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1Université de Paris, IRIF, CNRS, F-75013 Paris, France.
2School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China.

Email addresses: reza@irif.fr, wangzhou@nankai.edu.cn.

Abstract

A circular r-coloring of a signed graph (G, σ) is to assign points of a circle of circumference r,
r ≥ 2, to the vertices of G such that vertices connected by a positive edge are at circular distance
at least 1 and vertices connected by a negative edge are at circular distance at most r

2 − 1. The
restriction of the notion of circular colorings to the class of signed bipartite graphs is already of high
interest because the circular chromatic number of an (unsigned) graph can be obtained by bounding
the circular chromatic number of an associated signed bipartite graph.

In this paper, we define signed bipartite circular cliques Bs
p;q and B̂s

p;q having the property that
a signed bipartite graph admits a circular p

q -coloring if and only if it admits an edge-sign preserving

homomorphism to Bs
p;q and a switching homomorphism to B̂s

p;q, respectively. Then as a bipartite
analogue of Grötzsch’s theorem, we prove that every signed bipartite planar graph of negative girth
at least 6 admits a circular 3-coloring.

1 Introduction

A signed graph is a graph G (allowing loops and multi-edges) together with an assignment σ : E(G) →
{+,−}, denoted (G, σ). We note that signed graphs are allowed to have multi-edges, but we consider
multi-edges only if they are of different signs. The signed graph on two vertices connected by two parallel
edges of different signs is called digon. Furthermore, unless specified, graphs are considered to have no
loop. The sign of a closed walk of (G, σ) is the product of signs of all its edges (allowing repetition). Given
a signed graph (G, σ) and a vertex v of (G, σ), a switching at v is to switch the signs of all the edges
incident to v. We say a signed graph (G, σ′) is switching equivalent to (G, σ) if it is obtained from (G, σ)
by a series of switchings at vertices. In this case, we say the signature σ′ is equivalent to σ. It has been
proved in [25] that two signed graphs (G, σ1) and (G, σ2) are switching equivalent if and only if they have
the same set of negative cycles.

A switching homomorphism, or simply a homomorphism, of a signed graph (G, σ) to (H, π) is a mapping
of V (G) and E(G) to V (H) and E(H) (respectively) such that the adjacencies, the incidences and the signs
of the closed walks are preserved. When there exists such a homomorphism, we write (G, σ) → (H, π).
A homomorphism of (G, σ) to (H, π) is said to be edge-sign preserving if it, furthermore, preserves the
signs of the edges. When there exists an edge-sign preserving homomorphism of (G, σ) to (H, π), we write

(G, σ)
s.p.−→ (H, π). The connection between these two kinds of homomorphisms is established as follows:

Given two signed graphs (G, σ) and (H, π), (G, σ) → (H, π) if and only if there exists a signature σ′

∗Corresponding author.

1



which is equivalent to σ, such that (G, σ′)
s.p.−→ (H, π). An equivalent reformulation of this is through the

following definition.

Definition 1.1. Given a signed graph (G, σ), the Double Switch Graph of it, denoted DSG(G, σ), is the
signed graph built from two disjoint copies (G1, σ1) and (G2, σ2) of (G, σ) by adding the following set of
edges in between. If xy is a positive (resp. negative) edge of (G, σ), then x1y2 and x2y1 are negative (resp.
positive) edges of DSG(G, σ). Here x1, x2, y1, y2 are representing copies of x and y in G1 and G2 in the
most natural way.

The connection between the two notions of homomorphisms is as follows.

Theorem 1.2. [1] A signed graph (G, σ) admits a switching homomorphism to (H, π) if and only if it
admits an edge-sign preserving homomorphism to DSG(H, π).

We note that in building DSG(H, π) for the purpose of this theorem, if for a vertex x there already
exists a vertex x′ which is like obtained from x by a switching, then we do not need to add a copy of x.
When (H, π) has the property that for each vertex x of it, there is a such vertex x′ (which is like a switched
copy of x), then a signed graph (G, σ) admits a homomorphism to (H, π) if and only if it also admits an
edge-sign preserving homomorphism to (H, π). That is because if a vertex u of (G, σ) is mapped to the
vertex x of (H, π) after a switching, then one may instead map u to x′ without a switching. We note that
some of the circular cliques that we will discuss here are of this form.

Observe that the parity of the lengths and the signs of closed walks are preserved by a homomorphism.
Given a signed graph (G, σ) and an element ij ∈ Z2

2, we define gij(G, σ) to be the length of a shortest
closed walk whose number of negative edges modulo 2 is i and whose length modulo 2 is j. When there
exists no such closed walk, we say gij(G, σ) = ∞. For any signed graph (G, σ) containing at least one
edge, g00(G, σ) = 2. In general, the length of a shortest negative closed walk of a signed graph is said
to be its negative girth. By the definition of the homomorphism of signed graphs, we have the following
no-homomorphism lemma.

Lemma 1.3. [17][No-homomorphism lemma] If (G, σ) → (H, π), then gij(G, σ) ≥ gij(H, π) for each
ij ∈ Z2

2.

1.1 Homomorphisms of signed bipartite graphs

Given a graph G, we construct a signed bipartite graph S(G) as follows: The vertex set of S(G) consists
of V (G) and {xuv, yuv : uv ∈ E(G)}; For the edge set, we join each of xuv and yuv to each of u and v;
For the signature, we assign signs such that each 4-cycle uxuvvyuv is negative. Intuitively, in constructing
S(G), we replace each edge uv of G with a negative 4-cycle. We note there is more than one choice of
signature here, and moreover, having vertices already labeled, not every two such signatures are switching
equivalent. That which of the two sides of a 4-cycle is chosen to be negative makes a difference here.
However, up to a switching isomorphism, any two signature choices of S(G) are the same.

The first easy observation on S(G) is that it is a signed bipartite graph where in one part all vertices
are of degree 2. This construction was introduced in [16] where the next two theorems are proved in order
to show the importance of the study of homomorphisms of signed bipartite graphs.

Theorem 1.4. [16] Given graphs G and H, G→ H if and only if S(G)→ S(H).

Theorem 1.5. [16] Given a graph G, we have the following.

• χ(G) ≤ 2 if and only if S(G)→ (K2,2, e);

• χ(G) ≤ k if and only if S(G)→ (Kk,k,M) for k ≥ 3.
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Here (Kk,k,M) is a signed graph on the complete bipartite graph Kk,k where the edges in a perfect
matching each is assigned with a negative sign. As the problem of mapping signed graphs to (Kk,k,M)
could capture the problem of the coloring of ordinary graphs, signed graphs (Kk,k,M) are of special
interests in the study of the homomorphism of signed graphs. In particular, when k = 4, we have a
restatement of the 4-Color Theorem as follows.

Theorem 1.6. [4-Color Theorem restated] For any planar graph G, S(G)→ (K4,4,M).

Notice that the planarity is preserved when we construct S(G) from a planar graph G. Moreover, based
on an edge-coloring result of B. Guenin [6] which in turn is based on the 4-Color Theorem, the following
strengthening of the 4-Color Theorem has been proved in [16]: Every signed planar graph (G, σ) satisfying
that gij(G, σ) ≥ gij(K4,4,M) for ij ∈ Z2

2 maps to (K4,4,M). Since [6] is not available, for a direct proof
of the statement we refer to [19]. A signed graph (G, σ) satisfies the conditions gij(G, σ) ≥ gij(K4,4,M) if
and only if (G, σ) is bipartite and has no digon. The next theorem is a reformulation of this strengthening
of the 4-Color Theorem.

Theorem 1.7. [19] Every signed bipartite planar simple graph admits a homomorphism to (K4,4,M).

Motivated by these results, in this work we are interested in the study of circular chromatic numbers
of signed bipartite graphs on their own. In particular, after noting that all signed bipartite (simple)
planar graphs map to (K4,4,M), and that (K4,4,M) is the smallest signed bipartite simple graph having
that property, we would like to ask under what girth condition we may use a subgraph of (K4,4,M) as a
homomorphism target. To this end, we prove the following bipartite analogue of the Grötzsch theorem in
this work, noting that our proof is based on the 4-Color Theorem.

Theorem 1.8. Every signed bipartite planar graph of negative girth at least 6 admits a homomorphism to
(K3,3,M). Moreover, the girth condition is best possible.

2 Circular chromatic number of signed graphs

Given a signed graph (G, σ) and a positive integer k, a 0-free 2k-coloring of (G, σ) (introduced in [24]) is
a mapping f : V (G)→ {±1,±2, . . . ,±k} such that for any edge e = uv, f(u) 6= σ(e)f(v). The notion of
the circular coloring of signed graphs defined in [18] is a common extension of circular colorings of graphs
and 0-free 2k-colorings of signed graphs.

For a real number r ≥ 1, let Cr be a circle of circumference r. For two points x, y on Cr, the distance
between x and y on Cr, denoted dCr(x, y), is the length of the shorter arc of Cr connecting x and y. For
each point x on Cr, the antipodal of x, denoted x̄, is the unique point at distance r

2
from x.

Given a real number r, a circular r-coloring of a signed graph (G, σ) is a mapping ϕ : V (G) → Cr

such that

• for each positive edge uv of (G, σ), dCr(ϕ(u), ϕ(v)) ≥ 1;

• for each negative edge uv of (G, σ), dCr(ϕ(u), ϕ(v)) ≥ 1.

The circular chromatic number of a signed graph (G, σ) is defined as

χc(G, σ) = inf{r ≥ 1 : (G, σ) admits a circular r-coloring}.

We note that the infimum is attained and can then be replaced with the minimum. In particular, the
circular chromatic number is always a rational. For integers p ≥ 2q > 0 such that p is even, the signed
circular clique Ks

p;q has the vertex set [p] = {0, 1, . . . , p − 1}, in which ij is a positive edge if and only if
q ≤ |i− j| ≤ p− q and ij is a negative edge if and only if either |i− j| ≤ p

2
− q or |i− j| ≥ p

2
+ q. Moreover,

let K̂s
p;q be the signed subgraph of Ks

p;q induced by vertices {0, 1, . . . , p
2
− 1}. In this definition loops are

allowed, and indeed, by the definition, there will be a negative loop on each vertex but there will be no
positive loop. As shown in [18], the following statements are equivalent:
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• (G, σ) admits a circular p
q
-coloring;

• (G, σ) admits an edge-sign preserving homomorphism to Ks
p;q;

• (G, σ) admits a switching homomorphism to K̂s
p;q.

In other words, in the order induced by edge-sign preserving homomorphism on the class of all signed
graphs, the circular chromatic number of a signed graph (G, σ) is the smallest value of a rational number
p
q

such that (G, σ)
s.p.−→ Ks

p;q. Normally we choose the minimal element (the core) of each homomorphically
equivalent class to represent the class. In such cases we will choose Ks

p;q where p is an even integer and,
with respect to this condition, p

q
is in its simplest form, e.g. Ks

16;5 or Ks
6;2. Observe that in Ks

p;q if we apply

a switching at a vertex i, i ≤ p
2
−1, then we get a copy of the vertex i+ p

2
. Furthermore, Ks

p;q = DSG(K̂s
p;q).

Thus K̂s
p;q is a homomorphic image of Ks

p;q with respect to the switching homomorphism. Moreover, with

the same assumption on p and q, K̂s
p;q is a core.

The next lemma is a straightforward consequence of the transitivity of the homomorphism relation.

Lemma 2.1. If (G, σ)→ (H, π), then χc(G, σ) ≤ χc(H, π).

Let D be a digon. It follows immediately that every signed bipartite graph admits an edge-sign
preserving homomorphism to D and, as χc(D) = 4, we have an upper bound of 4 for the circular chromatic
number of signed bipartite graphs. However, the restriction of the problem to this subclass of signed graphs
is still of high interest as shown by the following result of [18].

Theorem 2.2. [18] Given a graph G, we have

χc(S(G)) = 4− 4

χc(G) + 1
.

That is equivalent to: χc(G) = χc(S(G))
4−χc(S(G))

. In particular, we have that

• χc(G) ≤ 4 if and only if χc(S(G)) ≤ 16
5

,

• χc(G) ≤ 3 if and only if χc(S(G)) ≤ 3.

In the next section, we study the restriction of the circular chromatic number to the class of signed bipartite
graphs and especially we introduce the signed bipartite circular clique.

2.1 Signed bipartite circular clique

One may view the class of signed circular cliques Ks
p;q or K̂s

p;q as a representation of rational numbers
in the homomorphism order of the class of all signed graphs. Then the circular chromatic number of a
signed graph (G, σ) is determined by the first element of this chain (representing rational numbers) which
is larger than (G, σ) with respect to the homomorphism order.

In Theorems 1.4, 1.5 and 2.2, we have seen the importance of the restriction of the study into the
subclass SB of signed bipartite graphs. A natural question to ask is if the homomorphism order restricted
to this subclass behaves similarly? More precisely, we would like to know if there is a chain of signed
bipartite graphs in the homomorphism order on SB which plays the role of circular clique?

We note that no signed circular clique K̂s
p;q or Ks

p;q is bipartite. Indeed each vertex in any of these
cliques has a negative loop on it. In this section, for p

q
≤ 4, we introduce a bipartite subgraph of these

circular cliques that plays the role of circular clique in the restricted class SB.

4



Definition 2.3. Given a rational number p
q

where p is an even number, 2 ≤ p
q
≤ 4 and subject to these

conditions p
q

is in its simplest form, we define the signed graph Bp;q to be the following subgraph of Ks
p;q:

The vertex set [p] = {0, 1, . . . , p− 1} is partitioned to two parts X and Y where X = {0, 2, . . . , p− 2} and
Y = {1, 3, . . . , p − 1}. The edge set is formed by the edges of Ks

p;q which have exactly one endpoint in X
and the other endpoint in Y . The signs of edges are also induced by Ks

p;q.

We will show that Bp;q, which itself is a signed bipartite graph, plays the role of circular clique in the
subclass of signed bipartite graphs. However, this class of signed graphs is partitioned into two subclasses
depending on whether p is a multiple of 4 or it is 2 (mod 4).

When p is a multiple of 4, then we will show that Bp;q is a circular clique with respect to the edge-sign
preserving homomorphism. It means that any signed bipartite graph of circular chromatic number at
most p

q
admits an edge-sign preserving homomorphism to Bp;q. In this case, as we will show, the subgraph

induced on the vertices [p
2
] = {0, 1, . . . , p

2
− 1} forms the core of Bp;q and will play the role of signed

bipartite clique with respect to the switching homomorphism. For example, B16;5 is depicted in Figure 1
and its switching core, which is a signed graph on K4,4, is depicted in Figure 9.
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Figure 1: B16;5
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Figure 2: B10;3

When p ≡ 2 (mod 4), and again noting our assumption that p
q

is in its simplest form subject to p being
even, the signed graph Bp;q is already a core with respect to the switching homomorphism. For example,
B10;3 is depicted in Figure 2. In this case then to have a signed circular clique with respect to the edge-sign
preserving homomorphism, we must consider DSG(Bp;q). To be more precise, when p ≡ 2 (mod 4), for
a signed bipartite graph (G, σ) to satisfy that χc(G, σ) ≤ p

q
, it is necessary and sufficient that (G, σ)

admits a switching homomorphism to Bp;q. However, for some choices of σ, this homomorphism might
not be an edge-sign preserving homomorphism and a switching might be necessary. To be sure to have
an edge-sign preserving homomorphism then we must consider DSG(Bp;q). For the example of p = 6 and
q = 2, which corresponds to circular chromatic number at most 3, see Figures 3, 4, 5 and 6. The first one,
the signed graph of Figure 3 on three vertices, is the signed circular 3-clique with respect to the switching
homomorphism. The second one, the signed graph of Figure 4, which is the Double Switch Graph of the
first one, is the signed circular 3-clique with respect to the edge-sign preserving homomorphism. The third
one, the signed graph of Figure 5, also on 6 vertices, is the signed bipartite circular 3-clique with respect
to the switching homomorphism. Finally the last one, the signed graph of Figure 6, on 12 vertices, is the
Double Switch Graph of the previous one and is the signed bipartite circular 3-clique with respect to the
edge-sign preserving homomorphism.

To distinguish which of the two notions of homomorphisms we are working with, we may define Bs
p;q

and B̂s
p;q as follows.

Given a positive even integer p and a positive integer q such that subject to p being even, p
q

is in its

simplest form and p
q
≥ 2, we define Bs

p;q to be Bp;q when 4 | p and to be DSG(Bp;q) when 4 - p. As
mentioned before, these signed graphs Bs

p;q play the role of signed bipartite circular clique with respect
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Fig 6: DSG(B6;2)

to the edge-sign preserving homomorphism. For the switching homomorphism, we define B̂s
p;q to be Bp;q

when 4 - p and to be the subgraph of Bp;q induced on the vertices {0, . . . , p
2
− 1} when 4 | p.

We should also note that in defining Ks
p;q and K̂s

p;q, we did not need to assume p
q

is in the simplest

form, however, we note that Ks
ap;aq and K̂s

ap;aq map, respectively, to Ks
p;q and K̂s

p;q. By taking such a

homomorphism and then taking the pre-image of Bs
p;q and B̂s

p;q, one may define Bs
ap;aq and B̂s

ap;aq.

That Bs
p;q and B̂s

p;q play the roles of circular cliques in the subclass of signed bipartite graphs is the
subject of the next theorem. For simplicity, it is stated using Bp;q and switching homomorphism but one

can easily restate it by using Bs
p;q or B̂s

p;q and the associated notion of homomorphisms.

Theorem 2.4. Given a signed bipartite graph (G, σ) and a rational number
p

q
in [2, 4] where p is a positive

even integer and subject to this, p
q

is in its simplest form, we have

χc(G, σ) ≤ p

q
if and only if (G, σ)→ Bp;q.

Proof. Let (G, σ) be a signed bipartite graph. One direction is quite trivial. As Bp;q is a subgraph of Ks
p;q,

χc(Bp;q) ≤ p
q
. If (G, σ)→ Bp;q, then, by Lemma 2.1, we have χc(G, σ) ≤ p

q
.

It remains to show that if χc(G, σ) ≤ p
q
, then (G, σ) → Bp;q. Since Bp;q behaves differently depending

on whether p divides 4 or not, we divide the proof into two cases based on this criteria: (1) p = 4k. (2)
p = 4k + 2. We note that in the first case, q must be an odd number.

Case 1 p = 4k.

As p
q
≥ 2, we know q is an odd number smaller than 2k− 1. Let (X, Y ) be the bipartition of B4k;q and

let (A,B) be the bipartition of (G, σ). Since χc(G, σ) ≤ 4k
q

, there is an edge-sign preserving homomorphism

of (G, σ) to Ks
4k;q. Let ϕ be such a homomorphism. Our goal is to modify ϕ, if needed, so that we obtain a

mapping of (G, σ) to B4k;q. This would of course be based on the bipartition of G. One such modification
is given as follows:

φ(u) =

{
ϕ(u) + 1 either u ∈ A and ϕ(u) ∈ Y or u ∈ B and ϕ(u) ∈ X,

ϕ(u) otherwise.

Intuitively, we aim at modifying the mapping such that the vertices in the part A of G are mapped to
the vertices in the part X of B4k;q and the vertices in the part B are mapped to the vertices in the part Y .
In defining φ, for vertices of G satisfying these conditions under the mapping ϕ, we give the same image
under φ. If this condition is not met, then we shift the image by 1 in the clockwise direction of the circle.
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What remains is to show that φ is also an edge-sign preserving homomorphism of (G, σ) to Ks
4k;q. Then it

would naturally be a homomorphism of (G, σ) to B4k;q as well.
Given an edge e = uv of G, if both φ(u) = ϕ(u) and φ(v) = ϕ(v) hold, then e is already mapped to an

edge of the same sign under ϕ and nothing is left to show. If φ(u) = ϕ(u) + 1 and φ(v) = ϕ(v) + 1, then
the claim follows from the circular structure of Ks

p;q, that is, if there is an edge ij of sign η in B4k;q, then
there is also an (i + 1)(j + 1) (additions done modulo 4k) edge of sign η. It remains to consider the case
that only one endpoint of e = uv has been shifted. By the symmetry, we may assume φ(u) = ϕ(u) and
φ(v) = ϕ(v) + 1. Moreover, noting that u and v must be in different parts of the bipartite graph G, and
again by the symmetry, we assume u ∈ A and v ∈ B with ϕ(u), ϕ(v) ∈ X. Hence, by our assumption,
φ(u) = ϕ(u) and φ(v) = ϕ(v) + 1 ∈ Y . Depending on the signature of e, we consider two cases.

If e is a positive edge, then ϕ(u)ϕ(v) is a positive edge of Ks
4k;q. Thus q ≤ |ϕ(u)−ϕ(v)| ≤ p−q = 4k−q.

Observe that, as ϕ(u) and ϕ(v) are both in X, they have the same parity, and thus |ϕ(u) − ϕ(v)| is an
even number. However, since q is an odd number, both sides of the inequality (i.e., q and 4k− q) are odd
numbers and, therefore, equality cannot hold there. It is implied that if we change (only) one of ϕ(u) and
ϕ(v) by a value of at most 1, then the inequality would still hold. Thus φ(u)φ(v) is a positive edge of
Ks

4k;q.
If e is a negative edges, then (only) one of the following must hold: either |ϕ(u)−ϕ(v)| ≤ p

2
−q = 2k−q

or |ϕ(u) − ϕ(v)| ≥ p
2

+ q = 2k + q. As in the previous case, we conclude that |ϕ(u) − ϕ(v)| is an even
number. However, p

2
= 2k is an even number while q must be an odd number. Thus both of 2k − q and

2k+ q are odd numbers and once again the equality cannot hold. Therefore, after shifting only one of the
values of ϕ(u), ϕ(v) by 1, the corresponding inequality holds with respect to the new function which is φ,
that is to say, either |φ(u) − φ(v)| ≤ 2k − q or |φ(u) − φ(v)| ≥ 2k + q. Hence e is mapped to a negative
edge φ(u)φ(v) of Ks

4k;q.

Case 2 p = 4k + 2.

Notice that in this case, p
2

= 2k+ 1 is an odd number. Let (X, Y ) be the bipartition of B4k+2;q and let
(A,B) be a bipartition of (G, σ).

Since χc(G, σ) ≤ 4k+2
q

, there exists an edge-sign preserving homomorphism of (G, σ) to Ks
4k+2;q, say ϕ.

Our goal is to modify ϕ to obtain a switching homomorphism of (G, σ) to B4k+2;q. This would be based
on the bipartition of G. Intuitively, we want a mapping that maps vertices in A to X and those in B to
Y . We observe that for each pair of antipodal vertices of Ks

4k+2;q, one is in X and the other is in Y . Thus
in the mapping ϕ, if one vertex is not mapped to the correct part, then we first apply a switching at that
vertex and then map it to the antipodal of the original image. This is formalized as follows.

φ(u) =

{
ϕ(u) (switching at u) either u ∈ A and ϕ(u) ∈ Y or u ∈ B and ϕ(u) ∈ X,

ϕ(u) otherwise.

What remains is to show that φ is a switching homomorphism of (G, σ) to Ks
4k+2;q. Then it would

naturally be a homomorphism of (G, σ) to B4k+2;q as well.
Given an edge e = uv of G, if both φ(u) = ϕ(u) and φ(v) = ϕ(v) hold, then it follows easily that

φ(u)φ(v) is the required edge. If φ(u) = ϕ(u) and φ(v) = ϕ(u), then we switch at both of vertices u and
v. Thus the sign of uv does not change. Moreover, vertices i and j are connected by an edge of sign η in
Ks

4k+2;q, then their antipodals are also connected by an edge of the same sign. Therefore, φ(u)φ(v) is an
edge of Ks

4k+2;q with the same sign as ϕ(u)ϕ(v) and thus as uv. The final case is that only one endpoint
of uv has been switched and mapped to the antipodal. By the symmetry, we may assume that we switch
at v and φ(v) = ϕ(v). Moreover, noting that u and v must be in different parts of the bipartite graph G,
and again by the symmetry, we assume u ∈ A and v ∈ B with ϕ(u), ϕ(v) ∈ X. Hence, by our assumption,
φ(u) = ϕ(u) and φ(v) = ϕ(v) ∈ Y . Depending on the sign of e, we consider two cases.

If e is a positive edge, then ϕ(u)ϕ(v) is a positive edge of Ks
4k+2;q. Thus q ≤ |ϕ(u)− ϕ(v)| ≤ p− q =

4k+ 2− q. As |ϕ(v)−ϕ(v)| = p
2

= 2k+ 1, we have |ϕ(u)−ϕ(v)| ≤ 2k+ 1− q or |ϕ(u)−ϕ(v)| ≥ 2k+ 1 + q.
Note that now uv is a negative edge of (G, σ′) where σ′ is obtained from σ by switching at v. Since
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ϕ(u)ϕ(v) satisfies the condition for being a negative edge of Ks
4k+2;q, φ(u)φ(v) is a negative edge that we

required.
If e is a negative edge, then (only) one of the following must hold: either |ϕ(u)−ϕ(v)| ≤ p

2
−q = 2k+1−q

or |ϕ(u)− ϕ(v)| ≥ p
2

+ q = 2k + 1 + q. As in the previous case, we have that |ϕ(v)− ϕ(v)| = p
2

= 2k + 1.

Thus q ≤ |ϕ(u) − ϕ(v)| ≤ 4k + 2 − q. Switching at v makes uv become a positive edge. Now ϕ(u)ϕ(v)
satisfies the condition for being a positive edge of Ks

4k+2;q, in other words, φ(u)φ(v) is a positive edge.
Therefore, we verify that φ is a switching homomorphism of (G, σ) to Ks

4k+2;q and thus also to its signed
bipartite subgraph B4k+2;q.

We note that the assumption p
q
≤ 4 is not used explicitly in the proof. If p

q
> 4, then the signed

bipartite graph induced by odd versus even vertices will contain a digon which admits a homomorphism
from any signed bipartite graph and provides the upper bound of 4 for the circular chromatic number
of this class of signed graphs. That leaves us with circular 3-coloring as a special case. In this case, by
switching at all vertices of one part of B6;2, we get an isomorphic copy of (K3,3,M). Hence, as a special
case we have:

Corollary 2.5. Given a signed bipartite graph (G, σ),

χc(G, σ) ≤ 3 if and only if (G, σ)→ (K3,3,M).

Another special case is when p = 4k and q = 2k−1. In this case, one may observe that the (switching)
core of B4k;2k−1 (on 2k vertices) is switching equivalent to the negative cycle C−2k. Hence, we have the
following corollary.

Corollary 2.6. Given a signed bipartite graph (G, σ),

χc(G, σ) ≤ 4k

2k − 1
if and only if (G, σ)→ C−2k.

This is analogous to circular 2k+1
k

-colorings of graphs because χc(G) ≤ 2k+1
k

if and only if G → C2k+1.
Viewing a graph as a signed graph where all edges are positive, the two can be combined to the following.

Theorem 2.7. Given a positive integer `, ` ≥ 2, and a signed graph (G, σ) satisfying gij(G, σ) ≥ gij(C−`)
for each ij ∈ Z2

2, we have

χc(G,−σ) ≤ 2`

`− 1
if and only if (G, σ)→ C−`.

One of the most important conjectures in the study of the circular chromatic numbers of planar graphs
is the well-known Jaeger-Zhang conjecture which claims that every planar graph of odd-girth at least
4k + 1 admits a homomorphism to C2k+1, i.e., a circular 2k+1

k
-coloring. Attempting to fill the gaps in

the statement of the conjecture and potentially provide a better room for induction on k, we propose the
following strengthening.

Conjecture 2.8. Given a positive integer k, k ≥ 2, any signed planar graph (G, σ) satisfying gij(G,−σ) ≥
gij(C−(2k−r)) where r ∈ {0, 1} has circular chromatic number at most 2k

k−1 .

The case (k, r) = (2, 0) is trivial as every signed bipartite graph admits a circular 4-coloring. The case
(k, r) = (2, 1) is the 4-Color Theorem. The case (3, 1) is the well-known Grötzsch theorem. The case
(k, r) = (2p + 1, 1) is the Jaeger-Zhang conjecture. Theorem 1.8 proves the case (k, r) = (3, 0) of this
conjecture. More details are given in Section 3.2. For some supporting evidence we refer to [8].
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2.2 Circular coloring and subdivision

A classic relation between the chromatic number of a graph and homomorphism from a certain subdivisions
of it to the odd cycle is extended, in [14], to a relation between the circular chromatic number of signed
graphs and homomorphism of its subdivision to negative cycles. Here we present a slightly stronger version
and then use it to build examples in the next sections.

Definition 2.9. Given a signed graph (G, σ) and a positive integer `, we define T ∗` (G, σ) to be the signed
graph obtained from (G, σ) by replacing each edge e with a path P` of length ` where internal vertices of
the path are disjoint and assigning a signature satisfying that P` contains an odd number of positive edges
if e is a positive edge and P` contains an even number of positive edges if e is a negative edge.

We note that there are many choices for the signature in defining T ∗` (G, σ), but, as all such choices
are switching equivalent, one may take any. The relation between the circular chromatic number of (G, σ)
and T ∗` (G, σ) follows from two lemmas based on the following notation of indicator.

Given a signed graph I with two specific vertices u and v, we refer to I = (I, u, v) as an indicator.
Given an indicator I and a real number r, r ≥ 2, with [0, r) viewed as the circle of circumference r, we
define Z(I) to be the set of possible choices for u in a circular r-coloring of I where v is colored by 0.

Given two indicators I+ = (I1, u1, v2) and I− = (I2, u2, v2), for each signed graph Ω, we define Ω(I+, I−)
to be the signed graph obtained from Ω by replacing each positive edge xy with a distinct copy of I+ where x
is identified with u1 and y with u2 and similarly replacing each negative edge with I−. For some indicators,
the circular chromatic number of Ω(I+, I−) could be determined by χc(Ω).

Lemma 2.10. [18] Assume I+ and I− are two signed indicators, r ≥ 2 is a real number such that
Z(I+) = [t, r

2
] and Z(I−) = [0, r

2
− t] for some 0 < t < r

2
. Then for any signed graph Ω, we have

χc(Ω(I+, I−)) = tχc(Ω).

We denote a path of length ` which contains an odd number of positive edges by P o
` and a path of

length ` which contains an even number of positive edges by P e
` . The special choice for the indicators are

P o
` and P e

` , with the two endpoints as special vertices. The range of possible choices for the ends in the
circular colorings of these paths is computed in [22].

Lemma 2.11. [22] Given an integer ` ≥ 1 and a real number r < 2`
`−1 ,

Z(P e
` ) = [0, `

r

2
− `] and Z(P o

` ) = [`− (`− 1)
r

2
,
r

2
].

Combining these two lemmas, where we take I+ = P o
` , I− = P e

` and t = ` − (` − 1) r
2
, we have the

following.

Lemma 2.12. For any signed graph Ω,

χc(T
∗
` (Ω)) =

2`χc(Ω)

(`− 1)χc(Ω) + 2
.

A few comments are to be mentioned here.
The first is to note that for each positive integer `, and by considering a graph G as a signed graph

where all edges are regarded positive, the 4-colorability of G is equivalent to proving that χc(T
∗
` (G)) ≤ 8`

4`−2 .
Furthermore, noting that subdivision preserves the planarity, for each choices of `, we have a reformulation
of the 4-Color Theorem. For each such ` then one line of study is to introduce an interesting classes of
signed graphs that includes T ∗` (G) for all planar graphs G and admits the same upper bound for the
circular chromatic number.

A second note here is that for even values of `, T ∗` (Ω) is a signed bipartite graph and thus the subject
of the main study in this work.

And the last note is that the S(G) construction mentioned before is a special case of this indicator
construction. Given a graph G, one may first build a signed graph G̃ by replacing each edge with a digon.
Then T ∗2 (G̃) is the same as S(G).
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3 Coloring planar signed graphs

We have already noted that, via constructions such as S(G), most homomorphisms and coloring questions
can be restated in the language of homomorphisms of singed bipartite graphs. Here we have a look at
what this means to the coloring of planar graphs and restate some famous theorems such as the 4-Color
Theorem and Grötzsch’s theorem.

As a direct corollary of Theorem 1.4, we have the following reformulation of the 4-Color Theorem.

Theorem 3.1. [4-Color Theorem restated] For any planar graph G, we have S(G)→ S(K4).

Noting that the 4-Color Theorem is equivalent to bounding the circular chromatic number of all planar
graphs by 4, and applying Theorem 2.2, another restatement of 4-Color Theorem is as follows.

Theorem 3.2. [4-Color Theorem restated] For any planar graph G, we have χc(S(G)) ≤ 16
5

.

Since every S(G) is a signed bipartite graph, the claim of this theorem is equivalent to the existence

of an edge-sign preserving mapping from S(G) to Bs
16;5. Note that B̂s

16;5, the switching core of Bs
16;5, is a

signed graph on K4,4. With one random choice of a signature, (among all equivalent signatures), this core
is presented in Figure 9. We recall that the 4-Color Theorem is also restated in Theorem 1.6 in the form
of mapping S(G), for every planar G, to (K4,4,M).

Let P ′ be the class of all simple planar graphs and let S(P ′) = {S(G) : G ∈ P ′}. Then, by the discussion
above, the 4-Color Theorem is equivalent to bounding the class S(P ′) by either of the signed bipartite
graphs of Figures 7, 8, or 9. One may observe that S(K4) admits a homomorphism to both (K4,4,M)

and B̂s
16;5 but (K4,4,M) and B̂s

16;5 are homomorphically incomparable. The latter is a consequence of the

following two facts: 1. Any pair of nonadjacent vertices in (K4,4,M) or in B̂s
16;5 belongs to a negative

4-cycle which means identifying them would result in a digon; 2. the two signed graphs are not switching
isomorphic, for example, χc(K4,4,M) = 4 and χc(B̂

s
16;5) = 16

5
.

w

x

y z

Figure 7: S(K4)

1 3 5 7

2 4 6 8

Figure 8: (K4,4,M)

1 3 7 5

2 4 6 8

Figure 9: B̂s
16;5

Observe that S(K4) itself is in the family S(P ′) and bounds the family. By taking a larger class of
4-colorable graphs in place of P ′, such as the class of K5-minor-free graphs we may strengthen the result,
but we do not expect further extension. In contrast, since S(K4) admits a homomorphism to each of

(K4,4,M) and B̂s
16;5, it would not be a surprise if a stronger statement can be proved regarding these two

targets. Indeed that is the case for (K4,4,M): it bounds the class of all signed bipartite planar simple
graphs [15]. As the limit of the circular chromatic numbers of signed bipartite planar simple graphs is 4

(see [18] and [7]), this cannot be the case for B̂s
16;5. Thus it remains an open question to bound a larger

class of signed bipartite planar graphs with B̂s
16;5.

It is shown in [14] that every signed bipartite planar graph of negative girth at least 8 maps to C−4
and that this girth condition cannot be improved to 6. We observe that C−4 is a subgraph of each of the
three homomorphism targets of this discussion.

Another common subgraph of (K4,4,M) and B̂s
16;5 which is of high interest for this discussion is

(K3,3,M). A restatement of the Grötzsch theorem is the following.
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Theorem 3.3. [Grötzsch’s theorem restated] For any triangle-free planar graph G (with no loop), we have
χc(S(G)) ≤ 3.

In the next subsection, we prove Theorem 1.8 which may be viewed as a parallel theorem to Grötzsch’s
theorem. In Section 4 then we propose a question as potentially common strengthening of the two theorems.

3.1 Bounding the circular chromatic number by 3

For a class C of signed graphs, we define χc(C) = sup{χc(G, σ) : (G, σ) ∈ C}.
For a given integer k, let P∗k be the class of singed planar graphs (G, σ) such that the signed graph

(G,−σ) satisfies the following conditions: for each ij ∈ Z2
2, we have gij(G,−σ) ≥ gij(C−k). Thus for an

odd integer k, and after suitable switchings, P∗k consists of all planar graphs of odd girth at least k with
all edges being assigned positive signs. For an even value of k, the class P∗k consists of all signed bipartite
planar graphs of negative girth at least k.

A main question then is to find χc(P∗k) for each k. For k = 3 and 4 both answers are 4, the first by
the 4-Color Theorem, the second by the observation that 4 is the upper bound for the class of signed
bipartite simple graphs and a construction given in [18] showing that 4 cannot be improved (see also [7]).
For k = 5, we have the Grötzsch theorem, that gives upper bound of 3 which is also shown to be the
optimal value. For k = 4p + 1, this question is the subject of widely studied Jaeger-Zhang conjecture.
And for other values of k, similar conjectures are proposed. Here, addressing the case k = 6 we prove the
following result.

Theorem 3.4. We have
14

5
≤ χc(P∗6 ) ≤ 3.

The proof of the upper bound is based on the following theorem which is implied by combining several
results from the literature, noting that the 4-Color Theorem is used in proving this claim.

Theorem 3.5. Given a signed bipartite planar graph (G, σ) of negative girth at least 6, one can find six
disjoint subsets of edges, E1, E2, . . . , E6, such that each of the signed graphs (G, σi), i ∈ {1, 2, . . . , 6}, where
Ei is the set of negative edges of (G, σi), is switching equivalent to (G, σ).

To follow the literature for a proof of this claim, one first should note that in [15] it is shown that the
claim of Theorem 3.5 is equivalent to the following: Given a 6-regular planar multigraph G, if for every
set X of odd number of vertices there are at least six edges in the edge-cut (X, V (G) \ X), then G is
6-edge-colorable. Replacing 6 with a general integer k is the subject of a conjecture of P. Seymour while
the case k = 3 is a classic restatement of the 4-Color Theorem. The proof of the case k = 6 is given in [3].
However, this proof is based on induction on k, thus not only relies on the 4-Color Theorem, but also on
the proof of the cases k = 4 and k = 5 of Seymour’s conjecture. Proofs of these two cases were claimed by
B. Guenin in 2003, but there has been no publication of it since then. However, these cases are verified
independently through the notion of packing signatures in signed graphs in [19] and [20].

Proof of Theorem 3.4. Let (G, σ) be a signed bipartite planar graph of negative girth at least 6 with a
bipartition (A,B). By Theorem 3.5, there are disjoint subsets E1, E2, . . . , E6 of edges of G such that for
each i ∈ [6], the signature σi, whose negative edges are Ei, is equivalent to σ.

We consider the signed graph (G, σ1) where the set of negative edges is E1. Let G′ be the graph
obtained from G by contracting all the edges in E1. In this notion of contracting, we delete the contracted
edge (those in E1) but all other edges remain. Thus in theory we may have loops and parallel edge in the
resulting graph. However, we show next that not only G′ has no loop, it has no triangle either. In other
words, we claim that every odd cycle of G′ is of length at least 5.

To see this, let C ′ be an odd cycle of G′. This cycle is obtained from a cycle C of G by contracting
some edges (of E1). As G is bipartite, C must be of even length. Thus the number of the contracted edges
is odd. Therefore, C is a negative cycle in the signed graph (G, σ1). As all the (G, σi), i = 1, 2, . . . , 6, are
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equivalent, C is negative in all of them which means it has an odd number of edges from each of Ei’s. As
these sets are disjoint, and as for i = 2, 3, . . . 6, they still present in G′, the cycle C ′ has an odd number
of edges from each Ei, i = 2, 3, . . . 6. In particular, that is at least one edge from each, and noting again
that they are disjoint sets, we conclude that C ′ is of length at least 5.

Having shown that G′ is a triangle-free planar graph with no loop (might have parallel edges), we may
apply the Grötzsch theorem to obtain a 3-coloring ϕ : V (G′)→ {1, 2, 3} of G′. Let (X, Y ) be the bipartition
of (K3,3,M). Label the vertices X = {x1, x2, x3} and Y = {y1, y2, y3} such that {x1y1, x2y2, x3y3} is the
set of negative edges.

We define the mapping ψ of (G, σ1) to (K3,3,M) as follows:

ψ(u) =

{
xi, if u ∈ A and ϕ(u) = i

yi, if u ∈ B and ϕ(u) = i.

It remains to show that ψ is an edge-sign preserving mapping of (G, σ1) to (K3,3,M). For any positive
edge uv of (G, σ1), without loss of generality, we may assume that u ∈ A, v ∈ B and that ϕ(u) = i,
ϕ(v) = j. Noting that uv is also an edge of G′, as ϕ is a proper 3-coloring, we have that i 6= j. Thus
ψ(u)ψ(v) = xixj is a positive edge in (K3,3,M). For any negative edge uv of (G, σ1), without loss of
generality, assume u ∈ A, v ∈ B. As uv ∈ E1 is contracted to a vertex to obtain G′, ϕ(u) = ϕ(v) = i.
So ψ(u)ψ(v) = xiyi is a negative edge. Hence, ψ is an edge-sign preserving homomorphism of (G, σ1) to
(K3,3,M). This completes the proof of the upper bound.

For the lower bound we recall that an example of a signed simple planar graph (G, σ) satisfying
χc(G, σ) = 14

3
is given in [18]. Then it follows from Lemma 2.12 that χc(T

∗
2 (G, σ)) = 14

5
. It is easily

observed that, since (G, σ) is a signed simple planar graph, T ∗2 (G, σ) has (negative) girth at least 6 and
obviously it is a signed bipartite graph. �

3.2 Bounds based on girth

We will denote the class of all signed planar graphs with P , where we will allow loops and multi-edges.
The subclass of P where the shortest cycle of each member is at least k will be denoted by Pk. Thus,
in particular, P2 is the class of all loop-free signed planar graphs and P3 is the class of all signed planar
simple graphs.

We note that P∗k is not a subclass of Pk as signed graphs in P∗k may have positive even cycles of
any length. However, we expect that the circular chromatic number of P∗k is determined by the subclass
P∗k ∩ Pk.

The questions of determining χc(P∗k) is closely related to some of the most well known theorems and
conjectures in the theory of graph coloring, such the 4-Color theorem, Grötzsch’s theorem and Jaeger-
Zhang conjecture. This also leads to the importance of the question of determining χc(Pk). In the table
below we summarize the best known results for these questions for various values of k.

Circular chromatic number of P∗k and Pk
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k Bounds on χc(P∗
k ) Reference Bounds on χc(Pk) Reference

2 χc(P∗
2 ) = 4 [Bipartite] χc(P2) = 8 [4CT]

3 χc(P∗
3 ) = 4 [4CT] χc(P3) ≤ 6 [18]

4 χc(P∗
4 ) ∼= 4 [7] χc(P4) ≤ 4 [12]

5 χc(P∗
5 ) = 3 [5], [23] ∗

6 χc(P∗
6 ) ≤ 3 [this paper] ∗

7 ∗ χc(P7) ≤ 3 [13]
8 χc(P∗

8 ) ∼= 8
3 [14] ∗

11 χc(P∗
11) ≤ 5

2 [4], [2] ∗
14 χc(P∗

14) ≤ 12
5 [10] ∗

17 χc(P∗
17) ≤ 7

3 [2], [21] ∗
· · · · · · · · · · · ·
6p− 2 χc(P∗

6p−2) ≤ 4p
2p−1 [8] χc(P6p−2) ≤ 8p−2

4p−3 [8]

6p− 1 χc(P∗
6p−1) ≤ 4p

2p−1 [11] χc(P6p−1) ≤ 4p
2p−1 [8]

6p ∗ χc(P6p) < 4p
2p−1 [8]

6p+ 1 χc(P∗
6p+1) ≤ 2p+1

p [9] χc(P6p+1) ≤ 8p+2
4p−1 [8]

6p+ 2 ∗ χc(P6p+2) ≤ 2p+1
p [8]

6p+ 3 χc(P∗
6p+3) < 2p+1

p [11] χc(P6p+3) < 2p+1
p [8]

In this table, when we write χc(C) = r, it means that χc(Ĝ) ≤ r for each member Ĝ of the class C and
that the equality is known to hold for at least one member of the class. When we write χc(C) ∼= r, we
mean that there is a sequence of signed graphs of C whose limit of the circular chromatic number is r. In
such cases, sometimes it is verified that the r is never reached by a single member of C. For example, this
is indeed the case for P∗4 as shown in [7]. In other cases, it is not known if the equality holds for some
members or the inequality is always strict. In particular, for P∗8 the sequence that gives the limit of 8

3
is

{T ∗2 (Γi)} where Γi is the sequence reaching the limit of 4 for P∗4 . It remains an open problem whether the
equality can be reached in this case.

There are some trivial inclusion among the classes considered here: P∗k+2 ⊆ P∗k and Pk+1 ⊆ Pk. In
such cases, any upper bound for the larger class works also on the smaller one and any lower bound for the
smaller one works on the larger one as well. In the entries of the table where we write ∗ the best known
bounds come from the other entries of the table based on these inclusion.

To tight the gap in the bounds or, more ambitiously, to determine the exact values, is the subject of
some of main work in the theory of coloring planar graphs. A notable conjecture is that of Jaeger-Zhang
which can be restated as:

Conjecture 3.6. [Jaeger-Zhang Conjecture] Given a positive integer p, we have χc(P∗4p+1) ≤
2p+1
p

.

A bipartite analogue of this conjecture was first proposed in [16], but considering the result of [14],
it is modified to the following. Recall that the class P∗2k consists of all signed planar bipartite graphs of
negative girth at least 2k.

Conjecture 3.7. [Bipartite analogue of Jaeger-Zhang Conjecture] Given a positive integer p, we have
χc(P∗4p) ≤

4p
2p−1 .

As a common generalization of the two, we have proposed Conjecture 2.8.

4 Conclusions and further questions

In this paper, verifying the importance of the study of circular chromatic number of signed bipartite graphs
we have presented the signed bipartite circular cliques. Then, using the 4-Color Theorem, we have shown
an upper bound of 3 for the circular chromatic number of signed bipartite planar graphs of negative girth
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at least 6. We have provided a table summarizing the best known results on the circular chromatic number
of signed planar graphs with a girth condition. Beside all the open questions that are summarized in the
table, there are two questions of interest to mention.

The first is about the use the 4-Color Theorem in our proof of the upper bound of 3 for the circular
chromatic number of the subclass χc(P∗2 ). Could one find a relatively short proof of this without using
the 4-Color Theorem? Or can one show that, on the contrary, this result implies the 4-Color Theorem?
We recall that, in Section 2, reformulations of the 4-Color Theorem using special classes of planar graphs
of high girth are given. So this would not be a surprise.

The second question is to potentially strengthen our result to include the Grötzsch theorem as a special
case. One possibility is observed by reformulating the Grötzsch theorem itself as follows.

Theorem 4.1. [Grötzsch’s theorem restated] If G is a planar graph satisfying that K3 6→ G, then G→ K3.

We recall that if K3 6→ G, then S(K3) 6→ S(G) and that if G → K3 then S(G) → S(K3). Thus a
potential strengthening of our result, which would include the Grötzsch theorem, is as follows.

Conjecture 4.2. If (G, σ) is a signed bipartite planar graph with the property that S(K3) 6→ (G, σ), then
χc(G, σ) ≤ 3, i.e., (G, σ)→ (K3,3,M).
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