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Abstract

Following [1], we investigate the problem of covering a graph G with
induced subgraphs Gi,..., Gy of possibly smaller chromatic number,
but such that for every vertex u of G, the sum of reciprocals of the
chromatic numbers of the G;’s containing u is at least 1. The existence
of such “chromatic coverings” provides some bounds on the chromatic
number of G.

1 Introduction

Let G be a graph and G, . .., Gy induced subgraphs of GG. If for every vertex u
of G we have Z{ﬁ cu € V(G;)} > 1, then {Gy, ... G} is called a chromatic
covering of G. The chromatic covering number cover-x(G) of G is the smallest
value k such that G admits a chromatic covering with k subgraphs.
Grotzsch’s graph G provides a good illustration of the dynamics of chro-
matic coverings. It is well known that this graph is 4-chromatic, yet it contains
relatively large bipartite subgraphs. In particular the graph G obtained from
G by removing the vertices 0,0, u is bipartite, as is the subgraph G5 obtained
from G by removing 1,2,4. Noting that the subgraph G3 of G induced by
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Figure 1: The Grotzsch graph

{0,0',u,1,2,4} is again bipartite, we conclude that {G, G2, G5} is a collec-
tion of bipartite induced subgraphs of G such that every vertex of G is in two
of these subgraphs. Thus cover-y(G) < 3.

Amit, Linial and Matousek [1] note that any graph parameter ¥ tak-
ing values in [1,00) gives rise to a related “covering” parameter cover-V,
just like the chromatic number gives rise to the chromatic covering num-
ber discussed here. They use the “cover degeneracy plus one” cover-dng;
to bound the chromatic number of random lifts of graphs; this parameter’s
relation to the chromatic number is also discussed in [3]. More generally, if
U(G) = 1 whenever G has no edges, then the inequality cover-¥(G) < x(G)
holds for all graphs. If W(G) > x(G) for every graph G, then the inequal-
ity cover-¥(G) > x7(G) holds for all graphs, where x;(G) is the fractional
chromatic number of GG. Therefore cover-y is the smallest of a family of cover
parameters sandwiched between x ¢(G) and x(G); in particular the inequalities
Xf(G) < cover-x(G) < cover-dng, (G) < x(G) hold for any graph G.

It is well known that there exists no general upper bound for the chromatic
number of a graph in terms of its fractional chromatic number. In contrast,
such bounds can be found in terms of cover parameters. Amit, Linial and
Matousek [1] show that for any graph G' we have y(G) < 2 (cover-dng,(G))?
and that a bound of the type x(G) < O((cover-x(G))?) is best possible. In
this note we give a tight bound for x(G) in terms of cover-x(G).

2
Theorem 1 For every graph G, x(G) < Mw) J .

For all n not congruent to 1 modulo 4, we exhibit a graph G such that
cover-x(G) = n and x(G) = {(”TH)QJ (see Section 3), proving that the
bound is best possible. For n = 4k + 1, our example satisfies cover-x(G) = n
and x(G) > {(”TH)T — ”T_l, but it is reasonable to suspect that Theorem 1 is
also best possible in this case.



2 Proof of Theorem 1

Let {Gy, ... Gy} be a chromatic covering of G, where k = cover-G. Moreover,
assume that x(Gp) < x(G3) < ... < x(Gg). Then there exists a smallest
index ¢ such that |J;_, V(G;) = V(G). Then considering a vertex u € V(Gy) \
(V(G1)U...UV(Gy_1)), the covering condition reads
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therefore x(Gy) < k — £+ 1. On the other hand, since V(G) = Ji_, V(G,) we
have
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In the next section we present a family of natural candidates to consider
when trying to decide whether this bound is best possible.

3 Fractional multiples of graphs

Let n,r, s be integers such that » < s. We define the graph K® as follows:
The vertices of K® are the subsets A = {(i1,71),..., (i, j-)} of {1,...,s} X
{1,...,n} such that iy,..., i, are all distinct. Two of these subsets are joined
by an edge in K* if they are disjoint. In [5], K»* is called a fractional multiple
of the complete graph K,,. It can also be represented as follows: The vertices
of K»* represent r-independent sets in a disjoint union of s copies of K,,, and
two of these are joined by an edge in K® if they are disjoint.

Lemma 2 A graph G admits a homomorphism to K if and only if G can
be covered by s n-colourable subgraphs G1,...,G4 such that every vertex of G
15 wn 1 of these subgraphs.

Proof. Suppose that {G1,...,Gs} is such a covering of G. For i = 1,...,n,
fix a n-colouring f; : G; — {1,...,n} of G;. We define a map ¢ : G — K»* by
o(u) = {(, fi(u)) 1w € V(Gi)}.

Then for every edge [u,v] of G, we have f;(u) # f;(v) whenever u,v € G;.
Therefore, ¢(u) is disjoint from (that is, adjacent to) ¢(v). This shows that ¢
is an edge preserving map, that is, a homomorphism.

Conversely, if ¢ : G — K® is a homomorphism, then for ¢ = 1,... s, the
graph G; induced by

V(G;) ={ueV(G): ¢(u)n{(i1),...,(i,n)} # 0}

is n-chromatic, and every vertex u of GG belongs to r of these. O
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Thus for n < s, K]** admits a chromatic covering with s subgraphs hence
cover-x(K®) < s. Also, there is a natural n(s — r + 1)-colouring of K]*
obtained by colouring each vertex with one element of its intersection with
{1,...,s —=r+1} x{1,...,n}; hence x(K"*) < n(s—r+1). We will show

that equality holds when n is even, using the following result:

Lemma 3 (Schrijver [4]) Let a,b be integers such that b > 2a. Let H(a,b)
be the graph whose vertices are the a-independent sets of the b-cycle, where

two of these independent sets are joined by an edge if they are disjoint. Then
X(H(a,b)) =b—2a+ 2.

Corollary 4 Let n,r,s be integers such that n is even and r < s. Then
X(KP®) =n(s—r+1).

Proof. It suffices to show that x(K»*) > n(s—r+1). We define a homomor-
phism ¢ from H (a,b) to K»*, where a = §(r —1)+1 and b = ns. Suppose that
the vertices of the b-cycle are labeled consecutively (1, 1), (1,2),...,(1,n),(2,1),
o (2ym), ... (s,1),...,(s,n). Then for any a-independent set I of the cycle,
there exist at least r values iy, ..., i, such that I intersects {(ix,1),..., (ix,n)}
for k =1,...,r. We can then select ji such that (iy,ji) € [ for k=1,...,r,
and put
(b(I) = {(ihjl)v tro (Zrajr>}

This defines a homomorphism from H (a,b) to K»*; therefore
X(K*) > x(H(a,b)) =b—2a+2=n(s—r+1).
O

For every n > 1, the graphs K" and K]'T]**" both have a natural chro-
matic covering with 2n subgraphs and a natural n(n + 1)-colouring. Since one
of n and n + 1 is even, Corollary 4 implies that one of these two graphs has
chromatic number n(n + 1) = L(@)ZJ, whence by Theorem 1, its natural

chromatic covering is also optimal. Also, for every n > 1, the graph K™?"~! has
a natural chromatic covering with 2n— 1 subgraphs and a natural n?-colouring.

2
When n is even, Corollary 4 implies that y(K™?"!) = n? = {(%) J

whence by Theorem 1, its natural chromatic covering is again also optimal.
When n is odd, we can at least say that x(K™*"~1) > n? —n + 1, since the
vertex {(1,n), (2,n),...,(n,n)} is completely joined to K/"**~" in K?"~1, By
Theorem 1 we then have cover-x(K™?"~!) = 2n — 1. Summarizing, we have
the following:

Corollary 5 For every integer k not congruent to 1 modulo 4, there exists a

graph G such that cover-x(G) =k and x(G) = L(%)QJ When k = 40+ 1

there exist a graph G such that cover-x(G) =k and x(G) > {(%)QJ — L
O



4 Concluding comments

The graphs K7 are the well-known Kneser graphs, and Lovasz [2] has shown
that when s > 2r, x(K{”) = s — 2r + 2. For larger odd values of n the
hypothesis x(K»*) = n(s — r + 1) seems reasonable, but it remains open for
the moment. We note that it suffices to show that x(K3°) = 3(s—r+1), since
K3 5 contains a complete join of K3 and K3°.

We mention in closing that even though the graphs K5* and K& * each have
a 4-chromatic covering, their disjoint union K22 AU K§’4 can be shown to have
a chromatic covering number strictly greater than 4. Thus the disjoint union
becomes a nontrivial operation when considering chromatic covering numbers.
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