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Abstract

Following [1], we investigate the problem of covering a graph G with
induced subgraphs G1, . . . , Gk of possibly smaller chromatic number,
but such that for every vertex u of G, the sum of reciprocals of the
chromatic numbers of the Gi’s containing u is at least 1. The existence
of such “chromatic coverings” provides some bounds on the chromatic
number of G.

1 Introduction

Let G be a graph and G1, . . . , Gk induced subgraphs of G. If for every vertex u
of G we have

∑{ 1
χ(Gi)

: u ∈ V (Gi)} ≥ 1, then {G1, . . . Gk} is called a chromatic

covering of G. The chromatic covering number cover-χ(G) of G is the smallest
value k such that G admits a chromatic covering with k subgraphs.

Grötzsch’s graph G provides a good illustration of the dynamics of chro-
matic coverings. It is well known that this graph is 4-chromatic, yet it contains
relatively large bipartite subgraphs. In particular the graph G1 obtained from
G by removing the vertices 0, 0′, u is bipartite, as is the subgraph G2 obtained
from G by removing 1, 2, 4. Noting that the subgraph G3 of G induced by
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Figure 1: The Grötzsch graph

{0, 0′, u, 1, 2, 4} is again bipartite, we conclude that {G1, G2, G3} is a collec-
tion of bipartite induced subgraphs of G such that every vertex of G is in two
of these subgraphs. Thus cover-χ(G) ≤ 3.

Amit, Linial and Matoušek [1] note that any graph parameter Ψ tak-
ing values in [1,∞) gives rise to a related “covering” parameter cover-Ψ,
just like the chromatic number gives rise to the chromatic covering num-
ber discussed here. They use the “cover degeneracy plus one” cover-dng1

to bound the chromatic number of random lifts of graphs; this parameter’s
relation to the chromatic number is also discussed in [3]. More generally, if
Ψ(G) = 1 whenever G has no edges, then the inequality cover-Ψ(G) ≤ χ(G)
holds for all graphs. If Ψ(G) ≥ χ(G) for every graph G, then the inequal-
ity cover-Ψ(G) ≥ χf (G) holds for all graphs, where χf (G) is the fractional
chromatic number of G. Therefore cover-χ is the smallest of a family of cover
parameters sandwiched between χf (G) and χ(G); in particular the inequalities
χf (G) ≤ cover-χ(G) ≤ cover-dng1(G) ≤ χ(G) hold for any graph G.

It is well known that there exists no general upper bound for the chromatic
number of a graph in terms of its fractional chromatic number. In contrast,
such bounds can be found in terms of cover parameters. Amit, Linial and
Matoušek [1] show that for any graph G we have χ(G) ≤ 2 (cover-dng1(G))2

and that a bound of the type χ(G) ≤ O((cover-χ(G))2) is best possible. In
this note we give a tight bound for χ(G) in terms of cover-χ(G).

Theorem 1 For every graph G, χ(G) ≤
⌊(

cover-χ(G)+1
2

)2
⌋

.

For all n not congruent to 1 modulo 4, we exhibit a graph G such that

cover-χ(G) = n and χ(G) =
⌊(

n+1
2

)2
⌋

(see Section 3), proving that the

bound is best possible. For n = 4k + 1, our example satisfies cover-χ(G) = n

and χ(G) ≥
⌊(

n+1
2

)2
⌋
− n−1

2
, but it is reasonable to suspect that Theorem 1 is

also best possible in this case.

2



2 Proof of Theorem 1

Let {G1, . . . Gk} be a chromatic covering of G, where k = cover-G. Moreover,
assume that χ(G1) ≤ χ(G2) ≤ . . . ≤ χ(Gk). Then there exists a smallest
index ` such that

⋃`
i=1 V (Gi) = V (G). Then considering a vertex u ∈ V (G`) \

(V (G1) ∪ . . . ∪ V (G`−1)), the covering condition reads

1 ≤
∑

u∈V (Gi)

1

χ(Gi)
≤

∑

i≥`

1

χ(Gi)
≤ k − ` + 1

χ(G`)
; (1)

therefore χ(G`) ≤ k− ` + 1. On the other hand, since V (G) =
⋃`

i=1 V (Gi) we
have

χ(G) ≤
∑

i≤`

χ(Gi) ≤
∑

i≤`

χ(G`) ≤ `(k − ` + 1) ≤
⌊(

k + 1

2

)2
⌋

. (2)

2

In the next section we present a family of natural candidates to consider
when trying to decide whether this bound is best possible.

3 Fractional multiples of graphs

Let n, r, s be integers such that r ≤ s. We define the graph Kr,s
n as follows:

The vertices of Kr,s
n are the subsets A = {(i1, j1), . . . , (ir, jr)} of {1, . . . , s} ×

{1, . . . , n} such that i1, . . . , ir are all distinct. Two of these subsets are joined
by an edge in Kr,s

n if they are disjoint. In [5], Kr,s
n is called a fractional multiple

of the complete graph Kn. It can also be represented as follows: The vertices
of Kr,s

n represent r-independent sets in a disjoint union of s copies of Kn, and
two of these are joined by an edge in Kr,s

n if they are disjoint.

Lemma 2 A graph G admits a homomorphism to Kr,s
n if and only if G can

be covered by s n-colourable subgraphs G1, . . . , Gs such that every vertex of G
is in r of these subgraphs.

Proof. Suppose that {G1, . . . , Gs} is such a covering of G. For i = 1, . . . , n,
fix a n-colouring fi : Gi → {1, . . . , n} of Gi. We define a map φ : G → Kr,s

n by

φ(u) = {(i, fi(u)) : u ∈ V (Gi)}.
Then for every edge [u, v] of G, we have fi(u) 6= fi(v) whenever u, v ∈ Gi.
Therefore, φ(u) is disjoint from (that is, adjacent to) φ(v). This shows that φ
is an edge preserving map, that is, a homomorphism.

Conversely, if φ : G → Kr,s
n is a homomorphism, then for i = 1, . . . , s, the

graph Gi induced by

V (Gi) = {u ∈ V (G) : φ(u) ∩ {(i, 1), . . . , (i, n)} 6= ∅}
is n-chromatic, and every vertex u of G belongs to r of these. 2
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Thus for n ≤ s, Kn,s
n admits a chromatic covering with s subgraphs hence

cover-χ(Kn,s
n ) ≤ s. Also, there is a natural n(s − r + 1)-colouring of Kr,s

n ,
obtained by colouring each vertex with one element of its intersection with
{1, . . . , s − r + 1} × {1, . . . , n}; hence χ(Kr,s

n ) ≤ n(s − r + 1). We will show
that equality holds when n is even, using the following result:

Lemma 3 (Schrijver [4]) Let a, b be integers such that b ≥ 2a. Let H(a, b)
be the graph whose vertices are the a-independent sets of the b-cycle, where
two of these independent sets are joined by an edge if they are disjoint. Then
χ(H(a, b)) = b− 2a + 2.

Corollary 4 Let n, r, s be integers such that n is even and r ≤ s. Then
χ(Kr,s

n ) = n(s− r + 1).

Proof. It suffices to show that χ(Kr,s
n ) ≥ n(s−r+1). We define a homomor-

phism φ from H(a, b) to Kr,s
n , where a = n

2
(r−1)+1 and b = ns. Suppose that

the vertices of the b-cycle are labeled consecutively (1, 1), (1, 2), . . . , (1, n), (2, 1),
. . . , (2, n), . . . , (s, 1), . . . , (s, n). Then for any a-independent set I of the cycle,
there exist at least r values i1, . . . , ir such that I intersects {(ik, 1), . . . , (ik, n)}
for k = 1, . . . , r. We can then select jk such that (ik, jk) ∈ I for k = 1, . . . , r,
and put

φ(I) = {(i1, j1), . . . , (ir, jr)}.
This defines a homomorphism from H(a, b) to Kr,s

n ; therefore

χ(Kr,s
n ) ≥ χ(H(a, b)) = b− 2a + 2 = n(s− r + 1).

2

For every n ≥ 1, the graphs Kn,2n
n and Kn+1,2n

n+1 both have a natural chro-
matic covering with 2n subgraphs and a natural n(n + 1)-colouring. Since one
of n and n + 1 is even, Corollary 4 implies that one of these two graphs has

chromatic number n(n + 1) =
⌊(

2n+1
2

)2
⌋
, whence by Theorem 1, its natural

chromatic covering is also optimal. Also, for every n ≥ 1, the graph Kn,2n−1
n has

a natural chromatic covering with 2n−1 subgraphs and a natural n2-colouring.

When n is even, Corollary 4 implies that χ(Kn,2n−1
n ) = n2 =

⌊(
(2n−1)+1

2

)2
⌋

whence by Theorem 1, its natural chromatic covering is again also optimal.
When n is odd, we can at least say that χ(Kn,2n−1

n ) ≥ n2 − n + 1, since the
vertex {(1, n), (2, n), . . . , (n, n)} is completely joined to Kn,2n−1

n−1 in Kn,2n−1
n . By

Theorem 1 we then have cover-χ(Kn,2n−1
n ) = 2n − 1. Summarizing, we have

the following:

Corollary 5 For every integer k not congruent to 1 modulo 4, there exists a

graph G such that cover-χ(G) = k and χ(G) =
⌊(

k+1
2

)2
⌋
. When k = 4` + 1

there exist a graph G such that cover-χ(G) = k and χ(G) ≥
⌊(

k+1
2

)2
⌋
− k−1

2
.

2
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4 Concluding comments

The graphs Kr,s
1 are the well-known Kneser graphs, and Lovász [2] has shown

that when s ≥ 2r, χ(Kr,s
1 ) = s − 2r + 2. For larger odd values of n the

hypothesis χ(Kr,s
n ) = n(s − r + 1) seems reasonable, but it remains open for

the moment. We note that it suffices to show that χ(Kr,s
3 ) = 3(s−r+1), since

Kr,s
2n+3 contains a complete join of Kr,s

2n and Kr,s
3 .

We mention in closing that even though the graphs K2,4
2 and K3,4

3 each have
a 4-chromatic covering, their disjoint union K2,4

2 ∪K3,4
3 can be shown to have

a chromatic covering number strictly greater than 4. Thus the disjoint union
becomes a nontrivial operation when considering chromatic covering numbers.

Acknowledgements We thank the referee whose comments helped to im-
prove the presentation of the paper.
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