Separating signatures in signed planar graphs

Reza Naserasr, Weiqiang Yu
Université Paris Cité, CNRS, IRIF, F-75006, Paris, France.
E-mail addresses: \{reza, wyu\}@irif.fr

Abstract

A signed graph (G, σ) is a graph together with an assignment σ of signs to the edges called signature. A switching at a vertex v is to reverse the sign of each edge incident to v. Two signatures σ_{1} and σ_{2} on G are equivalent if one can be obtained from the other by a sequence of switchings. The packing number of a signed graph (G, σ), denoted $\rho(G, \sigma)$, is defined to be the maximum number of signatures $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ such that each σ_{i} is switching equivalent to σ and the sets of negative edges are pairwise disjoint. The question of determining the packing number in a class of signed graphs captures or relates to some of the most prominent studies in graph theory. For example the four-color theorem can be restated as: For every planar simple graph G we have $\rho(G,-) \geq 3$.

As a generalization of the packing number, instead of considering one signature and its equivalent signatures, we consider k signatures $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ (not necessarily switching equivalent) and ask whether there exist signatures $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \ldots, \sigma_{k}^{\prime}$, where σ_{i}^{\prime} is a switching of σ_{i}, such that the sets of negative edges $E_{\sigma_{i}^{\prime}}^{-}$are pairwise disjoint.

It is known that there exists a signed planar simple graph whose packing number is 1 . Thus for a general planar graph separating two signatures is not always possible even if $\sigma_{1}=\sigma_{2}$. In this work, we prove that given planar graph G with no 4 -cycle and any two signatures σ and π on G, there are switchings σ^{\prime} and π^{\prime} of σ and π, respectively, such that $E_{\sigma^{\prime}}^{-} \cap E_{\pi^{\prime}}^{-}=\varnothing$. And as a corollary of 3-degeneracy, we could also separate two signatures on a planar graph with no triangle, or with no 5 -cycle or with no 6 -cycle. Moreover, we prove that one could separate three signatures on graphs of maximum average degree less than 3 , in particular on planar graphs of girth at least 6 .

Keywords: signed graph, packing and separating signatures.

1 Introduction

Graphs considered in this work are finite and simple. A graph G is called planar if it can be embedded in the plane such that any two edges intersect at most at their ends. A signed graph (G, σ) is a graph $G=(V, E)$ and a signature σ which is an assignment of signs, + or - , to the edges. In the study of signed graphs, switching is a key concept: switching at a vertex v is to multiply the sign of each edge incident with v by - , and switching at a subset X of $V(G)$ is to multiply the signs of the edges in the edge cut $(X, V(G)-X)$ by - . Two signatures σ_{1} and σ_{2} on G are switching equivalent, denoted by $\sigma_{1} \equiv \sigma_{2}$, if one can be obtained from the other by a sequence of switchings or, equivalently, by reversing the signs of the edges of an edge-cut. Given signed graphs (G, σ) and (H, π) a homomorphism of (G, σ) to (H, π) is a mapping φ of the vertices of G to the vertices of H, such that adjacencies and signs of closed walks are preserved. Given a signed graph (G, σ) and a subgraph H of G, (H, σ) is said to be a signed graph which keeps the sign of the edges as (G, σ). Moreover, if H is a spanning subgraph of G and we get $\left(H, \sigma^{\prime}\right)$ from (H, σ) by switching at $X \subseteq V(H)$, then we say $\left(G, \sigma^{\prime}\right)$ is obtained
from (G, σ) by switching at $X \subseteq V(G)$ since H is a spanning subgraph of G. One may easily observe that $\left(H, \sigma^{\prime}\right)$ is also a signed graph that keeps the sign of the edges as $\left(G, \sigma^{\prime}\right)$.
Let $E_{\sigma}^{-}(G)$ denote the set of negative edges of (G, σ). When G is clear from the context we would simply write E_{σ}^{-}. An unbalanced or negative cycle (balanced or positive) in signed graph is a cycle having an odd (even) number of negative edges. A theorem of Zaslavsky says that the set of unbalanced cycles (equivalently the set of balanced cycles) uniquely determines the equivalent class of signatures:

Theorem 1. [7] Two signatures σ_{1} and σ_{2} on a graph G are switching equivalent if and only if they induce the same set of unbalanced cycles.

The packing number of (G, σ), denoted $\rho(G, \sigma)$, is the maximum number of signatures $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ such that each σ_{i} is switching equivalent to σ and the sets $E_{\sigma_{i}}^{-}$are pairwise disjoint. Packing number captures and generalizes some of the most prominent results and conjectures in graph theory. For example the following conjecture strengthen the four-color theorem and relates to several related problems such as the edge-coloring conjecture of Seymour.

Conjecture 1. Given a connected signed planar graph (G, σ) if there is no odd positive closed walk, then $\rho(G, \sigma)=g_{-}(G, \sigma)$.

Here $g_{-}(G, \sigma)$ is the length of shortest negative closed walk of (G, σ) which is easily observed to be the same as the length of the shortest negative cycle of (G, σ). For further connections and more details on this part of the study we refer to [5].
In this work as a generalization of the packing number, instead of considering one signature and its equivalent signatures, we consider the following: given k signatures $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ on a given graph G we say they are separable if there are signatures $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \ldots, \sigma_{k}^{\prime}$, where σ_{i}^{\prime} is a switching of σ_{i}, such that the sets $E_{\sigma_{i}^{\prime}}^{-}$are pairwise disjoint. In particular, if we choose these k signatures to be σ, then being separable implies $\rho(G, \sigma) \geq k$. Given a graph G, if any set of k signatures on G are separable, then we say G has k-separation property.
The problem of packing number at least 2 is strongly connected to a notion of proper coloring of signed graphs first introduced by Zaslavsky in [8]. That is a coloring c of vertices of (G, σ) where colors are nonzero integers such that $c(x) \neq \sigma(x y) c(y)$. In a further study of this concept, Máčajová, Raspaud and Škoviera [3] conjectured that colors $\{ \pm 1, \pm 2\}$ are enough for proper coloring of any signed planar simple graph. This conjecture was recently disproved by Kardoš and Narboni [2].
Connecting the two notions, it is shown in [4] and [5], a signed graph (G, σ) has packing number 2 if and only if $(G,-\sigma)$ admits a $\{ \pm 1, \pm 2\}$-coloring, where $(G,-\sigma)$ is obtained from (G, σ) by turning the positive (resp. negative) edges to be negative (resp. positive).
This implies that there exists a signed planar simple graph whose packing number is 1 , see [5] for more details. In this work, we investigate sufficient conditions for a planar graph to have 2 - or 3 -separation property. We prove the followings.

Theorem 2. Given an integer $i, i \in\{3,4,5,6\}$, any planar graph without a cycle of length i has 2 -separation property.

Theorem 3. Every planar graph of girth at least 6 has 3 -separation property.
The last theorem is a corollary of a more general result on graphs of maximum average degree less than 3 . In the next section we prove Theorem 2. Proof of Theorem 3]is provided in Section 3. In the last section we have concluding remarks where we mention connection to homomorphisms.

2 Separating 2 signatures in subclasses of signed planar graphs

In the rest of this section G will be a minimum counterexample to Theorem 2 . We will see soon that this minimum counterexample has to be 2 -connected and be of minimum degree at least 4 . Thus in developing the terminology that is followed we consider G to be 2 -connected and of minimum degree at least 4 .
The counterexample G will be regarded as a plane graph that is a graph together with a planar embedding. As we consider 2-connected graphs every face is bounded by a cycle of G. We use $V(G), E(G), F(G)$ and $\delta(G)$ to denote its vertex set, edge set, face set, and minimum degree, respectively. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. k^{+}-vertex, k^{-}-vertex). Similarly, we define k-face, k^{+}-face, k^{-}-face as well. We say that two faces (or cycles) are adjacent or intersecting if they share a common edge or a common vertex, respectively. Suppose that v is a k-vertex, and let v_{1}, \ldots, v_{k} be the neighbours of v in the clockwise order. For $i=1, \ldots, k, f_{i}(v)$ denotes the face incident with the vertex v with $v v_{i}, v v_{i+1}$ (where the summation in the indices are taken modulo k) as boundary edges. As G is a plane graph of minimum degree at least 4, this is well defined.
For $a \in F(G)$, we write $a=\left[u_{1} u_{2} \cdots u_{l}\right]$ if $u_{1}, u_{2}, \ldots, u_{l}$ are the incident vertices of a in a cyclic order of it. As G is 2-connected and minimum degree at least four, each edge $e=u_{j} u_{j+1}$ of a face a determines a face adjacent to a at e. This face will be denoted by $f_{j}(a)$, where $j=1, \ldots, l$ and the summation in the indices are taken modulo l.
For two signatures σ and π on G, and for an edge $u v \in E(G)$, let $s_{\sigma \pi}(u v)=\{\sigma(u v) \pi(u v)\} \subseteq\{+,-\} \times$ $\{+,-\}$. Observe that to separate σ and π is to find signatures σ^{\prime}, switching equivalent to σ, and π^{\prime}, switching equivalent to π, such that $s_{\sigma^{\prime} \pi^{\prime}}(u v) \neq--$ for every edge $u v$. For a vertex u define $S_{\sigma \pi}(u)$ as multiset $S_{\sigma \pi}(u)=$ $\left[s_{\sigma \pi}(e) \mid e\right.$ is incident with $\left.u\right]$. Thus the order of $S_{\sigma \pi}(u)$ is the degree of u. Let $S^{*}=\{++,+-,-+\}$. We say a vertex v is saturated by σ and π if $S^{*} \subseteq S_{\sigma \pi}(v)$.
A path in G all whose vertices are of degree 4 in G is called a light path. Two paths are said to be vertex disjoint if their internal vertices are distinct. We say an m-face $a=\left[v_{1} v_{2} \cdots v_{m}\right]$ is a light face if $d\left(v_{i}\right)=4$ for all $i=1, \ldots, m$. A 5 -face with four vertices of degree 4 and one vertex of degree 5 is called a weak 5-face. A weak 5-face is said to be super weak 5-face if it is adjacent to at least four triangles. For $x \in V(G) \cup F(G)$, let $n_{3}(x)$ denote the number of triangles incident or adjacent to x and $n_{w}(x)$ be the number of incident or adjacent weak faces.
It is well-known that every planar graph is 5 -degenerate and that every triangle-free planar graph is 3-degenerate. It is shown in [6] that every planar graph without a 5 -cycle is 3-degenerate. Similarly it is shown in [1] that every planar graph without 6 -cycles is 3 -degenerate. In next section, we will see that in a minimum counterexample to Theorem 2, the minimum degree is at least 4, which cannot be the case for 3-degenerate graphs. This would imply the claim of the theorem for each of the conditions of being triangle-free, having no 5-cycle or having no 6 -cycle. What remains to prove is that if G is a planar graph with no 4-cycle, then any two signatures on it can be separated.

2.1 Structural properties of a minimum counterexample

Recall that G is a minimum counterexample to our theorem. That is to say either G has no triangle, or no 4 -cycle, or no 5-cycle or no 6-cycle and there are signatures σ and π on G such that no matter how we switch them there is an edge which is assigned a negative sign by each of the two signatures.
The first observation is that G is connected, as otherwise separating signatures on each connected component, which would be possible by minimality, would be also a separation of the two signatures on the whole graph. Almost the same argument implies the following stronger claim.

Lemma 4. The minimum counterexample G is 2-vertex-connected.

Proof. Suppose to the contrary that v is a cut vertex of G. Let $G=G_{1} \cup G_{2}$ such that v is the unique common vertex of G_{1} and G_{2}, and there does not exist any edges between $V\left(G_{1}\right)-v$ and $V\left(G_{2}\right)-v$. Given two signatures σ and π on G, we consider subgraphs $\left(G_{1}, \sigma\right),\left(G_{1}, \pi\right),\left(G_{2}, \sigma\right)$, and $\left(G_{2}, \pi\right)$. By the assumption of the minimality of G, there are switchings σ_{1} and π_{1} on G_{1} (resp. σ_{2} and π_{2} on G_{2}) of σ and π, respectively, such that they have no common negative edge.
In particular, in G_{1} (resp. G_{2}), in order to get the switchings σ_{1} and π_{1} (resp. σ_{2} and π_{2}) of σ and π, we could choose to switch at a subset V_{1} (resp. V_{2}) of $V\left(G_{1}\right)$ (resp. $V\left(G_{2}\right)$) which does not contain v. Thus in G, if we switch at subset $V_{1} \cup V_{2}$ which does not contain v as well, we find switchings σ^{\prime} and π^{\prime} of σ and π, such that σ^{\prime} and π^{\prime} have no common negative edge. This shows that a minimal counterexample cannot have a vertex cut of one vertex.

Lemma 5. Given an edge $u v \in E(G)$ let $G^{\prime}=G-u v$ and assume σ^{\prime} and π^{\prime} are switchings of σ and π, respectively, such that $\left(G^{\prime}, \sigma^{\prime}\right)$ and $\left(G^{\prime}, \pi^{\prime}\right)$ are separated. Then both u and v are saturated by σ^{\prime} and π^{\prime} in G^{\prime}.

Proof. Towards a contradiction and without loss of generality, assume $S^{*} \nsubseteq S_{\sigma^{\prime} \pi^{\prime}}(u)$. Since σ^{\prime} and π^{\prime} have no common negative edge as signatures on $G-u v$, and G is counterexample, considering the extension of these signatures to G we have $s_{\sigma^{\prime} \pi^{\prime}}(u v)=--$. Assume $\alpha \beta \notin S_{\sigma^{\prime} \pi^{\prime}}(u), \alpha \beta \in S^{*}$. If $\alpha=+$, switch σ^{\prime} at u; if $\beta=+$, switch π^{\prime} at u. After this operation, we have signatures $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ both on G which agree with σ^{\prime} and π^{\prime} (respectively) on every edge that is not incident to u. Thus, by the choice of σ^{\prime} and π^{\prime}, no edge which is not incident to u is negative in both. But, furthermore, based on our switchings $\{--\} \notin S(u)$ and thus $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ are switchings of σ and π that are separated, a contradiction.

Corollary 6. The minimum degree of G is at least 4 .

Thus as mentioned above, the case when G has no triangle or no 5 -cycle or no 6 -cycle is settled because any such a planar graph must be 3-degenerate.

Lemma 7. Let P be a light path of $G, e \in P$. Assume σ_{e} and π_{e} are switchings of σ and π, respectively, such that $\left(G, \sigma_{e}\right)$ and $\left(G, \pi_{e}\right)$ have only e as their common negative edge. Then given an edge e^{\prime} of P, by switching σ_{e} on a set X of vertices of P and switching π_{e} on a set Y of the vertices of P, for some choices of X and Y, we have signatures $\sigma_{e^{\prime}}$ and $\pi_{e^{\prime}}$ where e^{\prime} is the only common negative edge of $\left(G, \sigma_{e^{\prime}}\right)$ and $\left(G, \pi_{e^{\prime}}\right)$.

Proof. Suppose $P=v_{1} v_{2} \cdots v_{k}$ and $e=\left\{v_{i} v_{i+1}\right\}$, where $i \in\{1,2, \ldots k-1\}$. By our assumption $s_{\sigma_{e} \pi_{e}}\left(v_{i} v_{i+1}\right)=$ $\{--\}$. By Lemma $5, S_{\sigma_{e} \pi_{e}}\left(v_{i}\right)=S_{\sigma_{e} \pi_{e}}\left(v_{i+1}\right)=S^{*}$. With the same idea as in the proof of Lemma 5, and assuming $i \geq 2$, we may apply switchings at the vertex v_{i} so that $v_{i-1} v_{i}$ is the only common negative edge of the resulting two signatures. Similarly, assuming $i \leq k-2$ we may apply switchings at the vertex v_{i+1} so that $v_{i+1} v_{i+2}$ is the only common negative edge of the resulting two signatures. Continuing this process, and noting that each time switchings are only done on one of v_{j} 's, $j=2, \ldots k-1$, we have the desired claim.

Lemma 8. There is no pair of vertices connected by three vertex disjoint light paths.
Proof. Assume to the contrary that P_{1}, P_{2}, P_{3} are three vertex disjoint light $u v$-paths and label them as follows: $P_{1}=u x_{1} \cdots x_{i} v, P_{2}=u y_{1} \cdots y_{j} v$, and $P_{3}=u z_{1} \cdots z_{k} v$, where $i, j, k \geq 0$, noting that $k=0$ means $P_{3}=u v$ and that, since G is a simple graph, only one of these values can be 0 . Thus, without loss of generality, we may assume $i \geq j \geq 1$ and $k \geq 0$. Since G has no 4 -cycle, we also conclude that $i \geq 2$. Moreover, we may choose P_{1}, P_{2}, P_{3} to be shortest subject to being internally vertex disjoint. This implies, in particular, that for any pair of non-consecutive vertices on a path $P_{i}(i=1,2,3)$, they are not adjacent in G. Recalling that all vertices of a light path are of degree 4 in G, let t, w be the neighbours of u, v which are not on any of P_{1}, P_{2}, or P_{3}, respectively. Let $G^{\prime}=G-u x_{1}$. By the minimality of G, assume σ^{\prime} and π^{\prime} are switchings of σ and π,
respectively, such that $\left(G^{\prime}, \sigma^{\prime}\right)$ and $\left(G^{\prime}, \pi^{\prime}\right)$ are separated. Thus when σ^{\prime} and π^{\prime} are viewed as signatures on G we have $s_{\sigma^{\prime} \pi^{\prime}}\left(u x_{1}\right)=\{--\}$ and both u and x_{1} are saturated. Noting that k is allowed to be 0 , we consider two cases depending on this.
First consider the case $k \geq 1$, as depicted in Figure 1. We may apply Lemma 7 to switch only at the internal vertices of P_{1} to obtain signatures $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ such that $x_{i} v$ is the only edge with $s_{\sigma^{\prime \prime} \pi^{\prime \prime}}\left(x_{i} v\right)=--$. Therefore, considering signatures $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$, and by Lemma 5 , the vertex v must be saturated. Recall that in the process of getting $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ from σ^{\prime} and π^{\prime} we are considering only switchings at the internal vertices of P_{1}. Furthermore, since P_{i} 's chosen to be shortest, no internal vertex of P_{i} is adjacent to v. That means, in particular, that the signs of the three edges $y_{j} v, z_{k} v, w v$ each incident to v remain untouched when switching σ^{\prime} to $\sigma^{\prime \prime}$ and π^{\prime} to $\pi^{\prime \prime}$. We conclude that

$$
\begin{equation*}
\left\{s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right), s_{\sigma^{\prime} \pi^{\prime}}\left(z_{k} v\right), s_{\sigma^{\prime} \pi^{\prime}}(w v)\right\}=\{++,+-,-+\} . \tag{1}
\end{equation*}
$$

Next, restarting from signatures σ^{\prime} and π^{\prime} and applying Lemma 7 to the path $x_{1} u y_{1} \cdots y_{j} v$ (that is the path obtained from P_{2} by adding the edge $x_{1} u$ at the start), and as before, we conclude that

$$
\begin{equation*}
\left\{s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right), s_{\sigma^{\prime} \pi^{\prime}}\left(z_{k} v\right), s_{\sigma^{\prime} \pi^{\prime}}(w v)\right\}=\{++,+-,-+\} \tag{2}
\end{equation*}
$$

In this argument that $k \geq 1$ helps us to confirm that the signs of the three edges incident to v other than $y_{j} v$ remain the same.
Equations 1 and 2 imply that $s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right)=s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right)$.
Similarly, considering paths P_{1} and $x_{1} u z_{1} \cdots z_{k} v$ we conclude that $s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right)=s_{\sigma^{\prime} \pi^{\prime}}\left(z_{k} v\right)$. However, this leads to contradiction with either of the identities 1 and 2. This concludes the statement for the case that $k \geq 1$. Now assume $k=0$, that is to say $u v$ is an edge of G, this case is depicted in Figure 1. First suppose that, except for the edge $u v$, no vertex of P_{1} is connected to a vertex of P_{2}. Our first claim in this case is that $s_{\sigma^{\prime} \pi^{\prime}}\left(u y_{1}\right)=s_{\sigma^{\prime} \pi^{\prime}}\left(y_{1} y_{2}\right)=\cdots=s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right)$. That is because by applying Lemma 7 and Lemma 5 to the path $x_{1} u y_{1} y_{2} \cdots y_{j} v$ we get that $S_{\sigma^{\prime} \pi^{\prime}}\left(y_{l}\right)-s_{\sigma^{\prime} \pi^{\prime}}\left(y_{l} y_{l-1}\right)=S^{*}$ and by applying the same lemma to the path $u x_{1} x_{2} \cdots x_{i} v y_{j} y_{j-1} \cdots y_{1}$ we get that $S_{\sigma^{\prime} \pi^{\prime}}\left(y_{l}\right)-s_{\sigma^{\prime} \pi^{\prime}}\left(y_{l} y_{l+1}\right)=S^{*}$.
Next we claim that $s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right)=s_{\sigma^{\prime} \pi^{\prime}}(u v)$. That is for similar reasons as the previous claim and by considering the two paths P_{1} and $x_{1} u v$. Furthermore, applying Lemma 5 to signature $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ which have only $x_{i} v$ as common negative edge, and are obtained from switching of σ^{\prime} and π^{\prime} (respectively) on internal vertices of P_{1}, we conclude that:

$$
\begin{equation*}
\left\{s_{\sigma^{\prime} \pi^{\prime}}(u v), s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right), s_{\sigma^{\prime} \pi^{\prime}}(w v)\right\}=\{++,+-+\} . \tag{3}
\end{equation*}
$$

Recall that u is saturated by σ^{\prime} and π^{\prime} where $u x_{1}$ is negative in both signatures. This means

$$
\begin{equation*}
\left\{s_{\sigma^{\prime} \pi^{\prime}}(u t), s_{\sigma^{\prime} \pi^{\prime}}\left(u y_{1}\right), s_{\sigma^{\prime} \pi^{\prime}}(u v)\right\}=\{++,+-,\} \tag{4}
\end{equation*}
$$

Comparing identities 3 and 4 we have: $s_{\sigma^{\prime} \pi^{\prime}}(u t)=s_{\sigma^{\prime} \pi^{\prime}}(v w)$.
Observe that when applying Lemma 7 to get $u y_{1}$ as the only common negative edge, we apply switchings at u in one or both of the signatures. Assuming the new signatures are $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ one observes that $s_{\sigma^{\prime \prime} \pi^{\prime \prime}}\left(u x_{1}\right)=$ $s_{\sigma^{\prime} \pi^{\prime}}\left(u y_{1}\right)$ and thus $s_{\sigma^{\prime \prime} \pi^{\prime \prime}}(u v)=s_{\sigma^{\prime} \pi^{\prime}}(u t)$. Therefore, $s_{\sigma^{\prime \prime} \pi^{\prime \prime}}(u v)=s_{\sigma^{\prime} \pi^{\prime}}(v w)$.
If we now apply Lemma 7 to $\sigma^{\prime \prime}$ and $\pi^{\prime \prime}$ on the path P_{2} so to have $y_{j} v$ as the only common negative edge, as we will not change signs of the other three edges incident with v we will end up with a vertex v which is not saturated, contradicting Lemma 5 .
For the final case, suppose beside $u v$, there exists another edge connecting a vertex of P_{1} to a vertex of P_{2}. Let $x_{p} y_{q}$ be such an edge. Since $i \geq 2$, and by exchanging the roles of u and v, if needed, we may assume that $p \leq i-1$. In this case, as before we apply Lemma 7 to the following three paths: $P_{1}, x_{1} u v$, and $u x_{1} \cdots x_{p} y_{q} \cdots y_{j} v$. From the first we conclude that $\left\{s_{\sigma^{\prime} \pi^{\prime}}(u v), s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right), s_{\sigma^{\prime} \pi^{\prime}}(w v)\right\}=\{++,+-,-+\}$.

Figure 1: 3 disjoint light paths between u and v.

From the second we conclude that $\left\{s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right), s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right), s_{\sigma^{\prime} \pi^{\prime}}(w v)\right\}=\{++,+-,-+\}$. And the last one implies $\left\{s_{\sigma^{\prime} \pi^{\prime}}(u v), s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right), s_{\sigma^{\prime} \pi^{\prime}}(w v)\right\}=\{++,+-,-+\}$. Comparing the first two we conclude that $s_{\sigma^{\prime} \pi^{\prime}}(u v)=s_{\sigma^{\prime} \pi^{\prime}}\left(x_{i} v\right)$, then first with second $s_{\sigma^{\prime} \pi^{\prime}}(u v)=s_{\sigma^{\prime} \pi^{\prime}}\left(y_{j} v\right)$ which contradicts, say, the third identity.

Corollary 9. There are no adjacent light faces in G.
We may now apply discharging technique to conclude our claim.

2.2 Discharging for planar graphs without 4-cycles

In this section, we apply discharging technique to complete the proof of Theorem 2 for the case of C_{4}-free planar graphs.
We define a weight function ω on the vertices and faces of G by letting $\omega(v)=d(v)-4$ for each $v \in V(G)$ and $\omega(f)=d(f)-4$ for $f \in F(G)$. It follows from Euler's formula and the relation $\sum_{v \in V(G)} d(v)=$ $\sum_{f \in F(G)} d(f)=2|E(G)|$ that the total sum of weights of the vertices and faces satisfies the following

$$
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4)=-8
$$

Next we design appropriate discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω^{*} is produced. The total sum of weights is kept fixed when the discharging is in process. Nevertheless, after the discharging is complete, we will show that $\omega^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This contradiction implies that no such counterexample exists.

Let v be vertex of degree 4 whose neighbours in clockwise orientation are v_{1}, v_{2}, v_{3}, and v_{4}. Let f_{1}, f_{2}, f_{3}, and f_{4} be the face containing $v_{1} v v_{2}, v_{2} v v_{3}, v_{3} v v_{4}$, and $v_{4} v v_{1}$ respectively. If $d\left(v_{3}\right)=d\left(v_{4}\right)=4, d\left(v_{1}\right)=d\left(v_{2}\right) \geq$ $5, d\left(f_{2}\right)=d\left(f_{4}\right)=3, d\left(f_{3}\right)=5$, and $d\left(f_{1}\right) \geq 5$, then we say f_{3} is a receiver of f_{1}.
For $x, y \in V(G) \cup F(G)$, let $\tau(x \rightarrow y)$ denote the amount of weights transferred from x to y.
Our first discharging rule is as follows:
$R 1$: Each 5^{+}-face sends $\frac{1}{3}$ to each adjacent 3-face and $\frac{2}{15}$ to each of its receiver.
Let v be a 5 -vertex with $f_{1}, f_{2}, \ldots, f_{5}$ being the faces incident to v. Assume f_{1} and f_{3} are triangles and, furthermore, that f_{4} is a super weak 5-face. Then it is easily observed that f_{5} is not a super weak 5 -face.
The next two discharging rules are as follows:
$R 2$: If $d(v)=5, n_{3}(v)=1$, say $d\left(f_{1}\right)=3$, then let $\tau\left(v \rightarrow f_{2}\right)=\tau\left(v \rightarrow f_{5}\right)=\frac{1}{3}$.
$R 3$: If $d(v)=5$ and $n_{3}(v)=2$, say $d\left(f_{1}\right)=d\left(f_{3}\right)=3$, then $\tau\left(v \rightarrow f_{2}\right)=\frac{2}{3}$. Furthermore, if there exists one super weak 5 -face $f^{\prime}, f^{\prime} \neq f_{2}$, then $\tau\left(v \rightarrow f^{\prime}\right)=\frac{1}{3}$, otherwise $\tau\left(v \rightarrow f_{4}\right)=\tau\left(v \rightarrow f_{5}\right)=\frac{1}{6}$.

The remaining two rules are about 6^{+}-vertices.
$R 4$: If $d(v) \geq 6$ and f is a face incident to v and adjacent to one triangle also incident to v, then $\tau(v \rightarrow f)=$ $\frac{1}{3}$.
$R 5$: If $d(v) \geq 6$ and f is a face incident to v and adjacent to two triangles each incident to v, then $\tau(v \rightarrow$ f) $=\frac{2}{3}$.

In the following, we will show that $\omega^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.
First we consider vertices, let $v \in V(G)$. By Corollary $6, d(v) \geq 4$. Note that no 4 -vertex participates in discharging argument, so $\omega^{*}(v)=\omega(v)=d(v)-4=0$ for any 4 -vertex v. Next we consider 5 -vertices. Let v be any such a vertex, then $\omega(v)=1$. By the fact that G contains no 4 -cycle we have $0 \leq n_{3}(v) \leq 2$. If $n_{3}(v)=0$, then the charge of v is not changed, i.e., $\omega^{*}(v)=\omega(v)=1$. If $n_{3}(v)=1$, the charge of v is changed (only) by the $R 2$, and in this case $\omega^{*}(v)=\omega(v)-2 \times \frac{1}{3}=\frac{1}{3}$. If $n_{3}(v)=2$, then $R 3$ is the only rule that changes the charge of v and under this rule at most a charge of 1 is given from v to its incident face. Thus $\omega^{*}(v) \geq 0$.
It remains to consider 6^{+}-vertices. Let v be such a vertex. $d(v) \geq 6$. For $i=1,2$, let $m_{i}(v)$ denote the number of incident faces adjacent to i triangles each incident to v. Observe that, by definition, $m_{1}(v)+2 m_{2}(v) \leq$ $2 n_{3}(v) \leq d(v)$ (the latter inequality because of being C_{4}-free). In applying $R 3$ the vertex v loses a charge of $\frac{m_{1}(v)+2 m_{2}(v)}{3}$. Thus $\omega^{*}(v)=d(v)-4-\frac{m_{1}(v)+2 m_{2}(v)}{3}$. Therefore, $\omega^{*}(v) \geq d(v)-4-\frac{d(v)}{3}$. As $d(v) \geq 6$ we have $\omega^{*}(v) \geq 0$.

Now we consider faces, let $f \in F(G)$. First assume $d(f)=3$, in other words f is a triangle. Recall that original charge $\omega(f)=-1$. Since G has no C_{4}, each of the faces adjacent to f is of size at least 5 . Then by rule $R 1$, each of them sends a charge of $\frac{1}{3}$ to f and thus $\omega^{*}(f)=3-4+3 \times \frac{1}{3}=0$.
Next we consider 5-faces, let $f=\left[v_{1} \cdots v_{5}\right]$ be such a face. For the original charge of f we have $\omega(f)=$ $5-4=1$. If f is adjacent to at most two triangles, then f gives a charge of $\frac{1}{3}$ to each of the triangles it is adjacent to and it has at most one receiver, so can only lose a charge of $2 \times \frac{1}{3}+\frac{2}{15}=\frac{4}{5}$, thus the final charge is at least $\frac{1}{5}$.
Suppose f is adjacent to precisely 3 triangles. If f has no receiver, then it only loses charge by $R 1$ and by this rule loses exactly a charge of $3 \times \frac{1}{3}=1$, hence $\omega^{*}(f)=0$. If f has exactly one receiver, let v_{2} be the common vertex of f and its receiver. Then, by the definition of a receiver, v_{1}, v_{3} each has degree at least 5 . We now consider the position of the third triangle adjacent to f. If it is one of f_{3} or f_{5}, say f_{3}, then by $R 3$ or $R 5$, depending on if $d\left(v_{3}\right)=5$ or $d\left(v_{3}\right) \geq 6$, the vertex v_{3} gives a charge of $\frac{2}{3}$ to f, concluding that $\omega^{*}(f) \geq \frac{8}{15}$. Otherwise f_{4} is the third triangle adjacent to f. In such a case the two faces f_{3} and f_{5} are 5^{+}-faces. We claim that neither is a super weak 5 -face. By contradiction, suppose f_{3} is a super weak 5 -face. Then, it must be adjacent to at least four triangles. As f is not a triangle, all the other faces adjacent to f_{3} are triangles. This implies that vertices v_{3} and v_{4} are each of degree at least 5 , but this contradicts the second condition of being a super negative 5 -face which is to have four vertices of degree 4 . If f_{3} (or f_{5}) is a 6^{+}-face, then, by $R 4$, it gives a charge of $\frac{1}{3}$ to f, raising $\omega^{*}(f)$ to at least $\frac{1}{5}$. If they are both 5 -faces, then, by $R 3$, each of v_{1} and v_{3} gives a charge of $\frac{1}{6}$ to f. The final charge of f in this is at least $1+\frac{1}{6}-3 \times \frac{1}{3}-\frac{2}{15}=\frac{1}{30}$.
Suppose f is adjacent to 4 triangles and by symmetry assume f_{1}, f_{2}, f_{3}, and f_{4} are the triangles. The receiver face implies that there are at most two receivers for f, and moreover if there is at least one, then one of v_{2}, v_{3}
or v_{4} has to be of degree at least 5 . If one of v_{2}, v_{3} or v_{4} is of degree at least 5 , either by $R 3$ or by $R 5$ it will give a charge of $\frac{2}{3}$ to f and thus the final charge of f would be at least $1+\frac{2}{3}-4 \times \frac{1}{3}-2 \times \frac{2}{15}=\frac{1}{15}$. Let now assume v_{2}, v_{3}, and v_{4} are all of degree 4 . In such case, if v_{5} and v_{1} each has degree at least 5 or one of them has degree at least 6 , then f_{5} cannot be a weak face and either by applying $R 3$ to both v_{1} and v_{5} or applying $R 4$ to the one which is a 6^{+}-vertex, a total charge of at least $\frac{1}{3}$ is given to f and thus the final charge of f is non-negative. If one of v_{1} and v_{5} is degree 4 and the other, say v_{5} is of degree 5 , then f is a super weak 5 -face and thus by $R 3$ the vertex v_{5} will give a charge of $\frac{1}{3}$ to f, resulting a final charge of f to be positive. If all vertices v_{1}, \ldots, v_{5} are of degree 4 , i.e., f is a light face, then since there is no adjacent light faces (Corollary 9) for each of the triangles f_{1}, \ldots, f_{4} the vertex of f_{i} which is not on f is a 5^{+}-vertex. Then f is a receiver for the face adjacent to f_{1} and f_{2} and for the face adjacent to f_{2} and f_{3} and also for the face adjacent to f_{3} and f_{4}. It, therefore, receives a charge of $\frac{2}{15}$ from each of these 3 for a final charge of $\omega^{*}(f) \geq 1+3 \times \frac{2}{15}-4 \times \frac{1}{3}=\frac{1}{15}$. Finally we consider the case where all faces adjacent to f are triangles. Recall that f has at most two receivers. So it loses at most $5 \times \frac{1}{3}+2 \times \frac{2}{15}$. If two of v_{i} 's are 5^{+}-vertices, then either by $R 3$ or by $R 5$ they each gives a charge of $\frac{2}{3}$ to f and the final charge of f is positive. If only one of v_{i} 's, say v_{1}, is a 5^{+}-vertex, then f has no receiver and only loses a charge of $5 \times \frac{1}{3}$ but gains $\frac{2}{3}$ from v_{1} and again the final charge would be non-negative. If none of v_{i} 's is a 5^{+}-vertex, i.e., f is a light face, by Corollary 9 , for each of the triangles f_{1}, \ldots, f_{5} the vertex of f_{i} which is not on f is a 5^{+}-vertex. Thus f is a receiver of five faces determined by consecutive triangles around it. Hence by $R 1$, it receives $5 \times \frac{2}{15}$ from each of these five faces, to have a final charge of 0 . This conclude all the cases for a 5 -face.
Next assume that $f=\left[v_{1} \cdots v_{6}\right]$ is a 6 -face. Then $\omega(f)=2$. If f is adjacent to at most 5 triangles, then it has at most two receivers, and hence it loses at most $5 \times \frac{1}{3}+2 \times \frac{2}{15}$ (all in $R 1$) hence $\omega^{*}(f) \geq \frac{1}{15}$. If all the six faces adjacent to f are triangles, we consider two possibilities depending on the degrees of v_{1}, \ldots, v_{6}. If at least one of them is a 5^{+}-vertex, then either by $R 3$ or by $R 5$ it gives a charge of $\frac{2}{3}$ to f. As f can have at most three receivers, the final charge of f remains non-negative. If all vertices on f are of degree 4 , then f has no receiver and the final charge of f is 0 .
Finally we consider 7^{+}-faces. Recall that faces only lose charge by $R 1$. There are at most $d(f)$ triangles adjacent to f, and it can have at most $\left\lceil\frac{d(f)}{2}\right\rceil$ receivers. Thus for the final charge of f we have $\omega^{*}(f)=$ $d(f)-4-\frac{1}{3} d(f)-\frac{1}{2} \times \frac{2}{15} d(f)=\frac{3}{5} d(f)-4 \geq \frac{1}{5}$. This completes the proof.

3 Separating 3 signatures in signed planar graphs of girth 6

In this section we provide a maximum average degree condition which is sufficient for any three signatures on a graph to be separated. Theorem 3 will be immediate consequence then.

Theorem 10. Every simple graph of maximum average degree less than 3 has a 3-separation property.

Proof. Let G be a minimum counterexample. That, in particular means there are three signatures σ_{1}, σ_{2}, and σ_{3} on G that are not separable but for any edge e, the restrictions of the three signatures on $G-e$ are separable. After proving a few claims, and using discharging technique then we will show that G itself must have average degree at least 3 contradicting our hypothesis on the maximum average degree of G.
For three signatures σ_{1}, σ_{2} and σ_{3} on G, and for an edge $u v \in E(G)$, let $s_{\sigma_{1} \sigma_{2} \sigma_{3}}(u v)=\left\{\sigma_{1}(u v) \sigma_{2}(u v) \sigma_{3}(u v)\right\} \subseteq$ $\{+,-\} \times\{+,-\} \times\{+,-\}$. For a vertex u define a multiset $S_{\sigma_{1} \sigma_{2} \sigma_{3}}(u)=\left[s_{\sigma_{1} \sigma_{2} \sigma_{3}}(e) \mid e \in E_{u}\right]$, where E_{u} is the set of edges incident to u. We may use $s(u v)$ and $S(u)$ when the signatures are clear from the context. Let $S^{*}=\{+++,-++,+-+,++-\}$.
The first observation, whose verification we leave to the reader, is that G is 2 -connected. Thus in particular the minimum degree is at least 2 . To achieve our goal then we have three claims about the neighbourhood of vertices of degree 2 .

Claim 1. Both neighbours of a 2 -vertex v in G have degree at least 4 .

Proof of the claim. Let $N(v)=\left\{v_{1}, v_{2}\right\}$ and assume to the contrary, that $d\left(v_{2}\right) \leq 3$. Let $G^{\prime}=G-v v_{2}$. By the minimality of G, assume $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, and σ_{3}^{\prime} are switchings of σ_{1}, σ_{2}, and σ_{3}, respectively, such that $\left(G^{\prime}, \sigma_{1}^{\prime}\right)$, $\left(G^{\prime}, \sigma_{2}^{\prime}\right)$, and $\left(G^{\prime}, \sigma_{3}^{\prime}\right)$ are separated. Since $d_{G^{\prime}}(v)=1$, and by a switching at v in any signature that needs, we may assume $s_{\sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{3}^{\prime}}\left(v v_{1}\right)=\{+++\}$. When $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, and σ_{3}^{\prime} are viewed as signatures on $G, v v_{2}$ is the only edge not satisfying the condition which means at least two of the signatures must assign negative to $v v_{2}$. If one of them, say σ_{3}^{\prime} assigns positive to $v v_{2}$, then by switching v at the signature σ_{2}^{\prime} (or σ_{1}^{\prime}) we have separation. Thus we may assume $s_{\sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{3}^{\prime}}\left(v v_{2}\right)=\{---\}$.
At this point, it suffices to find one or two signatures, σ_{i}^{\prime} and σ_{j}^{\prime}, such that if σ_{i}^{\prime} or both σ_{i}^{\prime} and σ_{j}^{\prime} are switched at v_{2}, then $v v_{2}$ is still the only edge not satisfying our condition. If we manage to find σ_{i}^{\prime}, or σ_{i}^{\prime} and σ_{j}^{\prime}, then we may also switch signature $\sigma_{l}^{\prime}, l \notin\{i, j\}$, at v. After these switchings, $v v_{1}$ will be negative at one signature only, and $v v_{2}$ with be either positive in all or negative in just one signature, and thus we have three separated signatures. To choose σ_{i}^{\prime} and possibly σ_{j}^{\prime} among $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, and σ_{3}^{\prime} we consider the two edges, e_{1} and e_{2} incident to v_{2} but different from $v v_{2}$. If they are both negative in a signature, we choose that one to be σ_{i}^{\prime} and no need for a second. If each of the edges is assigned only positive sign by each of the signatures, then σ_{i}^{\prime} can be any of the three signatures and again no need for a second choice. Otherwise, we note that at most two of the signatures can assign different signs to e_{1} and e_{2}. If only one, then we choose that signature to be σ_{i}^{\prime} and if two we take them both to be σ_{i}^{\prime} and σ_{j}^{\prime}.
Claim 2. A 4 -vertex v can have at most two 2 -neighbours.
Proof of the claim. Let $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Toward a contradiction assume that $d\left(v_{i}\right)=2$ for $i=1,2,3$. For each $i, i=1,2,3$, let the other neighbour of v_{i} be v_{i}^{\prime}. Let $G^{\prime}=G-v v_{1}$. By the minimality of G, we have signatures $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, and σ_{3}^{\prime} as switchings of σ_{1}, σ_{2}, and σ_{3}, respectively, such that $\left(G^{\prime}, \sigma_{1}^{\prime}\right),\left(G^{\prime}, \sigma_{2}^{\prime}\right)$, and $\left(G^{\prime}, \sigma_{3}^{\prime}\right)$ are separated. In what follows, we consider signatures $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, and σ_{3}^{\prime} on G. Again since $d_{G^{\prime}}\left(v_{1}\right)=1$, without loss of generality, we may assume $s\left(v_{1} v_{1}^{\prime}\right)=\{+++\}$. The same argument as in the previous case then implies that $s\left(v v_{1}\right)=\{---\}$.
If $S(v) \cap S^{*} \leq 2$, then we continue the same argument as in the previous case, where v is a neighbour of the 2 -vertex v_{1} and to our purpose it is of degree $\left|S(v) \cap S^{*}\right|+1$. So we assume $S(v) \cap S^{*}=3$. We observe that by switching at v_{2}, in the signatures that are needed, we may exchange $s\left(v v_{2}\right)$ and $s\left(v_{2} v_{2}^{\prime}\right)$. If after such switchings the previous condition holds, we are done. If not, either $s\left(v v_{2}\right)=s\left(v_{2} v_{2}^{\prime}\right)$ in which case by switchings at v_{2} we may conclude that $s\left(v v_{2}\right)=s\left(v v_{3}\right)$ and then we are done as before, or $s\left(v_{2} v_{2}^{\prime}\right)$ is distinct from each of $s\left(v v_{2}\right), s\left(v v_{3}\right)$, and $s\left(v v_{4}\right)$. Repeating the same argument we conclude that $s\left(v_{3} v_{3}^{\prime}\right)=s\left(v_{2} v_{2}^{\prime}\right)$. We may now do enough switchings at v_{2} and v_{3} so that $s\left(v v_{2}\right)=s\left(v v_{3}\right)$. Then the process can be completed as before. \diamond

Claim 3. A 5 -vertex v can have at most four 2-neighbours.
Proof of the claim. Let $N(v)=\left\{v_{1}, \ldots, v_{5}\right\}$. Assume to the contrary that $d\left(v_{i}\right)=2$ for $i=1, \ldots, 5$. We name the other neighbour of v_{i} as v_{i}^{\prime}. Let $G^{\prime}=G-v v_{1}$. By the minimality of G, assume $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, and σ_{3}^{\prime} are switchings of σ_{1}, σ_{2}, and σ_{3}, respectively, such that $\left(G^{\prime}, \sigma_{1}^{\prime}\right),\left(G^{\prime}, \sigma_{2}^{\prime}\right)$, and $\left(G^{\prime}, \sigma_{3}^{\prime}\right)$ are separated. As in the previous two cases, we may assume $s\left(v_{1} v_{1}^{\prime}\right)=\{+++\}$ and $s\left(v v_{1}\right)=\{---\}$. Furthermore, by switching at v_{i} 's, if necessary, we can assume that none of $s\left(v v_{i}\right), i=2, \ldots, 5$, is $\{+++\}$. Thus for some i and j, $2 \leq i<j \leq 5$, we have $s\left(v v_{i}\right)=s\left(v v_{j}\right)$. At this point we note that in the proof of Claim 2 we never applied a switching at v_{4}. Thus we may now continue the same proof as in the Claim 2 by treating v_{i} and v_{j} as v_{4} and not switching at these two vertices.
Finally to complete the proof we show that the three forbidden configurations of Claims 1, 2, and 3 imply an average degree of at least 3 .

We first define ω on the vertices of G by letting $\omega(v)=d(v)$ for each $v \in V(G)$. The single discharging rule is as follows.
R^{\prime} : Each 4^{+}-vertex sends $\frac{1}{2}$ to each 2-neighbour.
Let $\omega^{*}(v)$ be the charge of v after applying the rule. Let $v \in V(G)$. As observed before, $d(v) \geq 2$. If $d(v)=2$, then by Claim 1, v is adjacent to two vertices of degree at least 4 . Thus, $\omega^{*}(v)=2+2 \times \frac{1}{2}=3$ by (R^{\prime}). The discharging rule does not change $\omega(v)$ if $d(v)=3$. If $d(v)=4$, then by Claim $2, v$ has at most two 2-neighbours, thus $\omega^{*}(v) \geq 4-2 \times \frac{1}{2}=3$. When $d(v)=5$, by Claim 3 , v has at most four 2 -neighbours, thus $\omega^{*}(v) \geq 5-4 \times \frac{1}{2}=3$. Finally if $d(v) \geq 6$, then $\omega^{*}(v) \geq d(v)-\frac{d(v)}{2}=\frac{d(v)}{2} \geq 3$.

4 Conclusion

The problem of packing signatures in signed graphs relates to some of the most prominent problems in graph theory such as the four-color theorem and edge-coloring problems as shown in [5]. In particular it is shown that a signed graph (G, σ) admits a $(k+1)$-packing of signatures if and only if it admits a homomorphism to the graph obtained from the projective cube of dimension k by adding a positive loop to each vertex. We recall that a homomorphism of a signed graph (G, σ) to (H, π) is a mapping of vertices and edges of G to the vertices and edges of H, respectively, such that adjacencies and incidences, as well as signs of closed walks are preserved. Projective cube of dimension k is the signed graph with \mathbb{Z}_{2}^{k} as the vertex set where pairs of vertices at hamming distance 1 are adjacent by a positive edge and pairs of vertices at hamming distance k are adjacent by a negative edge.
The first four projective cubes with positive loops added to the vertices are presented in Figure 2. The claim that every antibalanced signed planar simple graph $(G,-)$ maps to $S P C_{2}^{o}$ is equivalent to the four-color theorem and the claim that every signed bipartite planar simple graph maps to $S P C_{3}^{o}$ is stronger than the four-color theorem and is proved using it.

Figure 2: $\mathcal{S P C}_{d}^{o}$ for $d \in\{0,1,2,3\}$
The question of separating a given set of k signatures captures the k-packing of signature problem because one can simply take k identical signatures. The question then can be translated back to a homomorphism problem as follows.
A multi-signed graph, denoted $\left(G, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$, is a graph G together with l signatures. A multi-signed graph $\left(G, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$ is said to admit a homomorphism to a multi-signed graph $\left(H, \pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$ if there is a mapping f of vertices and edges of G to vertices and edges of H, respectively, which is a homomorphism of $\left(G, \sigma_{i}\right)$ to $\left(H, \pi_{i}\right)$ for every $i, i=1,2, \ldots, l$. That is to say incidences and adjacencies are preserved, and the sign of any closed walk in $\left(G, \sigma_{i}\right)$ is the same as the sign of its image in $\left(H, \pi_{i}\right)$.

Given an integer l, let L_{l} be the multi-signed graph on a single vertex with $l+1$ loops $e_{0}, e_{1}, \ldots e_{l}$ where e_{0} is assigned a positive sign by each of the signatures and e_{i} is assigned a negative sign by σ_{i} and positive sign by all other signatures. The cases $l=1,2,3$ are presented in Figures 3, 4, and 5. It is then immediate to restate the separating problem we have studied here as a homomorphism problem.

Figure 3: $\left(L_{1}, \sigma\right)$

Figure 4: $\left(L_{2}, \sigma_{1}, \sigma_{2}\right)$

Figure 5: $\left(L_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$

Theorem 11. A multi-signed graph $\left(G, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$ admits a separation if and only it admits a homomorphism to L_{l}.

Acknowledgement. This work is supported by the ANR (France) project HOSIGRA (ANR-17-CE40-0022). And we also gratefully acknowledge financial support from China Scholarship Council.

References

[1] G. Fijavž, M. Juvan, B. Mohar, R. Škrekovski, Planar graphs without cycles of specific lengths. European J. Combin. 23 (2002) 377-388.
[2] F. Kardoš, J. Narboni, On the 4-color theorem for signed graphs. European J. Combin. 91 (2021) 103215.
[3] E. Máčajová, A. Raspaud and M. Škoviera, The chromatic number of a signed graph. Electron. J. Combin. 23 (2016) Paper 1.14.
[4] R. Naserasr, É. Sopena and T. Zaslavsky, Homomorphisms of signed graphs: An update. European J. Combin. 91 (2021) 103222.
[5] R. Naserasr, W. Yu, Packing signatures in signed graphs. 2023. To appear in SIAM J. Discrete Math.(Online version: https://hal.science/hal-03960731)
[6] W. Wang, L. Ko-Wei, Choosability and edge choosability of planar graphs without five cycles. Appl. Math. Lett. 15 (2002) 561-565.
[7] T. Zaslavsky, Signed graphs. Discrete Appl. Math. 4 (1982) 47-74.
[8] T. Zaslavsky, Signed graph coloring. Discrete Math. 39 (1982) 215-228.

