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Abstract

The packing number of a signed graph (G, σ), denoted ρ(G, σ), is the maximum
number l of signatures σ1, σ2, . . . , σl such that each σi is switching equivalent to σ and
the sets of negative edges E−σi of (G, σi) are pairwise disjoint. A signed graph packs
if its packing number is equal to its negative girth. A reformulation of some well-
known conjecture in extension of the 4-color theorem is that every antibalanced signed
planar graph and every signed bipartite planar graph packs. On this class of signed
planar graph the case when negative girth is 3 is equivalent to the 4-color theorem. For
negative girth 4 and 5, based on the dual language of packing T-joins, a proof is claimed
by B. Guenin in 2002, but never published. Based on this unpublished work, and using
the language of packing T-joins, proofs for girth 6, 7, and 8 are published. We have
recently provided a direct proof for girth 4 and in this work extend the technique to
prove the case of girth 5.
Keywords: signed graph, packing number, planar graphs.

1 Introduction

A graph G is called planar if it can be embedded in plane in such a way that its edges intersect
only at their endpoints. A signed graph (G, σ) is a graph together with a signature σ which
assigns a sign (i.e., + or −) to each edge of G. We denote by E−σ the set of negative edges of
a signed graph (G, σ). Given a graph G, the signed graph (G,−) (respectively, (G,+)) is the
signed graph where all edges are negative (positive). One of the key notions in the study of
signed graphs is the concept of switching. A switching of a signed graph (G, σ) at a vertex
v is the operation of multiplying the signs of all edges incident to v by a −. When e is a
loop on a vertex v, then v will be viewed as the two ends of e, which means switching does
not affect the sign of a loop. A switching of (G, σ) is a collection of switchings at each of the
elements of a given set X of vertices. That is equivalent to switching the signs of all edges
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in the edge cut (X, V \X). Two signatures σ1 and σ2 on a graph G are said to be equivalent
if one can be obtained from the other by a switching, in this case we say (G, σ1) is switching
equivalent to (G, σ2).

Given a signed graph (G, σ) and a signature σi equivalent to σ, when there is no ambiguity,
we may write E−i in place of E−σi . It is easily observed that (G, σ1) and (G, σ2) are switching
equivalent if and only if the symmetric difference E−1 4E−2 is an edge cut of G.

The sign of a structure in a signed graph (G, σ) is the product of the signs of the edges in
the given structure, counting multiplicity. Note that the signs of cycles are invariant under
a switching operation and they determine some crucial properties of a signed graph. If every
cycle in a signed graph (G, σ) is positive, then (G, σ) is said to be balanced. A signed graph
(G, σ) is said to be antibalanced if (G,−σ) is balanced.

Harary was first to show that a signed graph is balanced if it is equivalent to (G,+). An
extension of this is the following result of Zaslavsky which shows that the set of negative
cycles of a signed graphs uniquely determines the equivalence class of signatures:

Theorem 1. [10] Given two signatures σ1 and σ2 on a graph G, they are equivalent if and
only if (G, σ1) and (G, σ2) have the same set of negative cycles.

Given a signed graph (G, σ) and an element ij ∈ Z2
2, we define gij(G, σ) to be the length

of the shortest closed walk W whose number of negative edges modulo 2 is i and whose
length modulo 2 is j. When there exists no such a closed walk, we define gij(G, σ) = ∞.
Furthermore, the length of a shortest negative closed walk will be denoted by g−(G, σ) (i.e.,
g−(G, σ) = min{g10(G, σ), g11(G, σ)}). Given ij ∈ Z2

2, ij 6= 00, the class Gij of signed graphs
is defined as follows:

Gij = {(G, σ) | gi′j′(G, σ) =∞ for i′j′ ∈ Z2
2 − 00, i′j′ 6= ij}.

Hence, G01 is the class of signed graphs (G, σ) which can be switched to (G,+) and G11 is
the class of signed graphs (G, σ) which can be switched to (G,−). The class G10 is the class
of signed bipartite graphs.

Given signed graphs (G, σ) and (H, π), a homomorphism of (G, σ) to (H, π) is a mapping
ϕ of the vertices and edges of G to the vertices and edges of H, respectively, such that
adjacencies, incidences and signs of closed walks are preserved. When there exists such
a homomorphism, we write (G, σ) → (H, π). The definition of homomorphisms of signed
graphs implies the following no-homomorphism lemma:

Lemma 2. If (G, σ)→ (H, π), then gij(G, σ) ≥ gij(H, π) for every ij ∈ Z2
2.

The packing number of a signed graph (G, σ), denoted ρ(G, σ), is the maximum number
of signatures σ1, σ2, . . . , σl such that each σi is switching equivalent to σ and the sets E−i are
pairwise disjoint. The signed projective cube of dimension d, denoted SPCd, is a signed graph
with the vertex set Zd2, two vertices of SPCd being adjacent by a positive edge if they are at
hamming distance 1 and by a negative edge if they are at hamming distance d. Let SPCod
be the signed graph obtained from SPCd by adding a positive loop to each of its vertices. A
relation between packing numbers and homomorphisms observed in [9] is as follows:

Theorem 3. [9] Given a non-negative integer d, for a signed graph (G, σ), we have ρ(G, σ) ≥
d+ 1 if and only if (G, σ)→ SPCod.
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Combined with the main result of [1], this implies that given an integer k ≥ 2, for the
general class of signed graphs the problem of deciding if ρ(G, σ) ≥ k is an NP-complete
problem. In contrast the following relaxation of the problem is easily tractable. Given a
signed graph (G,−) where all edges are negative and a set {σ1, . . . , σr} of signatures each
obtained by a switching of (G,−), we can easily decide and find if a switching equivalent
signed graph (G, σ′) exists which has no common negative edge with any of σi’s.

Theorem 4. Given a signed graph (G,−) and switching equivalent signed graphs (G, σ1), . . . , (G, σr),
there exists a switching equivalent signed graph (G, σ) which has no common negative edge
with any of (G, σi)’s if and only if the set ∪ri=1E

−
i induces a bipartite graph.

Proof. For the only if part, observe that if (G, σ) is obtained from a switching of (G,−), then
the set of positive edges of (G, σ) is an edge cut of G. As all edges in ∪ri=1E

−
i must be positive

in (G, σ), the claim follows. For the if part, assume ∪ri=1E
−
i is bipartite. A bipartition of the

the subgraph induced by these edges can be viewed as an edge cut of G. A signature σ then
is obtained from switching (G,−) at this edge cut.

Given a signed graph (G, σ), since every signature must assign at least one negative sign
to the edges of a negative cycle, we know that: ρ(G, σ) ≤ g−(G, σ). We say (G, σ) packs if
ρ(G, σ) = g−(G, σ). It is straightforward to verify that ρ(K4,−) = g−(K4,−) = 3, so (K4,−)
packs. Note that (K5,−) is the smallest signed simple graph whose packing number is 1, in
particular (K5,−) does not pack. Meanwhile, the smallest signed multigraph which does not
pack has only three vertices, that is the signed graph K2

3 as depicted in Figure 1.

Figure 1: ρ(K2
3) = 1, g−(K2

3) = 2

Restated in the language of packing signatures, a result of Gan and Johnson [2] in 1989
claimed that if a signed graph (G, σ) has no K2

3 -minor, then it packs. This result applies to
signed graphs allowing multi-edges and loops. When restricted on signed simple graphs, the
story becomes much more complicated, but it is still expected that in some sense (K5,−) is
the minor-minimal element among certain classes of signed simple graphs that do not pack.
More precisely, the following conjecture is strongly related to some of the central problems
in graph theory and, in particular, to the four-color theorem and to several conjectures in
extension of it.

Conjecture 5. Every signed simple planar graph in G11 ∪ G10 packs.

The restriction to the classes G11 and G10 of signed planar graphs is necessary. There exists
a planar simple graph (thus negative girth 3) whose packing number is 1. This follows from
a coloring result of [3], we refer to [9] for more details.
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However, one may expect that, while remaining in the class G11 ∪ G10, the condition of
planarity can be replaced with having no (K5,−)-minor.

The restriction of the conjecture to the subclass with negative girth 3 is equivalent to the
four-color theorem. The restriction to the class with negative girth 4 is known to imply the
four-color theorem and is proved using it, historical background provided next.

In the subclass of planar graphs the conjecture can be restated using the dual notion of
packing T -joins where T would be vertices of the dual that correspond to the negative faces
of the planar embedding. The statement of the conjecture based on the notion packing T -join
was first proposed by B. Guenin in early 2000’s who then gave a proof of the next two cases.
In our language that would be proving the conjecture for members of the class whose negative
girth is 4 or 5. The T -join approach is extended in three follow up work which means that
the conjecture is proved for the cases with negative girth at most 8. We note that proof for
each case of girth condition relies on the proof for the earlier cases, thus dependent on the
proof of the 4-color theorem. However, the work of Guenin remains unpublished and mostly
not available.

An independent proof for the case of girth 4 is recently given in [9]. This proof has extra
advantage that works for any minor closed family that are 4-colorable. Thus, on the one hand
it works for the larger family of K5-minor free graphs, and, on the other hand, it provides
a proof without the use of the 4-color theorem for subclasses such as graphs of treewidth at
most 3. In this work we build up on our method from [9] to verify the case of girth 5 of this
conjecture. The main idea of the proof is presented in [9]. We first provide a reformulation
of the conjecture, then we do a double induction and use different statements for different
directions of the induction. The restatement of the conjecture is based on the following
definition.

Given a signed graph (G, σ) of negative girth k, a negative cycle C of it is said to be
super negative with respect to σ if it has at most k − 2 positive edges. The key property
of a super negative cycle, relevant to this study, is in the following observation. Let σ′ be
a signature equivalent to σ but disjoint from it. One can easily find such a signature using
Theorem 4. Let G/σ be the graph obtained from G by contracting the negative edges of σ
and (by little abuse of notation) let σ′ be the signature on G/σ where the negative edges of it
are the images of the negative edges of (G, σ′). That (G/σ, σ

′) is well defined is because the
two signatures do not share a negative edge. Now a negative cycle C in (G/σ, σ

′) is of length
less than or equal to k − 2 if and only if it is the image of a super negative cycle of (G, σ).
In other words, if (G, σ) has no super negative cycle, then (G/σ, σ

′) has negative girth k − 1
and thus one may apply induction on k. This is the key point in showing that the following
is equivalent to Conjecture 5. We refer to [9] for more details. However, we note that since
in this paper we will be working with signed graphs of the form (G,−) of negative girth 5.
In this case negative cycles are the same as odd cycles, a super negative cycle would be a
cycle with either 0 or 2 positive edges.

Conjecture 6. Any signed planar graph in G11∪G10 admits an equivalent signature σ′ where
(G, σ′) has no super negative cycle.

We shall note that the property of having no super negative cycle is a homomorphism
property in the following sense: Suppose (H, π) is a signed graph where every negative cycle
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has at least l positive edges. If a signed graph (G, σ) maps to (H, π), then there is a signature
σ′ equivalent to σ such that in (G, σ′) each negative cycle has at least l positive edges. One
such choice for σ′ is by taking inverse image of π under the homomorphism of (G, σ) to
(H, π).

This observation and Theorem 3 imply that given an integer k, a minimum counterexample
(G, σ) of negative girth k to each of Conjecture 5 and Conjecture 6 must have no proper
homomorphic image which satisfies all three conditions: It is of negative girth k, it is planar,
and it is in G11 ∪ G10. Then, combined with the folding lemma of [4] which applies to cases
in G11 and the folding lemma of [7] that applies to cases in G10, we conclude that in every
planar embedding of (G, σ) each face must be a negative k-cycle.

The rest of this paper is about proving the following theorem.

Theorem 7. For any antibalanced signed simple planar graph (G, σ) of negative girth at least
5, we have ρ(G, σ) ≥ 5.

2 Proof of Theorem 7

Let us start with the full picture of the proof. We are assuming that each planar graph in
G11 ∪ G10 with negative girth at most 4 packs. The case of negative girth 3 is equivalent to
the 4-color theorem and the case of negative girth 4 is a stronger statement a proof of which
can be found in [9].

Let us take a planar graph (G, σ) in G11 with negative girth at least 5. We want to prove
that ρ(G, σ) ≥ 5. Let us suppose we can find a switching equivalent signature σ′ such that
(G, σ′) has no super negative cycle. As (G, σ) is in G11, a cycle is negative if and only if it is
odd. If there is no super negative cycle, then each odd cycle of G has at least one positive
edge in (G, σ). In other words E−σ induces a bipartite subgraph. Hence, applying Theorem 4,
we can find a second equivalent signature σ′′ such that (G, σ′) and (G, σ′′) have no negative
edge in common. We then contract all the negative edges in (G, σ′) and consider the negative
edges of σ′′ as a signature on this new graph. This would be a signed planar graph in G10
whose negative cycles are of length at least 4. Applying the case of negative girth 4, we have
four disjoint signatures on the contracted graphs. Together with σ′ we have a total of five
signatures with no pair of them having a common negative edge.

So what remains to show is that (G, σ) admits an equivalent signature with no super
negative cycle. At this point the second inductive step kicks in. We assume G is a smallest
counterexample. That is to say: (G, σ) is a signed planar graph in G11 which has no loop
and no triangle, it does not admit a packing of size five and among all such examples, it has
(first) minimum number of vertices and (second) minimum number of edges. The order on
the number of vertices together with the folding lemma implies that all faces are 5-cycles. The
minimality of the number of edges means removing any edge e, the remaining signed graph
must admit a 5-packing. Viewing each of these five signatures as a signature on G, equivalent
to σ, we must have a super negative cycle with respect to each equivalent signature. However,
each such cycle must contain e. This would be enough to stablish a rich enough structure
around vertices of degree 2 and 3 to apply discharging technique and get a contradiction with
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Euler’s formula. Thus we split details of the proof to three parts: dealing with 2-vertices,
3-vertices and then discharging.

2.1 2-vertices

Let v be a vertex of degree 2 in G and let x and y be its two neighbours, furthermore, in the
rest of this subsection e is the edge vx and e′ is the edge vy.

Let σ1, σ2, σ3, σ4, σ5 be the five signatures equivalent to σ such that, when restricted on
G− e, they have no common negative edge. Thus e is the only potentially common negative
edge among some of these signatures. Each (G, σi) must contain a super negative cycle. If
more than one, then we choose one and name it Ci. Moreover we denote by Pi the x − y
path in Ci that does not contain v. Furthermore, we assume σi’s are minimal in the sense
that there is no other signature on G− e equivalent to σ such that all its negative edges are
also negative in σi. Clearly replacing each signature with a minimal one does not affect the
packing property. However, then we may have a set of edges each of which is positive in all
five of (G− e, σi). Let E6 be such a set of edges of G− e. We proceed with a series of claims.

Claim 1. We have one of two:

• Either σi(e) 6= σi(e
′) for each i, i = 1, 2, . . . , 5, in which case all the positive edges of

each Ci must be in E6.

• Or for exactly one of the five signatures, say σ5, we have σi(e) = σi(e
′) in which case

the positive edge of each Pi in (G, σi), i = 1, 2, 3, 4, is a negative edge in (G, σ5).

Proof. First we show that we cannot have two such signatures satisfying σi(e) = σi(e
′).

Suppose to the contrary that two of them, say σ1 and σ2, assign the same sign to e and
e′. By switching at v, if necessary, in each of (G, σ1) and (G, σ2) we may assume that
σ1(e) = σ1(e

′) = + and σ2(e) = σ2(e
′) = +. This implies that all the edges of P1 are given a

negative sign in (G, σ1) and, similarly, all the edges of P2 are given a negative sign in (G, σ2),
and thus a positive sign in (G, σ1). Recall that, since each Ci is an odd cycle, each Pi is a
path of odd length. Then the closed walk induced by P1∪P2, in (G, σ1), and hence in (G, σ),
is negative closed walk of even length. This contradicts the fact that (G, σ) ∈ G11.

Hence, and without loss of generality, we assume σi(e) 6= σi(e
′) for i = 1, 2, 3, 4. Then

for each i, i = 1, 2, 3, 4, the path Pi has a unique positive edge in (G, σi). Let us name this
edge ei. Then we first observe that ei cannot be negative in any of (G, σj), j = 1, 2, 3, 4 as
otherwise, Ci would be a positive cycle in (G, σj). If σ5(e) 6= σ5(e

′), then for Ci, i = 1, 2, 3, 4,
to be negative in (G, σ5) we have σ5(ei) = + which implies the first case of the claim. If
σ5(e) = σ5(e

′), then for Ci, i = 1, 2, 3, 4, to be negative in (G, σ5) we must have σ5(ei) = −
in which case we have the second part of the claim. �

Suppose the first case of the claim happens. Then let σ′5 be a signature whose negative
edges in G − e are those in E−5 ∪ E6. We claim that (G, σ′5) is also switching equivalent
to (G − e,−). That is because σ1, σ2, σ3, σ4 are equivalent disjoint signatures, thus every
negative cycle, which is an odd cycle, has an even number of edges in E−1 ∪ E−2 ∪ E−3 ∪ E−4
and thus an odd number of edges in the remaining part which is E−5 ∪ E6 and thus it is a
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negative cycle in (G, σ′5). Similarly, every even cycle is positive in (G, σ′5), proving that it is
switching equivalent to (G− e,−). Thus we may assume that the second item of the claim is
always the case at the cost of allowing σ5 not to be minimal. Under this assumption, we may
also assume that σ5(e) = σ5(e

′) = +, as otherwise we may switch at v in (G, σ5). This, in
particular, means that for any super negative cycle C5, e and e′ are the only positive edges.

We should note that in choosing the super negative cycle Ci of (G, σi) one may have more
than one choice. Next we aim at showing that among the possible choices, at least one should
have a fair number of high degree vertices. Recall that in our case of negative girth 5 a super
negative cycle has either 2 or 0 positive edges. Thus if a super negative cycle has at least
one positive edges, then it has precisely two positive edges.

Claim 2. Assume σ′ is a minimal signature equivalent to σ such that every super negative
cycle of (G, σ′) contains xvy with one positive edge and one negative edge, and that, moreover,
the other positive edge is incident to either x or y. Then in one of the super negative cycles
of (G, σ′) every vertex which is not incident to a positive edge is of degree at least 4 in G.

Proof. That σ′ is assumed to be a minimal signature implies, in particular, that no vertex
is incident to only negative edges. Among all the signatures for which the conditions of
Claim 2 hold but the conclusion does not, we take σ′ to be one where the number of super
negative cycles of (G, σ′) is minimized. To get a contradiction we need to show that this
number must be 0.

Suppose not and let C1, C2, . . . Cr be the set of super negative cycles of (G, σ′) and assume
that C1 is a shortest one among these cycles. Since the conclusion does not hold, C1 has
a vertex z whose two neighbours on C1 are connected to it by negative edges (with respect
to the signature σ′) and dG(z) ≤ 3. Since not all edges incident to a vertex are negative,
we must have dG(z) = 3 and that the third neighbour of z, say z′, is adjacent to it with a
positive edge. We first claim that z′ /∈ {x, y}. Let P ′1 be the x − z path in C1 which does
not contain v and P ′′1 be the z − y path which does not contain v. Observe that only one
of P ′1 and P ′′1 have a positive edge. We continue the proof assuming that P ′′1 has a positive
edge, which then must be incident to y. The other case would be symmetric. If z′ = x,
then P ′1 together with xz induces a cycle with exactly one positive edge, depending on the
parity of the length, that would either be a negative even cycle or a positive odd cycle both
of which are forbidden in a member of G11. If z′ = y, then the cycle C ′1 obtained from C1 by
replacing P ′′1 with the zy is also a super negative cycle of (G, σ1) whose length is less than
C1, contradicting the choice of C1.

Since z′ /∈ {x, y}, and by our assumption that in every super negative cycle of (G, σ′) each
positive edge is either incident to x or to y, we conclude that the edge zz′ does not belong to
any super negative cycle of (G, σ′). We now consider the signature σ′′ obtained from (G, σ′)
by a switching at z. Then each super negative cycle of (G, σ′′) is also a super negative cycle
of (G, σ′) with the same signature. Thus (G, σ′′) also satisfies the conditions of the claim,
but it has less super negative cycles than (G, σ′), contradicting the choice of σ′. �

To take a better advantage σ5, we consider a signature σ′5 where the negative edges are
those of σ5 and the edges in E6. It is already mentioned that σ′5 is an equivalent signature.
We have following claim on (G, σ′5).
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Claim 3. In (G, σ′5) there exists a super negative cycle C in which all vertices, but possibly
x, v and y, have degree at least 4 in G.

Proof. Observe that in (G, σ′5) the edges xv and vy are of the same sign. Thus if needed,
by a switching at v we may assume they are both positive. This implies that in every super
negative cycle of (G, σ′5) all edges not incident to v are negative. Let C1, C2, . . . , Cr be the
set of super negative cycles of (G, σ′5). If each of them has a vertex of degree 2 or 3 except
v, by switching at all those vertices we will get a signature with no super negative cycle,
contradicting the minimality of the counterexample. The details that such switching does
not create new super negative cycles and that each switching kills of the corresponding super
negative cycle is similar to the previous claim. �

Claim 4. In each of (G, σi), i = 1, 2, 3, 4, one of the following holds:

• Either x or y has a negative neighbour whose degree in G is at least 4.

• Each of x and y has a negative neighbour of degree 3.

Proof. Suppose to the contrary that one of them, say (G, σ1) does not satisfy the claim.
That means, for one of x and y, say y, all negative neighbours (possibly none) are of degree
2. Let (G, σ′1) be obtained from (G, σ1) by switching at all negative neighbours of y. Since
each of these vertices are of degree 2 and each is incident to at least one negative edge, the
switching does not create a new super negative cycle. As y has no negative neighbour in
(G, σ′1), the condition of Claim 2 holds for (G, σ′1). Thus (G, σ′1) has a super negative cycle
C where each vertex not incident to a positive edge is of degree at least 4. Let x′ be the
neighbour of x in C, x 6= v. Since C must be of length at least 5 and both positive edges are
incident to y, both edges of C incident with x′ are negative and thus x′ has degree at least
4. Moreover, as x is not adjacent to y, and switchings were done only at neighbours of y, the
sign of the edge xx′ is negative in (G, σ1) as well. This means x′ is a negative neighbour of
x whose degree is at least 4, thus the first case of the claim holds. �

Claim 5. Suppose that u and v are two adjacent 2-vertices with u′ and v′ being the other
neighbour, respectively. Then both u′ and v′ have degree at least 6 and have at least 5
4+-neighbours.

Proof. We give the proof for u′ and the proof for v′ is analogous. By minimality of the
counterexample we have a signature packing σ1, σ2, σ3, σ4, σ5 of (G−{u, v}, σ). Each of these
signatures can be extended to G such that first of all (G, σi) is equivalent to (G, σ), secondly,
in each of them, both uv and vv′ are positive. The latter, can be achieved, if not already the
case, by switching at v, u or both.

Since each (G, σi) has to have a super negative cycle, then uu′ must be a negative edge in
all of them and this would be the only common negative edge between any pair of them. Each
of these five signatures, however, satisfies the conditions of Claim 2, thus there is a super
negative cycle Ci in (G, σi) where vertices not incident to positive edges are 4+-vertices. In
Ci the neighbour ui of u′, ui 6= u, is not incident to a positive edge. Since u′ui is negative only
in (G, σi), the vertices ui are 5 distinct 4+-neighbours of u′. As u is also a distinct neighbour
of u′, u′ has a total of at least six neighbours. �
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Claim 6. Suppose that u is a 2-vertex with u′ and v as neighbours and that v is 3-vertex with
its two other neighbours being v1 and v2. Then, first of all, u′ has at least four 4+-neighbours.
Secondly, among v1 and v2 either one has at least four 4+-neighbours or together they have
at least five 4+-neighbours.

Proof. We consider induced signed subgraph by deleting the edge uu′ and as before define
σ1, σ2, σ3, σ4 to be four minimal signatures with no common negative edge and let σ′5 be the
signature which assigns negative to the edges that are not negative in any of (G − uu′, σi),
i ≤ 4. As before, we consider σi and σ′5 as signatures on G rather than G − uu′, thus some
of them have uu′ as (the only) common negative edge.

By our choice of σ′5 only the second case of Claim 1 can happen. Then if necessary, in
(G, σ′5) we switch at u to get a (G, σ′′5) where uu′ and uv are both positive, noting that each
super negative cycle of (G, σ′′5) is also a super negative cycle of (G, σ′5). As there must be
at least one such cycle, and as there are already two positive edges, all other edges must
be negative. That implies that, in particular, at least one of the two edges vv1 and vv2 is
negative in (G, σ′5). We consider two cases depending on if only one is negative or both.

First assume the case that σ′5(vv1) = − and σ′5(vv2) = +. Since each edge beside uu′ is
negative in only one of the signatures, we may assume σ′i(vv1) = −. Then for each j 6= i, in
(G, σj) all the positive edges of each of the super negative cycle are incident to v, and, thus,
by Claim 2 for j ≤ 4 and by Claim 3 in the case of j = 5 we have a super negative cycle in
(G, σj) in which the neighbour of u′ distinct from u is of degree at least 4. We note moreover
that the positive edges of any super negative cycle in (G, σj) are negative in σ′5. This implies
that vv2 cannot be a positive edge in these cycles. Thus the second positive edge of any
super negative cycle in (G, σj), j ≤ 4, j 6= i is vv1. Again using Claim 2 the neighbour of
v1 in each of these cycles must be at least of degree 4. Since that is the case for the super
negative cycle of (G, σ′5) as well, v1 must have at least four such neighbours.

Now we consider the case that σ′5(vv1) = σ′5(vv2) = −. In this case then for all j’s,
j = 1, 2, . . . , 5 every super negative has two positive edges incident with v. Thus, first of
all u′ will have at least five 4+-neighbours, secondly, each of the signatures will imply a 4+-
neighbour for either v1 or for v2, giving a total of at least five such neighbours for the two of
them. �

2.2 3-vertices

Similar to the last subsection, let σ1, σ2, σ3, σ4, σ
′
5 be the five signatures equivalent to σ such

that, when restricted on G−e, for a fixed edge e, each edge in G−e is negative in exactly one
of these five signatures, and σi’s are minimal for i = 1, 2, 3, 4. Thus e is the only potentially
common negative edge among some of these signatures. As (G, σi) is a counterexample to
Theorem 7, and by the equivalence to Conjecture 6, each (G, σi) contains at least one super
negative cycle, one of which is named Ci.

Claim 7. Every 4-cycle of G contains a vertex of degree at least 4.

Proof. Suppose not, let C = v1v2v3v4v1 be a 4-cycle that all its vertices have degree at
most 3. By the folding lemma, every face of G is of length 5. Thus C is not a facial cycle,
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hence it is a separating cycle. We note that G is a 2-connected graph. This can be observed
either by using Theorem 3 and the fact that SPCod is vertex transitive. Or by considering a
vertex cut x, and applying induction on two subgraphs G − G1 and G − G2 where G1 and
G2 each has all vertices of a connected component of G− x.

Therefore, at least two of v1, v2, v3, v4 have neighbours inside of C, and similarly at least
two of them have neighbours outside. But since each vi is a 3−-vertex, it follows that they
are all 3-vertices and that precisely two of them have neighbours inside and two of them have
neighbours outside. By symmetry, we consider two case: (1) v1, v2 have neighbours inside C,
(2) v1, v3 have neighbours inside C. In case (1), the path v1v4v3v2 is part of a facial cycle
inside C. As every facial cycle is a 5-cycle, there is a common neighbour of v1 and v2. But
that would make triangle with v1v2. In case (2), considering the faces inside C formed by
v1v2v3 and v1v4v3, we conclude that the neighbours x, y of v1 and v3 inside C are themself
adjacent and that the edge xy is part of both mentioned faces. That implies that x and y
are adjacent 2-vertices. But we have already seen that for adjacent 2-vertices x, y their other
neighbours must be of degree at least 6. �

Claim 8. If C is a shortest super negative cycle, then C contains no chord.

Proof. Observe that a chord on a negative cycle creates one positive cycle and one negative
cycle. Let C be a shortest super negative cycle with a chord e. Let C ′ be the negative cycle
created by C and e. We claim that C ′ is a shorter super negative cycle, contradicting the
choice of C. That C ′ is negative is by our choice. That it is shorter is by the fact that there
are no parallel edges and e is a chord of C. It remains to show that C ′ is super negative,
i.e. it has at most two positive edges. Since C has at most two positive edges, in C ∪ {e}
there are at most three positive edges. But as (G, σ) is switching equivalent to (G,−), every
negative cycle (which is an odd cycle of G) has an even number of positive edges, thus C ′

has at most two positive edges. �

Claim 9. Let v be a vertex of degree 3 in G and N(v) = {v1, v2, v3}, such that both v2 and
v3 have degree 3. Let σ′ be a signature equivalent to σ in which every super negative cycle
contains vv1, noting that such a signature exists by the minimality of (G, σ). If (G, σ′) has
the extra property that every super negative cycle has two positive edges each of which is
incident to at least one of v, v2 or v3, then there exists a super negative cycle Cσ′ such that
every vertex not incident to a positive edge is of degree at least 4 in G.

Proof. Among all the signatures for which the conditions of Claim 9 hold but the conclusion
does not, we take σ′ to be one where the number of super negative cycles of (G, σ′) is
minimum. To get a contradiction we would like to show that this number must be 0. Let
N(vi) = {v, xi, yi} for i = 2, 3.

Let C1, C2, . . . , Cr be the set of super negative cycles of (G, σ′) and assume that C1 is a
shortest one among these cycles. Since the conclusion of the claim on (G, σ′) does not hold,
C1 has a vertex z whose two neighbours on C1 are connected to it by negative edges (with
respect to the signature σ′) and dG(z) ≤ 3. If all edges incident to z are negative, then we
consider (G, σ′′) obtained from (G, σ) by switching at z. We observe that super negative
cycles of (G, σ′′) are exactly those super negative cycles of (G, σ′) which do not contain z.
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Thus (G, σ′′) also satisfies the conditions of the claim, but it has less super negative cycles
than (G, σ′), contradicting the choice of σ′.

Since both edges of C1 incident to z are negative we must have dG(z) = 3 and that the
third neighbour of z, say z′, is adjacent to it with a positive edge. We claim zz′ belongs to
some super negative cycle of (G, σ′). Suppose not. Let π be the signature obtained from
(G, σ′) by switching at z. Then, first of all, there is still no super negative cycle in (G, π)
containing zz′, because for cycles containing this edge the number of positive edges is the
same in (G, σ′) and (G, π). Secondly, any super negative cycle of (G, σ′) containing z has two
more positive edges in (G, π). Since we assume every super negative cycle of (G, σ′) has two
positive edges, those containing z, in particular C1, are not super negative in (G, π). This
contradicts with the number of super negative cycles of (G, σ′) being minimum. Thus zz′ is
in a super negative cycle, say Ci, 2 ≤ i ≤ r.

Next we claim that z /∈ {v, v1}. We assume to contrary and first consider the case that
z = v. Recall that vv1 is an edge of C1. Between v2 and v3, by symmetry, assume vv3 ∈ C1.
As edges of C1 incident to z are negative we have σ′(vv1) = σ′(vv3) = − and since not all
edges incident to z are negative we have σ′(vv2) = +. Since C1 must have two positive edges,
and they must be incident to v or v2 or v3, the vertex v2 should be on C1 and, moreover,
should be incident to a positive edge of C1. Noting that vv2 is not an edge of C1, x2v2y2
should be a part of C1. This implies that vv2 is a chord of C1, contradicting Claim 8. Next
we consider the case that z = v1. In this case, since both edges of C1 incident to z are
negative, and since vv1 is an edge of every super negative cycle, vv1 is a negative edge. Thus,
noting that zz′ is a positive edge, z′ 6= v1. However, we have already noted that v1z

′ must be
in super negative cycles, say C ′. But then by the assumption on the positive edge of super
negative cycles, z′ ∈ {v2, v3} in either case then G must have a triangle.

Since zz′ must be a positive edge of the super negative cycle Ci and since all such edges
are incident to one of v, v2, v3 we must have z ∈ {v2, v3, x2, y2, x3, y3}. By symmetries we
consider only two possibilities of z = v2 or z = x2. First let z = v2. If z′ = v, then C1

contains the edge zz′ as a chord and we have contradiction with Claim 8. If z′ ∈ {x2, y2},
say z′ = y2, then σ′(vv2) = σ′(v2x2) = −, since vv1 is also an edge of C1, vv3 is not. As all
positive edges are incident to v, v2 or v3 and since there are two such edges in C1, v3 is a
vertex of C1, but then again vv3 is a chord contradicting Claim 8.

Finally assume z = x2 and let N(x2) = {v2, x′2, x′′2}. If z′ = x′2 or z′ = x′′2, since zz′

belongs to a super negative cycle, positive edges of super negative cycles are incident to
v, v2 or v3 and as G contains no triangle, z′ = v3, in which case vv2x2v3v is a 4-cycle
which contains four 3-vertices, contradicting Claim 7. Therefore, we must have z′ = v2,
then σ′(x2x

′
2) = σ′(x2x

′′
2) = − and x′2x2x

′′
2 is a part of C1. If vv2 ∈ C1, then zz′ is again

a chord of C1, which contradicts Claim 8. So vv2 /∈ C1, by symmetry we may write C1 as
v1vv3x3P1x

′
2x2x

′′
2P2v1. If σ′(vv2) = −, then again vv2x2 creates two cycles from C1 one of

which is negative. And this negative cycle has at most two positive edges, therefore is a
super negative cycle and thus contains the edge vv1. By Claim 7, path vv3x3P1x

′
2x2 must

have length at least 3, as otherwise together with v2 we will have a 4-cycle all whose vertices
are of degree 3. Replacing this path with vv2x2 we find a shorter super negative cycle,
contradicting the minimality of C1. Next let σ′(vv2) = +. By the assumption on C1, the fact
that every cycle has even number of positive edges, and the fact that the edges of the path
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x2x
′′
2P2v1 are all negative, we must have σ′(vv1) = −, as otherwise the cycle v1vv2x2x

′′
2P2v1

has three positive edges. Since positive edges of C1 must be incident to v, v2 or v3, we have
σ′(vv3) = σ′(v3x3) = +. Furthermore x′′2P2v1 has an even number of edges since otherwise
v1vv2x2x

′′
2P2v1 is a shorter super negative cycle. Recall that zz′ is also in the super negative

cycle Ci. We consider the following two cases.

1. If vv2 ∈ Ci, then by our assumption vv3 /∈ Ci, thus we may write Ci as v1vv2x2P3v1,
but then the cycle obtained from two paths from x2 to v1 of C1 and Ci forms a super
negative cycle which does not contain vv1 and contains no positive edge, a contradiction.

2. Otherwise vv2 /∈ Ci, let Ci = v1vv3y3P3x
′
2x2v2y2P4v1. But then the cycle vv3y3P3x

′
2x2v2v

contains exactly three positive edges, which never happens in (G, σ′). �

Claim 10. Let v be a vertex of degree 3 in G and N(v) = {v1, v2, v3}, such that both v2 and
v3 have degree 3. Then v1 has at least two neighbours of degree at least 4.

Proof. Let G′ = G − vv1 and σ1, σ2, σ3, σ4, σ
′
5 be the five signatures equivalent to σ

such that, when restricted on G′, they have no common negative edge. Thus vv1 is the
only potentially common negative edge among some of these signatures. Each (G, σi) must
contain a super negative cycle using the edge vv1. If more than one, then we choose one and
name it Ci. Let N(vi) = {v, xi, yi} for i = 2, 3.

We first claim that among all these five signatures, there are at least two, in which, after
switching at v, v2 and v3 (if necessary), we have the following: first of all in each of the four
paths v1vvixi and v1vviyi, i = 2, 3, there are at least two positive edges, secondly, we do not
create any new super negative cycle by the said switching. To see this we consider two cases.

Case 1. Assume vv2 and vv3 belong to the same signature, say E−σ′5
. Then in each of

the other signatures, namely σ1, σ2, σ3 and σ4, vv2 and vv3 are both positive. If vv1 is also
positive in at least two of σ1, σ2, σ3, σ4, say σ1 and σ2, then these two signatures are the
desired ones, without a need for switching.

So we may assume that vv1 is negative in σ1, σ2 and σ3. We discuss how to do the switching
on (G, σ1) in order to build (G, σ′1) have the required property. The same approach would
work to build (G, σ′2) (and (G, σ′3) though not needed). To this end, in (G, σ1), we switch at
v to have a signature σ′′1 . As σ1(vv1) = − and σ1(vv2) = σ1(vv3) = +, the number of positive
edges of a cycle containing vv1 does not change. A negative cycle containing both vv2 and
vv3 is a negative cycle of G − vv1, and thus must have at least one negative edge in each
of σ2, σ3, σ4 noting that none of these edges can be in {vv2, vv3}. Thus not such a negative
cycle is super negative in (G, σ′′1). Now for i = 2, 3, if one of vixi or viyi is negative in σ′′1 ,
then we switch at vi. Let σ′1 be the resulting signature. Since vi, which is of degree three,
is adjacent to at least two negative edges in (G, σ′′1), there is no new super negative cycle in
(G, σ′1). Moreover, in the final signature, (G, σ′1), each of v1vvixi and v1vviyi has at least two
positive edges as claimed.

Case 2. Assume vv2 and vv3 do not belong to the same E−i , by symmetries, say vv2 ∈ E−1
and vv3 ∈ E−2 . Then in (G, σi), i = 1, 2, we could first switch at v (if necessary) to make
vv1 positive, since exactly one of vv2 and vv3 is positive, this switching will not create new
super negative cycle. One vv1 is positive, we could switch at either, both or none of v2 or v3
to obtain the required conditions.
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In conclusion, we have switching equivalent signatures σ′1 and σ′2 obtained from σ1 and σ2
by potentially switching at v, v2 and v3, such that all the super negative cycles in (G, σ′1)
and in (G, σ′2) use the edge vv1 and their two positive edges are incident to v, v2 or v3. Thus
by Claim 9, there exists a super negative cycle C ′1 of (G, σ′1) (similarly C ′2 in (G, σ′2)) such
that every vertex not incident to a positive edge is of degree at least 4 in G. Let v′1 be the
neighbour of v1 in C ′1 which is distinct from v. Since v1 is not adjacent to v2 or v3, v1v

′
1 ∈ E−1 .

Then we claim that d(v′1) ≥ 4. If not, v′1 is incident to a positive edge of C ′1, which means
v′1 ∈ {x2, y2, x3, y3}. By symmetries, we assume v′1 = x2 which means x2v2 is a positive edge
of C ′1. Since each super negative cycle has length at least 5 and C ′1 uses the edge vv1, we
have vv2 /∈ C ′1 and x2v3 /∈ C ′1, for the latter if it exists. Therefore both v2y2 and vv3 are edges
of C ′1. Thus one of v3x3 or v3y3, say v3x3, is also an edge of C ′1. By what we proved above,
there are at least two positive edges in x3v3vv1 part of C ′1. But x2v2 is also a positive edge
of C ′1,having a total of at least three positive edges, contradicting the fact that C ′1 is a super
negative cycle. Therefore d(v′1) ≥ 4. The second neighbour v′2 of v having d(v′2) ≥ 4 can be
found by similar argument using (G, σ′2). �

Claim 11. Let u and v be two adjacent vertices of degree 3 in G. Assume σ′ is a signature
equivalent to σ, such that every super negative cycle of (G, σ′) contains uv and contains two
positive edges which are incident to either u or v. Then there exists a super negative cycle
in which every vertex not incident to a positive edge is of degree at least 4 in G.

Proof. As in the proof of Claim 9 among all the signatures for which the conditions of
Claim 11 hold but the conclusion does not, we take σ′ to be one where the number of super
negative cycles of (G, σ′) is minimum, and, moreover, we take σ′ to be a minimal signature.
Let N(u) = {u1, u2} and N(v) = {v1, v2}.

Let C1, C2, . . . , Cr be the super negative cycles of (G, σ′), and assume w.l.o.g. that |C1| ≤
|Cj|, 2 ≤ j ≤ r. If the conclusion does not hold, then C1 has a vertex z whose two neighbours
on C1 are connected to it by negative edges and dG(z) ≤ 3. Minimality of σ′ implies that
dG(z) = 3 and that the third neighbour of z, say z′, is adjacent to it with a positive edge.
Furthermore, zz′ is in a super negative cycle, say Ci, 2 ≤ i ≤ r, as otherwise by switching at
z we have less super negative cycles.

As each of u and v is incident to a positive edge of C1, z /∈ {u, v}. Considering the super
negative cycle Ci, zz

′ is a positive edge, thus by our assumption one of the end point is u or
v. As z /∈ {u, v}, we have z′ ∈ {u, v} and hence z ∈ {u1, u2, v1, v2}. W.l.o.g. let z = u1 and
z′ = u. But then uu1 is a chord of C1 and we have a contradiction with Claim 8. �

Claim 12. Let v1, v2, v3 and v4 be four vertices of degree 3, and σ′ be a signature equivalent
to σ such that the following holds.

1. vi is adjacent to vi+1, i = 1, 2, 3.
2. σ′(v1v2) = −, σ′(v2v3) = σ′(v3v4) = +.
3. Each of v2 and v3 is incident to exactly two positive edges.
4. Either v1 is incident to two positive edges or v4 is incident to three positive edges.
5. Every super negative cycle of (G, σ′) contains the positive edge v2v3.
6. The other positive edge of any other super negative cycle must be incident to one of

the vi (i ∈ {1, 2, 3, 4}).
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Then there exists a super negative cycle of (G, σ′) in which every vertex not incident to a
positive edge is of degree at least 4 in G.

v1 v2 v3 v4

y1

x1

y4

x4

x2 x3

Figure 2: Four vertices of degree 3 in Claim 12

Proof. Again among all the signatures for which the conditions of Claim 12 hold but the
conclusion does not, we take σ′ to be one where the number of super negative cycles of (G, σ′)
is minimum. Let the other two neighbours of vi be xi, yi for i = 1, 4, and the third neighbour
of vj be xj for j = 2, 3, as shown in Figure 2. Suppose to the contrary that C1, C2, . . . , Cr
are super negative cycles of (G, σ′) and assume that C1 is a shortest one among these cycles.
Thus C1 has a vertex z whose two neighbours on C1 are connected to it by negative edges
and dG(z) ≤ 3. It follows that dG(z) = 3 and that the third neighbour of z, say z′, is a
positive neighbour, moreover, zz′ is in a super negative cycle, say Cl, 2 ≤ l ≤ r.

Since in (G, σ′) every super negative cycle contains v2v3 as a positive edge, z /∈ {v2, v3}.
And since each positive edge of any super negative cycle is incident to some vi, we have
z ∈ {v1, v4, x1, x2, x3, x4, y1, y4}. By symmetries we consider following possibilities.

1. z = v1. Since σ′(v1v2) = −, v1v2 ∈ C1 and at least one of v1x1, v1y1 is negative. By
assumption v4 is incident to three positive edges, and thus v4 /∈ C1. This contradicts
with the fact that positive edges of every super negative are incident to vi.

2. z = v4. Since σ′(v3v4) = +, and edges in C1 incident to z are both negative, we have
that v4x4, v4y4 ∈ C1 and σ′(v4x4) = σ′(v4y4) = −, and hence z′ = v3. By the original
assumption of the claim, σ′(v1x1) = σ′(v1y1) = +. Recall that every super negative
cycle of (G, σ′) must contain v2v3. But any cycle that contains both v2v3 and v3v4 must
contain at least one more positive edge. This is a contradiction with the fact that zz′

is in a super negative cycle.

3. z = x2. Since σ′(v2x2) = + and v2x2 /∈ C1 we must have v1v2 ∈ C1. But then v2x2 is a
chord of C1 which contradicts the Claim 8.

4. z = x3. Since the super negative cycle Cl contains the positive edges zz′ and v2v3, it
contains no other positive edges, in particular v2x2 /∈ Cl. Thus v1 ∈ Cl. So each of
v1 and x3 is incident with at least two negative edges, and they are not connected by
a negative edge, since otherwise v1v2v3x3 induces a negative 4-cycle. Recall that if a
vertex of degree 3 is incident with at least two negative edges, then a switching at it
may eliminate some super negative cycle, but will never create a new one. Thus if we
switch at both v1 and x3, then the remaining set of super negative cycles all must still
contain the edge v2v3. But then in the new signature all edges incident to v2 and v3
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are positive, which implies that every cycle containing v2v3 has at least three positive
edges and there can be no super negative cycle.

5. z = x4. First suppose v4x4 ∈ C1, then σ′(v4x4) = − and by the assumption σ′(v1x1) =
σ′(v1y1) = +. Therefore v3v4 /∈ C1, since otherwise there will be three positive edges
in C1. However in this case v3v4 is a chord of C1, this contradicts the Claim 8. Now
suppose v4x4 /∈ C1, then z′ = v4 and σ′(v4x4) = +. We now consider the super negative
cycle Cl containing v4x4 (= zz′). As it must contain the positive edge v2v3 as well, it
can have no other positive edge. In particular, v3v4 is not in Cl. This implies that first
of all v4y4 ∈ Cl and, secondly, that v4y4 is a negative edge in (G, σ′). But then, by
the assumption of σ′(v1x1) = σ′(v1y1) = +, the cycle Cl contains three positive edges,
contradiction with Cl being a super negative cycle because it must contain at least one
of v1x1, v1y1 and v2x2, all of whom are positive.

6. z = x1. If v1x1 = v1z is in C1, then it must be a negative edge of C1. Thus v1 is
incident to at most one positive edge. The assumption of the claim implies that all
edges incident to v4 are positive. That implies v4 /∈ C1 as otherwise C1 will have at
least three positive edges. As each positive edge of C1 should be incident to one of
v1, v2, v3, the second positive edge of C1 can only be either v1y1 or v2x2, in either case
it follows that v1v2 is not an edge of C1, and hence it is a chord of C1 which contradicts
Claim 8.

So we may assume v1x1 /∈ C1. This implies that z′ = v1 and that σ′(v1x1) = +. As C1

has no chord, v1 /∈ C1. This implies that v2x2 ∈ C1 and since σ′(v2x2) = +, it is the
only other positive edge of C1. Thus v3v4 /∈ C1 and hence, v3x3 ∈ C1. Furthermore,
x1 6= x3, because otherwise v1v2v3x3v1 is a 4-cycle where all vertices are of degree 3,
contradicting Claim 7. We now claim that x1x2 ∈ C1. If not, then the part of C1 which
connects x1v2 and is of even length is of length at least 4, but then in the union of C1

and the path x1v1v2 we will find a shorter super negative cycle. Moreover, we observe
that σ′(x1x2) = −. We now consider the cycle C ′1 obtained from C1 by replacing x1x2v2
with x1v1v2. This cycle is also a super negative cycle of (G, σ′) and is of the same length
as C1, i.e. it is one of the shortest super negative cycles of (G, σ′). Hence we could
restart the analysis with C ′1, based on which we conclude that there must be a vertex
z1 of C ′1 which is of degree three in G, and both edges of C ′1 incident to z1 are negative.
Then we conclude that z1 ∈ {x1, y1}. The case z1 = y1 is not possible as otherwise C ′1
contains a chord, and the case z1 = x1 is not possible because σ′(v1x1) = +. �

Claim 13. Let v1, v2, v3, v4 be vertices of degree 3 in G such that vi is adjacent to vi+1,
i = 1, 2, 3, where other neighbours of vi’s are labelled as in Figure 2. Then either each of x2
and x3 has at least three neighbours of degree at least 4, or one of x2 and x3 has at least four
neighbours of degree at least 4.

Proof. Let G′ = G − v2v3 and let σ1, σ2, σ3, σ4, σ5 be the five signatures equivalent to σ
such that, when restricted on G′, they have no common negative edge. So v2v3 can be the
only common negative edge among some of these signatures. Each (G, σi) must contain a
super negative cycle using the edge v2v3, one of which is named Ci.
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In each signature σi, i = 1, . . . , 5, if v2x2 and v1v2 have the same sign, then by switching
at v2 and v3 (if necessary), we can either be sure that all the super negative cycles have
exactly two positive edges and that each of them is incident to either v2 or v3. Then by
Claim 11, there exists a super negative cycle C1 such that every vertex not incident to a
positive edge is of degree at least 4 in G. It is easy to observe that in at least three of the
signatures σ1, σ2, σ3, σ4, σ5, say σ1, σ2, and σ3, the edges v2x2 and v1v2 have the same sign.
Since we only switch at v2 and v3, in each of the signatures σ1, σ2, and σ3, either v1 or x2 has
a negative neighbour of degree at least 4 in each of (G, σ1), (G, σ2), and (G, σ3). If in each
of (G, σ4) and (G, σ5) either the pair v1v2 and v2x2 have the same sign or the pair v3v4 and
v3x3 have the same sign, then in total v1 and x2, as well as v4 and x3 have five neighbours
that are of degree at least 4 in G. As either v1 or v4 can have at most two such neighbours,
each of x2 and x3 must have at least 3 of them. We note that the conclusion holds.

Hence we suppose σ4(v1v2) = −σ4(v2x2) and σ4(v3v4) = −σ4(v3x3). Since we can switch
at either v2 or v3 (if necessary), we assume v2v3 is positive. If σ4(v2x2) = σ4(v3x3), then we
first make v1v2 and v3v4 to be negative by switching at v2 and v3 (if necessary). If at least one
of v1x1 and v1y1 (resp. v4x4 and v4y4) is negative, then after switching at v1 (resp. v4), we
will not create any new super negative cycle. Otherwise, both v1x1 and v1y1 (resp. v4x4 and
v4y4) are positive. In either case, each cycle containing v2v3 has at least three positive edges,
which is a contradiction. Therefore, we may suppose σ4(v2x2) = −σ4(v3x3), and w.l.o.g.
assume σ4(v2x2) = +. By switching at v1, if necessary, we can make sure that v1 is incident
to at least two positive edges, let the obtained signature be σ′4. Then the positive edges of
each super negative cycle in (G, σ′4) must be incident to either v1 or v2. Since σ′4(v3v4) = +,
every super negative cycle of (G, σ′4) contains the edge v3x3. By Claim 12, there exists a
super negative cycle such that every vertex not incident to a positive edge is of degree at
least 4. Therefore, either x3 has a negative neighbour (in (G, σ4)) of degree at least 4, or x3
is adjacent to one of x1 and y1. If we switch at v2 and v3, by symmetry, we have that either
x2 has a negative neighbour (in (G, σ4)) of degree at least 4, or x2 is adjacent to one of x4
and y4. Now it suffices to consider two cases based on σ5.

Case 1: Either σ5(v1v2) = σ5(v2x2) or σ5(v3v4) = σ5(v3x3). Applying the same argument
as before that for each (G, σi), i = 1, 2, 3, either v1 or x2 has a negative neighbour of degree
at least 4. Similarly either v4 or x3 have a negative neighbour of degree at least 4. Since
d(x1) = d(x4) = 3, both x2 and x3 have at least two neighbours of degree at least 4. Suppose
the conclusion of the claim does not hold, assume x2 has at most two neighbours of degree
at least 4, w.l.o.g. assume x2 is adjacent to x4. Since x3 can have at most three neighbours
of degree at least 4, x3 is adjacent to either x1 or y1, which implies x2 has at least three
neighbours of degree at least 4, a contradiction.

Case 2: σ5(v1v2) = −σ5(v2x2) and σ5(v3v4) = −σ5(v3x3). Applying the same argument
as for σ4, either x2 has a negative neighbour (in (G, σ5)) of degree at least 4, or x2 is adjacent
to one of x4 and y4. Similarly either x3 has a negative neighbour (in (G, σ5)) of degree at
least 4, or x3 is adjacent to one of x1 and y1. Again we suppose the conclusion does not hold,
and assume x2 has at most two neighbours of degree at least 4. W.l.o.g. let x2 be adjacent
to x4 and σ4(x2x4) = −. Since x3 can have at most three neighbours of degree at least 4,
w.l.o.g. we assume x3 is adjacent to x1 and σ4(x1x3) = −. Therefore, both x2 and x3 have
at least two neighbours of degree at least 4. Hence, it must be the case that x2 is adjacent
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to y4 and σ5(x2y4) = −, which implies that x3 has three neighbours of degree at least 4. But
then x3 must be adjacent to y1 and σ5(x3y1) = −, which implies x2 has three neighbours of
degree at least 4, a contradiction. �

2.3 Discharging

In the following, we will use the discharging technique to get a contradiction. The initial
charge ω on V (G)∪ F (G) is defined as follows: ω(x) = d(x)− 4 for every x ∈ V (G)∪ F (G).
By the relation

∑
v∈V (G) d(v) =

∑
f∈F (G) d(f) = 2|E(G)| and Euler’s formula, the initial total

charge of the vertices and faces satisfies the following:∑
x∈V (G)∪F (G)

ω(x) =
∑

x∈V (G)∪F (G)

(d(x)− 4) = −4|V (G)|+ 4|E(G)| − 4|F (G)| = −8.

Since any discharging procedure preserves the total charge of G, after applying appropriate
discharging rules to change the initial charge ω to the final charge ω∗ such that ω∗(x) ≥ 0
for every x ∈ V (G) ∪ F (G), we can have the contradiction below:

0 ≤
∑

x∈V (G)∪F (G)

ω∗(x) =
∑

x∈V (G)∪F (G)

ω(x) = −8,

and thus completes the proof.

For brevity, we call a 4+-vertex big, and a 3−-vertex small. For a vertex v, by nk(v) we
denote the number of k-neighbours of v and by nb(v) the number of big neighbours of v.
Given a face f , nk(f) is the number of k-vertices incident to f . For x, y ∈ V (G) ∪ F (G), let
τ(x→ y) denote the charge transferring from x to y. A pair of f and v2 where f is a 5-face
f = [v1v2 · · · v5v1] is said to be special if following conditions hold: i. nb(v2) = 3, ii. v2 is not
adjacent to any 3-vertex, iii. d(v1) = d(v3) = 2, finally iv. v4 ad v5 are big vertices. We will
do discharging in three stages. Below are our needed discharging rules for first stage:

(R1) Let d(v) ≥ 5. If nb(v) ≥ 4, then v sends 1 to each adjacent small vertex. Otherwise if

n3(v) + nb(v) ≥ 4, then v sends 1 to each 2-neighbour, and d(v)−4−n2(v)
n3(v)

to each 3-neighbour.

(R2) Let d(f) = 5. If n3−(f) = 1, then f sends 1 to the incident small vertex.

After the first round of discharging, each 3-vertex which is adjacent to a 5+-vertex v with
nb(v) ≥ 4 or incident to a face f with n3−(f) = 1, has a non-negative charge. If a 2-vertex is
incident or adjacent to at least two of the following, then it would end up with a non-negative
charge: face with only one small vertex or 5+-vertex with four 3+-neighbours. We call these
small vertices rich. In the following rules, if not specified, the small vertices that we consider
are those who remain negative, and refer to them as poor vertices. We use 5i-face to denote
5-face incident to i poor vertices. A 3-vertex is called 3k,l-vertex, if it is adjacent to k vertices
each of which has at least three big neighbours, at least two 3-neighbours, and is incident to
l 52-faces.

(R3) For the 5+-vertex v such that nb(v) ≤ 3 and n3(v) + nb(v) ≤ 3, v sends d(v)−4
n2(v)

to each

2-neighbour.
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(R4) Suppose f is a non-special 5-face. Then
(R4.1) If f is a 51-face, then f sends 1 to incident small vertex;
(R4.2) If f is a 52-face, then f sends 1

2
to each small vertex incident to f .

(R4.3) If f is a 53-face then
(R4.3.1) If n2(f) = 2 and n3(f) = 1, then f sends 1

2
to each incident 2-vertex.

(R4.3.2) If n2(f) = 1 and n3(f) = 2, then f sends 1
2

to the incident 2-vertex. First

suppose f is incident to a 3k,l-vertex. If k + l ≥ 2, then f sends 1
2

to the other 3-vertex; If

k = 1 and l = 0, then f sends 1
6

to 31,0-vertex and 1
3

to the other 3-vertex; If k = 0 and

l = 1, and moreover it is incident to a 53-face which contains no 2-vertex, then f sends 1
6

to

this 30,1-vertex, and 1
3

to the other 3-vertex. Otherwise, f sends 1
4

to each incident 3-vertex.

(R4.4) If f is a 53-face such that n3(f) = 3 or a 54+-face, then f does not give charge to
any incident 3k,l-vertex such that k + l ≥ 2, but sends 1

6
to each incident 31,0-vertex, then

distribute its remaining charge equally among the other incident 3-vertices.

A charge pot at (F, v) is a set of consecutively adjacent special faces whose special vertex
is v, as shown in Figure 3, noting that the number of face is unspecified. After carrying out
(R1)-(R4), we apply (R5) as follows.

v

Figure 3: Charge pot

(R5) Each special face contributes 1 to its charge pot. These charges then will be redis-
tributed to 2-vertices of the special pot as follows. If a 2-vertex is in a unique charge pot,
then it will take as much charge as needed until its final charge is non negative. Assume a
2-vertex v is in two different charge pots, say (F1, v1) and (F2, v2) (where v1 and v2 are the
two neighbours of v). Suppose vi has given a charge of ci, ci < 1, to v. Then (Fi, vi) gives a
charge of 1− ci to v.

First, we observe that the following facts are true.

Fact 1. Let d(v) = 2 and N(v) = {v1, v2}, then nb(v1) + nb(v2) + n3(v1)+n3(v2)
2

≥ 6.

Proof. By Claim 3, each of v1 and v2 has a big neighbour where the connecting edge is
in E−σ′5

. By Claim 4, in each of (G, σi), i = 1, 2, 3, 4, either v1 or v2 has a big neighbour

connected to it by an edge in E−σi , or each of v1 and v2 has a 3-neighbour connected to them

by an edge in E−σi . Therefore, nb(v1) + nb(v2) + n3(v1)+n3(v2)
2

≥ 6. �

Fact 2. A non-special 5-face sends charge at least 1
2

to its incident 2-vertex.

In what follows, we are going to show that ω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G) and the
charge pot is also non-negative. Let v ∈ V (G).
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Case 1. d(v) ≥ 5. If nb(v) ≥ 4, then ω∗(v) ≥ d(v) − 4 − (d(v) − 4) = 0 by (R1). Or if

n3(v)+nb(v) ≥ 4, then ω∗(v) ≥ d(v)−4−n2(v)−n3(v)× d(v)−4−n2(v)
n3(v)

= 0 by (R1). Otherwise,

by (R3), ω∗(v) ≥ d(v)− 4− n2(v)× d(v)−4
n2(v)

= 0.

Case 2. d(v) = 4. Since 4-vertex v does not participate in the discharging procedure,
ω∗(v) = ω(v) = d(v)− 4 = 0.

Case 3. d(v) = 3. If v is rich, then it has non-negative charge. Suppose v is not rich. If
v is incident to at least one 51-face, then ω∗(v) ≥ 3 − 4 + 1 = 0 by (R4.1). Otherwise let
N(v) = {v1, v2, v3}, denote by fi the face that is incident to v such that vvi and vvi+1 are its
two boundary edges (indices modulo 3).

If v is adjacent to one 2-vertex, say d(v1) = 2, then by Claim 6, v2 or v3 has at least
4 big neighbours or in total they have at least 5 big neighbours. Since v is poor, w.l.o.g.,
assume nb(v2) = 3 and nb(v3) = 2. And the other neighbour of v1, say v′1 has at least 4 big
neighbours. Since n3(v2) + nb(v2) ≥ 4, f1 is incident to at most two poor vertices possibly v
and v1, thus τ(f1 → v) ≥ 1

2
by (R4.2). If d(v3) = 3, then f3 is a 52-face, and τ(f3 → v) ≥ 1

2

by (R4.2). Thus ω∗(v) ≥ −1 + 2× 1
2

= 0. Suppose d(v3) ≥ 4. Let v′2 and v′3 be the other two
vertices of f2. By Claim 5 and Claim 6, either both of them have degree at least 3 or one of
them has degree 2 and the other has degree at least 4. Therefore, either τ(v2 → v) = 1

2
by

(R1) or f2 is a 52-face and τ(f2 → v) = 1
2
, both imply that ω∗(v) ≥ −1 + 2× 1

2
= 0.

Suppose now v is not adjacent to any 2-vertices.
Case 3.1. v is also not adjacent to any 3-vertex. Then by the fact that v is poor, Claim 5

and Claim 6, for i = 1, 2, 3, fi is either incident to three 3-vertices or it is a 52-face, therefore
τ(fi → v) ≥ 1

3
by (R4.2) and (R4.4), ω∗(v) ≥ −1 + 3× 1/3 = 0.

Case 3.2. v is adjacent to exactly one 3-vertex, say v1. Then again f2 is either incident
to three 3-vertices or f2 is a 52-face, therefore τ(f2 → v) ≥ 1

3
by (R4.2) and (R4.4). Let

f1 = vv1x1y1v2 and f3 = vv1x2y2v3. Since fi, i = 1, 2, 3, cannot contain two 2-vertices, each
of them sends at least 1

6
to v by (R4.3.2) and (R4.4). First if v is a 3k,l-vertex, such that

k+ l ≥ 2, then ω∗(v) ≥ −1+2× 1
2

= 0 by (R1) and (R4.2). For cases that k+ l ≤ 1, if k = 1,

then we have ω∗(v) ≥ −1+ 1
2
+ 1

3
+2× 1

6
= 1

6
by (R1). If l = 1, we consider following cases. If v

is incident to a 53-face which contains no 2-vertex, then ω∗(v) ≥ −1+ 1
2

+ 1
3

+ 1
6

= 0 by (R4.2)

and (R4.3.2). Therefore we could always assume that τ(f1 → v) ≥ 1
4

and τ(f3 → v) ≥ 1
4

by

(R4), which implies that ω∗(v) ≥ −1 + 1
2

+ 2× 1
4

= 0 by (R4.2). Thus k = l = 0, we suppose

f1, f3 are 53+-faces and f2 is a 53-face that contains no 2-vertex. By (R4), we still have that
τ(f1 → v) ≥ 1

4
and τ(f3 → v) ≥ 1

4
.

1. First suppose both f1 and f3 do not contain any 2-vertex, if they are both 53-faces, then
both of them send a charge of 1

3
to v by (R4.4) and thus ω∗(v) ≥ −1+3× 1

3
= 0. So let

f1 be a 54-face, then by Claim 13, nb(x2) = 3. Then when d(y2) = 3, τ(f3 → v) ≥ 2
3

by

(R4.4), and when d(y2) ≥ 4, τ(f3 → v) = 1
2

by (R4.2). Thus ω∗(v) ≥ −1+ 1
3
+ 1

2
+ 1

4
= 1

12
.

2. Either d(x1) = 2 or d(x2) = 2, by symmetry, we assume d(x1) = 2. Then by Claim 6, x2
has at least three big neighbours and y1 has at least four big neighbours. If d(y2) = 3,
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then by (R4.4), τ(f3 → v) ≥ 2
3
, and thus ω∗(v) ≥ −1 + 1

3
+ 2

3
+ 1

3
= 1

3
by (R4.3.2).

Assume now that d(y2) = 2. If n3(x2) ≥ 2 or nb(x2) ≥ 4, then by (R4.3.2) and (R4.2),
each of f1 and f3 will send v at least 1

3
, thus ω∗(v) ≥ −1 + 3 × 1

3
= 0. So suppose

n3(x2) = 1 and nb(x2) = 3. Then by Claim 4, nb(v3) ≥ 2 and f3 is a 52-face, which
contradicts with our assumption that f3 is a 53+-face.

3. Either d(y1) = 2 or d(y2) = 2, by symmetry, we assume d(y1) = 2. Then d(x1) ≥ 4.
And we know that d(x2) ≥ 3. By Claim 4 and the fact that f1 is a 53+-face, nb(x1) = 3
or nb(v2) = 3. First suppose nb(v2) = 3, then by (R1), τ(v2 → v) ≥ 1

2
and thus

ω∗(v) ≥ −1 + 1
2

+ 2× 1
4

+ 1
3

= 1
3
. Suppose now that nb(x1) = 3, then nb(v2) = 1 since

otherwise y1 is rich. By Claim 4, n3(x1) ≥ 2. By (R4.3.2), τ(f1 → v) ≥ 1
3
. If f3 is also

a 53-face, then we have τ(f3 → v) ≥ 1
3
. Otherwise f3 is a 54-face such that all the small

vertices have degree 3, then by Claim 13, the third neighbour of x2 has at least three
big neighbours. The third face of v1 is either a 52-face or a 53-face with no 2-vertex,
therefore, either v1 is a 31,1-vertex or both v1 and x2 are 31,0-vertices, by (R4.4), we
always have τ(f3 → v) ≥ 1

3
. And ω∗(v) ≥ −1 + 3× 1

3
= 0.

Case 3.3. v is adjacent to two 3-vertices, say v2 and v3. Let the other two vertices of
fi be xi and yi in the clockwise order, i = 1, 2, 3. By Claim 10, nb(v1) ≥ 2. Again, since
fi, i = 1, 2, 3, cannot contain two 2-vertices, each of them sends at least 1

6
to v by (R4.3.2)

and (R4.4). Similarly if v is a 3k,l-vertex, such that k + l ≥ 2 or k = 1, then ω∗(v) ≥ 0.
Suppose k = 0 and l = 1, if v is incident to a 53-face which contains no 2-vertex, then
ω∗(v) ≥ −1 + 1

2
+ 1

3
+ 1

6
= 0 by (R4.2) and (R4.3.2). By (R4.3.2), fi sends charge at least 1

4
to v, except f2 is a 55-face.

If one of x2 and y2 has degree 2, then by Claim 6, f2 is a 52-face. Then ω∗(v) ≥ −1 +
1
2

+ 2× 1
4

= 0 by (R4.2). If one of x2 and y2 has degree 3, say d(x2) = 3, then by Claim 13,
either one of v1 or y1 has at least four big neighbours, or both of them have at least three big
neighbours. Therefore either f1 is a 52-face, or nb(v1) ≥ 3 and n3(v1) ≥ 2, both imply that
ω∗(v) ≥ −1 + 1

2
+ 2× 1

4
= 0. Therefore, we may assume both x2 and y2 have degree at least

four, and τ(f2 → v) ≥ 1
3

by (R4.4).
If either y1 or x3 has degree at most 3, by symmetry say d(y1) ≤ 3, then by Claim 6

and Claim 13, either f2 is a 52-face which implies ω∗(v) ≥ −1 + 1
2

+ 2 × 1
4

= 0 by (R4.2),

or both v1 and x2 have at least three big neighbours. If n3(v1) ≥ 2, then τ(v1 → v) ≥ 1
2

by (R1) and thus ω∗(v) > 0. So we suppose n3(v1) = 1 and nb(v1) = 3. Then d(x1) ≥ 4
and τ(f1 → v) ≥ 1

3
. If d(x3) ≤ 3, then similarly either f2 is 52-face or τ(f3 → v) ≥ 1

3
,

we have ω∗(v) ≥ 0. Therefore, we assume d(x3) ≥ 4. If d(y3) ≥ 4, then f3 is a 52-face
which gives v enough charge. Otherwise d(y3) = 2 since n3(v1) = 1, then by Claim 4, either
f3 is again a 52-face or f3 is a 53-face and v3 is incident to a 52-face and a 53-face which
contains no 2-vertex, in both cases τ(f3 → v) ≥ 1

3
by (R4.2) and (R4.3.2). So we always

have ω∗(v) ≥ −1 + 3× 1
3

= 0.
In the following we may assume both y1 and x3 have degree at least 4. If both x1 and

y3 have degree at least 3, then each fi sends at least 1
3

to v by (R4.2) or (R4.4), and

ω∗(v) ≥ −1 + 3 × 1
3

= 0. Assume d(x1) = 2, if f1 is a 52-face, then τ(f1 → v) ≥ 1
2

and ω∗(v) ≥ −1 + 1
2

+ 1
3

+ 1
4

= 1
12

. Suppose f1 is a 53-face. If v2 is incident to a 52-face, since
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v2 is incident to another 53-face which contains no 2-vertex, by (R4.3.2), τ(f1 → v) ≥ 1
3
.

Otherwise we may assume the face f ′ = v2x2x
′
2y
′
1y1 that v2 incident is a 53-face, both x′2 and

y′1 must have degree at most 3. We first derive that d(y′1) = 3, since otherwise by Claim 5
and Claim 6, y1 has at least four big neighbours. By Claim 4 and the fact that both x1 and
v are poor, nb(y1) = 3 and thus τ(f1 → v) ≥ 1

3
by (R4.3.2). By symmetry, either d(y3) = 2

or d(y3) ≥ 3, τ(f3 → v) ≥ 1
3
. Thus we have ω∗(v) ≥ −1 + 3× 1

3
= 0.

Case 3.4. Finally suppose v is adjacent to three 3-vertices. Then by Claim 10, for
i = 1, 2, 3, each fi is a 53-face that contains no 2-vertex, thus sends at least 1

3
to v by (R4.4),

and ω∗(v) ≥ −1 + 3× 1
3
.

Case 4. Assume now d(v) = 2 and let N(v) = {v1, v2}. If v is rich, or it is incident or
adjacent to at least two of the following, then it would end up with a non-negative charge
by (R1) and (R4.1): 5+-vertex which has at least four 3+-neighbours, and face with only one
3−-vertex, and 51-face.

Otherwise first suppose that v is adjacent to a 2-vertex v1. Then by Claim 5, v2 has at
least five big neighbours and both incident faces are 52-faces and not special. So we have
ω∗(v) ≥ 2− 4 + 1 + 2× 1

2
= 0 by (R1) and (R4.2).

Suppose now v is adjacent to a 3-vertex v1. By Claim 6, v2 has at least four big neighbours
and both incident faces are 53−-faces and not special, thus by (R1), (R4.2) and (R4.3),
ω∗(v) ≥ 2− 4 + 1 + 2× 1

2
= 0.

Case 4.1. Suppose d(v1) = d(v2) = 4. Then by the Fact 1, all the neighbours of v1 and
v2 except v are big vertices. Thus the incident faces of v only contains one small vertex and
v is rich.

Case 4.2. Suppose d(v1) ≥ 5 and d(v2) = 4. If v1 has at least four big neighbours, then
by definition the incident faces of v are not special since otherwise v2 is a special vertex, thus
ω∗(v) ≥ 2 − 4 + 1 + 2 × 1

2
= 0 by (R1) and Fact 2. Otherwise since d(v2) = 4, by Fact 1,

nb(v1) = 3. If nb(v2) ≤ 2 or n3(v1) ≥ 1, then nb(v1) + n3(v1) ≥ 4, which implies that τ(v1 →
v) = 1 by (R1) and the incident faces of v are not special, so ω∗(v) ≥ 2− 4 + 1 + 2× 1

2
= 0.

Suppose now nb(v2) = 3 and n3(v1) = 0. If the incident faces of v are not special, then both
of them contain only one small vertex which implies that v is rich. Otherwise by (R5) v
would get enough charge such that ω∗(v) ≥ 0.

Case 4.3. Suppose both v1 and v2 have degree at least 5. If one of the incident faces of v
is special, then, by (R5), ω∗(v) ≥ 0. Otherwise, if at least one of v1 and v2 has at least four
3+-neighbours, then ω∗(v) ≥ 2 − 4 + 1 + 2 × 1

2
= 0 by (R1) and Fact 2. Suppose now both

v1 and v2 have at most three 3+-neighbours. Then by Fact 1, nb(v1) = nb(v2) = 3, thus for
i = 1, 2 τ(vi → v) ≥ 1

2
by (R3). Since the incident faces are not special, each of them sends

a charge of at least 1
2

to v. Therefore ω∗(v) ≥ 2− 4 + 4× 1
2

= 0.

Let f ∈ F (G) and d(f) = 5. If f is special, then by (R5) ω∗(f) ≥ 5 − 4 − 1 = 0. Thus
we may assume f is not special. If f is incident to at most one small vertex, then by (R2)
ω∗(f) ≥ 5 − 4 − 1 = 0. If f is a 51-face, then ω∗(f) ≥ 5 − 4 − 1 = 0 by (R3). If f is a
52-face, then ω∗(f) ≥ 5− 4− 2× 1

2
= 0 by (R4.2). Suppose f is a 53-face. If n2(f) = 2 and

n3(f) = 1, then by (R4.3.1) ω∗(f) ≥ 5− 4− 2× 1
2

= 0. If n2(f) = 1 and n3(f) = 2, then by
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(R4.3.2), either ω∗(f) ≥ 5 − 4 − 1
2

+ 2 × 1
4

= 0 or ω∗(f) ≥ 5 − 4 − 1
2

+ 1
3

+ 1
6

= 0. Finally

suppose f is a 54+-face, it has non-negative charge by (R4.4).

It remains to show that every charge pot has non-negative charge. Observe that in a special
face, every 4+-vertex except the special vertex has at least 3 big neighbours by Fact 1. Let
P be a charge pot with special vertex v which is obtained by k consecutive special faces
f1, f2, · · · , fk. Let v1, v2, . . . , vk+1 be the consecutive 2-vertices on the special faces. Then by
(R5) ω(P ) = k and there are k + 1 2-vertices which will take charge from P . By (R3), v in
total sends charge at least (k + 1)× k+1+3−4

k+1
= k to these 2-vertices. Let N(v1) = {v, v′1}, f0

and f1 be the incident faces of v1. If d(v′1) = 4, then f0 contains only one small vertex and
thus τ(f0 → v) = 1 by (R2). Suppose v′1 ≥ 5, then τ(v′1 → v1) ≥ 1

2
by (R3). If f0 is not

special with respect to v′1, then τ(f0 → v) ≥ 1
2

by (R4.2). Otherwise by (R5) v1 gets charge 1
from v′1 and the charge pot with respect to v′1. By symmetry vk+1 gets charge at least 1 which
is not from v or the charge pot with respect to v. Thus ω∗(P ) ≥ k − (2(k + 1)− k − 2) = 0.
This completes our proof.

3 Concluding remarks

In this work, using the result of [9] which itself is based on the 4-color theorem, we showed
for every triangle free planar simple graph G, the signed graph (G, σ) has a packing number
at least 5. Unlike the result of [9], the discharging technique used here is based on a planar
embedding of G and thus cannot be applied to the class of K5-minor-free graphs directly.
However, an extension from planar graphs to K5-minor-free graphs is already shown in [5].

It is unclear if this result can be proved independent of 4-color theorem. It is also not
clear how important is the choice of the all negative signature. More precisely we would like
to ask:

Question 8. What is the best possible lower bound on the packing number of planar signed
graph of girth at least g?
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