
Separating signatures in signed planar graphs

Reza Naserasr, Weiqiang Yu

Université Paris Cité, CNRS, IRIF, F-75006, Paris, France.
E-mail addresses: {reza, wyu}@irif.fr

Abstract

A signed graph (G, σ) is a graph together with an assignment σ of signs to the edges called signature.
A switching at a vertex v is to reverse the sign of each edge incident to v. Two signatures σ1 and σ2 on G
are equivalent if one can be obtained from the other by a sequence of switchings. The packing number of
a signed graph (G, σ), denoted ρ(G, σ), is defined to be the maximum number of signatures σ1, σ2, . . . , σl
such that each σi is switching equivalent to σ and the sets of negative edges are pairwise disjoint. The
question of determining the packing number in a class of signed graphs captures or relates to some of the
most prominent studies in graph theory. For example the four-color theorem can be restated as: For every
planar simple graph G we have ρ(G,−) ≥ 3.

As a generalization of the packing number, instead of considering one signature and its equivalent signa-
tures, we consider k signatures σ1, σ2, . . . , σk (not necessarily switching equivalent) and ask whether there
exist signatures σ′1, σ

′
2, . . . , σ

′
k, where σ′i is a switching of σi, such that the sets of negative edges E−σ′

i
are

pairwise disjoint.
It is known that there exists a signed planar simple graph whose packing number is 1. Thus for a general

planar graph separating two signatures is not always possible even if σ1 = σ2. In this work, we prove that
given planar graphG with no 4-cycle and any two signatures σ and π onG, there are switchings σ′ and π′ of
σ and π, respectively, such that E−σ′ ∩E−π′ = ∅. And as a corollary of 3-degeneracy, we could also separate
two signatures on a planar graph with no triangle, or with no 5-cycle or with no 6-cycle. Moreover, we prove
that one could separate three signatures on graphs of maximum average degree less than 3, in particular on
planar graphs of girth at least 6.

Keywords: signed graph, packing and separating signatures.

1 Introduction

Graphs considered in this work are finite and simple. A graph G is called planar if it can be embedded in the
plane such that any two edges intersect at most at their ends. A signed graph (G, σ) is a graph G = (V,E) and
a signature σ which is an assignment of signs, + or−, to the edges. In the study of signed graphs, switching is a
key concept: switching at a vertex v is to multiply the sign of each edge incident with v by−, and switching at a
subset X of V (G) is to multiply the signs of the edges in the edge cut (X,V (G)−X) by−. Two signatures σ1
and σ2 on G are switching equivalent, denoted by σ1 ≡ σ2, if one can be obtained from the other by a sequence
of switchings or, equivalently, by reversing the signs of the edges of an edge-cut. Given signed graphs (G, σ)
and (H,π) a homomorphism of (G, σ) to (H,π) is a mapping ϕ of the vertices of G to the vertices of H , such
that adjacencies and signs of closed walks are preserved. Given a signed graph (G, σ) and a subgraph H of G,
(H,σ) is said to be a signed graph which keeps the sign of the edges as (G, σ). Moreover, if H is a spanning
subgraph of G and we get (H,σ′) from (H,σ) by switching at X ⊆ V (H), then we say (G, σ′) is obtained
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from (G, σ) by switching at X ⊆ V (G) since H is a spanning subgraph of G. One may easily observe that
(H,σ′) is also a signed graph that keeps the sign of the edges as (G, σ′).
LetE−σ (G) denote the set of negative edges of (G, σ). WhenG is clear from the context we would simply write
E−σ . An unbalanced or negative cycle (balanced or positive) in signed graph is a cycle having an odd (even)
number of negative edges. A theorem of Zaslavsky says that the set of unbalanced cycles (equivalently the set
of balanced cycles) uniquely determines the equivalent class of signatures:

Theorem 1. [7] Two signatures σ1 and σ2 on a graph G are switching equivalent if and only if they induce the
same set of unbalanced cycles.

The packing number of (G, σ), denoted ρ(G, σ), is the maximum number of signatures σ1, σ2, . . . , σl such
that each σi is switching equivalent to σ and the sets E−σi are pairwise disjoint. Packing number captures and
generalizes some of the most prominent results and conjectures in graph theory. For example the following
conjecture strengthen the four-color theorem and relates to several related problems such as the edge-coloring
conjecture of Seymour.

Conjecture 1. Given a connected signed planar graph (G, σ) if there is no odd positive closed walk, then
ρ(G, σ) = g−(G, σ).

Here g−(G, σ) is the length of shortest negative closed walk of (G, σ) which is easily observed to be the same
as the length of the shortest negative cycle of (G, σ). For further connections and more details on this part of
the study we refer to [5].
In this work as a generalization of the packing number, instead of considering one signature and its equivalent
signatures, we consider the following: given k signatures σ1, σ2, . . . , σk on a given graph G we say they are
separable if there are signatures σ′1, σ

′
2, . . . , σ

′
k, where σ′i is a switching of σi, such that the setsE−

σ′
i

are pairwise
disjoint. In particular, if we choose these k signatures to be σ, then being separable implies ρ(G, σ) ≥ k. Given
a graph G, if any set of k signatures on G are separable, then we say G has k-separation property.
The problem of packing number at least 2 is strongly connected to a notion of proper coloring of signed graphs
first introduced by Zaslavsky in [8]. That is a coloring c of vertices of (G, σ) where colors are nonzero integers
such that c(x) 6= σ(xy)c(y). In a further study of this concept, Máčajová, Raspaud and Škoviera [3] conjectured
that colors {±1,±2} are enough for proper coloring of any signed planar simple graph. This conjecture was
recently disproved by Kardoš and Narboni [2].
Connecting the two notions, it is shown in [4] and [5], a signed graph (G, σ) has packing number 2 if and only
if (G,−σ) admits a {±1,±2}-coloring, where (G,−σ) is obtained from (G, σ) by turning the positive (resp.
negative) edges to be negative (resp. positive).
This implies that there exists a signed planar simple graph whose packing number is 1, see [5] for more details.
In this work, we investigate sufficient conditions for a planar graph to have 2- or 3-separation property. We
prove the followings.

Theorem 2. Given an integer i, i ∈ {3, 4, 5, 6}, any planar graph without a cycle of length i has 2-separation
property.

Theorem 3. Every planar graph of girth at least 6 has 3-separation property.

The last theorem is a corollary of a more general result on graphs of maximum average degree less than 3.
In the next section we prove Theorem 2. Proof of Theorem 3 is provided in Section 3. In the last section we
have concluding remarks where we mention connection to homomorphisms.
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2 Separating 2 signatures in subclasses of signed planar graphs

In the rest of this section G will be a minimum counterexample to Theorem 2. We will see soon that this
minimum counterexample has to be 2-connected and be of minimum degree at least 4. Thus in developing the
terminology that is followed we consider G to be 2-connected and of minimum degree at least 4.
The counterexample G will be regarded as a plane graph that is a graph together with a planar embedding. As
we consider 2-connected graphs every face is bounded by a cycle of G. We use V (G), E(G), F (G) and δ(G)
to denote its vertex set, edge set, face set, and minimum degree, respectively. A vertex of degree k (resp. at least
k, at most k) is called a k-vertex (resp. k+-vertex, k−-vertex). Similarly, we define k-face, k+-face, k−-face as
well. We say that two faces (or cycles) are adjacent or intersecting if they share a common edge or a common
vertex, respectively. Suppose that v is a k-vertex, and let v1, . . . , vk be the neighbours of v in the clockwise
order. For i = 1, . . . , k, fi(v) denotes the face incident with the vertex v with vvi, vvi+1 (where the summation
in the indices are taken modulo k) as boundary edges. As G is a plane graph of minimum degree at least 4, this
is well defined.
For a ∈ F (G), we write a = [u1u2 · · ·ul] if u1, u2, . . . , ul are the incident vertices of a in a cyclic order of it.
As G is 2-connected and minimum degree at least four, each edge e = ujuj+1 of a face a determines a face
adjacent to a at e. This face will be denoted by fj(a), where j = 1, . . . , l and the summation in the indices are
taken modulo l.
For two signatures σ and π on G, and for an edge uv ∈ E(G), let sσπ(uv) = {σ(uv)π(uv)} ⊆ {+,−} ×
{+,−}. Observe that to separate σ and π is to find signatures σ′, switching equivalent to σ, and π′, switching
equivalent to π, such that sσ′π′(uv) 6= −− for every edge uv. For a vertex u define Sσπ(u) as multiset Sσπ(u) =
[sσπ(e) | e is incident with u]. Thus the order of Sσπ(u) is the degree of u. Let S∗ = {++,+−,−+}. We say
a vertex v is saturated by σ and π if S∗ ⊆ Sσπ(v).
A path inG all whose vertices are of degree 4 inG is called a light path. Two paths are said to be vertex disjoint
if their internal vertices are distinct. We say an m-face a = [v1v2 · · · vm] is a light face if d(vi) = 4 for all
i = 1, . . . ,m. A 5-face with four vertices of degree 4 and one vertex of degree 5 is called a weak 5-face. A
weak 5-face is said to be super weak 5-face if it is adjacent to at least four triangles. For x ∈ V (G)∪F (G), let
n3(x) denote the number of triangles incident or adjacent to x and nw(x) be the number of incident or adjacent
weak faces.
It is well-known that every planar graph is 5-degenerate and that every triangle-free planar graph is 3-degenerate.
It is shown in [6] that every planar graph without a 5-cycle is 3-degenerate. Similarly it is shown in [1] that
every planar graph without 6-cycles is 3-degenerate. In next section, we will see that in a minimum counterex-
ample to Theorem 2, the minimum degree is at least 4, which cannot be the case for 3-degenerate graphs. This
would imply the claim of the theorem for each of the conditions of being triangle-free, having no 5-cycle or
having no 6-cycle. What remains to prove is that if G is a planar graph with no 4-cycle, then any two signatures
on it can be separated.

2.1 Structural properties of a minimum counterexample

Recall that G is a minimum counterexample to our theorem. That is to say either G has no triangle, or no
4-cycle, or no 5-cycle or no 6-cycle and there are signatures σ and π on G such that no matter how we switch
them there is an edge which is assigned a negative sign by each of the two signatures.
The first observation is that G is connected, as otherwise separating signatures on each connected component,
which would be possible by minimality, would be also a separation of the two signatures on the whole graph.
Almost the same argument implies the following stronger claim.

Lemma 4. The minimum counterexample G is 2-vertex-connected.
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Proof. Suppose to the contrary that v is a cut vertex of G. Let G = G1 ∪G2 such that v is the unique common
vertex of G1 and G2, and there does not exist any edges between V (G1) − v and V (G2) − v. Given two
signatures σ and π on G, we consider subgraphs (G1, σ), (G1, π), (G2, σ), and (G2, π). By the assumption of
the minimality of G, there are switchings σ1 and π1 on G1 (resp. σ2 and π2 on G2) of σ and π, respectively,
such that they have no common negative edge.
In particular, in G1 (resp. G2), in order to get the switchings σ1 and π1 (resp. σ2 and π2) of σ and π, we could
choose to switch at a subset V1 (resp. V2) of V (G1) (resp. V (G2)) which does not contain v. Thus in G, if we
switch at subset V1 ∪V2 which does not contain v as well, we find switchings σ′ and π′ of σ and π, such that σ′

and π′ have no common negative edge. This shows that a minimal counterexample cannot have a vertex cut of
one vertex.

Lemma 5. Given an edge uv ∈ E(G) let G′ = G − uv and assume σ′ and π′ are switchings of σ and π,
respectively, such that (G′, σ′) and (G′, π′) are separated. Then both u and v are saturated by σ′ and π′ in G′.

Proof. Towards a contradiction and without loss of generality, assume S∗  Sσ′π′(u). Since σ′ and π′ have no
common negative edge as signatures on G − uv, and G is counterexample, considering the extension of these
signatures to G we have sσ′π′(uv) = −−. Assume αβ /∈ Sσ′π′(u), αβ ∈ S∗. If α = +, switch σ′ at u; if
β = +, switch π′ at u. After this operation, we have signatures σ′′ and π′′ both on G which agree with σ′ and
π′ (respectively) on every edge that is not incident to u. Thus, by the choice of σ′ and π′, no edge which is not
incident to u is negative in both. But, furthermore, based on our switchings {−−} /∈ S(u) and thus σ′′ and π′′

are switchings of σ and π that are separated, a contradiction.

Corollary 6. The minimum degree of G is at least 4.

Thus as mentioned above, the case when G has no triangle or no 5-cycle or no 6-cycle is settled because any
such a planar graph must be 3-degenerate.

Lemma 7. Let P be a light path of G, e ∈ P . Assume σe and πe are switchings of σ and π, respectively, such
that (G, σe) and (G, πe) have only e as their common negative edge. Then given an edge e′ of P , by switching
σe on a set X of vertices of P and switching πe on a set Y of the vertices of P , for some choices of X and Y ,
we have signatures σe′ and πe′ where e′ is the only common negative edge of (G, σe′) and (G, πe′).

Proof. SupposeP = v1v2 · · · vk and e = {vivi+1}, where i ∈ {1, 2, . . . k−1}. By our assumption sσeπe(vivi+1) =

{−−}. By Lemma 5, Sσeπe(vi) = Sσeπe(vi+1) = S∗. With the same idea as in the proof of Lemma 5, and
assuming i ≥ 2, we may apply switchings at the vertex vi so that vi−1vi is the only common negative edge of
the resulting two signatures. Similarly, assuming i ≤ k − 2 we may apply switchings at the vertex vi+1 so that
vi+1vi+2 is the only common negative edge of the resulting two signatures. Continuing this process, and noting
that each time switchings are only done on one of vj’s, j = 2, . . . k − 1, we have the desired claim.

Lemma 8. There is no pair of vertices connected by three vertex disjoint light paths.

Proof. Assume to the contrary that P1, P2, P3 are three vertex disjoint light uv-paths and label them as follows:
P1 = ux1 · · ·xiv, P2 = uy1 · · · yjv, and P3 = uz1 · · · zkv, where i, j, k ≥ 0, noting that k = 0 means P3 = uv

and that, since G is a simple graph, only one of these values can be 0. Thus, without loss of generality, we
may assume i ≥ j ≥ 1 and k ≥ 0. Since G has no 4-cycle, we also conclude that i ≥ 2. Moreover, we may
choose P1, P2, P3 to be shortest subject to being internally vertex disjoint. This implies, in particular, that for
any pair of non-consecutive vertices on a path Pi (i = 1, 2, 3), they are not adjacent in G. Recalling that all
vertices of a light path are of degree 4 in G, let t, w be the neighbours of u, v which are not on any of P1, P2,
or P3, respectively. Let G′ = G − ux1. By the minimality of G, assume σ′ and π′ are switchings of σ and π,
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respectively, such that (G′, σ′) and (G′, π′) are separated. Thus when σ′ and π′ are viewed as signatures on G
we have sσ′π′(ux1) = {−−} and both u and x1 are saturated. Noting that k is allowed to be 0, we consider
two cases depending on this.
First consider the case k ≥ 1, as depicted in Figure 1. We may apply Lemma 7 to switch only at the internal
vertices of P1 to obtain signatures σ′′ and π′′ such that xiv is the only edge with sσ′′π′′(xiv) = −−. Therefore,
considering signatures σ′′ and π′′, and by Lemma 5, the vertex v must be saturated. Recall that in the process of
getting σ′′ and π′′ from σ′ and π′ we are considering only switchings at the internal vertices of P1. Furthermore,
since Pi’s chosen to be shortest, no internal vertex of Pi is adjacent to v. That means, in particular, that the
signs of the three edges yjv, zkv, wv each incident to v remain untouched when switching σ′ to σ′′ and π′ to
π′′. We conclude that

{sσ′π′(yjv), sσ′π′(zkv), sσ′π′(wv)} = {++,+−,−+}. (1)

Next, restarting from signatures σ′ and π′ and applying Lemma 7 to the path x1uy1 · · · yjv (that is the path
obtained from P2 by adding the edge x1u at the start), and as before, we conclude that

{sσ′π′(xiv), sσ′π′(zkv), sσ′π′(wv)} = {++,+−,−+}. (2)

In this argument that k ≥ 1 helps us to confirm that the signs of the three edges incident to v other than yjv
remain the same.
Equations 1 and 2 imply that sσ′π′(xiv) = sσ′π′(yjv).
Similarly, considering paths P1 and x1uz1 · · · zkv we conclude that sσ′π′(xiv) = sσ′π′(zkv). However, this
leads to contradiction with either of the identities 1 and 2. This concludes the statement for the case that k ≥ 1.
Now assume k = 0, that is to say uv is an edge of G, this case is depicted in Figure 1. First suppose that,
except for the edge uv, no vertex of P1 is connected to a vertex of P2. Our first claim in this case is that
sσ′π′(uy1) = sσ′π′(y1y2) = · · · = sσ′π′(yjv). That is because by applying Lemma 7 and Lemma 5 to the
path x1uy1y2 · · · yjv we get that Sσ′π′(yl) − sσ′π′(ylyl−1) = S∗ and by applying the same lemma to the path
ux1x2 · · ·xivyjyj−1 · · · y1 we get that Sσ′π′(yl)− sσ′π′(ylyl+1) = S∗.

Next we claim that sσ′π′(xiv) = sσ′π′(uv). That is for similar reasons as the previous claim and by considering
the two paths P1 and x1uv. Furthermore, applying Lemma 5 to signature σ′′ and π′′ which have only xiv as
common negative edge, and are obtained from switching of σ′ and π′ (respectively) on internal vertices of P1,
we conclude that:

{sσ′π′(uv), sσ′π′(yjv), sσ′π′(wv)} = {++,+−,−+}. (3)

Recall that u is saturated by σ′ and π′ where ux1 is negative in both signatures. This means

{sσ′π′(ut), sσ′π′(uy1), sσ′π′(uv)} = {++,+−,−+}. (4)

Comparing identities 3 and 4 we have: sσ′π′(ut) = sσ′π′(vw).

Observe that when applying Lemma 7 to get uy1 as the only common negative edge, we apply switchings at u
in one or both of the signatures. Assuming the new signatures are σ′′ and π′′ one observes that sσ′′π′′(ux1) =

sσ′π′(uy1) and thus sσ′′π′′(uv) = sσ′π′(ut). Therefore, sσ′′π′′(uv) = sσ′π′(vw).
If we now apply Lemma 7 to σ′′ and π′′ on the path P2 so to have yjv as the only common negative edge, as
we will not change signs of the other three edges incident with v we will end up with a vertex v which is not
saturated, contradicting Lemma 5.
For the final case, suppose beside uv, there exists another edge connecting a vertex of P1 to a vertex of P2.
Let xpyq be such an edge. Since i ≥ 2, and by exchanging the roles of u and v, if needed, we may as-
sume that p ≤ i − 1. In this case, as before we apply Lemma 7 to the following three paths: P1, x1uv, and
ux1 · · ·xpyq · · · yjv. From the first we conclude that {sσ′π′(uv), sσ′π′(yjv), sσ′π′(wv)} = {++,+−,−+}.
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Figure 1: 3 disjoint light paths between u and v.

From the second we conclude that {sσ′π′(xiv), sσ′π′(yjv), sσ′π′(wv)} = {++,+−,−+}. And the last one
implies {sσ′π′(uv), sσ′π′(xiv), sσ′π′(wv)} = {++,+−,−+}. Comparing the first two we conclude that
sσ′π′(uv) = sσ′π′(xiv), then first with second sσ′π′(uv) = sσ′π′(yjv) which contradicts, say, the third iden-
tity.

Corollary 9. There are no adjacent light faces in G.

We may now apply discharging technique to conclude our claim.

2.2 Discharging for planar graphs without 4-cycles

In this section, we apply discharging technique to complete the proof of Theorem 2 for the case of C4-free
planar graphs.
We define a weight function ω on the vertices and faces of G by letting ω(v) = d(v) − 4 for each v ∈ V (G)

and ω(f) = d(f) − 4 for f ∈ F (G). It follows from Euler’s formula and the relation
∑

v∈V (G) d(v) =∑
f∈F (G) d(f) = 2|E(G)| that the total sum of weights of the vertices and faces satisfies the following∑

v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) = −8.

Next we design appropriate discharging rules and redistribute weights accordingly. Once the discharging is
finished, a new weight function ω∗ is produced. The total sum of weights is kept fixed when the discharging is in
process. Nevertheless, after the discharging is complete, we will show that ω∗(x) ≥ 0 for all x ∈ V (G)∪F (G).
This contradiction implies that no such counterexample exists.

Let v be vertex of degree 4 whose neighbours in clockwise orientation are v1, v2, v3, and v4. Let f1, f2, f3, and
f4 be the face containing v1vv2, v2vv3, v3vv4, and v4vv1 respectively. If d(v3) = d(v4) = 4, d(v1) = d(v2) ≥
5, d(f2) = d(f4) = 3, d(f3) = 5, and d(f1) ≥ 5, then we say f3 is a receiver of f1.
For x, y ∈ V (G) ∪ F (G), let τ(x→ y) denote the amount of weights transferred from x to y.

Our first discharging rule is as follows:

R1 : Each 5+-face sends 1
3 to each adjacent 3-face and 2

15 to each of its receiver.

Let v be a 5-vertex with f1, f2, . . . , f5 being the faces incident to v. Assume f1 and f3 are triangles and,
furthermore, that f4 is a super weak 5-face. Then it is easily observed that f5 is not a super weak 5-face.
The next two discharging rules are as follows:
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R2: If d(v) = 5, n3(v) = 1, say d(f1) = 3, then let τ(v → f2) = τ(v → f5) =
1
3 .

R3: If d(v) = 5 and n3(v) = 2, say d(f1) = d(f3) = 3, then τ(v → f2) =
2
3 . Furthermore, if there exists

one super weak 5-face f ′, f ′ 6= f2, then τ(v → f ′) = 1
3 , otherwise τ(v → f4) = τ(v → f5) =

1
6 .

The remaining two rules are about 6+-vertices.

R4: If d(v) ≥ 6 and f is a face incident to v and adjacent to one triangle also incident to v, then τ(v → f) =
1
3 .

R5: If d(v) ≥ 6 and f is a face incident to v and adjacent to two triangles each incident to v, then τ(v →
f) = 2

3 .

In the following, we will show that ω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G).
First we consider vertices, let v ∈ V (G). By Corollary 6, d(v) ≥ 4. Note that no 4-vertex participates in
discharging argument, so ω∗(v) = ω(v) = d(v) − 4 = 0 for any 4-vertex v. Next we consider 5-vertices. Let
v be any such a vertex, then ω(v) = 1. By the fact that G contains no 4-cycle we have 0 ≤ n3(v) ≤ 2. If
n3(v) = 0, then the charge of v is not changed, i.e., ω∗(v) = ω(v) = 1. If n3(v) = 1, the charge of v is
changed (only) by the R2, and in this case ω∗(v) = ω(v)− 2× 1

3 = 1
3 . If n3(v) = 2, then R3 is the only rule

that changes the charge of v and under this rule at most a charge of 1 is given from v to its incident face. Thus
ω∗(v) ≥ 0.
It remains to consider 6+-vertices. Let v be such a vertex. d(v) ≥ 6. For i = 1, 2, let mi(v) denote the number
of incident faces adjacent to i triangles each incident to v. Observe that, by definition, m1(v) + 2m2(v) ≤
2n3(v) ≤ d(v) (the latter inequality because of being C4-free). In applying R3 the vertex v loses a charge of
m1(v)+2m2(v)

3 . Thus ω∗(v) = d(v)− 4− m1(v)+2m2(v)
3 . Therefore, ω∗(v) ≥ d(v)− 4− d(v)

3 . As d(v) ≥ 6 we
have ω∗(v) ≥ 0.

Now we consider faces, let f ∈ F (G). First assume d(f) = 3, in other words f is a triangle. Recall that
original charge ω(f) = −1. Since G has no C4, each of the faces adjacent to f is of size at least 5. Then by
rule R1, each of them sends a charge of 1

3 to f and thus ω∗(f) = 3− 4 + 3× 1
3 = 0.

Next we consider 5-faces, let f = [v1 · · · v5] be such a face. For the original charge of f we have ω(f) =

5 − 4 = 1. If f is adjacent to at most two triangles, then f gives a charge of 1
3 to each of the triangles it is

adjacent to and it has at most one receiver, so can only lose a charge of 2× 1
3 +

2
15 = 4

5 , thus the final charge is
at least 1

5 .
Suppose f is adjacent to precisely 3 triangles. If f has no receiver, then it only loses charge by R1 and by
this rule loses exactly a charge of 3 × 1

3 = 1, hence ω∗(f) = 0. If f has exactly one receiver, let v2 be the
common vertex of f and its receiver. Then, by the definition of a receiver, v1, v3 each has degree at least 5. We
now consider the position of the third triangle adjacent to f . If it is one of f3 or f5, say f3, then by R3 or R5,
depending on if d(v3) = 5 or d(v3) ≥ 6, the vertex v3 gives a charge of 2

3 to f , concluding that ω∗(f) ≥ 8
15 .

Otherwise f4 is the third triangle adjacent to f . In such a case the two faces f3 and f5 are 5+-faces. We claim
that neither is a super weak 5-face. By contradiction, suppose f3 is a super weak 5-face. Then, it must be
adjacent to at least four triangles. As f is not a triangle, all the other faces adjacent to f3 are triangles. This
implies that vertices v3 and v4 are each of degree at least 5, but this contradicts the second condition of being a
super negative 5-face which is to have four vertices of degree 4. If f3 (or f5) is a 6+-face, then, by R4, it gives
a charge of 1

3 to f , raising ω∗(f) to at least 1
5 . If they are both 5-faces, then, by R3, each of v1 and v3 gives a

charge of 1
6 to f . The final charge of f in this is at least 1 + 1

6 − 3× 1
3 −

2
15 = 1

30 .
Suppose f is adjacent to 4 triangles and by symmetry assume f1, f2, f3, and f4 are the triangles. The receiver
face implies that there are at most two receivers for f , and moreover if there is at least one, then one of v2, v3
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or v4 has to be of degree at least 5. If one of v2, v3 or v4 is of degree at least 5, either by R3 or by R5 it will
give a charge of 2

3 to f and thus the final charge of f would be at least 1 + 2
3 − 4× 1

3 − 2× 2
15 = 1

15 . Let now
assume v2, v3, and v4 are all of degree 4. In such case, if v5 and v1 each has degree at least 5 or one of them
has degree at least 6, then f5 cannot be a weak face and either by applying R3 to both v1 and v5 or applying
R4 to the one which is a 6+-vertex, a total charge of at least 1

3 is given to f and thus the final charge of f is
non-negative. If one of v1 and v5 is degree 4 and the other, say v5 is of degree 5, then f is a super weak 5-face
and thus by R3 the vertex v5 will give a charge of 1

3 to f , resulting a final charge of f to be positive. If all
vertices v1, . . . , v5 are of degree 4, i.e., f is a light face, then since there is no adjacent light faces (Corollary 9)
for each of the triangles f1, . . . , f4 the vertex of fi which is not on f is a 5+-vertex. Then f is a receiver for the
face adjacent to f1 and f2 and for the face adjacent to f2 and f3 and also for the face adjacent to f3 and f4. It,
therefore, receives a charge of 2

15 from each of these 3 for a final charge of ω∗(f) ≥ 1 + 3× 2
15 − 4× 1

3 = 1
15 .

Finally we consider the case where all faces adjacent to f are triangles. Recall that f has at most two receivers.
So it loses at most 5 × 1

3 + 2 × 2
15 . If two of vi’s are 5+-vertices, then either by R3 or by R5 they each gives

a charge of 2
3 to f and the final charge of f is positive. If only one of vi’s, say v1, is a 5+-vertex, then f has no

receiver and only loses a charge of 5× 1
3 but gains 2

3 from v1 and again the final charge would be non-negative.
If none of vi’s is a 5+-vertex, i.e., f is a light face, by Corollary 9, for each of the triangles f1, . . . , f5 the vertex
of fi which is not on f is a 5+-vertex. Thus f is a receiver of five faces determined by consecutive triangles
around it. Hence by R1, it receives 5 × 2

15 from each of these five faces, to have a final charge of 0. This
conclude all the cases for a 5-face.
Next assume that f = [v1 · · · v6] is a 6-face. Then ω(f) = 2. If f is adjacent to at most 5 triangles, then it
has at most two receivers, and hence it loses at most 5 × 1

3 + 2 × 2
15 (all in R1) hence ω∗(f) ≥ 1

15 . If all the
six faces adjacent to f are triangles, we consider two possibilities depending on the degrees of v1, . . . , v6. If at
least one of them is a 5+-vertex, then either by R3 or by R5 it gives a charge of 2

3 to f . As f can have at most
three receivers, the final charge of f remains non-negative. If all vertices on f are of degree 4, then f has no
receiver and the final charge of f is 0.
Finally we consider 7+-faces. Recall that faces only lose charge by R1. There are at most d(f) triangles
adjacent to f , and it can have at most dd(f)2 e receivers. Thus for the final charge of f we have ω∗(f) =

d(f)− 4− 1
3d(f)−

1
2 ×

2
15d(f) =

3
5d(f)− 4 ≥ 1

5 . This completes the proof.

3 Separating 3 signatures in signed planar graphs of girth 6

In this section we provide a maximum average degree condition which is sufficient for any three signatures on
a graph to be separated. Theorem 3 will be immediate consequence then.

Theorem 10. Every simple graph of maximum average degree less than 3 has a 3-separation property.

Proof. Let G be a minimum counterexample. That, in particular means there are three signatures σ1, σ2, and
σ3 on G that are not separable but for any edge e, the restrictions of the three signatures on G− e are separable.
After proving a few claims, and using discharging technique then we will show that G itself must have average
degree at least 3 contradicting our hypothesis on the maximum average degree of G.
For three signatures σ1, σ2 and σ3 onG, and for an edge uv ∈ E(G), let sσ1σ2σ3(uv) = {σ1(uv)σ2(uv)σ3(uv)} ⊆
{+,−} × {+,−} × {+,−}. For a vertex u define a multiset Sσ1σ2σ3(u) = [sσ1σ2σ3(e)|e ∈ Eu], where Eu is
the set of edges incident to u. We may use s(uv) and S(u) when the signatures are clear from the context. Let
S∗ = {+++,−++,+−+,++−}.
The first observation, whose verification we leave to the reader, is that G is 2-connected. Thus in particular
the minimum degree is at least 2. To achieve our goal then we have three claims about the neighbourhood of
vertices of degree 2.

8



Claim 1. Both neighbours of a 2-vertex v in G have degree at least 4.

Proof of the claim. Let N(v) = {v1, v2} and assume to the contrary, that d(v2) ≤ 3. Let G′ = G − vv2. By
the minimality of G, assume σ′1, σ′2, and σ′3 are switchings of σ1, σ2, and σ3, respectively, such that (G′, σ′1),
(G′, σ′2), and (G′, σ′3) are separated. Since dG′(v) = 1, and by a switching at v in any signature that needs, we
may assume sσ′

1σ
′
2σ

′
3
(vv1) = {+ + +}. When σ′1, σ′2, and σ′3 are viewed as signatures on G, vv2 is the only

edge not satisfying the condition which means at least two of the signatures must assign negative to vv2. If one
of them, say σ′3 assigns positive to vv2, then by switching v at the signature σ′2 (or σ′1) we have separation. Thus
we may assume sσ′

1σ
′
2σ

′
3
(vv2) = {− −−}.

At this point, it suffices to find one or two signatures, σ′i and σ′j , such that if σ′i or both σ′i and σ′j are switched
at v2, then vv2 is still the only edge not satisfying our condition. If we manage to find σ′i, or σ′i and σ′j , then
we may also switch signature σ′l, l 6∈ {i, j}, at v. After these switchings, vv1 will be negative at one signature
only, and vv2 with be either positive in all or negative in just one signature, and thus we have three separated
signatures. To choose σ′i and possibly σ′j among σ′1, σ′2, and σ′3 we consider the two edges, e1 and e2 incident to
v2 but different from vv2. If they are both negative in a signature, we choose that one to be σ′i and no need for
a second. If each of the edges is assigned only positive sign by each of the signatures, then σ′i can be any of the
three signatures and again no need for a second choice. Otherwise, we note that at most two of the signatures
can assign different signs to e1 and e2. If only one, then we choose that signature to be σ′i and if two we take
them both to be σ′i and σ′j . �

Claim 2. A 4-vertex v can have at most two 2-neighbours.

Proof of the claim. Let N(v) = {v1, v2, v3, v4}. Toward a contradiction assume that d(vi) = 2 for i = 1, 2, 3.
For each i, i = 1, 2, 3, let the other neighbour of vi be v′i. Let G′ = G − vv1. By the minimality of G, we
have signatures σ′1, σ′2, and σ′3 as switchings of σ1, σ2, and σ3, respectively, such that (G′, σ′1), (G

′, σ′2), and
(G′, σ′3) are separated. In what follows, we consider signatures σ′1, σ′2, and σ′3 on G. Again since dG′(v1) = 1,
without loss of generality, we may assume s(v1v′1) = {+ + +}. The same argument as in the previous case
then implies that s(vv1) = {− −−}.
If S(v) ∩ S∗ ≤ 2, then we continue the same argument as in the previous case, where v is a neighbour of the
2-vertex v1 and to our purpose it is of degree |S(v)∩S∗|+1. So we assume S(v)∩S∗ = 3. We observe that by
switching at v2, in the signatures that are needed, we may exchange s(vv2) and s(v2v′2). If after such switchings
the previous condition holds, we are done. If not, either s(vv2) = s(v2v

′
2) in which case by switchings at v2

we may conclude that s(vv2) = s(vv3) and then we are done as before, or s(v2v′2) is distinct from each of
s(vv2), s(vv3), and s(vv4). Repeating the same argument we conclude that s(v3v′3) = s(v2v

′
2). We may now

do enough switchings at v2 and v3 so that s(vv2) = s(vv3). Then the process can be completed as before. �

Claim 3. A 5-vertex v can have at most four 2-neighbours.
Proof of the claim. Let N(v) = {v1, . . . , v5}. Assume to the contrary that d(vi) = 2 for i = 1, . . . , 5. We
name the other neighbour of vi as v′i. Let G′ = G − vv1. By the minimality of G, assume σ′1, σ′2, and σ′3 are
switchings of σ1, σ2, and σ3, respectively, such that (G′, σ′1), (G

′, σ′2), and (G′, σ′3) are separated. As in the
previous two cases, we may assume s(v1v′1) = {+ + +} and s(vv1) = {− − −}. Furthermore, by switching
at vi’s, if necessary, we can assume that none of s(vvi), i = 2, . . . , 5, is {+ + +}. Thus for some i and j,
2 ≤ i < j ≤ 5, we have s(vvi) = s(vvj). At this point we note that in the proof of Claim 2 we never applied
a switching at v4. Thus we may now continue the same proof as in the Claim 2 by treating vi and vj as v4 and
not switching at these two vertices. �
Finally to complete the proof we show that the three forbidden configurations of Claims 1, 2, and 3 imply an
average degree of at least 3.
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We first define ω on the vertices of G by letting ω(v) = d(v) for each v ∈ V (G). The single discharging rule
is as follows.

R′ : Each 4+-vertex sends 1
2 to each 2-neighbour.

Let ω∗(v) be the charge of v after applying the rule. Let v ∈ V (G). As observed before, d(v) ≥ 2. If d(v) = 2,
then by Claim 1, v is adjacent to two vertices of degree at least 4. Thus, ω∗(v) = 2 + 2 × 1

2 = 3 by (R′).
The discharging rule does not change ω(v) if d(v) = 3. If d(v) = 4, then by Claim 2, v has at most two
2-neighbours, thus ω∗(v) ≥ 4− 2× 1

2 = 3. When d(v) = 5, by Claim 3, v has at most four 2-neighbours, thus
ω∗(v) ≥ 5− 4× 1

2 = 3. Finally if d(v) ≥ 6, then ω∗(v) ≥ d(v)− d(v)
2 = d(v)

2 ≥ 3.

4 Conclusion

The problem of packing signatures in signed graphs relates to some of the most prominent problems in graph
theory such as the four-color theorem and edge-coloring problems as shown in [5]. In particular it is shown that
a signed graph (G, σ) admits a (k + 1)-packing of signatures if and only if it admits a homomorphism to the
graph obtained from the projective cube of dimension k by adding a positive loop to each vertex. We recall that
a homomorphism of a signed graph (G, σ) to (H,π) is a mapping of vertices and edges of G to the vertices and
edges of H , respectively, such that adjacencies and incidences, as well as signs of closed walks are preserved.
Projective cube of dimension k is the signed graph with Zk2 as the vertex set where pairs of vertices at hamming
distance 1 are adjacent by a positive edge and pairs of vertices at hamming distance k are adjacent by a negative
edge.
The first four projective cubes with positive loops added to the vertices are presented in Figure 2. The claim that
every antibalanced signed planar simple graph (G,−) maps to SPCo2 is equivalent to the four-color theorem
and the claim that every signed bipartite planar simple graph maps to SPCo3 is stronger than the four-color
theorem and is proved using it.

Figure 2: SPCod for d ∈ {0, 1, 2, 3}

The question of separating a given set of k signatures captures the k-packing of signature problem because one
can simply take k identical signatures. The question then can be translated back to a homomorphism problem
as follows.
A multi-signed graph, denoted (G, σ1, σ2, . . . , σl), is a graph G together with l signatures. A multi-signed
graph (G, σ1, σ2, . . . , σl) is said to admit a homomorphism to a multi-signed graph (H,π1, π2, . . . , πl) if there
is a mapping f of vertices and edges of G to vertices and edges of H , respectively, which is a homomorphism
of (G, σi) to (H,πi) for every i, i = 1, 2, . . . , l. That is to say incidences and adjacencies are preserved, and
the sign of any closed walk in (G, σi) is the same as the sign of its image in (H,πi).

10



Given an integer l, let Ll be the multi-signed graph on a single vertex with l + 1 loops e0, e1, . . . el where e0 is
assigned a positive sign by each of the signatures and ei is assigned a negative sign by σi and positive sign by
all other signatures. The cases l = 1, 2, 3 are presented in Figures 3, 4, and 5. It is then immediate to restate the
separating problem we have studied here as a homomorphism problem.

+

−

Figure 3: (L1, σ)

++

−+ +−

Figure 4: (L2, σ1, σ2)

+++

−++

+−+

++−

Figure 5: (L3, σ1, σ2, σ3)

Theorem 11. A multi-signed graph (G, σ1, σ2, . . . , σl) admits a separation if and only it admits a homomor-
phism to Ll.
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