding of G each of the four faces is a cycle of length 2k+ 1. Then G(2k−1) is isomorphic to
K4k.

Proof. Let a, b, c and d be the original vertices of the K4 from which G is constructed. For
x, y ∈ {a, b, c, d} let Pxy be the subdivision of xy, and let txy be the length of this path. For an
internal vertex v of Pxy, let Pxv (or Pvx) be the part of Pxy connecting v to x. Let txv be the
length of Pxv. We have
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tab + tbc + tca = tab + tbd + tda

= tac + tcd + tda

= tbc + tcd + tdb

= 2k + 1. (1)

From Equation (1) we have

txy = twz for {x, y, w, z} = {a, b, c, d}, (2)

that is to say that if all four faces have the same length, then parallel edges of K4 are subdivided
the same number of times (the parity of the length of the faces is not important here and we
will use this fact later to prove the analogous lemma, Lemma 17, for the bipartite case).

It is easy to check that G has 4k vertices. We will show that for every pair u, v of vertices
of G there is a walk of length 2k− 1 connecting u and v. If u and v are both vertices of a facial
cycle of G, then we are done as each facial cycle is of length 2k + 1. If there is no facial cycle
of G containing both u and v, then they are internal vertices (after subdivision) of two distinct
parallel edges of K4, thus we may assume, without loss of generality, that u is a vertex of the
path Pab and v is a vertex of the path Pcd.

Note that by Equation (2) we have

tau + tbu = tcv + tdv

= tab = tcd. (3)

If tab = tcd is even (odd respectively), then tau and tbu have the same parity (different parities
respectively) and tcv and tdv have the same parity (different parities respectively). Moreover,
since tcd is even (odd respectively) and tac + tcd + tda = 2k+ 1, tac and tad have different parities
(same parity respectively).

Now one of the paths connecting u, v, say Pua ∪ Pac ∪ Pcv, is of length tau + tac + tcv, and
another path, say Pub ∪ Pbd ∪ Pdv, is of length tbu + tbd + tdv. By (3) we have (tbu + tbd + tdv) +
(tau + tac + tcv) = 2(tab + tbd), hence tbu + tbd + tdv and tau + tac + tcv have the same parity.
Furthermore, since Pab ∪ Pad ∪ Pbd forms a facial cycle we have tab + tad + tbd = 2k + 1, thus
2(tab + tbd) = 4k + 2− 2tad ≤ 4k.

Hence we have min{(tau + tac + tcv), (tbu + tbd + tdv)} ≤ 2k. Similarly, we can show that
min{(tau + tad + tdv), (tbu + tbc + tcv)} ≤ 2k.

But note that min{(tau+tac+tcv), (tbu+tbd+tdv)} and min{(tau+tad+tdv), (tbu+tbc+tcv)}
have different parities irrespective of the parity of tab = tcd. Therefore, there is a walk of length
2k − 1 from u to v.

The subdivided K4 where two parallel edges are subdivided 2k− 1 times will be the base of
our construction. Next we will use two operations to enlarge this construction.

Operation copy threads: Let G be a graph and P = {P1, P2, · · · , Pk} be a set of threads
of G. For each thread Pi = xv1v2 · · · vry in P add a new thread P ′i = xv′1v

′
2 · · · v′ry where all the

internal vertices are new and distinct. Denote the new graph by CT (G). Let W be a clique in
G(l) on vertex set V (W ). Consider a set U of vertices of CT (G) which consists of V (W ) and

6



y

x

vr

vr−1

v2

v1

v′r

v′r−1

v′2

v′1

s1

s2k−r−1

Figure 1: Copy and shortening of a thread.

copy vertices v′ for each degree (in G) two vertex v of V (W ). It is now easy to check that the
subgraph W ′ of CT (G)(l) induced by U is a complete graph minus a matching. To be precise
the missing matching is between pairs v, v′ where v is a degree two vertex of G and v′ is its copy.
Furthermore, it is easy to check that, if Pi belongs to a cycle of length x in G, then P ′i belongs
to a cycle of length x in CT (G).

Next we want to introduce an operation which will complete W ′ into a complete graph.

Operation shorten threads: Let G be a graph. Consider a collection P of threads of G
and let CT (G) be the graph obtained after the operation copy thread with respect to P. For
P ∈ P let P ′ be its copy in CT (G). Suppose P is of length r + 1 (1 ≤ r ≤ 2k − 2) with x and
y its end vertices and with v1, v2 · · · vr as its internal vertices. Let v′1, v

′
2 · · · v′r be the internal

vertices of P ′. Add a new path to CT (G) of length 2k− r which connects v1 and v′r (all internal
vertices are new and distinct). The new graph obtained after repeating the process for all paths
in P will be denoted by ST (G). Note that the operation ST (G) creates two shortened threads;
v1v2 · · · vry a shortening of P and xv′1v

′
2 · · · v′r a shortening of P ′. The length of each of the

shortened threads is one less that the length of P .

See Figure 3 for presentation of the two operations. Note that if we start with a planar
graph after the two operations mentioned above, what we get are also planar graphs. The next
lemma is the key property of this operation.

Lemma 16. Let G be of odd-girth 2k+ 1 and let P be a collection of threads of G, each of them
contained in a cycle of length 2k + 1. Let ST (G) be the graph obtained after operations copy
threads and shorten threads with respect to P. Then ST (G) is also of odd-girth 2k + 1.

Proof. Note that a new cycle C ′ in CT (G) must contain at least one copy thread P ′ of a thread
P of G in it. If C ′ contains both P and P ′, then C ′ is formed of the union of the two and is
of even length. Otherwise, by replacing each such copy thread P ′ by the corresponding original
thread P we obtain a cycle C of G from C ′ such that the length of C is the same as the length
of C ′. As G has odd-girth at least 2k + 1, the cycle C ′ must either be of even length or have
odd length at least 2k + 1. Thus, CT (G) is also of odd-girth 2k + 1.
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In ST (G) the only other kinds of odd cycles with length less than 2k + 1 could be the ones
created by the newly added threads. Let P = v1v2 · · · vr be a thread of G and P ′ = v′1v

′
2 · · · v′r

be its copy thread. Furthermore, let S = v1s1s2 · · · s2k−r−1v′r be the newly added thread.
Two cycles created by this are the cycles v1s1s2 · · · s2k−r−1v′ryvrvr−1 · · · v2 and v1s1s2 · · · s2k−r−1
v′rv
′
r−1 · · · v′1x (see Figure 3 for pictorial assistance). Each of these cycles are of length 2k + 1.
Clearly, if there is any other odd cycle with length less than 2k+ 1 containing the thread S,

there is one of the type: C∗ = xv1s1s2 · · · s2k−r−1v′ryw1w2 · · ·wl where wi’s are not vertices of
P or P ′. Assume that C∗ is an cycle of length at most 2k − 1 such that it contains minimum
number of new threads (the ones added due to operation ST (·)).

Since each thread of P is contained in a cycle of length 2k+1, there exists a cycle xv1v2 · · · vry
u1 · · ·u2k−r−1 in G of length 2k + 1 containing P . If we replace v1s1s2 · · · s2k−r−1v′r of C∗ by
u1 · · ·u2k−r−1, then we get an odd closed walk of length less than 2k − 1 in ST (G) that must
contain an odd cycle of length less than 2k − 1 with less number of new threads than in C∗, a
contradiction.

Now we are ready to prove Theorem 13.

Proof of Theorem 13. Let G0 be the graph obtained from K4 by subdividing two parallel edges
2k − 2 times each. Note that the resultant is a graph of odd-girth 2k + 1 in which each face is
of length 2k + 1. Thus by Lemma 15 the (2k − 1)-th walk power of G0 is a clique of order 4k.
Let P0 be the two threads of G0 (each of length 2k − 1), note that each of them belongs to a
cycle of length 2k + 1.

Starting form G0 and P0 we will build a graph inductively in 2k − 1 steps as follows: given
Gi and Pi we define Gi+1 to be ST (Gi) with respect to Pi. We then define Pi+1 to be collections
of shortened threads and their copies. Thus Pi+1 has twice as many elements as Pi. Also, note
that each thread in Pi+1 has 2k − i vertices. Thus,

ω(G
(2k−2)
2k−2 ) ≥ 4k +

2k−2∑
j=1

2j(2k − j − 1)

= 4k + (2k − 1)

2k−2∑
j=1

2j − 2

2k−2∑
j=1

j2j−1

= 4k + [(2k − 1)(22k−1 − 2)]−
2[(1− 22k−1)− (−1)(2k − 1)22k−2]

= 4k + (k22k − 4k − 22k−1 + 2)−
(2− 22k + k22k − 22k−1)

= 22k.

Note that G2k−2 is also a planar graph of odd-girth 2k + 1 by Lemma 16.

In Figure 2 we present our construction for the case of k = 2. The result is a graph on 26
vertices. Note that the construction of [Na13] has more than 600 vertices.

Proof of Theorem 12 (for even values of d). Let G = G2k−2 be the graph built in the previous
proof. Since G is of odd-girth 2k + 1, by the assumption, it maps to B. Since B is also of odd-
girth 2k + 1, both B(2k−1) and G(2k−1) are simple graphs and G(2k−1) admits a homomorphism
to B(2k−1). Hence K22k ⊂ B(2k−1) which, in particular, implies |V (B)| ≥ 22k.
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Figure 2: Example of a planar graph G of odd-girth five such that G(4) has a clique of order 24.
The big vertices corresponds to the clique of order 24 in G(4).

To prove the lower bound on the minimum degree, we first introduce the following graph: let
P = x1, x2, · · · , x2k+1 be a path of length 2k. Now subdivide each edge xixi+1 of P by replacing
it with the path xiy

i
1y

i
2 · · · yi2k−2xi+1. Note that now xi is at distance 2k−1 from xi+1. Then we

obtain a new graph P ′ by adding some shortcut edges x1y
2
1, y21y

3
2, y32y

4
3, · · · , y2k2k−2x2k+1 so that

the shortest odd walk between each xi and xj becomes of length 2k − 1. Now, given a vertex
u, the graph Pu is the graph formed from a disjoint copy of P ′ by adding the edges uxi for all

i ∈ {1, 2, · · · , 2k+ 1}. Note that the graph Pu is of odd-girth 2k+ 1 and that in P
(2k−1)
u vertices

of P (i.e., xi’s) induce a (2k + 1)-clique.
Now since B is minimal, there exists a planar graph GB of odd-girth 2k+ 1 whose mappings

to B are always onto. Let G∗B be a new graph obtained from GB by adding a Pu for each vertex
u of GB. This new graph is also of odd-girth 2k + 1, thus, by the choice of B, it maps to B.
Let φ be such a mapping of G∗B to B. This mapping induces a mapping of GB to B. Thus each
vertex v of B is the image of a vertex u of GB by the choice of GB. But in the mapping G∗B to
B, all xi’s of Pu must map to distinct vertices all of which are neighbours of φ(u) = v.

Note that since PC(2k) is a (2k + 1)-regular graph on 22k vertices, it is an optimal homo-
morphism bound if Conjecture 7 holds.

4 Optimal homomorphism bound for planar signed bipartite
graphs

The development of the notion of homomorphisms for signed graphs has began very recently
and, therefore, it is not yet known if an analogue of Theorem 2 would hold for the class of signed
bipartite graphs. While we believe that it would be the case, here we prove that SPC(d) is the
optimal homomorphism bound for the signed bipartite case of Conjecture 7 if the conjecture
holds.

Note that if both graphs are of unbalanced-girth at least r + 2, then (G,Σ)r and (H,Π)r

are both loopless, and, therefore, the existence of a homomorphism φ : (G,Σ) → (H,Π) would
imply ω((G,Σ)r) ≤ ω((H,Π)r). Furthermore, assuming that G and H are both connected, since
φ is also a homomorphism of G to H, it would preserve bipartition. Thus in what follows we
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will built a signed bipartite planar graph (G,Σ) of unbalanced-girth 2k such that each part of
G contains a clique of size 2k−2 in (G,Σ)2k−2.

To this end we start with the following lemma which is the signed bipartite analogue of
Lemma 15.

Lemma 17. Let (G,Σ) be a planar signed graph which is obtained by assigning a signature to
a subdivision of K4 in such a way that each of the four facial cycles is an unbalanced cycle of
length 2k. Then (G,Σ)(2k−2) is isomorphic to two disjoint copies of K2k−1 induced by the two
parts of G.

Proof. We consider a fixed signature Σ of (G,Σ). We will use the same notations (Pxy, txy, etc.)
as in Lemma 15. Thus as proved in that lemma, parallel edges of K4 are subdivided the same
number of times. Furthermore, repeating the same argument modulo 2, we can conclude that
the number of negative edges in Pxy and the number of negative edges in Pwz have the same
parity for all {x, y, w, z} = {a, b, c, d}.

Let u and v be two vertices from the same part of G (thus any path connecting u and v has
even length). We would like to prove that they are adjacent in (G,Σ)(2k−2). If they both belong
to a facial cycle, then the two paths connecting these two vertices in that (unbalanced) cycle
satisfy the conditions and we are done. Hence, assume without loss of generality that u ∈ Pab

and v ∈ Pcd.
Removing the edges of the parallel paths Pad and Pbc will result in a cycle of length 4k−2tad

containing u, v. This implies:

(tua + tac + tcv) + (tub + tbd + tdv) ≤ 4k − 2,

and thus min{(tua + tac + tcv), (tub + tbd + tdv)} ≤ 2k − 2. (4)

Similarly by removing Pac and Pbd we get

min{(tua + tad + tdv), (tub + tbc + tcv)} ≤ 2k − 2. (5)

It remains to show that the two paths of Equations (4) and (5) have different numbers of
negative edges modulo 2. To see this note that the union of any of the two paths from (4) with
a path from (5) covers a facial cycle exactly once and one of Pab or Pcd twice. Since each facial
cycle is unbalanced, our claim is proved.

Next we will use two operations, similar to the ones done the previous section, to enlarge
this construction.

Operation copy threads: Let (G,Σ) be a signed bipartite graph and P = {P1, P2, · · · , Pk}
be a set of threads of (G,Σ). For each thread Pi = xv1v2 · · · vry in P add a new thread
P ′i = xv′1v

′
2 · · · v′ry where all the internal vertices are new and distinct. Assign signs to the new

edges in such a way that the edges xv′1 and vry have the same sign, the edges v′ry and xv1 have
the same sign and the edges v′iv

′
i+1 and vr−i+1vr−i have the same sign. Denote the new signed

graph by (CT (G), CT (Σ)).
LetW be a clique in (G,Σ)(l) on vertex set V (W ). Consider a set U of vertices of (CT (G), CT (Σ))

which consists of V (W ) and copy vertices v′ for each degree (in G) two vertex v of V (W ). It
is now easy to check that the subgraph W ′ of (CT (G), CT (Σ))(l) induced by U is a complete
graph minus a matching. To be precise the missing matching is between pairs v, v′ where v is a
degree two vertex of (G,Σ) and v′ is its copy.
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Next we want to introduce an operation which will complete W ′ into a complete graph.

Operation shorten threads: Let (G,Σ) be a signed bipartite graph. Consider a collection
P of threads of (G,Σ) and let (CT (G), CT (Σ)) be the graph obtained after the operation copy
thread with respect to P. For P ∈ P let P ′ be its copy in (CT (G), CT (Σ)). Suppose P is of
length r + 1 with x and y its end vertices and with v1, v2 · · · , vr as its internal vertices. Let
v′1, v

′
2 · · · v′r be the internal vertices of P ′. Add a new path N of length 2k−r to (CT (G), CT (Σ))

which connects v1 and v′r (all internal vertices are new and distinct). Moreover, we assign signs
to the edges of the new path N in such a way that the cycles induced by V (N)∪(V (P )\{x}) and
V (N)∪ (V (P ′) \ {y}) are both unbalanced. The new graph obtained after repeating the process
for all paths in P will be denoted by (ST (G), ST (Σ)). Note that the operation (ST (G), ST (Σ))
creates two shortened threads; v1v2 · · · vry a shortening of P and xv′1v

′
2 · · · v′r a shortening of P ′.

The length of each of the shortened threads is one less that the length of P .

The next lemma is the key property of this operation.

Lemma 18. Let (G,Σ) be a signed bipartite graph of unbalanced-girth 2k and let P be a collection
of threads of (G,Σ), each of them contained in an unbalanced cycle of length 2k + 1. Let
(ST (G), ST (Σ)) be the signed graph obtained after operations copy threads and shorten threads
with respect to P. Then (ST (G), ST (Σ)) is also a signed bipartite graph of unbalanced-girth 2k.

The proof of this lemma is analogous to the proof of Lemma 16. We are now ready to prove
Theorem 14.

Proof of Theorem 14. Let (G0,Σ0) be the signed graph obtained from K4 by subdividing two
parallel edges and by assigning a signature in such a way that each of the four facial cycles is
an unbalanced cycle of length 2k. Note that the resultant is a planar bipartite signed graph
of unbalanced-girth 2k in which each face is of length 2k. Thus by Lemma 17 the (2k − 2)-th
walk power of (G0,Σ0) is disjoint union of two cliques, each of order 2k − 1. Let P0 be the two
threads of (G0,Σ0) (each of length 2k − 2).

Starting from (G0,Σ0) and P0 we will build a graph inductively in 2k − 1 steps as follows:
given (Gi,Σi) and Pi we define (Gi+1,Σi+1) to be (ST (Gi), ST (Σi)) with respect to Pi. We
then define Pi+1 to be collections of shortened threads and their copies. Thus Pi+1 has twice
as many elements as Pi. Also, note that each thread in Pi+1 has 2k − 2− i vertices. Thus the
number of vertices in each of the two maximum cliques of (G2k−2,Σ2k−2)

(2k−2) is equal to

ω((G2k−2,Σ2k−2)
(2k−2)) =

= 2k − 1 +
2k−2∑
j=1

2j−1(2k − j − 2) = 2k − 1 + (k − 1)

2k−2∑
j=1

2j −
2k−2∑
j=1

j2j−1

= 2k − 1 + [(k − 1)(22k−1 − 2)]− [(1− 22k−1)− (−1)(2k − 1)22k−2]

= 2k − 1 + [k22k−1 − 2k − 22k−1 + 2]− [1− 22k−1 + k22k−1 − 22k−2]

= 22k−2.

Note that (G2k−2,Σ2k−2) is also a planar bipartite signed graph of unbalanced-girth 2k by
Lemma 18.

Now we are ready to conclude the proof of Theorem 12.
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Proof of Theorem 12 (for odd values of d). The proof is similar to the proof for even values of
d. The only thing we need to do is to provide a gadget graph similar to Pu in this case also. We
will use the graph (G2k−2,Σ2k−2) as the gadget graph Pu where the role of u is played by one
of the original vertices of the K4 from which the graph was built.

More formally, let x be one of the original vertices of the K4 from which the signed graph
(G2k−2,Σ2k−2) was built in the previous proof. Note that x has exactly 2k neighbors in
(G2k−2,Σ2k−2), each of which is part of a clique in (G2k−2,Σ2k−2)

(2k−2).
Now since B is minimal, there exists a planar bipartite signed graph (GB,ΣB) of unbalanced-

girth 2k whose mappings to B are always onto. Let (G∗B,Σ
∗
B) be a new graph obtained from

(GB,ΣB) by gluing a copy of (G2k−2,Σ2k−2) to each vertex u of (GB,ΣB) by identifying the
vertex x of (G2k−2,Σ2k−2) with the vertex u of (GB,ΣB). This new graph (G∗B,Σ

∗
B), clearly, is

a planar bipartite signed graph of unbalanced-girth 2k. The rest of the proof is similar to the
proof for even values of d.

5 Concluding remarks

P. Seymour has conjectured in [Se75] that the edge chromatic number of a planar multi-graph is
equal to its fractional edge chromatic number. It turns out that the restriction of this conjecture
for k-regular multigraphs can be proved if and only if Conjecture 7 is proved for d = k +
1 [Na13, NRS12]. This special case of Seymour’s conjecture is proved for k ≤ 8 in a series of
works using induction and the Four-Color Theorem in [Gu12] (k = 4, 5), [DKK] (k = 6), [Ed11]
(k = 7) and [CES12] (k = 8). Thus Conjecture 7 is verified for d ≤ 7. Hence we have the
following corollary.

Theorem 19. For d ≤ 7 the signed graph SPC(d) is the smallest consistent graph (both in terms
of number of vertices and edges) of unbalanced-girth d+ 1 which is a homomorphism bound for
all consistent planar signed graphs of unbalanced-girth at least d+ 1.

B. Guenin has proposed a strengthening of Conjecture 7 by replacing the condition of pla-
narity by the condition of having no (K5, E(K5))-minor [Gu05].

For further generalization one can consider the following general question:

Problem 20. Given d and r, d ≥ r and d ≡ r (mod 2), what is the optimal homomorphism
bound having unbalanced girth r for all consistent signed graphs of unbalanced-girth d with no
(Kn, E(Kn))-minor?

We do not know yet whether such a homomorphism bound exists in general. For n = 3,
consistent signed graphs with no (Kn, E(Kn))-minor are bipartite graphs with all edges positive,
and, therefore, have K2 as their homomorphism bound. For n = 5 if the input and target graphs
are both of unbalanced-girth d+1, then our work and Geunin’s extension of Conjecture 7 propose
projective cubes as the optimal solutions. For d = r = 3, the answer would be Kn−1 if Odd
Hadwiger Conjecture is true. For the case n = 4 some partial answers are given by L. Beadou,
F. Foucaud and first author. For all other cases there is not even a conjecture yet.
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[DKK] Z. Dvořák, K. Kawarabayashi and D. Král’. Packing six T-joins in plane graphs.
Manuscript (2014), available at http://arxiv.org/abs/1009.5912v3.

[Ed11] K. Edwards. Optimization and Packings of T-joins and T-cuts. M.Sc. Thesis,
McGill University (2011).

[Gu05] B. Guenin. Packing odd circuit covers: A conjecture. Manuscript (2005).

[Gu12] B. Guenin. Packing T-joins and edge-colouring in planar graphs. Mathematics of
Operations Research, to appear.

[KZ00] W. Klostermeyer, C.Q. Zhang. 2 + ε-colouring of planar graphs with large odd-
girth, J. Graph Theory 33 (2) (2000), 109–119.

[Na07] R. Naserasr. Homomorphisms and edge-colorings of planar graphs. J. Combin.
Theory Ser. B 97(3) (2007), 394–400.

[Na13] R. Naserasr. Mapping planar graphs into projective cubes. J. Graph theory 74(3)
(2013) 249–259.
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