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Abstract: A signed graph [G, �] is a graph G together with an assign-
ment of signs + and − to all the edges of G where � is the set of negative
edges. Furthermore [G, �1] and [G, �2] are considered to be equivalent
if the symmetric difference of �1 and �2 is an edge cut of G. Naturally
arising from matroid theory, several notions of graph theory, such as the
theory of minors and the theory of nowhere-zero flows, have been already
extended to signed graphs. In an unpublished manuscript, B. Guenin intro-
duced the notion of signed graph homomorphisms where he showed how
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HOMOMORPHISMS OF SIGNED GRAPH 179

some well-known conjectures can be captured using this notion. A signed
graph [G, �] is said to map to [H, �1] if there is an equivalent signed graph
[G, �′] of [G, �] and a mapping ϕ : V (G) → V (H ) such that (i ) if xy ∈ E (G)

then ϕ(x )ϕ(y ) ∈ E (H ) and (i i ) xy ∈ �′ if and only if ϕ(x )ϕ(y ) ∈ �1. The
chromatic number of a signed graph [G, �] can then be defined as the
smallest order of a homomorphic image of [G, �]. Capturing the notion of
graph homomorphism order, signed graph homomorphisms provide room
for extensions and strengthenings of most homomorphism and coloring
theories on graphs. Thus this paper is the first general study of signed
graph homomorphisms. In this work, our focus would be on the relation
of homomorphisms of signed graphs with minors of signed graphs. After
a thorough introduction to the concept we show that the notion of signed
graph homomorphism on the set of signed graphs whose underlying graph
is bipartite already captures the standard notion of graph homomorphism.
We prove that the largest planar signed clique is of order 8. For the maxi-
mum chromatic number of planar signed graphs we give the lower bound
of 10 and the upper bound of 48. We determine this maximum for some
other families such as outerplanar signed graphs. Finally, reformulating
Hadwiger’s conjecture in the language of homomorphism of signed graphs
whose underlying graph is bipartite, we show that while some stronger
form of the conjecture holds for small chromatic number, such strength-
ening of the conjecture would not hold for large chromatic numbers. This
could be regarded as a first indication that perhaps Hadwiger’s conjecture
only holds for small chromatic numbers. C© 2014 Wiley Periodicals, Inc. J. Graph Theory 79:

178–212, 2015
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1. MOTIVATION

The Four-Color Problem (now a Theorem) has been one of the most motivational prob-
lems in developing the theory of graphs and it continues to do so especially because none
of its known proofs is verified without the aid of a computer. It simply states that every
map, or equivalently every simple planar graph, can be colored properly using at most
four colors. Thus to understand it better, one must understand what makes a graph planar
and what are the obstacles in coloring a given graph with a few number of colors. The
former has given birth to the theory of graph minors. The latter has been developed to the
theory of graph coloring and graph homomorphisms. Two examples of central theorems
in the theory of graph coloring are Brook’s Theorem and the Four-Color Theorem. Many
extensions of the Four-Color Theorem have been proposed as conjectures, among which
is Hadwiger’s conjecture, one of the most well-known conjectures in nowadays graph
theory:

Conjecture 1.1 (Hadwiger). If G has no Kn as a minor then G is (n − 1)-colorable.
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One of the important characteristics of Brook’s theorem, the Four-Color theorem and
Hadwiger’s conjecture if it is proved, is that they provide good upper bounds on the
chromatic number, which is an NP-hard parameter to compute, in terms of parameters
or properties of graphs that are polynomial time to compute or verify. However none of
these theorems and conjecture (if proven) provides a fixed upper bound on the chromatic
number of bipartite graphs (note that it is easy to verify if a graph is bipartite). To
formulate such theorems, that bound the chromatic number of certain graphs, such as
planar graphs where some of the edges are replaced by large bipartite graphs, the theory
of signed graphs and odd-minors has been used.

Signed graphs as a model for social networks were introduced by F. Harary [15]. In the
context of colorings or minors an equivalence relation among signatures was employed.
We follow this latter notion that first appeared in [34]. Beside the theory of minors, some
other theories such as the theory of nowhere-zero flows on graphs have been extended
to signed graphs in early 80s (see for example [3,33,34]). Coloring problems have also
been considered for special families of signed graphs. The notion of homomorphism of
signed graphs, which is the main subject of this work, was introduced by B. Guenin [13]
for its relation with an edge-coloring problem we mention below.

In [31] P. G. Tait proposed a (now classic) restatement of the Four-Color Theorem
that claims that every bridgeless cubic planar multigraph is 3-edge colorable. Note that
if a k-regular multigraph G is k-edge colorable, then for each subset X of vertices of G
with |X | being odd, there must be at least k edges that connect vertices in X to vertices
not in X . If, in a k-regular multigraph G, for each subset X of odd size there are at
least k edges joining vertices of X to vertices not in X , then G is called a k-graph. It
follows that if a k-regular graph is k-edge-colorable, then it is a k-graph. The Petersen
graph is an example showing that not every k-graph is k-edge-colorable. Motivated by
this restatement of the Four-Color Theorem, P. Seymour [30] proposed a formula for the
edge-chromatic number of planar multigraphs which, when restricted to planar k-graphs,
reads as follows.

Conjecture 1.2. Every planar k-graph is k-edge-colorable.

We note that, for this conjecture, the fact that G is a multigraph is quite essential
otherwise there is no planar k-regular graph for k ≥ 6. For k = 3, Conjecture 1.2 is
equivalent to the Four-Color Theorem. Conjecture 1.2 has been proved for k = 4, 5 by
Guenin [14], for k = 6 by Dvořák et al. [9], for k = 7 by Edwards and Kawarabayashi [10]
and, very recently, for k = 8 by Chudnovsky et al. [7].

In [20], the first author introduced a generalization of the Four-Color Theorem and
proved it to be equivalent to Conjecture 1.2 for odd values of k. Guenin [13], after
introducing the notion of homomorphism of signed graphs, provided a homomorphism
analog for even values of k in some stronger form. In [24] we show that for k = 2g,
Conjecture 1.2 is equivalent to the first claim of Conjecture 10.2.

The aim of this paper is to study colorings and homomorphisms of signed graphs
with special attention to their connection with minors of signed graphs. It has come to
our attention that the notion of homomorphisms of signed graphs is a special case of
color switching homomorphisms of edge-colored graphs studied by Brewster and Graves
in [5]. However, it is the relation with minors of signed graphs and the possibility of
extending coloring and homomorphism theories to planar and minor-closed families that
makes our project special. Generally speaking, this paper is the first in developing this
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vast theory. It is therefore natural that we have many more questions than we have answers
for. However, we do provide some exciting answers too.

The paper is organized as follows. First we settle our notation, after which we give
definitions of new concepts together with examples. Then, in separate sections, we
consider the possibilities of extending concepts from graph homomorphisms and graph
coloring to signed graphs.

2. NOTATION

We use standard terminology of graph theory where a graph is considered to be simple,
finite, and loopless. Sometimes we allow the presence of multi-edges in which case we
rather use the term multigraph. Less standard notions that we use are recalled in this
section.

Given two graphs G and H, a homomorphism of G to H is a mapping φ : V (G) → V (H)

such that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H). We will write G → H whenever there
exists a homomorphism of G to H. The homomorphic image of G under φ, denoted φ(G),
is the subgraph of H given by V (φ(G)) = φ(V (G)) and xy ∈ E(φ(G)) if and only if
there exists an edge uv ∈ E(G) such that φ(u) = x and φ(v) = y. A core of a graph G
is a minimal subgraph of G to which G admits a homomorphism (see [16] for a proof
that this is well-defined, and for more on graph homomorphisms). A core is a graph that
is its own core. The relation G → H is a quasi-order on the class of graphs that induces
a poset on the class of cores. In this order, many results can be restated in the classical
language of mathematics. For example, the Four-Color Theorem asserts that:

Theorem 2.1 (4CT, restated). The class of planar graphs has the complete graph K4

as a maximum in the homomorphism order.

Hadwiger’s conjecture is also restated as follows:

Conjecture 2.2 (Hadwiger’s conjecture reformulated [22]). Every minor-closed family
of graphs has a maximum with respect to the homomorphism order.

The chromatic number of a graph G, denoted χ(G), is the smallest number of vertices
of a homomorphic image of G. It is easily observed that χ(G) is the smallest number of
colors one can assign to the vertices of G in such a way that adjacent vertices are assigned
distinct colors (proper coloring). A graph is k-colorable if χ(G) ≤ k. A bipartite graph
(k-partite graph, respectively) is a graph with at least two (k, respectively) vertices that
is 2-colorable (k-colorable, respectively).

An acyclic coloring of a graph is a proper coloring in which every 2-colored subgraph
is a forest. The acyclic chromatic number of a graph G is the minimum number of colors
one needs for an acyclic coloring of G.

A planar embedding of a graph G is to associate distinct points of the plane with
vertices of G and a continuous closed curve with each edge uv that would have u and
v as its endpoints and contains no other point of V (G). Moreover, edges can intersect
only at their endpoints, i.e. at their vertices. A planar graph is a graph that admits a
planar embedding. A plane graph is a planar graph together with a planar embedding.
An outerplanar graph is a planar graph that admits a planar embedding such that every
vertex lies on the outer face.
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We use Kn, Cn, and Pn to denote, respectively, the complete graph, the cycle and the
path on n vertices. A clique is any complete graph. A clique of G is a complete graph
that is a subgraph of G. The clique number of G, denoted ω(G), is the largest number of
vertices of a clique of G.

The distance between two vertices x and y in a graph G, denoted dG(x, y), is the length
of a shortest path connecting x and y. A graph G is connected if for each pair x and y of
vertices there is a path in G connecting x and y. The connectivity of a connected graph G
is the minimum number of vertices of G whose removal either disconnects the remaining
vertices or leaves only one vertex.

3. DEFINITIONS

3.1. Signed Graphs

A signified graph is a graph G together with an assignment of signs + and − to its edges.
If � is the set of negative edges, then we denote the signified graph by (G, �). The set
� is called the signature of (G, �). A resigning of a signified graph at a vertex v is to
change the sign of each edge incident to v. We say (G, �2) is a resigning of (G, �1)

if it is obtained from (G, �1) by a sequence of resignings. Resigning then defines an
equivalence relation on the set of all signified graphs over G (also on the set of signatures).
Each such class will be called a signed graph and will be denoted by [G, �] where (G, �)

is any member of the class.

Proposition 3.1. If G has m edges, n vertices and c components, then there are 2(m−n+c)

distinct signed graphs on G.

Proof. Since G has m edges, there are 2m signified graphs on G. Let � be a signature
on G. We will show that there are 2n−c signatures equivalent to � on G.

For each component Gi of G choose a vertex vi, i = 1, . . . , c. Then for each W ⊆
V (G) − {v1, . . . , vc} there is a signature equivalent to � obtained by resigning at W .
Furthermore, if W1 and W2 are two distinct such subsets, then their symmetric difference
is non-empty in at least one of the components. Thus resigning at distinct such subsets
results in different (equivalent) signatures.

To complete the proof we show that each equivalent signature of � is obtained by
resigning one such a set W . Indeed if in a connected component Gi one has resigned at
a subset U of vertices containing vi, then we can resign at the complement of U in this
component, leaving vi out. �

In particular, we get the following:

Corollary 3.2. There is only one signed graph on every forest.

Given a signed graph [G, �], we say [H, �1] is a subgraph of [G, �] if there is a
representation (G, �′) of [G, �] such that (i) V (H) ⊆ V (G), (ii) E(H) ⊆ E(G), and
(iii) �1 ⊆ �′.

An unbalanced cycle of [G, �] is a cycle of G that has an odd number of negative
edges. It is easily verified that this definition is independent of the choice of the signature
of G. We denote by UCk the signed graph [Ck, �] where � has an odd number of edges
and we may refer to it as the unbalanced k-cycle.

Journal of Graph Theory DOI 10.1002/jgt



HOMOMORPHISMS OF SIGNED GRAPH 183

One of the first theorems in the theory of signed graphs is that the set of unbalanced
cycles uniquely determines the class of signed graphs to which a signified graph belongs.
More precisely:

Theorem 3.3 (Zaslavsky [34]). Two signified graphs (G, �1) and (G, �2) represent
the same signed graph if and only if they have the same set of unbalanced cycles.

In other words if (G, �1) and (G, �2) have the same set of unbalanced cycles, then
the symmetric difference of �1 and �2 is an edge cut.

Given a signed graph [G, �] and k signed subgraphs [G1, �1], . . . , [Gk, �k] of [G, �]
where �i ⊆ �, we define their (mod 2)-sum, denoted [G1 ⊕ . . . ⊕ Gk, �

′], to be the
signed subgraph of [G, �] induced by the set of edges that are in an odd number of the
sets E(G1), . . . , E(Gk). We have the following easy to prove lemma on the signature of
a (mod 2)-sum of subgraphs of a signed graph.

Lemma 3.4. Given signed subgraphs [G1, �1], . . . , [Gk, �k] of [G, �], if their (mod
2)-sum is isomorphic to the vertex-disjoint union of cycles C1, . . . ,C�, then the number
of unbalanced cycles among C1, . . . ,C� is congruent to |�1| + · · · + |��| (mod 2).

3.2. Minors of Signed Graphs

A minor of a signed graph [G, �] is a signed graph [H, �′] obtained from [G, �] by
a sequence of deleting vertices, deleting edges, and contracting positive edges, in any
order. We note that at any step of this process we can replace a signed graph with one
of its equivalent forms or, equivalently, we may add a fourth operation in producing a
minor that is “resigning.” Furthermore, it is important to note that though originally we
are not allowed to contract a negative edge, we can do so after a resigning at (only) one
end of it. Though, ordinarily, in the study of minors of signed graphs we allow existence
of parallel edges, one of each sign, in this paper we do not allow parallel edges at all.
Therefore, each contraction of an edge which generates parallel edges is associated with
the deletion of all but one of these edges. In particular, contracting an edge uv such that
there exists a 2-path uwv having one positive and one negative edge allows to keep either
a positive or a negative edge from the new vertex to w. Finally we would like to emphasis
that since parallel edges are not allowed, no loop will be created by contraction.

The following lemma indicates the importance of minors of signed graphs from an
algebraic point of view:

Lemma 3.5. If [H, �′] is a minor of a signed graph [G, �] that is obtained only
by contracting edges (i.e. vertices and edges are not deleted), then the image of an
unbalanced cycle of [G, �] is an unbalanced cycle in [H, �′].

Corollary 3.6. If [H, �1] is a minor of a signed graph [G,∅] then [H, �1] = [H, ∅].

3.3. Homomorphisms of Signed Graphs

Given two signed graphs [G, �1] and [H, �2], we say there is a homomorphism of [G, �1]
to [H, �2] if there is a representation (G, �′

1) of [G, �1] and a representation (H, �′
2)

of [H, �2] together with a mapping φ : V (G) → V (H) such that every edge of (G, �′
1)

is mapped to an edge of (H, �′
2) of the same sign. We will write [G, �1] → [H, �2]

whenever there is a homomorphism of [G, �1] to [H, �2]. An automorphism of a signed
graph [G, �] is a homomorphism of [G, �] to itself that is both surjective and one-to-one,
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resigning

mapping

FIGURE 1. Resigning at the domain can be necessary for mapping

when considered as a function from V (G) to V (G), and such that the induced function on
the edge set is surjective. A signed graph [G, �] is called vertex-transitive if for each pair
x and y of vertices there is an automorphism ρ of [G, �] such that ρ(x) = y. Similarly,
[G, �] is called edge-transitive if for each pair e1 = xy and e2 = uv of edges there is an
automorphism ρ of [G, �] such that {ρ(x), ρ(y)} = {u, v}. The unbalanced cycle UCk is
an example of a signed graph that is both vertex-transitive and edge-transitive. We say
a signed graph [G, �] is isomorphic to [H, �′] if there is a homomorphism of [G, �] to
[H, �′] that is one-to-one and onto both as a vertex function and an edge function.

Suppose φ : V (G) → V (H) is a homomorphism of [G, �1] to [H, �2] using the rep-
resentations (G, �′

1) and (H, �′
2) of [G, �1] and [H, �2], respectively. Let S be the set

of vertices one must resign at to get (H, �′
2) from [H, �2]. Let (G, �′′

1 ) be the resigning
of (G, �′

1) at all vertices of φ−1(S). Then we can easily check that φ is also a homomor-
phism with respect to representations (G, �′′

1 ) and (H, �2). Therefore, when checking
for the existence of a homomorphism between two signed graphs, the choice of equiva-
lent signatures is not important for the image. However, as shown by the easy example
of Figure 1 (in all the figures, solid edges are positive and dotted edges are negative), the
choice of signature is important for the domain graph.

A signed core is a signed graph that admits no homomorphism to a proper signed
subgraph of itself. In other words, [G, �] is a core if every homomorphism of [G, �]
to [G, �] is an automorphism. A core of a signed graph [G, �] is a minimal subgraph
of [G, �] to which [G, �] admits a homomorphism. The first theorem on the notion of
cores, which is proved in Section 5, is to show that the concept of a core is well-defined
(see Theorem 5.1).

The fact that the choice of the signature in the target graph is free allows us to show,
easily, that the binary relation of existence of a homomorphism on signed graphs is
associative.

Theorem 3.7. The relation [G, �] → [H, �′] is associative.

Proof. Suppose [G1, �1] → [G2, �2] and [G2, �2] → [G3, �3]. Let φ1 : V (G1) →
V (G2) and φ2 : V (G2) → V (G3) be (respectively) such homomorphisms. Suppose �′

2
is an equivalent signature of [G2, �2] under which φ2 works. By the fact that the choice
of the signature on the right side is free, there is a signature �′

1 of [G1, �1] under which
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φ1 works. Now φ2 ◦ φ1 is a homomorphism of [G1, �
′
1] to [G3, �3] working under these

given signatures. �
Thus, homomorphisms of signed graphs define a quasi-order on the class of all signed

graphs, which is a poset when restricted to the class of all signed cores. This order will be
called the homomorphism order of signed graphs. Hence we may interchange our notions
freely and say that [H, �2] bounds [G, �1] or that [G, �1] is smaller than [H, �2] for
indicating that there is a homomorphism of [G, �1] to [H, �2]. Furthermore, if C is a
class of signed graphs, we say that a signed graph [H, �2] bounds C if [H, �2] bounds
every member of C.

By taking all signed graphs with empty signature or by taking all signed graphs of
the form [G, E(G)] we observe that the homomorphism order of signed graphs indeed
contains the homomorphism order of graphs and, therefore, contains an isomorphic copy
of every finite or countable poset (see [28]).

Theorem 3.8. The homomorphism order of signed graphs contains an isomorphic
copy of any countable poset. In particular there are two natural embeddings of the
homomorphism order of graphs into the homomorphism order of signed graphs.

This work is a first step in extending results from this usual order to the new order
we introduce here. As we will see in Section 6, the class of signed graphs whose
underlying graph is bipartite is also of special importance. In particular, we show that
the suborder induced on this set of signed graphs contains a natural isomorphic copy of
the homomorphism order of graphs. A signed graph whose underlying graph is bipartite
will be called a signed bipartite graph.

3.4. Signed Graph Coloring and Signed Chromatic Number

One of the first natural questions to ask in the poset we have just introduced is: given a
signed graph [G, �] what is the smallest order of a signed graph which bounds [G, �]?
The answer to this question in the usual homomorphism order is called the chromatic
number of the graph. Thus we define the signed chromatic number of a signed graph,
denoted χ[G, �], to be the answer to this question. Analogously, one can define signed
graph coloring and, therefore, the signed chromatic number of a signed graph as follows:
a proper coloring of a signed graph [G, �] is an assignment of colors to the vertices of G
such that adjacent vertices receive distinct colors and there is a representation (G, �′) of
[G, �] such that whenever the two colors associated with the vertices of an edge e1 are
the same as those of another edge e2, the two edges e1 and e2 have same signs in (G, �′).
The signed chromatic number of [G, �] is then the minimum number of colors needed
for a proper coloring of [G, �].

The signed chromatic number provides a first test for the possibility of the existence of a
homomorphism of [G, �1] to [H, �2]. These kinds of tests are called “no homomorphism
lemmas.” More precisely, by Theorem 3.7 we have:

Lemma 3.9. If [G, �1] → [H, �2], then χ[G, �1] ≤ χ[H, �2].

3.5. Signed Cliques and Signed Clique Numbers

Using the terminology of signed chromatic number we define a signed clique as follows:
a signed graph [G, �] is called a signed clique, or simply an S-clique, if its signed
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chromatic number is equal to the number of its vertices. In other words, an S-clique
is a signed graph [G, �] whose homomorphic images are all isomorphic to itself. The
following lemma shows how to check whether a signed graph is a signed clique or not:

Lemma 3.10. A signed graph [G, �] is an S-clique if and only if for each pair u and
v of vertices either uv ∈ E(G) or u and v are vertices of an unbalanced cycle of length 4.

Proof. Clearly, if every nonadjacent pair of vertices of [G, �] belongs to an un-
balanced 4-cycle, then no pair of vertices can be identified in a homomorphic image of
[G, �].

For the other direction, let x and y be a pair of nonadjacent vertices in G. If dG(x, y) ≥ 3
then, by identifying x and y, we get a simple graph G′. The graph G′ together with the
signature induced by � is a signed graph of order n − 1 that is a homomorphic image of
[G, �], a contradiction. Therefore dG(x, y) = 2. Let u be a vertex adjacent to both x and
y. We can assume xu and yu are both of the same sign, as otherwise we may resign at x.
If in the current signature, for every other vertex v adjacent to both x and y both edges
xv and yv are of the same sign, then we get a contradiction just as before by identifying
x and y and deleting the multiple edges. Finally, if there is a vertex v that is adjacent to
x and y with two edges of different signs, then the cycle induced by x, u, y, and v is an
unbalanced 4-cycle, just as claimed. �

The signed clique number (S-clique number) of a signed graph could be defined in
two natural ways. The absolute S-clique number of [G, �], denoted ωsa[G, �], is the
order of the largest subgraph [H, �1] of [G, �] such that [H, �1] itself is an S-clique.
The relative S-clique number of [G, �], denoted ωsr[G, �], is the number of vertices of
a largest subgraph [H, �1] of [G, �] such that in every homomorphic image φ[G, �] of
[G, �], we have |φ(H)| = |V (H)|. The following theorem verifies that these definitions
are independent of resigning.

Theorem 3.11. The notions of absolute and relative S-cliques and S-clique numbers
are well-defined, i.e. they are independent of a choice of signature for a given signed
graph.

Proof. If a set U of vertices of G induces a signed clique under a signature �,
then, by Lemma 3.10, every two vertices of U are either adjacent or they belong to an
unbalanced 4-cycle. Since the balance of a cycle does not change under resigning, U
induces a signed clique under any equivalent signature.

For the relative S-clique number note that an analog of Lemma 3.10 still holds. That is,
a subset U of G induces a relative S-clique of [G, �] if and only if every two vertices of
U are either adjacent or they belong to an unbalanced 4-cycle of [G, �]. Thus the same
proof works for this case as well. �

We note that the difference between the absolute S-clique number and the relative
S-clique number can be arbitrarily large.

Proposition 3.12. There are signed graphs with absolute S-clique number 4 and
arbitrarily large relative S-clique number.

Proof. Take a set of n independent vertices and, for each pair x, y of them, first add
a new pair uxy, vxy of vertices, then form an unbalanced 4-cycle on x, uxy, y, vxy (thus xy
is not an edge). Let [G, �] be the graph obtained in this way. Then ωsa[G, �] = 4 while
ωsr[G, �] = n. �
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It is again easy to check that each of these two terms provides another no homomor-
phism lemma:

Lemma 3.13. If [G, �1] → [H, �2], then ωsa[G, �1] ≤ ωsa[H, �2] and ωsr[G, �1] ≤
ωsr[H, �2].

These two parameters and the signed chromatic number are related by the following
theorem whose proof directly follows from the definitions.

Theorem 3.14. For every signed graph [G, �], ωsa[G, �] ≤ ωsr[G, �] ≤ χ[G, �].

We should also note that the problem of computing S-clique number(s) and the signed
chromatic number of a general signed graph includes, in particular, the problem of finding
the clique number and the chromatic number for graphs by setting � = ∅. Thus we have
the following theorem:

Theorem 3.15. It is NP-hard to compute the absolute or the relative S-clique number
of a signed graph.

4. HOMOMORPHISMS VERSUS MINORS

The concepts of homomorphisms and minors can be regarded as dual concepts: in
producing a minor of a (signed) graph we identify pairs of adjacent vertices, one pair at a
time, whereas in producing a homomorphic image of a (signed) graph we identify pairs
of nonadjacent vertices, again one pair at a time.

Hadwiger’s conjecture is to claim that the largest clique one can produce from a
graph G by minor operations is at least as big as the smallest homomorphic image one
can produce from G. Besides Hadwiger’s conjecture there are many other challenging
questions, some in direct extension of the Four-Color Theorem, that are about relations
between minors and homomorphisms. For example what can be said about the smallest
order of a Q-bound for a subclass C of a minor-closed family of graphs, each having some
homomorphism property P , where the Q-bound has some homomorphism property Q?

As an example of this type of questions and results we have the following theorem of
J. Nešetřil and P. Ossona De Mendez. For any set X of graphs, let Forbh(X ) denote the
set of graphs that admit no homomorphism from a member of X , and Forbm(X ) denote
the set of graphs that admit no member of X as a minor. Then we have:

Theorem 4.1 (Nešetřil and Ossona De Mendez [25]). For every set of graphs M and
every set of connected graphs H, the class Forbm(M) ∩ Forbh(H) is bounded by a graph
in Forbh(H).

Finding a bound as in Theorem 4.1 with smallest possible number of vertices proves
to be a very difficult question in general. For the simplest case of M = H = {Kn} finding
the smallest bound in terms of number of vertices will, in particular, solve Hadwiger’s
conjecture. For the case M = {K5, K3,3} and H = {C2k−1} it is conjectured by the first
author [20] that the projective cube of dimension 2k is the optimal solution (we refer
to [21] and [24] for definitions and details).

The following is a more general related question that is introduced in [21]. The question
surprisingly captures or relates to many theories on planar graphs such as the theory of
edge-coloring, fractional coloring, circular coloring and, furthermore, it gives ideas to
develop further interesting theories.
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Problem 4.2. What is the smallest graph of odd-girth 2k + 1 which bounds the class
of planar graphs of odd-girth at least 2r + 1 (r ≥ k)?

The main goal of this paper is to investigate relations between minors of signed
graphs and homomorphisms of signed graphs. For this reason we will mainly focus on
minor-closed families such as planar and outerplanar graphs. While in this paper we
mainly extend results from graphs to signed graphs, we hope that in the future the more
algebraic notion and structure of signed graphs will help to settle some of these difficult
questions in relation with minors and homomorphisms. Using the terminology of signed
graphs we can extend Problem 4.2 for even values (see Problem 10.3 and [24]). It is also
natural to consider families of signed graphs to which Theorem 4.1 can be extended. For
suggestions of such extensions see Problem 10.1.

5. EXAMPLES AND BASIC RESULTS

At first we prove, as promised, that the notion of the core of a signed graph is well-defined.

Theorem 5.1. Given a signed graph [G, �], the core of [G, �] is unique up to
isomorphism (of signed graphs).

Proof. Assume [H1, �1] and [H2, �2] are two cores of [G, �]. Since [H1, �1] is a
subgraph of [G, �] we have [H1, �1] → [H2, �2]. Let ϕ be such a homomorphism. We
show that ϕ is a one-to-one and onto mapping of V (H1) to V (H2) as well as of E(H1) to
E(H2).

The fact that ϕ is onto follows from the composition of [G, �] → [H1, �1] → [H2, �2]
and the fact that [H2, �2] is a core. Similarly any homomorphism of [H2, �2] to [H1, �1]
must be onto. To see that ϕ is one-to-one as a vertex mapping suppose, by contradiction,
that two vertices x and y of H1 are mapped to a same vertex of H2. Then in the composition
[H2, �2] → [H1, �1] → [H2, �2] the nonempty preimages of x and y in [H2, �2] are
mapped to a same vertex of [H2, �2]. This implies that a proper subgraph of [H2, �2] is
a homomorphic image of [G, �], this is in contradiction with [H2, �2] being a core of
[G, �]. It then follows easily that ϕ is also a one-to-one mapping of edges. �

As a consequence, we get for instance that every S-clique is a core. On the other hand,
since there is only one signed graph on a given tree T , the core of any signed tree [T, �]
is [K2, ∅]. Therefore, we have:

Corollary 5.2. If G is a tree (forest) then ωsa[G, �] = ωsr[G, �] = χ[G, �] = 2.

Furthermore we can easily classify the set of all 2-colorable signed graphs:

Theorem 5.3. A signed graph [G, �] is 2-colorable if and only if (i) G is bipartite
and (ii) there is no unbalanced cycle in G (in other words, [G, �] can be presented by
[G, ∅]).

For a given k the problem k-COLORING-SIGNED-GRAPHS is the following:

k-COLORING-SIGNED-GRAPHS

Input: A signed graph [G, �].
Question: Is χ[G, �] ≤ k?

By Theorem 5.3 and since the problem k-COLORING-SIGNED-GRAPHS contains, in
particular, the problem k-COLORING-GRAPHS, we have the following dichotomy.
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FIGURE 2. Signed complete graphs on 4 vertices

Corollary 5.4. The problem k-COLORING-SIGNED-GRAPHS is polynomial-time for k =
1, 2 and NP-complete for k ≥ 3.

A signed complete graph is a complete graph with a signature. Thus every signed
complete graph is an S-clique but the converse is not true. There are 2n−1 elements in
each class of a signed complete graph and, therefore, there are 2(

n
2 )−n+1 signed complete

graphs on n labeled vertices, however many of them are isomorphic. We do not know the
exact number of non-isomorphic signed complete graphs. There are three such graphs on
four vertices. This can be seen by considering a presentation with minimum number of
negative edges. Hence there is one with no negative edge, one with exactly one negative
edge and the third has two negative edges that are not adjacent. They are depicted in
Figure 2.

The class C = {[G, �] | G has no K4-minor} of signed graphs is, therefore, exactly the
class of signed graphs that have none of the three signed complete graphs of Figure 2 as
a minor. Similarly the class of planar signed graphs can be characterized by means of
minors: a signed graph [G, �] is planar if it has no [K5, �] or [K3,3, �

′] as a minor (for
any choice of � or �′). There are exactly seven nonisomorphic such signed graphs on
K5 and three on K3,3.

Lemma 5.5. An S-clique cannot have a cut-vertex.

Proof. Assume, to the contrary, that u is a cut-vertex. Then there exist nonadjacent
vertices x and y connected only through u. However, by Lemma 3.10, in a signed clique,
each pair of nonadjacent vertices belongs to an unbalanced 4-cycle, a contradiction. �

This lemma implies, in particular, that an S-clique of order at least 3 cannot have a
vertex of degree 1. However an S-clique (of large order) may have a vertex of degree
2. Hence an S-clique is not necessarily 3-connected. An example of such an S-clique is
built as follows: for a fixed n ≥ 2 consider the signed graph [Kn, ∅] with x and y being
two distinct vertices. Add a new vertex v and join v to x and to y with a negative and
a positive edge, respectively. The new signed graph is still an S-clique with v being a
vertex of degree 2.

Example 5.6. Let Kn,n be the complete bipartite graph on vertices X = {x1, . . . , xn}
andY = {y1, . . . , yn}. Let M be the matching {x1y1, . . . , xnyn}. The signed graph [K2,2, M]
is isomorphic to the balanced C4 and thus admits [K2, ∅] as a core. We prove below that
for n ≥ 3 the signed graph [Kn,n, M] is a signed clique and therefore a core.

Proposition 5.7. For n ≥ 3 the signed graph [Kn,n, M] is an S-clique.
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FIGURE 3. The Fano plane and the signified graph Fanos

Proof. Since every xi is adjacent to every y j, all we need to prove is that every
pair {xi, x j}, i 
= j, lies in an unbalanced 4-cycle (a similar argument will then work for
pairs of the form {yi, y j}). Since n ≥ 3, there is an index � /∈ {i, j}. The cycle induced by
{xi, x j, yi, y�} is a 4-cycle with xiyi as the only negative edge. �

It is also not hard to check that [Kn,n, M] is vertex-transitive, however this graph is
not edge-transitive for n ≥ 3. This can be seen by counting the number of unbalanced
4-cycles an edge belongs to.

Corollary 5.8. For every graph G and every signature � of G, χ[G, �] ≥ χ(G). The
difference χ[G, �] − χ(G) can be arbitrarily large.

Proof. The inequality follows from the definition. From Proposition 5.7, we get for
every n ≥ 3 that χ[Kn,n, M] − χ(Kn,n) = 2n − 2. �

In a similar way we can prove that the following signed bipartite graphs are cores.

Example 5.9. Let X be a set of size k and Y be a set of size 2k−1 whose elements are
labeled with distinct ordered pairs of the form (A, Ā) where A is any subset of X and Ā
is the complement of A in X. Furthermore, if a vertex is labeled (A, Ā), then no vertex
is labeled (Ā, A) (thus having exactly 2k−1 vertices in Y ). Let Kk,2k−1 be the complete
bipartite graph on X ∪ Y .

Let CBk = [Kk,2k−1, �] be the signed bipartite graph where {x, (A, Ā)} ∈ � if and only
if x ∈ A. With a method similar to that of Example 5.6 one can show that this signed
bipartite graph is an S-clique. We will use it later to define the bipartite chromatic number
of signed bipartite graphs. This signed graph is well-defined, i.e. it is independent of the
choice between (A, Ā) and (Ā, A), because we can resign at (A, Ā).

Example 5.10. The Fano plane is a finite geometry composed of seven points and
seven lines arranged as depicted in the left side of Figure 3. The Fano signified graph,
denoted Fanos, is the signified graph (K7,7, �), where � is defined as follows: first we
label the vertices of K7,7 by points and lines of the Fano plane. We use the seven points
for one part and the seven lines for the other part. Then, for any line L and any point x
we have xL ∈ � if and only if x ∈ L. The signified graph Fanos is depicted in the right
side of Figure 3. The corresponding signed graph is called the Fano signed graph, and is
denoted Fano.

We then have:

Proposition 5.11. The signed graph Fano is an S-clique.
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Proof. Since each pair of vertices from different parts are adjacent, and by
Lemma 3.10, it is enough to show that each pair of vertices in a same part lies in
an unbalanced 4-cycle. Considering the symmetries between lines and points and the
symmetries between pairs of points in the Fano plane, it is enough to check this only for
one pair, say {1, 2}, of nonadjacent vertices of Fano. Observe that together with lines 156
and 345, this pair induces an unbalanced 4-cycle in Fano. �

The Fano signed graph is also vertex-transitive but it is not edge-transitive. More
precisely we have the following proposition.

Proposition 5.12. The Fano signed graph is vertex-transitive. Furthermore, given two
edges e and e′ of Fano, there is an automorphism of Fano mapping e to e′ if and only if
they are of the same sign with respect to the signature given in the definition.

Proof. It is well-known and easy to observe that the incidence preserving mappings
of the Fano plane are composed of permutations of points and a switch between lines and
points. These mappings are automorphisms of the Fano signified graph that prove the
transitivity among vertices and edges of a same sign in the Fano signified graph. Since,
obviously, any automorphism of Fanos is also an automorphism of Fano, the first part of
the claim is proved.

For the second part of the claim, since automorphisms of Fanos must preserve inci-
dence, they cannot switch the sign of an edge. To complete the proof we consider an
automorphism f of Fano to be a composition f = a ◦ σ , where σ is a resigning (of
Fanos) and a a mapping of σ (Fanos) to Fanos (preserving adjacency and signs). We note
that since Fano is a signed clique, a must be an onto and one-to-one mapping of both
vertices and edges.

Our aim is to show that σ either resigns at all vertices of Fanos or at none of them.
This would complete the proof, as then a and, therefore, f must be an automorphism
of the signified graph Fanos. To prove our claim we note the set of negative edges after
resigning σ must induce a subgraph isomorphic to the one induced by negative edges of
Fanos. In particular such a subgraph must be 3-regular. We will use this fact to show on
one hand that one must resign an odd number of vertices on each part of Fanos and on
the other hand that one can only resign an even number of vertices at least in one of the
two parts. This contradiction would complete our proof.

Assume σ is a resigning at a proper nonempty subset of vertices of Fanos. Without
loss of generality, suppose vertex 1 is the first vertex to be resigned. After this step, vertex
1 is adjacent to four vertices with negative edges and three vertices with positive edges.
For this vertex to be incident with exactly three negative edges after the final resigning,
if we have resigned at k of its negative neighbors, we must have resigned at k + 1 of its
positive neighbors, thus in total an odd number of vertices from this part. Since at least
one vertex in this side must be resigned we can repeat the argument for the other side.

Now, again without loss of generality, assume that σ does not resign at vertex 2. Then
to keep the negative-degree of this vertex, σ must resign exactly the same number of
positive and negative neighbors of this vertex. Thus the number of vertices resigned at
this part must be even. �

By Proposition 3.1 there are exactly two signed graphs on a cycle Ck. The balanced
cycle, which can be represented as (Ck, ∅), and the unbalanced cycle UCk that can be
represented by a signature with exactly one negative edge. The next lemma is about the
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FIGURE 4. Signed Payley graph of order 5

existence of a homomorphism between two unbalanced cycles. Even though it is easy to
prove, it is quite essential.

Lemma 5.13. There is a homomorphism of UCk to UC� if and only if k ≥ � and k ≡ �

(mod 2).

Thus we have another “no homomorphism lemma”:

Corollary 5.14. If [G, �1] → [H, �2], then the shortest unbalanced cycle of odd
length (even length, respectively) in [G, �1] is at least as large as the shortest unbalanced
cycle of odd length (even length, respectively) in [H, �2].

The shortest length of an unbalanced cycle of [G, �] will be called the unbalanced
girth of [G, �]. In fact this corollary proposes two separate terminologies of shortest
unbalanced girth of odd and even length, but we will not use them in this paper.

Example 5.15. Given a prime power q ≡ 1 (mod 4), let Fq be a finite field of order
q. The denoted SPalq, is the signed complete graph with vertex set Fq, with the edge
xy being positive if and only if x − y is a square in Fq. This is, of course, a particular
representation of the signed Payley graph but because of its importance we will call this
representation the signified Paley graph of order q signified Paley graph of order q. We
will then use SPalq to denote both the signed Payley graph and the signified Payley graph
of order q. The important property of the signified graph SPalq for q large enough is
that, given a small but arbitrary set {v1, . . . , vk} of vertices and almost any sequence
A := a1, . . . , ak of signs, there is a vertex x for which the sign of the edge xvi is ai for
every i, 1 ≤ i ≤ k (with a possibility of resigning at x only). This will be called property
Propk.

For example, the signified Paley graph SPal5 depicted in Figure 4 has property Prop2.
That means that for every pair {u, v} of vertices, if a1 and a2 are not both of the same
sign as the sign of the edge uv, then there is a vertex x where xu and xv have the signs a1

and a2, respectively.
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This property of SPalq will help us to prove the existence of a homomorphism to SPalq
from signed graphs on partial k-trees. In particular we use this idea to prove, in Section 8,
that for every K4-minor-free graph G and any signature �, the signed graph [G, �] has
signed chromatic number at most 5. It can be checked that SPal13 and SPal17 both have
property Prop3 and that SPal29 has property Prop4.

Our last examples in this section are signed projective cubes. Using projective cubes,
some of the most outstanding problems in Combinatorics can be translated or related to
homomorphisms of signed graphs, see Problem 10.2, [13] and [24].

Example 5.16. The projective cube of dimension d, denoted PCd, is the graph with Z
d
2

as vertices where vertices u and v are adjacent if u − v ∈ {e1, e2, . . . ed} ∪ {J}. Here ei’s
are standard basis and J is the all 1 vector. This graph can be built from hypercubes in
two different ways: either by identifying antipodal vertices of the hypercube of dimension
d + 1 or by adding an edge between pairs of antipodal vertices in the hypercube of
dimension d. The signed projective cube of dimension d, SPCd, is the signed graph
[PCd, �] where � is the set of edges corresponding to J.

The signed graph SPCd is of unbalanced girth d + 1. If d is even, then SPCd is
equivalent to (PCd, E(PCd )). For odd values of d the graph PCd is bipartite. For proofs,
the importance of these graphs and for more details we refer to [24].

6. TWO IMPORTANT SUBCLASSES

Lemma 5.13 is an indication of the importance of studying the homomorphism order
restricted to two subfamilies of signed graphs: signed graphs in which all the unbalanced
cycles are odd and signed graphs in which all the unbalanced cycles are even. For similar
reasons, it is also natural to consider classes of graphs in which all balanced cycles have
the same parity. However if a graph is well connected, then in the symmetric difference
of two balanced cycles there will be a cycle that is both balanced and of even length.
Thus we consider the following two cases:

(i) Signed graphs [G, �] in which every even cycle is balanced and every odd cycle
is unbalanced.

By Theorem 3.3, [G, �] can be represented by (G, E(G)). Thus this is the class
of signed graphs in which all the edges are negative. Such a signed graph will be
called an odd signed graph. The problem of the existence of a homomorphism of
[G, �1] to [H, �2] in the class of odd signed graphs is reduced to the existence
of a homomorphism of G to H. Thus the homomorphism order induced on this
set of signed graphs is trivially isomorphic to the homomorphism order of graphs.
However it is the difference between the concept of minor of graphs and minor of
signed graphs that allows to establish or conjecture stronger results in the class of
odd signed graphs. The most outstanding such example is the following extension
of Hadwiger’s conjecture, known as odd Hadwiger’s conjecture, proposed by
B. Gerards and P. Seymour [18, p. 115].

Conjecture 6.1 (Odd Hadwiger’s conjecture) If [G, E(G)] does not have
[Kn, E(Kn)] as a minor, then χ(G) = χ[G, E(G)] ≤ n − 1.
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FIGURE 5. S(C5) → [K3,3, M] and S(C5) → S(C3)

To see the strength of this conjecture let us examine the case n = 3. The class of
K3-minor-free graphs is exactly the class of forests and Hadwiger’s conjecture is
easily true: every forest is 2-colorable. The class of [K3, E(K3)]-minor-free odd
signed graphs is exactly the class of signed graphs [G, E(G)] where G is bipartite.
Thus the conjecture is again true, but where the original Hadwiger’s conjecture
is bounding the chromatic number of forests, odd Hawiger’s conjecture gives the
same bound of 2 for the class of all bipartite graphs. The conjecture was proposed
based on a proof by P. A. Catlin [6] for n = 4. For n = 5 a proof was presented by
B. Guenin in [13] but we do not know of a reference for this proof.

(ii) Signed graphs [G, �] in which every cycle, balanced or unbalanced, is even.

Note that G is bipartite and, therefore, such a signed graph is called a signed
bipartite graph. In contrast to the previous case, we may equivalently use the term
even signed graph for members of this class.
We show, by means of a simple construction, that most homomorphism problems
for the class of odd signed graphs, and, therefore, homomorphism problems for
graphs rather than signed graphs, are captured by the homomorphism problems
for the class of even signed graphs. This is an indication that this class deserves
special attention.
We first define the following construction. Let G be a graph; the signed graph
S(G) = [G∗, �] is obtained by replacing each edge uv of G by an unbalanced
4-cycle on four vertices uxuvvyuv, where xuv and yuv are new and distinct vertices.
See Figure 5 for an example.

The following theorem shows how to define χ(G) in the homomorphism order induced
on the set of signed bipartite graphs (the signed graph [Kk,k, M] has been defined in
Example 5.6).

Theorem 6.2. For every k ≥ 3 and every graph G, χ(G) ≤ k if and only if S(G) →
[Kk,k, M].
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Proof. It would be enough to prove the theorem for connected graphs. Let
ϕ : G → Kk be a k-coloring of G. Label vertices in one part of Kk,k with vertices of
Kk (or equivalently with k colors). We can then regard ϕ as a partial mapping of S(G) to
[Kk,k, M]. We extend this mapping to the remaining vertices of S(G) as follows: for each
pair u and v of adjacent vertices of G, ϕ is extended to xuv and yuv in such a way that
the image of the unbalanced cycle uxuvvyuv is an unbalanced 4-cycle in [Kk,k, M]. This is
possible simply because k ≥ 3. It is then straightforward to check that this extension is a
homomorphism of S(G) to [Kk,k, M].

For the converse, assume there is a homomorphism φ of S(G) = [G∗, �] to [Kk,k, M].
Then φ is, in particular, a homomorphism of the bipartite graph G∗ to the complete
bipartite graph Kk,k. In the bipartition of G∗, one part is formed by V (G) and the other
part is the set of new vertices. Thus, the restriction of φ on V (G) is a mapping of V (G)

to k vertices of one side of Kk,k. Furthermore, if uv is an edge of G, then u and v must
be mapped to distinct vertices because of the unbalanced 4-cycle uxuvvyuv. Hence this
restriction of φ is a k-coloring of G. �

In a similar way we show below that the problem of the existence of a homomorphism
of a graph G to a graph H is captured by the notion of homomorphism between signed
bipartite graphs.

Theorem 6.3. For every two graphs G and H, G → H if and only if S(G) → S(H).

Proof. Any homomorphism of G to H can easily be extended to a homomorphism
of S(G) to S(H).

For the converse, suppose that φ is a homomorphism of S(G) to S(H). If G has no
edge, then there is nothing to prove. If G is bipartite with at least one edge, then H must
also have at least one edge for φ to exist and, therefore, G maps to H. Thus we may
assume G has at least one odd cycle. Furthermore, we may assume that both G and H are
connected as we can easily compose homomorphisms on connected components.

We claim that in the mapping φ from V (S(G)) to V (S(H)) the set V (G) must be
mapped into V (H). Since V (G) is a part in the bipartition of S(G), and V (H) is a part in
the bipartition of S(H), and since G and H are both connected, φ either maps all vertices
in V (G) to vertices in V (H) or none of them. Let C2r+1 be an odd cycle of G and let
w1, . . . , w2k+1 be its vertices, connected in this cyclic order. To complete the proof of
our claim we show that vertices of C2k+1 must be mapped into V (H). By contradiction
suppose that a vertex wi of C2k+1 is mapped to a vertex of the form xuv in S(H). Then,
because of the unbalanced 4-cycle associated to the edge wiwi+1 (addition of the index is
taken modulo 2k + 1) in S(G), wi+1 is mapped to the vertex yuv. Continuing this process
we obtain a 2-coloring of C2k+1 using xuv and yuv, which is a contradiction.

Thus φ maps V (G) to V (H). To show that it is a homomorphism of G to H, let uv be an
edge in G and let UC′ be the unbalanced 4-cycle associated with this edge in S(G). The
image ofUC′ under φ then must be another unbalanced 4-cycle containing φ(u), φ(v) and
the other two vertices must be vertices not fromV (H). This means we have constructed an
unbalanced 4-cycle on φ(u) and φ(v), but the condition for having such a cycle is to have
an edge between φ(u) and φ(v) in H. Hence φ induces a homomorphism of G to H. �

Since the homomorphism order on signed bipartite graphs captures the homomorphism
order on graphs, it is natural to look for extensions of many known coloring and homo-
morphism results on graphs to signed bipartite graphs. In particular we will consider
some possible extensions of Hadwiger’s conjecture in Section 9.

Journal of Graph Theory DOI 10.1002/jgt



196 JOURNAL OF GRAPH THEORY

FIGURE 6. A planar S-clique on 8 vertices

7. S-CLIQUE NUMBERS OF PLANAR SIGNED GRAPHS

In this section, we consider the problem of determining the S-clique number of a planar
signed graph. We show that the largest order of a planar S-clique is 8, which gives the
maximum of the absolute S-clique number of planar signed graphs. We do not know the
maximum of the relative S-clique number of planar signed graphs, though we obtain an
upper bound through the bounds for the signed chromatic number of planar graphs in
Section 8.

Theorem 7.1. The maximum order of a planar S-clique is 8.

Proof. An example of a planar S-clique on eight vertices is given in Figure 6. To see
that this signed graph is an S-clique, it is enough to observe that every pair of nonadjacent
vertices lies on an unbalanced 4-cycle.

Assume now that [G, �] is an S-clique of order 9 or more. Furthermore, we may assume
without loss of generality that G is a triangulation. Recall first that, by Lemma 3.10, each
pair of nonadjacent vertices of G lies on an unbalanced 4-cycle. This will be a key tool
for our proof. We prove, through several claims, that K2,3 cannot be a subgraph of G.
Using this we will get a contradiction at the end.

When referring to K2,i, we use a and b to denote the vertices from the part with two
vertices and x1, . . . , xi to denote the vertices from the other part, ordered from left to
right with respect to a given embedding of G in the plane. By K+

2,i we denote the graph
obtained from K2,i by adding the edge ab. Furthermore when we speak of faces of these
subgraphs we refer to their planar embedding induced by the planar embedding of G.

Claim 1. K2,7 cannot be a subgraph of a planar S-clique of order at least 9.

Suppose K2,7 ⊆ G. Consider a cyclic ordering of x1, x2, . . . , x7. With respect to �,
each path axib is either positive or negative. Hence four of these seven paths are of the
same sign. Suppose axi1 b, axi2 b, axi3 b, axi4 b are of the same sign. Then, in the cyclic
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order of x1, x2, . . ., x7, at least two of xi1 , xi2 , xi3, and xi4 , say xi1 and xi2 , are at distance
3. To see this, we build a graph on x1, x2, . . ., x7 by joining vertices at distance 3 in the
above cyclic order. The graph built is isomorphic to C7 whose independence number is
3, thus if we choose a set of four vertices, two of them will be adjacent. Finally, we note
that there is no possibility for the nonadjacent pair xi1 and xi2 of vertices of [G, �] to be
in an unbalanced 4-cycle. Together with Lemma 3.10 this proves Claim 1.

We note that this claim holds generally, i.e. if [G, �] is a planar S-clique then K2,7 
⊆ G.
But the next claims are only true because we have assumed that G has nine or more
vertices.

Claim 2. K2,5 cannot be a subgraph of a planar S-clique of order at least 9.

By contradiction suppose K2,5 ⊆ G and consider the cyclic order on x1, x2, . . . , x5.
Furthermore, sums in the indices are taken modulo 5. Let u be a vertex of G that is not
in K2,5. Suppose u is in the face axibxi+1 of K2,5. Then xi+3 is not adjacent to u. For these
two vertices to be in a common unbalanced 4-cycle, u must be adjacent to both a and
b. Since u was an arbitrary vertex, every vertex not in K2,5 must be joined to both a and
b. Because we assume G has at least nine vertices, this would imply that K2,7 ⊆ G that
contradicts Claim 1.

Claim 3. K+
2,4 cannot be a subgraph of a planar S-clique of order at least 9.

Let x1, x2, x3, and x4 be the four vertices of the part of size 4. By considering an
imaginary vertex x5 on the edge ab we could repeat the same argument as in the previous
case to get a contradiction.

Claim 4. K2,4 cannot be a subgraph of a planar S-clique of order at least 9.

Assume K2,4 ⊆ G. Suppose, by symmetry, that there is a vertex u in the outer face of
K2,4. By Claim 2, u is adjacent to at most one of a and b. Suppose u is not adjacent to
b. We claim that there is no vertex in the face ax2bx3. By contradiction, suppose that w
is such a vertex. Since u and w are not adjacent, and by Lemma 3.10, they must belong
to an unbalanced 4-cycle. Such a 4-cycle must contain both a and b. Note that it is not
possible, because u is adjacent neither to b nor to w, a contradiction.

Since u is not adjacent to x2 and x3, by Lemma 3.10, x2 and u (and similarly x3 and u)
must be in a common 4-cycle. The only way for this to happen is that u is adjacent to x1,
a, and x4.

In similar way each vertex in the outer face of K2,4 must be adjacent to either x1, a,

and x4 or to x1, b, and x4. However, by planarity of G, for each of these triples there
can be at most one vertex in the outer face of K2,4 joined to all three of them. First we
consider the case when there are two such vertices and let v be the vertex joined to x1, b,
and x4. In this case, we prove that there is no vertex of G on the faces ax1bx2 and ax3bx4

of K2,4. For a contradiction, suppose t is a vertex on the face ax1bx2 of K2,4. Then, to
be in a 4-cycle with u, t must be adjacent to a and, to be in a 4-cycle with v, t must be
adjacent to b. Thus, G contains a K2,5 as a subgraph that contradicts Claim 2. This leaves
us with at most eight vertices that contradicts the order of G. Hence, we may assume
there is at most one vertex in each of the faces of of K2,4 and that u is one such vertex in
the outer face. Thus, there is no vertex in the face ax2bx3 of K2,4. To complete the proof
of the claim we show that faces ax1bx2 and ax3bx4 of K2,4 cannot contain vertices at the
same time. That is simply true because such vertices must both be connected to a and b
in order to be in a same 4-cycle.
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FIGURE 7. K+
2,3 subgraph of a planar S-clique

Claim 5. K+
2,3 cannot be a subgraph of a planar S-clique of order at least 9.

Assume K+
2,3 ⊆ G. Suppose that, in the planar embedding of G, the subgraph K+

2,3 is
embedded as in Figure 7. We first show that the faces f1 and f2 of K+

2,3 are also faces
of G. For a contradiction suppose there is a vertex t on the face abx3 of K+

2,3. Then for
the nonadjacent pair t and x2 of vertices of G to be in a 4-cycle, t must be connected to
both a and b. Hence K2,4 is a subgraph of G that contradicts Claim 4. The proof for the
abx2-cycle is similar.

Let now z be a vertex in the outer face of K+
2,3. Then, by Claim 4, z cannot be adjacent

to both a and b. Suppose, by symmetry, that z is not adjacent to b. Since z is not adjacent
to x2, by Lemma 3.10, they must be in a common 4-cycle. For this to be possible x2 must
be adjacent to x1. Furthermore, z also must be adjacent to both a and x1. Similarly, any
other vertex of G is either adjacent to both a and x1 or adjacent to both b and x1. Since
there are at least four vertices in G that are not in the K+

2,3, there are at least two vertices,
say u and v, adjacent to the same pair, say a and x1 without loss of generality. Then u, v,
x2, and b together with a and x1 form a K+

2,4 subgraph of G that contradicts Claim 3.

Claim 6. If K−
4 is a subgraph of G, then the two triangles of this subgraph are faces

of G.

Let a, x, b, and y be the four vertices of K−
4 with ab being the missing edge (this edge

might exist in G). Let t be a vertex in the triangle axy separated from b. Thus t and b are
not adjacent and, therefore, by Lemma 3.10, they are in a common 4-cycle. By symmetry
of a and b, we consider two cases: either t is adjacent to both x and y, in which case
{x, y} and {a, t, b} induce a K+

2,3; or t is adjacent to both a and x, in which case {a, x} and
{b, y, t} induce a K+

2,3. In both cases we have a contradiction with Claim 5.

Claim 7. The graph H of Figure 8 admits no signature with respect to which it would
be an S-clique.

By Lemma 3.10, all we need is to prove that there is no signature on H such that each
pair of nonadjacent vertices is contained in an unbalanced 4-cycle. To this end we note
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FIGURE 8. Graph H, a candidate on 9 vertices for being a signed clique

that each of the following nine pairs are in a unique 4-cycle of H: (i) p and s in the
cycle C1 = ptsr, (ii) y and p in the cycle C2 = yxpa, (iii) y and t in the cycle C3 = yatz,
(iv) y and s in the cycle C4 = yzsb, (v) y and r in the cycle C5 = ybrx, (vi) p and z in
the cycle C6 = pazt, (vii) p and b in the cycle C7 = pxbr, (viii) s and a in the cycle
C8 = szat, (ix) s and x in the cycle C9 = sbxr. Thus each of the cycles C1, . . . ,C9 is an
unbalanced 4-cycle. Therefore, by Lemma 3.4, the cycle patzsbrx, which is the (mod
2)-sum (C2 ⊕ C3) ⊕ (C4 ⊕ C5), is balanced.

Since the triangles pat and tzs are two connected components of the (mod 2)-sum
C6 ⊕ C8, they are of the same balance by Lemma 3.4. Similarly, considering (mod 2)-sum
C7 ⊕ C9 we conclude that the triangles sbr and rxp are of the same balance. Therefore, by
Lemma 3.4, the (mod 2)-sum pat ⊕ tzs ⊕ sbr ⊕ rxp ⊕ patzsbrx is balanced. However
this (mod 2)-sum is C1 that is supposed to be unbalanced, a contradiction.

Claim 8. K2,3 cannot be a subgraph of a planar S-clique of order at least 9.

Toward a contradiction, let K2,3 be a subgraph of G. Suppose K2,3 is a plane subgraph
of G as depicted in the left side of Figure 9. As the first step we show that at least one of
the three pairs x1x2, x1x3, x2x3 should be an edge of G. By contradiction, suppose none
of them is an edge of G. Then, since G is a triangulation, and because of Claim 5, there
should be a vertex in each face of K2,3. Let t be a vertex on the outer face of K2,3. Then
t is not adjacent to x2, so they must be in a common 4-cycle, but to this end either t is
adjacent to both a and b, which contradicts Claim 4, or x2 is adjacent to one of x1 or x3

as we wanted. Without loss of generality we now assume that x1x2 ∈ E(G), as depicted
in the right side of Figure 9.

We show as the next step that either x1x3 ∈ E(G) or x2x3 ∈ E(G). Assume neither x1x3

nor x2x3 is an edge of G. So, just as in the previous step, we assume t is a vertex on the
outer face of K2,3. Furthermore let t ′ be a vertex on the face ax2bx3 of K2,3. Since t and t ′
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FIGURE 9. Possible situations for K2,3 in G

FIGURE 10. Partial extension of K2,3 subgraph

are not adjacent, they must be in a common unbalanced 4-cycle. By Claim 4 neither of t
and t ′ can be adjacent to both a and b. Hence they both are adjacent either to a and x3 or
to b and x3. By symmetry of a and b, we assume t and t ′ both are adjacent to a and x3.
By Claim 6, any other vertex must be either inside at ′x3bx2 or outside of atx3bx1. Let u
be such a vertex and, by symmetry of these two cycles, we assume it is inside at ′x3bx2.
Thus u is not adjacent to t and therefore it should be in common 4-cycle with t. To this
end it should be adjacent to a and x3. This would induce a K+

2,3 on {a, x3} ∪ {t, t ′, u},
contradicting Claim 5. Hence, for every K2,3 subgraph of G, there must be at least two
edges induced by vertices of the part of size 3.

Finally, to complete the proof of this claim, we show that if K2,3 ⊆ G, then G is
isomorphic to the graph of Figure 8. By the previous step, and by symmetry, we may
assume x1x2 ∈ E(G) and x2x3 ∈ E(G). First we note that by Claim 6 any other vertex of
G must be in the outside of ax3bx1 (see Figure 10).

Let t be any such vertex. Since t is not adjacent to x2, in order for t and x2 to be
in a common 4-cycle, t should be adjacent to at least two neighbors of x2. However, it
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cannot be adjacent to both a and b as otherwise we would have K2,4 ⊆ G that contradicts
Claim 4. Similarly t cannot be adjacent to both x1 and x3. Thus it must be adjacent to
both ends of an edge of the ax3bx1-cycle. Furthermore for each edge of this cycle there
can be at most one vertex, other than x2, adjacent to both ends. Because if there were two
such vertices, together with x2, they would produce a K+

2,3 subgraph of G, contradicting
Claim 5. Since G has at least nine vertices, this implies that G has exactly nine vertices
and we have the graph of Figure 10 as a subgraph of G. We note that connecting a to b
would produce K+

2,3 and connecting a to r or s would produce K2,4 both of which were
proved to be forbidden subgraphs of G. Hence, in the graph of Figure 10, the vertex a
is already adjacent to all its neighbors in G. The same holds for b, x1, and x3. Thus to
form a triangulation of the graph of Figure 10, and by the symmetry of t, p, r, and s, we
must have a graph isomorphic to the graph of Figure 8. However, by Claim 7, this graph
admits no signature under which it would form an S-clique.

Claim 9. δ(G) ≥ 5 (and thus δ(G) = 5).

Since G is a triangulation with more than three vertices, it has no vertex of degree 2 or
less. If x is a vertex of degree 3, then, together with its neighbors, it will induce a K4 and
by Claim 6 all the faces of K4 are also faces of G; hence G has only four vertices. If x is
a vertex of degree 4, then, since G is a triangulation, together with its neighbors it will
create a K2,3 subgraph that contradicts Claim 8.

We now complete the proof of the theorem. Let v be a vertex of degree 5. Since G is
a triangulation, its neighbors form a 5-cycle C5. Each vertex not adjacent to v must be
joined to two vertices of this C5, but no two of them can be adjacent to a same pair as
otherwise we contradict Claim 8. Therefore, by planarity of G, there can be at most seven
such vertices. On the other hand, by Claim 9 and by the Euler formula, either G has 12
vertices all of degree 5 or 13 vertices that all but one are of degree 5 and the last one is
of degree 6. It follows from the degree conditions for the vertices of the C5 induced by
N(v) that there are at most eleven edges connecting neighbors of v to nonneighbors of
v, but each such nonneighbor is joined to at least two neighbors of v. Hence there are a
total of at most five nonneighbors of v and hence G has at most 11 vertices, which is a
contradiction. �
Corollary 7.2. The absolute S-clique number of a planar signed graph is at most 8.
This bound is tight.

Some bounds on the relative S-clique number of planar signed graphs follow from
bounding their signed chromatic number, but we do not know the optimal bound for the
relative S-clique number of planar signed graphs.

8. THE SIGNED CHROMATIC NUMBER OF MINOR CLOSED

FAMILIES

Toward generalization of the Four-Color Theorem (or the Four-Color Conjecture at that
time), K. Wagner [32] proved that the chromatic number of any proper minor-closed
family is bounded by a constant. Hadwiger’s conjecture is to find the best such constant
for certain minor-closed families of graphs. We note that such a general result is not
true for signed graphs. For example, the class C of all signed graphs not containing
[K3, E(K3)] as a minor contains all the signed graphs [G, ∅] and, therefore, admits no
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FIGURE 11. A 5-chromatic outerplanar signed graph

bound on its signed chromatic number. In this section, we show that some stronger minor
condition would imply a constant bound on the signed chromatic number. We start with
signed graphs [G, �] where G is K4-minor-free, in which case we give the best possible
bound. Recall that SPal5 is the graph of Figure 4.

Theorem 8.1. Let [G, �] be a signed graph where G is a K4-minor-free graph. Then
[G, �] → SPal5. Therefore χ[G, �] ≤ 5 and, moreover, this bound is tight.

Proof. Without loss of generality we may assume that G is an edge-maximal K4-
minor-free graph. A classical decomposition theorem for edge-maximal K4-minor-free
graphs states that such a graph is built from a sequence of triangles, starting by one
triangle and pasting each new triangle to the graph previously built along an edge (for
a proof see [8], Proposition 8.3.1). Let T1, . . . , T� denote the corresponding sequence of
triangles. Consider the first triangle T1. If all the edges are of the same sign, then we
resign at a vertex. Now T1 has at least one negative and at least one positive edge. So it can
easily be homomorphically mapped to SPal5. Inductively, assume that [Gi, �i], defined
as the signed subgraph induced by T1, . . . , Ti, i < �, is mapped to SPal5. Consider Ti+1. If
all the edges are of the same sign, then resign at the vertex of Ti+1 that is not in Gi. Now,
since Ti+1 is a triangle of possible form in SPal5 and by the main property of SPal5 (see
Example 5.15), we can extend the homomorphism of Gi to SPal5 to a homomorphism
of Gi+1 to SPal5. We note that resigning happens only when a vertex is added to the
previously built part of the graph, so the process is well-defined.

We thus have χ[G, �] ≤ 5. Let us show that this bound is tight. For that, consider
the planar signed graph of Figure 11. By contradiction, suppose f is a 4-coloring of
this graph. Since uvwx is an unbalanced 4-cycle, we may assume f (u) = 1, f (v) = 2,
f (w) = 3, and f (x) = 4. Since uxyz is also an unbalanced 4-cycle, y and z must be
colored 2 and 3. But then the balanced triangle uvw and the unbalanced triangle uyz
receive the same set of colors, which is a contradiction. �

Since every outerplanar graph is K4-minor-free and since the example of Figure 11 is
outerplanar, we get:
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Corollary 8.2. The signed chromatic number of every outerplanar signed graph is at
most 5 and this bound is tight.

For the class of planar signed graphs we do not know the maximum possible value of
the signed chromatic number, but using the bound on the acyclic chromatic number of
planar graphs and techniques similar to that of [29] and [1], we obtain an upper bound of
48. In [1], Alon and Marshall proved that every m-edge-colored graph whose underlying
graph has acyclic chromatic number at most k admits a homomorphism to an m-edge-
colored graph of order at most kmk−1. This result has been generalized to colored mixed
graphs by Nešetřil and Raspaud [26] (see also Montejano et al. [19]). In case of signed
graphs, thanks to resigning, we obtain an improved bound as follows.

Theorem 8.3. If G is acyclically k-colorable and � is any signature on G, then
χs[G, �] ≤ � k

2� · 2k−1.

Proof. The result is immediate when k ≤ 2. Hence we assume k ≥ 3. Let ϕ :
V (G) −→ {0, . . . , k − 1} be an acyclic k-coloring of G. For any two colors i and j,
0 ≤ i < j ≤ k − 1, let Fi, j denote the forest induced by vertices of color i or j.

Let now [G, �] be any signed graph with underlying graph G. We first resign the �k/2�
vertex-disjoint forests {F2p,2p+1, 0 ≤ p ≤ �k/2� − 1} in such a way that all their edges
become positive (this can be done according to Corollary 3.2). We denote by [G, �′] the
so-obtained signed graph.

Let [Hk,�k] be the signed graph defined as follows. The vertices of Hk are the (k + 1)-
tuples [α; a0, . . . , ak−1] where α is one of the k colors of the acyclic coloring of G and
ai ∈ {∗, 0, 1}, for every i, 0 ≤ i ≤ k − 1, satisfying the following rules:

(1) α ∈ {0, . . . , k − 1},
(2) aα = ∗,
(3) if α is even and α < k − 1 then aα+1 = ∗,
(4) if α is odd then aα−1 = ∗,
(5) ai ∈ {0, 1} otherwise.

Note that the number of vertices of Hk is precisely k2k−2 if k is even, and (k + 1)2k−2

if k is odd.
There is an edge in Hk linking vertices [α; a0, . . . , ak−1] and [β; b0, . . . , bk−1] if

and only if α 
= β. The set of negative edges �k of Hk is then the set of pairs
{[α; a0, . . . , ak−1], [β; b0, . . . , bk−1]} such that either �α/2� = �β/2� or �α/2� 
= �β/2�
and aβ = bα . It is not difficult to observe that [Hk, �k] is indeed an S-clique.

We claim that [G, �′] admits a homomorphism to [Hk, �k] that will prove the Theorem.
Let Fi, j be any forest not belonging to the set {F2p,2p+1, 0 ≤ p ≤ �k/2� − 1}. We

claim that there exists a mapping λi, j : V (Fi, j) −→ {0, 1} such that for every edge uv
in Fi, j, uv ∈ �′ if and only if λi, j(u) = λi, j(v). Such a mapping can be inductively
constructed as follows. Take any connected component Ti, j of Fi, j, any arbitrary vertex
u0 of Ti, j, and set λi, j(u0) = 0. Assume that the mapping λi, j has been defined for all
vertices {u0, . . . , ui−1} of a connected subtree of Ti, j and let ui be any vertex of Ti, j

linked by an edge to some (unique) u j ∈ {u0, . . . , ui−1}. We then set λi, j(ui) = λi, j(u j)

if uiu j ∈ �′ and λi, j(ui) = 1 − λi, j(u j) otherwise. Repeating this procedure for every
connected component of Fi, j, we clearly obtain the desired mapping.

For every i, 0 ≤ i ≤ k − 1, let λi,i be the mapping defined by λi,i(u) = ∗ for every
u ∈ V (G). Similarly, for every i, 0 ≤ i ≤ k − 1, i odd (resp. i even and i < k − 1) let
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λi,i−1 (resp. λi,i+1) be the mapping defined by λi,i−1(u) = ∗ (resp. λi,i+1(u) = ∗) for
every u ∈ V (G).

For convenience, we let λ j,i = λi, j for every i and j, 0 ≤ i, j ≤ k − 1.
We now claim that the mapping h : V (G) −→ V (Hk) defined by

h(u) = [ϕ(u); λ0,ϕ(u)(u), . . . , λk−1,ϕ(u)(u)]

is a homomorphism of [G, �′] to [Hk, �k]. Note first that, thanks to the definition of
the mappings λi, j, h(u) ∈ V (Hk) for every u ∈ V (G). Moreover, since ϕ is an acyclic
coloring, and thus a proper coloring, every edge uv of G is mapped to an edge of H (the
first components of h(u) and h(v) are distinct and, therefore, h(u) and h(v) are linked by
an edge in Hk). It remains to show that an edge uv of G belongs to �′ if and only if its
image h(u)h(v) belongs to �k.

If uv ∈ E(Fi, j) for some Fi, j ∈ {F2p,2p+1, 0 ≤ p ≤ �k/2� − 1} then uv /∈ �′ and, by
definition of λϕ(u),ϕ(v), h(u)h(v) /∈ �k.

Otherwise, thanks to the property of λϕ(u),ϕ(v), we have uv ∈ �′ if and only if
h(u)h(v) ∈ �k, which concludes the proof. �

A k-tree is a graph obtained from the complete graph Kk by adding a sequence
v1, v2, . . . vr of vertices where each vi is joined to a set of k vertices that form a k-clique
in the subgraph induced by vertices of the original Kk and v1, v2, . . . vi−1. A subgraph of
a k-tree is a partial k-tree. In particular, K4-minor free graphs are exactly partial 2-trees.
Since every k-tree is obviously acyclically (k + 1)-colorable, we have:

Corollary 8.4. If G is a partial k-tree and � any subset of E(G), then χ[G, �] ≤
� k+1

2 �2k.

This, in particular, gives an upper bound of 8 (respectively 16) for the signed chromatic
number of [G, �] where G is a K4-minor-free graph (respectively a partial 3-tree). The
former was improved in Theorem 8.1 using SPal5 and the latter can be improved to 13
with SPal13 as the target with the same method as in the proof of Theorem 8.1, using
stronger properties of SPal13.

Using the bounds on the acyclic chromatic number of planar graphs we also have the
following:

Theorem 8.5. If [G, �] is a planar signed graph, then χ[G, �] ≤ 48. There is a planar
S-clique of order 8 and there is a planar signed graph with signed chromatic number 10.

Proof. The upper bound of 48 follows from Theorem 8.3 and the fact that every
planar graph is acyclically 5-colorable [2]. An example of a 10-chromatic planar signed
graph is given in Figure 12. Note that this signed graph is built from the S-clique of
Figure 6 by adding two pairs of vertices, one on the right and one on the left. It is then
not difficult to check that for each pair we need at least one more new color and that the
pair on the right needs distinct colors than that on the left. �

We further note that if the maximum signed chromatic number of planar signed graphs
is say k, then there exists a signed graph of order k to which every planar signed graph
admits a homomorphism. Perhaps it would be possible to prove, directly, that every planar
signed graph admits a homomorphism to a fixed signed Paley graph.

Recently, Ochem et al. [27] proved that if G is an acyclically k-colorable graph and � is
any signature on G, then χs[G, �] ≤ k · 2k−2, thus improving Theorem 8.3 for odd values
of k. This new bound improves the upper bound of Theorem 8.5 for planar signed graphs
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FIGURE 12. A 10-chromatic planar signed graph on 12 vertices

to 40. Furthermore, they show that if the correct bound is 10, then there is unique signed
graph on 10 vertices that bounds all planar signed graphs. This graph is constructed by
adding a universal vertex (incident to edges of the same sign) to the signed Payley graph
of order 9.

9. HADWIGER’S CONJECTURE FOR SIGNED BIPARTITE GRAPHS

We saw that odd Hadwiger’s conjecture proposes a possible strengthening of Hadwiger’s
conjecture for the class of odd signed graphs. In this section, we examine possibilities
of such a strengthening for the class of even signed graphs, i.e. signed bipartite graphs.
Recall that for every graph G, the signed graph S(G) is obtained from G by replacing
each edge uv of G by an unbalanced 4-cycle uxuvvyuv, where xuv and yuv are new and
distinct vertices.

We first prove the following minor relation between graphs and signed bipartite graphs:

Theorem 9.1. For every integer n and every graph G, G has a Kn-minor if and only if
S(G) has a [Kn, �]-minor for some � (equivalently for any �).

Proof. First assume [Kn, �] is a minor of the signed graph S(G) for some �. We
would like to prove that Kn is a minor of G. This is clear for n = 1, 2. So we assume
n ≥ 3. Thus, in producing [Kn, �] as a minor of the signed graph S(G) each vertex of
degree 2 in S(G) is either deleted or identified with one of its neighbors as a result of
contracting an incident edge. We define a minor of G as follows: For each edge uv of G,
if the corresponding unbalanced 4-cycle is deleted in the process of producing [Kn, �]
as a minor of the signed graph S(G), then delete uv. If u and v are identified through
contraction of edges in producing [Kn, �] as a minor of the signed graph S(G), then
contract the edge uv. Otherwise uv remains an edge. The resulting minor then must be
Kn.

For the opposite direction, suppose Kn is a minor of G. Let uv be an edge of G. If
the edge uv is deleted in producing Kn-minor from G, then delete all the four edges
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of corresponding unbalanced 4-cycle. If uv is contracted, then contract two positive
edges of the corresponding unbalanced 4-cycle in S(G) in such a way that u and v are
identified after these contractions and delete the other two edges of the unbalanced 4-
cycle. Otherwise contract two positive edges of the corresponding unbalanced 4-cycle
in such a way that there are two new parallel edges between u and v, one positive and
one negative. Finally delete all isolated vertices. By allowing multiple edges at the end
of this process we get a minor of the signed graph S(G) that has n vertices and for each
pair x and y of vertices two xy edges, one positive and one negative. For each such pair
we delete the negative edge unless xy ∈ � in which case we delete the positive edge. The
result is [Kn, �] obtained as a minor of the signed graph G. �

By Theorem 6.2, Hadwiger’s conjecture can be restated as follows:

Conjecture 9.2 (Hadwiger’s conjecture restated). Given n ≥ 4, the class C of signed
bipartite graphs defined by C = {S(G) | G is Kn-minor-free} is bounded by [Kn−1,n−1, M]
in the signed graph homomorphism order.

Hadwiger’s conjecture is known to be true for n ≤ 6, thus Conjecture 9.2 is also true
for n ≤ 6. For n = 4 we have the following generalization.

Theorem 9.3. If G is a bipartite graph with no K4-minor and � is any signature on
G, then [G, �] → [K3,3, M].

Proof. By adding more edges, if needed, we may assume that G is edge maximal
with respect to being bipartite and having no K4-minor. Obviously it is enough to prove
the theorem for such edge maximal graphs.

As mentioned before, a classical decomposition theorem for edge-maximal K4-minor-
free graphs states that every such graph is built from a sequence of triangles starting by
one triangle and pasting each new triangle to the graph previously built along an edge.
To use the decomposition theorem we add new edges to G, of green color, until we reach
a maximal K4-minor-free graph G′, which obviously is not bipartite anymore. Let G′′ be
the edge-colored graph obtained from G′ by coloring original positive edges of [G, �] in
blue, original negative edges of [G, �] in red and keeping the green color for edges not
in G.

We claim that there is no triangle in G′′ with exactly two green edges. To see this,
suppose that v1v2 and v1v3 are both green and that v2v3 is an edge of G. Since G is bipartite
v2 and v3 are in two different parts and thus v1 is in a different part with respect to one
of them. Without loss of generality assume v1 and v2 are in different parts. Consider the
graph G + {v1v2}. By the choice of v2 this graph is bipartite and since it is a subgraph of
G′, it has also no K4-minor but this contradicts the edge maximality of G.

We now build a new edge-colored graph F from [K3,3, M]. The blue and red edges of F
are defined as before and we add green edges between every pair of vertices nonadjacent
in [K3,3, M]. The edge-colored graph F has three types of triangles: (i) triangles with
three green edges, (ii) triangles with one green edge and two blue edges, and (iii) triangles
with no two edges of the same color. Furthermore it is not hard to verify that each red
edge only belongs to triangles of type (iii), each blue edge belongs to triangles of type
(ii) or (iii) and each green edge is contained in triangles of each of the three types.

To prove the theorem we now prove the following stronger statement: there exists a
suitable “resigning” G∗ of G′′ such that G∗ admits a color-preserving homomorphism to
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F . By resigning here we mean exchanging the colors red and blue on edges of an edge
cut, this can be regarded as a sequence of vertex resigning.

To prove this stronger statement, let T1, . . . , Tk be the sequence of triangles obtained
from the decomposition of G′′ mentioned above. Note that since G was bipartite, each
such triangle contains a green edge. Consider the triangle T1. Either it is one of the three
types (i), (ii), or (iii), in which case we simply map it to F , or it has one green and two
red edges. Let u be the common vertex of these two red edges. After resigning at u we
have a triangle of type (ii) and thus we can map it to F .

By induction, assume now that the graph G′′
i , obtained by pasting the triangles T1, . . . Ti,

i < k, is mapped to F and assume that Ti+1 is pasted to G′′
i along the edge e. Let v be

the vertex of Ti+1 not incident to e. If Ti+1 is a triangle of one the three types, because
of the above-mentioned property of F , we can extend the mapping of G′′

i to G′′
i+1, where

the colors of the two edges of Ti+1 incident with v are preserved. Otherwise Ti+1 has
exactly two red edges and one green edge. By resigning at v we get a triangle that has
either one or no red edge, thus obtaining a triangle of type (ii) or (iii). We now extend the
homomorphism thanks to the properties of F . In this process, resigning a vertex would be
done at most once, when it is added to the already built part of the graph, so our process
is well-defined and the stronger claim is proved. �

We note that our proof has an algorithmic feature. Given a signed bipartite graph [G, �],
where G is a K4-minor-free graph, we can find, in polynomial time, a homomorphism of
[G, �] to [K3,3, M].

Furthermore, we believe that the following stronger statement should also be true:

Conjecture 9.4. If G is bipartite and [G, �] has no [K4, E(K4)] as a minor, then
[G, �] → [K3,3, M].

For n = 5 it is shown in [24] that the following holds.

Theorem 9.5. If G is a bipartite planar graph and � is any signature on G, then
[G, �] → [K4,4, M].

This theorem is indeed stronger than the Four-Color Theorem and it does use the Four-
Color Theorem in its proof. We believe that using Wagner’s decomposition theorem
of edge-maximal K5-minor-free graphs and with a method similar to that of [23] the
condition of planarity can be replaced with the more relaxed condition of having no
K5-minor. However the following extension, proposed by B. Guenin [13] is a lot more
challenging:

Conjecture 9.6. Suppose G is a bipartite graph and � is any signature on G. If [G, �]
does not have [K5, E(K5)] as a minor then [G, �] → [K4,4, M].

For large values of n (n ≥ 7) we show that no such simple conjecture would hold. This
could be regarded as a first negative indication for Hadwiger’s conjecture for n ≥ 7.

Theorem 9.7. There exists no value of n for which Fano (the signed bipartite graph
of Fig. 3) admits a homomorphism to [Kn,n, M].

Proof. Since Fano is an S-clique, any homomorphic image of Fano is isomorphic
to itself. Thus, if Fano maps to [Kn,n, M], then its image should be of the form [K7,7, M′]
where M′ is a matching of size 7 or less induced by M on K7,7. If there are two vertices of
the same part of K7,7 not matched by M′, then identifying them would result in a signed
homomorphic image of order at most 13 of Fano, which is a contradiction.
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Thus we consider two cases, |M′| = 7 or |M′| = 6. In each case, by counting the
number of unbalanced 4-cycles containing a pair of nonadjacent vertices, we show that
Fano cannot be isomorphic to [K7,7, M′]. Note that there are exactly 12 unbalanced 4-
cycles containing an arbitrary pair of nonadjacent vertices of Fano. For [K7,7, M′] with
|M′| = 7 the number of unbalanced 4-cycles containing any pair of nonadjacent vertices
is 10. For [K7,7, M′] with |M′| = 6, this number is either 10 or 6. �

Corollary 9.8. The class C = {[G, �] | G is bipartite and has no H-minor} is not
bounded by [Kn,n, M] (for no values of n) if H is a graph on at least 15 vertices.

This shows that for n ≥ 15 the reformulation of Hadwiger’s conjecture given in Con-
jecture 9.2 cannot be extended to a general minor closed class of signed bipartite graphs.
Even though such an extension was possible for small values of n.

We note that to prove Hadwiger’s conjecture for a Kn-minor free graph G, using a
restatement in the suborder of signed bipartite graphs, one does not need to map the
whole S(G) to [Kn−1,n−1, M]. It is rather enough to map S(G) to any signed bipartite
graph in which the part which is the image of the vertices of G is of size at most
n − 1. This leads us to the following definition of bipartite chromatic number and a
relaxation of Hadwiger’s conjecture. Given a signed bipartite graph [G, �] the bipartite
chromatic number of [G, �], denoted χb[G, �], is the smallest n such that [G, �] → CBn

(see Example 5.9 for the definition of the signed graph CBn). Intuitively speaking, the
bipartite chromatic number is the smallest number of vertices on one part of a signed
bipartite graph to which [G, �] admits a homomorphism. We propose the following
relaxation of Hadwiger’s conjecture:

Conjecture 9.9. If G is a Kn-minor free graph then χb(S(G)) ≤ n − 1.

It is then natural to consider the problem of finding

f (n) = max{χb[G, �] | G is a Kn − minor free bipartite graph}.

If f (n) was equal to n − 1 it would imply Hadwiger’s conjecture. This is indeed the case
for n = 4 (using Theorem 9.3). Perhaps using Theorem 9.5 and Wagner’s decomposition
of K5-minor free graphs it would not be too difficult to verify that f (5) = 4. However as
the following example shows, in general f (n) is far from n − 1. This is another indication
that perhaps Hadwiger’s conjecture is true only for small chromatic numbers.

Example 9.10. Let S1 and S2 be two vertex disjoint copies of CBn−2. Note that Kn−1 is
the largest clique minor of Kn−2,2n−3 (underlying graph of CBn−2). Consider two vertices
x and y from S1 and S2 such that x is from the larger part of S1 and y is from the smaller
part of S2. Let [S, �] be the signed graph obtained from S1 and S2 by identifying vertices
x and y. It is easy to check that S is a Kn-minor free bipartite graph. Let [B, �′] be
a signed bipartite graph to which [S, �] admits a homomorphism and let ϕ be such a
homomorphism. Let B1 and B2 be the two parts of B. As a homomorphism of S to B, ϕ

preserves the bipartition of S. Since the larger part of S1 and S2 are in different parts of
S, each part Bi of B is a range for a larger part of CBn−2 for some mapping of CBn−2 to
B. But since CBn−2 is an S-clique, each part of B must be of size at least 2n−3.
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10. PROSPECTS

We have just opened a door to an ocean of problems in direction of some of the most
motivational problems in graph theory such as the Four-Color Theorem and Hadwiger’s
conjecture. Hence it is not possible to list all the problems we would like to continue
working on. But beside the questions we asked in the text, there are a few more questions
which we think should be mentioned here.

Problem 10.1. What would be a natural extension of Theorem 4.1 to signed graphs? In
particular does the straightforward extension hold for the families of odd signed graphs
and of signed bipartite graphs? Furthermore, when there is such an extension, what is
the optimal bound in terms of number of vertices?

As a special case to the previous question we introduce the following conjecture that
is the bipartite analog of the (odd) graph homomorphism problem studied in [21].

Conjecture 10.2. Every planar signed bipartite graph of unbalanced girth 2g admits
a homomorphism to SPC2g−1. Furthermore SPC2g−1 is the smallest signed bipartite
graph of unbalanced girth 2g that bounds the class of all planar signed bipartite graphs
of unbalanced girth 2g.

This question is related to several other well-known results and conjectures. We refer
to [13] and [24] for further study on this question.

A bipartite analog of Problem 4.2 is the following problem that contains Conjec-
ture 10.2 as a particular case:

Problem 10.3. What is the smallest signed bipartite graph of unbalanced girth 2k
to which every planar signed bipartite graph of unbalanced girth 2r (r ≥ k) admits a
homomorphism?

We think the answer in each case should be a subgraph of SPC2k−1. While for the
extreme case of k = r we propose the signed projective cubes to be the answer, for the
other extreme, i.e. when r is large enough with respect to k, a simple discharging method
would imply that UC2k is the answer. The exact value of r for which UC2k is the answer
for this question is the subject of the next conjecture that can also be regarded as the
bipartite analog of Jaeger-Zhang’s conjecture. For further references and for the best
current result on Jaeger-Zhang’s conjecture we refer to [4].

Conjecture 10.4. Every planar signed bipartite graph of unbalanced girth 4g − 2
admits a homomorphism to UC2g.

A positive answer for Conjecture 10.2 for g = 2 given in [24] implies that every planar
signed bipartite graph admits a homomorphism to [K4,4, M], and thus a bound of 8 for the
signed chromatic number of this family of graphs. We do not know if 8 is the best bound
for this. Furthermore, it would be interesting to give a proof of this weaker statement
without using the Four-Color Theorem.

Problem 10.5. What is the largest chromatic number of a planar signed bipartite
graph?

We would also like to ask if the reformulation given by Conjecture 2.2 of Hadwiger’s
conjecture can be extended to the odd Hadwiger’s conjecture:
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Problem 10.6. Is Conjecture 6.1 equivalent to saying that every minor-closed family
of odd signed graphs has a maximum with respect to the homomorphism order of signed
graphs?

At the end we should also mention the algorithmic point of view. The problem [G, �]-
COLORING-OF-SIGNED-GRAPHS can be difficult from two aspects: sometimes it is difficult
to find a required mapping, sometimes it is difficult to find an equivalent signature of the
input graph that would provide the homomorphism, but most of the time it is difficult to
do either of the two tasks. In general, it is conjectured in [11] that the following dichotomy
holds:

Conjecture 10.7. The problem [G, �]-COLORING-OF-SIGNED-GRAPHS is NP-complete
unless χ[G, �] = 2.

This would extend the dichotomy result of [17] and propose a new extension of the
dichotomy conjecture of [12] through an extension of the definitions from signed graphs
to signed structural relations. It has been shown in [11] that the problem UCk-COLORING

is NP-complete even if the input signed graph is restricted to be in the class of planar
signed graphs.
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