On the packing number of antibalanced signed simple planar graphs of negative girth at least 5

Reza Naserasr, Weiqiang Yu
Université Paris Cité, CNRS, IRIF, F-75006, Paris, France. E-mail addresses: \{reza, wyu\}@irif.fr

Abstract

The packing number of a signed graph (G, σ), denoted $\rho(G, \sigma)$, is the maximum number l of signatures $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ such that each σ_{i} is switching equivalent to σ and the sets of negative edges $E_{\sigma_{i}}^{-}$of $\left(G, \sigma_{i}\right)$ are pairwise disjoint. A signed graph packs if its packing number is equal to its negative girth. A reformulation of some wellknown conjecture in extension of the 4 -color theorem is that every antibalanced signed planar graph and every signed bipartite planar graph packs. On this class of signed planar graph the case when negative girth is 3 is equivalent to the 4 -color theorem. For negative girth 4 and 5 , based on the dual language of packing T-joins, a proof is claimed by B. Guenin in 2002, but never published. Based on this unpublished work, and using the language of packing T-joins, proofs for girth 6,7 , and 8 are published. We have recently provided a direct proof for girth 4 and in this work extend the technique to prove the case of girth 5 .

Keywords: signed graph, packing number, planar graphs.

1 Introduction

A graph G is called planar if it can be embedded in plane in such a way that its edges intersect only at their endpoints. A signed graph (G, σ) is a graph together with a signature σ which assigns a $\operatorname{sign}\left(\right.$ i.e.,+ or -) to each edge of G. We denote by E_{σ}^{-}the set of negative edges of a signed graph (G, σ). Given a graph G, the signed graph $(G,-)$ (respectively, $(G,+))$ is the signed graph where all edges are negative (positive). One of the key notions in the study of signed graphs is the concept of switching. A switching of a signed graph (G, σ) at a vertex v is the operation of multiplying the signs of all edges incident to v by $\mathrm{a}-$. When e is a loop on a vertex v, then v will be viewed as the two ends of e, which means switching does not affect the sign of a loop. A switching of (G, σ) is a collection of switchings at each of the elements of a given set X of vertices. That is equivalent to switching the signs of all edges
in the edge cut $(X, V \backslash X)$. Two signatures σ_{1} and σ_{2} on a graph G are said to be equivalent if one can be obtained from the other by a switching, in this case we say $\left(G, \sigma_{1}\right)$ is switching equivalent to $\left(G, \sigma_{2}\right)$.

Given a signed graph (G, σ) and a signature σ_{i} equivalent to σ, when there is no ambiguity, we may write E_{i}^{-}in place of $E_{\sigma_{i}}^{-}$. It is easily observed that $\left(G, \sigma_{1}\right)$ and $\left(G, \sigma_{2}\right)$ are switching equivalent if and only if the symmetric difference $E_{1}^{-} \triangle E_{2}^{-}$is an edge cut of G.

The sign of a structure in a signed graph (G, σ) is the product of the signs of the edges in the given structure, counting multiplicity. Note that the signs of cycles are invariant under a switching operation and they determine some crucial properties of a signed graph. If every cycle in a signed graph (G, σ) is positive, then (G, σ) is said to be balanced. A signed graph (G, σ) is said to be antibalanced if $(G,-\sigma)$ is balanced.

Harary was first to show that a signed graph is balanced if it is equivalent to $(G,+)$. An extension of this is the following result of Zaslavsky which shows that the set of negative cycles of a signed graphs uniquely determines the equivalence class of signatures:

Theorem 1. [10] Given two signatures σ_{1} and σ_{2} on a graph G, they are equivalent if and only if $\left(G, \sigma_{1}\right)$ and $\left(G, \sigma_{2}\right)$ have the same set of negative cycles.

Given a signed graph (G, σ) and an element $i j \in \mathbb{Z}_{2}^{2}$, we define $g_{i j}(G, \sigma)$ to be the length of the shortest closed walk W whose number of negative edges modulo 2 is i and whose length modulo 2 is j. When there exists no such a closed walk, we define $g_{i j}(G, \sigma)=\infty$. Furthermore, the length of a shortest negative closed walk will be denoted by $g_{-}(G, \sigma)$ (i.e., $\left.g_{-}(G, \sigma)=\min \left\{g_{10}(G, \sigma), g_{11}(G, \sigma)\right\}\right)$. Given $i j \in \mathbb{Z}_{2}^{2}, i j \neq 00$, the class $\mathcal{G}_{i j}$ of signed graphs is defined as follows:

$$
\mathcal{G}_{i j}=\left\{(G, \sigma) \mid g_{i^{\prime} j^{\prime}}(G, \sigma)=\infty \text { for } i^{\prime} j^{\prime} \in \mathbb{Z}_{2}^{2}-00, i^{\prime} j^{\prime} \neq i j\right\}
$$

Hence, \mathcal{G}_{01} is the class of signed graphs (G, σ) which can be switched to $(G,+)$ and \mathcal{G}_{11} is the class of signed graphs (G, σ) which can be switched to $(G,-)$. The class \mathcal{G}_{10} is the class of signed bipartite graphs.

Given signed graphs (G, σ) and (H, π), a homomorphism of (G, σ) to (H, π) is a mapping φ of the vertices and edges of G to the vertices and edges of H, respectively, such that adjacencies, incidences and signs of closed walks are preserved. When there exists such a homomorphism, we write $(G, \sigma) \rightarrow(H, \pi)$. The definition of homomorphisms of signed graphs implies the following no-homomorphism lemma:
Lemma 2. If $(G, \sigma) \rightarrow(H, \pi)$, then $g_{i j}(G, \sigma) \geq g_{i j}(H, \pi)$ for every ij $\in \mathbb{Z}_{2}^{2}$.
The packing number of a signed graph (G, σ), denoted $\rho(G, \sigma)$, is the maximum number of signatures $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ such that each σ_{i} is switching equivalent to σ and the sets E_{i}^{-}are pairwise disjoint. The signed projective cube of dimension d, denoted $\mathcal{S P C}_{d}$, is a signed graph with the vertex set \mathbb{Z}_{2}^{d}, two vertices of $\mathcal{S P} \mathcal{C}_{d}$ being adjacent by a positive edge if they are at hamming distance 1 and by a negative edge if they are at hamming distance d. Let $\mathcal{S P C}_{d}^{o}$ be the signed graph obtained from $\mathcal{S P C}_{d}$ by adding a positive loop to each of its vertices. A relation between packing numbers and homomorphisms observed in [9] is as follows:
Theorem 3. [9] Given a non-negative integer d, for a signed graph (G, σ), we have $\rho(G, \sigma) \geq$ $d+1$ if and only if $(G, \sigma) \rightarrow \mathcal{S P C}_{d}^{o}$.

Combined with the main result of [1], this implies that given an integer $k \geq 2$, for the general class of signed graphs the problem of deciding if $\rho(G, \sigma) \geq k$ is an NP-complete problem. In contrast the following relaxation of the problem is easily tractable. Given a signed graph $(G,-)$ where all edges are negative and a set $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ of signatures each obtained by a switching of $(G,-)$, we can easily decide and find if a switching equivalent signed graph $\left(G, \sigma^{\prime}\right)$ exists which has no common negative edge with any of σ_{i} 's.

Theorem 4. Given a signed graph $(G,-)$ and switching equivalent signed graphs $\left(G, \sigma_{1}\right), \ldots,\left(G, \sigma_{r}\right)$, there exists a switching equivalent signed graph (G, σ) which has no common negative edge with any of $\left(G, \sigma_{i}\right)$'s if and only if the set $\cup_{i=1}^{r} E_{i}^{-}$induces a bipartite graph.

Proof. For the only if part, observe that if (G, σ) is obtained from a switching of $(G,-)$, then the set of positive edges of (G, σ) is an edge cut of G. As all edges in $\cup_{i=1}^{r} E_{i}^{-}$must be positive in (G, σ), the claim follows. For the if part, assume $\cup_{i=1}^{r} E_{i}^{-}$is bipartite. A bipartition of the the subgraph induced by these edges can be viewed as an edge cut of G. A signature σ then is obtained from switching $(G,-)$ at this edge cut.

Given a signed graph (G, σ), since every signature must assign at least one negative sign to the edges of a negative cycle, we know that: $\rho(G, \sigma) \leq g_{-}(G, \sigma)$. We say (G, σ) packs if $\rho(G, \sigma)=g_{-}(G, \sigma)$. It is straightforward to verify that $\rho\left(K_{4},-\right)=g_{-}\left(K_{4},-\right)=3$, so $\left(K_{4},-\right)$ packs. Note that $\left(K_{5},-\right)$ is the smallest signed simple graph whose packing number is 1 , in particular $\left(K_{5},-\right)$ does not pack. Meanwhile, the smallest signed multigraph which does not pack has only three vertices, that is the signed graph K_{3}^{2} as depicted in Figure 1 .

Figure 1: $\rho\left(K_{3}^{2}\right)=1, g_{-}\left(K_{3}^{2}\right)=2$
Restated in the language of packing signatures, a result of Gan and Johnson [2] in 1989 claimed that if a signed graph (G, σ) has no K_{3}^{2}-minor, then it packs. This result applies to signed graphs allowing multi-edges and loops. When restricted on signed simple graphs, the story becomes much more complicated, but it is still expected that in some sense $\left(K_{5},-\right)$ is the minor-minimal element among certain classes of signed simple graphs that do not pack. More precisely, the following conjecture is strongly related to some of the central problems in graph theory and, in particular, to the four-color theorem and to several conjectures in extension of it.

Conjecture 5. Every signed simple planar graph in $\mathcal{G}_{11} \cup \mathcal{G}_{10}$ packs.
The restriction to the classes \mathcal{G}_{11} and \mathcal{G}_{10} of signed planar graphs is necessary. There exists a planar simple graph (thus negative girth 3) whose packing number is 1 . This follows from a coloring result of [3], we refer to [9] for more details.

However, one may expect that, while remaining in the class $\mathcal{G}_{11} \cup \mathcal{G}_{10}$, the condition of planarity can be replaced with having no $\left(K_{5},-\right)$-minor.

The restriction of the conjecture to the subclass with negative girth 3 is equivalent to the four-color theorem. The restriction to the class with negative girth 4 is known to imply the four-color theorem and is proved using it, historical background provided next.

In the subclass of planar graphs the conjecture can be restated using the dual notion of packing T-joins where T would be vertices of the dual that correspond to the negative faces of the planar embedding. The statement of the conjecture based on the notion packing T-join was first proposed by B. Guenin in early 2000's who then gave a proof of the next two cases. In our language that would be proving the conjecture for members of the class whose negative girth is 4 or 5 . The T-join approach is extended in three follow up work which means that the conjecture is proved for the cases with negative girth at most 8 . We note that proof for each case of girth condition relies on the proof for the earlier cases, thus dependent on the proof of the 4 -color theorem. However, the work of Guenin remains unpublished and mostly not available.

An independent proof for the case of girth 4 is recently given in [9. This proof has extra advantage that works for any minor closed family that are 4 -colorable. Thus, on the one hand it works for the larger family of K_{5}-minor free graphs, and, on the other hand, it provides a proof without the use of the 4 -color theorem for subclasses such as graphs of treewidth at most 3. In this work we build up on our method from [9] to verify the case of girth 5 of this conjecture. The main idea of the proof is presented in [9]. We first provide a reformulation of the conjecture, then we do a double induction and use different statements for different directions of the induction. The restatement of the conjecture is based on the following definition.

Given a signed graph (G, σ) of negative girth k, a negative cycle C of it is said to be super negative with respect to σ if it has at most $k-2$ positive edges. The key property of a super negative cycle, relevant to this study, is in the following observation. Let σ^{\prime} be a signature equivalent to σ but disjoint from it. One can easily find such a signature using Theorem 4. Let $G_{/ \sigma}$ be the graph obtained from G by contracting the negative edges of σ and (by little abuse of notation) let σ^{\prime} be the signature on $G_{/ \sigma}$ where the negative edges of it are the images of the negative edges of $\left(G, \sigma^{\prime}\right)$. That $\left(G_{/ \sigma}, \sigma^{\prime}\right)$ is well defined is because the two signatures do not share a negative edge. Now a negative cycle C in $\left(G_{/ \sigma}, \sigma^{\prime}\right)$ is of length less than or equal to $k-2$ if and only if it is the image of a super negative cycle of (G, σ). In other words, if (G, σ) has no super negative cycle, then $\left(G_{/ \sigma}, \sigma^{\prime}\right)$ has negative girth $k-1$ and thus one may apply induction on k. This is the key point in showing that the following is equivalent to Conjecture 5. We refer to [9] for more details. However, we note that since in this paper we will be working with signed graphs of the form $(G,-)$ of negative girth 5 . In this case negative cycles are the same as odd cycles, a super negative cycle would be a cycle with either 0 or 2 positive edges.

Conjecture 6. Any signed planar graph in $\mathcal{G}_{11} \cup \mathcal{G}_{10}$ admits an equivalent signature σ^{\prime} where (G, σ^{\prime}) has no super negative cycle.

We shall note that the property of having no super negative cycle is a homomorphism property in the following sense: Suppose (H, π) is a signed graph where every negative cycle
has at least l positive edges. If a signed graph (G, σ) maps to (H, π), then there is a signature σ^{\prime} equivalent to σ such that in $\left(G, \sigma^{\prime}\right)$ each negative cycle has at least l positive edges. One such choice for σ^{\prime} is by taking inverse image of π under the homomorphism of (G, σ) to (H, π).

This observation and Theorem 3 imply that given an integer k, a minimum counterexample (G, σ) of negative girth k to each of Conjecture 5 and Conjecture 6 must have no proper homomorphic image which satisfies all three conditions: It is of negative girth k, it is planar, and it is in $\mathcal{G}_{11} \cup \mathcal{G}_{10}$. Then, combined with the folding lemma of [4] which applies to cases in \mathcal{G}_{11} and the folding lemma of [7] that applies to cases in \mathcal{G}_{10}, we conclude that in every planar embedding of (G, σ) each face must be a negative k-cycle.

The rest of this paper is about proving the following theorem.
Theorem 7. For any antibalanced signed simple planar graph (G, σ) of negative girth at least 5 , we have $\rho(G, \sigma) \geq 5$.

2 Proof of Theorem 7

Let us start with the full picture of the proof. We are assuming that each planar graph in $\mathcal{G}_{11} \cup \mathcal{G}_{10}$ with negative girth at most 4 packs. The case of negative girth 3 is equivalent to the 4 -color theorem and the case of negative girth 4 is a stronger statement a proof of which can be found in [9].

Let us take a planar graph (G, σ) in \mathcal{G}_{11} with negative girth at least 5 . We want to prove that $\rho(G, \sigma) \geq 5$. Let us suppose we can find a switching equivalent signature σ^{\prime} such that (G, σ^{\prime}) has no super negative cycle. As (G, σ) is in \mathcal{G}_{11}, a cycle is negative if and only if it is odd. If there is no super negative cycle, then each odd cycle of G has at least one positive edge in (G, σ). In other words E_{σ}^{-}induces a bipartite subgraph. Hence, applying Theorem 4 , we can find a second equivalent signature $\sigma^{\prime \prime}$ such that $\left(G, \sigma^{\prime}\right)$ and $\left(G, \sigma^{\prime \prime}\right)$ have no negative edge in common. We then contract all the negative edges in (G, σ^{\prime}) and consider the negative edges of $\sigma^{\prime \prime}$ as a signature on this new graph. This would be a signed planar graph in \mathcal{G}_{10} whose negative cycles are of length at least 4. Applying the case of negative girth 4, we have four disjoint signatures on the contracted graphs. Together with σ^{\prime} we have a total of five signatures with no pair of them having a common negative edge.

So what remains to show is that (G, σ) admits an equivalent signature with no super negative cycle. At this point the second inductive step kicks in. We assume G is a smallest counterexample. That is to say: (G, σ) is a signed planar graph in \mathcal{G}_{11} which has no loop and no triangle, it does not admit a packing of size five and among all such examples, it has (first) minimum number of vertices and (second) minimum number of edges. The order on the number of vertices together with the folding lemma implies that all faces are 5 -cycles. The minimality of the number of edges means removing any edge e, the remaining signed graph must admit a 5 -packing. Viewing each of these five signatures as a signature on G, equivalent to σ, we must have a super negative cycle with respect to each equivalent signature. However, each such cycle must contain e. This would be enough to stablish a rich enough structure around vertices of degree 2 and 3 to apply discharging technique and get a contradiction with

Euler's formula. Thus we split details of the proof to three parts: dealing with 2-vertices, 3 -vertices and then discharging.

2.1 2-vertices

Let v be a vertex of degree 2 in G and let x and y be its two neighbours, furthermore, in the rest of this subsection e is the edge $v x$ and e^{\prime} is the edge $v y$.

Let $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}$ be the five signatures equivalent to σ such that, when restricted on $G-e$, they have no common negative edge. Thus e is the only potentially common negative edge among some of these signatures. Each $\left(G, \sigma_{i}\right)$ must contain a super negative cycle. If more than one, then we choose one and name it C_{i}. Moreover we denote by P_{i} the $x-y$ path in C_{i} that does not contain v. Furthermore, we assume σ_{i} 's are minimal in the sense that there is no other signature on $G-e$ equivalent to σ such that all its negative edges are also negative in σ_{i}. Clearly replacing each signature with a minimal one does not affect the packing property. However, then we may have a set of edges each of which is positive in all five of $\left(G-e, \sigma_{i}\right)$. Let E_{6} be such a set of edges of $G-e$. We proceed with a series of claims.

Claim 1. We have one of two:

- Either $\sigma_{i}(e) \neq \sigma_{i}\left(e^{\prime}\right)$ for each $i, i=1,2, \ldots, 5$, in which case all the positive edges of each C_{i} must be in E_{6}.
- Or for exactly one of the five signatures, say σ_{5}, we have $\sigma_{i}(e)=\sigma_{i}\left(e^{\prime}\right)$ in which case the positive edge of each P_{i} in $\left(G, \sigma_{i}\right), i=1,2,3,4$, is a negative edge in $\left(G, \sigma_{5}\right)$.

Proof. First we show that we cannot have two such signatures satisfying $\sigma_{i}(e)=\sigma_{i}\left(e^{\prime}\right)$. Suppose to the contrary that two of them, say σ_{1} and σ_{2}, assign the same sign to e and e^{\prime}. By switching at v, if necessary, in each of $\left(G, \sigma_{1}\right)$ and $\left(G, \sigma_{2}\right)$ we may assume that $\sigma_{1}(e)=\sigma_{1}\left(e^{\prime}\right)=+$ and $\sigma_{2}(e)=\sigma_{2}\left(e^{\prime}\right)=+$. This implies that all the edges of P_{1} are given a negative sign in (G, σ_{1}) and, similarly, all the edges of P_{2} are given a negative sign in $\left(G, \sigma_{2}\right)$, and thus a positive sign in $\left(G, \sigma_{1}\right)$. Recall that, since each C_{i} is an odd cycle, each P_{i} is a path of odd length. Then the closed walk induced by $P_{1} \cup P_{2}$, in $\left(G, \sigma_{1}\right)$, and hence in (G, σ), is negative closed walk of even length. This contradicts the fact that $(G, \sigma) \in \mathcal{G}_{11}$.

Hence, and without loss of generality, we assume $\sigma_{i}(e) \neq \sigma_{i}\left(e^{\prime}\right)$ for $i=1,2,3,4$. Then for each $i, i=1,2,3,4$, the path P_{i} has a unique positive edge in $\left(G, \sigma_{i}\right)$. Let us name this edge e_{i}. Then we first observe that e_{i} cannot be negative in any of $\left(G, \sigma_{j}\right), j=1,2,3,4$ as otherwise, C_{i} would be a positive cycle in $\left(G, \sigma_{j}\right)$. If $\sigma_{5}(e) \neq \sigma_{5}\left(e^{\prime}\right)$, then for $C_{i}, i=1,2,3,4$, to be negative in $\left(G, \sigma_{5}\right)$ we have $\sigma_{5}\left(e_{i}\right)=+$ which implies the first case of the claim. If $\sigma_{5}(e)=\sigma_{5}\left(e^{\prime}\right)$, then for $C_{i}, i=1,2,3,4$, to be negative in $\left(G, \sigma_{5}\right)$ we must have $\sigma_{5}\left(e_{i}\right)=-$ in which case we have the second part of the claim.

Suppose the first case of the claim happens. Then let σ_{5}^{\prime} be a signature whose negative edges in $G-e$ are those in $E_{5}^{-} \cup E_{6}$. We claim that $\left(G, \sigma_{5}^{\prime}\right)$ is also switching equivalent to $(G-e,-)$. That is because $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ are equivalent disjoint signatures, thus every negative cycle, which is an odd cycle, has an even number of edges in $E_{1}^{-} \cup E_{2}^{-} \cup E_{3}^{-} \cup E_{4}^{-}$ and thus an odd number of edges in the remaining part which is $E_{5}^{-} \cup E_{6}$ and thus it is a
negative cycle in $\left(G, \sigma_{5}^{\prime}\right)$. Similarly, every even cycle is positive in $\left(G, \sigma_{5}^{\prime}\right)$, proving that it is switching equivalent to $(G-e,-)$. Thus we may assume that the second item of the claim is always the case at the cost of allowing σ_{5} not to be minimal. Under this assumption, we may also assume that $\sigma_{5}(e)=\sigma_{5}\left(e^{\prime}\right)=+$, as otherwise we may switch at v in $\left(G, \sigma_{5}\right)$. This, in particular, means that for any super negative cycle C_{5}, e and e^{\prime} are the only positive edges.

We should note that in choosing the super negative cycle C_{i} of (G, σ_{i}) one may have more than one choice. Next we aim at showing that among the possible choices, at least one should have a fair number of high degree vertices. Recall that in our case of negative girth 5 a super negative cycle has either 2 or 0 positive edges. Thus if a super negative cycle has at least one positive edges, then it has precisely two positive edges.

Claim 2. Assume σ^{\prime} is a minimal signature equivalent to σ such that every super negative cycle of (G, σ^{\prime}) contains $x v y$ with one positive edge and one negative edge, and that, moreover, the other positive edge is incident to either x or y. Then in one of the super negative cycles of $\left(G, \sigma^{\prime}\right)$ every vertex which is not incident to a positive edge is of degree at least 4 in G.

Proof. That σ^{\prime} is assumed to be a minimal signature implies, in particular, that no vertex is incident to only negative edges. Among all the signatures for which the conditions of Claim 2 hold but the conclusion does not, we take σ^{\prime} to be one where the number of super negative cycles of $\left(G, \sigma^{\prime}\right)$ is minimized. To get a contradiction we need to show that this number must be 0 .

Suppose not and let $C_{1}, C_{2}, \ldots C_{r}$ be the set of super negative cycles of (G, σ^{\prime}) and assume that C_{1} is a shortest one among these cycles. Since the conclusion does not hold, C_{1} has a vertex z whose two neighbours on C_{1} are connected to it by negative edges (with respect to the signature σ^{\prime}) and $d_{G}(z) \leq 3$. Since not all edges incident to a vertex are negative, we must have $d_{G}(z)=3$ and that the third neighbour of z, say z^{\prime}, is adjacent to it with a positive edge. We first claim that $z^{\prime} \notin\{x, y\}$. Let P_{1}^{\prime} be the $x-z$ path in C_{1} which does not contain v and $P_{1}^{\prime \prime}$ be the $z-y$ path which does not contain v. Observe that only one of P_{1}^{\prime} and $P_{1}^{\prime \prime}$ have a positive edge. We continue the proof assuming that $P_{1}^{\prime \prime}$ has a positive edge, which then must be incident to y. The other case would be symmetric. If $z^{\prime}=x$, then P_{1}^{\prime} together with $x z$ induces a cycle with exactly one positive edge, depending on the parity of the length, that would either be a negative even cycle or a positive odd cycle both of which are forbidden in a member of \mathcal{G}_{11}. If $z^{\prime}=y$, then the cycle C_{1}^{\prime} obtained from C_{1} by replacing $P_{1}^{\prime \prime}$ with the $z y$ is also a super negative cycle of $\left(G, \sigma_{1}\right)$ whose length is less than C_{1}, contradicting the choice of C_{1}.

Since $z^{\prime} \notin\{x, y\}$, and by our assumption that in every super negative cycle of $\left(G, \sigma^{\prime}\right)$ each positive edge is either incident to x or to y, we conclude that the edge $z z^{\prime}$ does not belong to any super negative cycle of $\left(G, \sigma^{\prime}\right)$. We now consider the signature $\sigma^{\prime \prime}$ obtained from (G, σ^{\prime}) by a switching at z. Then each super negative cycle of $\left(G, \sigma^{\prime \prime}\right)$ is also a super negative cycle of $\left(G, \sigma^{\prime}\right)$ with the same signature. Thus $\left(G, \sigma^{\prime \prime}\right)$ also satisfies the conditions of the claim, but it has less super negative cycles than $\left(G, \sigma^{\prime}\right)$, contradicting the choice of σ^{\prime}.

To take a better advantage σ_{5}, we consider a signature σ_{5}^{\prime} where the negative edges are those of σ_{5} and the edges in E_{6}. It is already mentioned that σ_{5}^{\prime} is an equivalent signature. We have following claim on $\left(G, \sigma_{5}^{\prime}\right)$.

Claim 3. In $\left(G, \sigma_{5}^{\prime}\right)$ there exists a super negative cycle C in which all vertices, but possibly x, v and y, have degree at least 4 in G.

Proof. Observe that in $\left(G, \sigma_{5}^{\prime}\right)$ the edges $x v$ and $v y$ are of the same sign. Thus if needed, by a switching at v we may assume they are both positive. This implies that in every super negative cycle of $\left(G, \sigma_{5}^{\prime}\right)$ all edges not incident to v are negative. Let $C_{1}, C_{2}, \ldots, C_{r}$ be the set of super negative cycles of $\left(G, \sigma_{5}^{\prime}\right)$. If each of them has a vertex of degree 2 or 3 except v, by switching at all those vertices we will get a signature with no super negative cycle, contradicting the minimality of the counterexample. The details that such switching does not create new super negative cycles and that each switching kills of the corresponding super negative cycle is similar to the previous claim.

Claim 4. In each of $\left(G, \sigma_{i}\right), i=1,2,3,4$, one of the following holds:

- Either x or y has a negative neighbour whose degree in G is at least 4 .
- Each of x and y has a negative neighbour of degree 3 .

Proof. Suppose to the contrary that one of them, say $\left(G, \sigma_{1}\right)$ does not satisfy the claim. That means, for one of x and y, say y, all negative neighbours (possibly none) are of degree 2. Let $\left(G, \sigma_{1}^{\prime}\right)$ be obtained from $\left(G, \sigma_{1}\right)$ by switching at all negative neighbours of y. Since each of these vertices are of degree 2 and each is incident to at least one negative edge, the switching does not create a new super negative cycle. As y has no negative neighbour in $\left(G, \sigma_{1}^{\prime}\right)$, the condition of Claim 2 holds for $\left(G, \sigma_{1}^{\prime}\right)$. Thus $\left(G, \sigma_{1}^{\prime}\right)$ has a super negative cycle C where each vertex not incident to a positive edge is of degree at least 4 . Let x^{\prime} be the neighbour of x in $C, x \neq v$. Since C must be of length at least 5 and both positive edges are incident to y, both edges of C incident with x^{\prime} are negative and thus x^{\prime} has degree at least 4. Moreover, as x is not adjacent to y, and switchings were done only at neighbours of y, the sign of the edge $x x^{\prime}$ is negative in $\left(G, \sigma_{1}\right)$ as well. This means x^{\prime} is a negative neighbour of x whose degree is at least 4 , thus the first case of the claim holds.

Claim 5. Suppose that u and v are two adjacent 2 -vertices with u^{\prime} and v^{\prime} being the other neighbour, respectively. Then both u^{\prime} and v^{\prime} have degree at least 6 and have at least 5 4^{+}-neighbours.

Proof. We give the proof for u^{\prime} and the proof for v^{\prime} is analogous. By minimality of the counterexample we have a signature packing $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}$ of $(G-\{u, v\}, \sigma)$. Each of these signatures can be extended to G such that first of all $\left(G, \sigma_{i}\right)$ is equivalent to (G, σ), secondly, in each of them, both $u v$ and $v v^{\prime}$ are positive. The latter, can be achieved, if not already the case, by switching at v, u or both.

Since each $\left(G, \sigma_{i}\right)$ has to have a super negative cycle, then $u u^{\prime}$ must be a negative edge in all of them and this would be the only common negative edge between any pair of them. Each of these five signatures, however, satisfies the conditions of Claim 2, thus there is a super negative cycle C_{i} in $\left(G, \sigma_{i}\right)$ where vertices not incident to positive edges are 4^{+}-vertices. In C_{i} the neighbour u_{i} of $u^{\prime}, u_{i} \neq u$, is not incident to a positive edge. Since $u^{\prime} u_{i}$ is negative only in $\left(G, \sigma_{i}\right)$, the vertices u_{i} are 5 distinct 4^{+}-neighbours of u^{\prime}. As u is also a distinct neighbour of u^{\prime}, u^{\prime} has a total of at least six neighbours.

Claim 6. Suppose that u is a 2 -vertex with u^{\prime} and v as neighbours and that v is 3 -vertex with its two other neighbours being v_{1} and v_{2}. Then, first of all, u^{\prime} has at least four 4^{+}-neighbours. Secondly, among v_{1} and v_{2} either one has at least four 4^{+}-neighbours or together they have at least five 4^{+}-neighbours.

Proof. We consider induced signed subgraph by deleting the edge $u u^{\prime}$ and as before define $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ to be four minimal signatures with no common negative edge and let σ_{5}^{\prime} be the signature which assigns negative to the edges that are not negative in any of $\left(G-u u^{\prime}, \sigma_{i}\right)$, $i \leq 4$. As before, we consider σ_{i} and σ_{5}^{\prime} as signatures on G rather than $G-u u^{\prime}$, thus some of them have $u u^{\prime}$ as (the only) common negative edge.

By our choice of σ_{5}^{\prime} only the second case of Claim 1 can happen. Then if necessary, in $\left(G, \sigma_{5}^{\prime}\right)$ we switch at u to get a $\left(G, \sigma_{5}^{\prime \prime}\right)$ where $u u^{\prime}$ and $u v$ are both positive, noting that each super negative cycle of $\left(G, \sigma_{5}^{\prime \prime}\right)$ is also a super negative cycle of $\left(G, \sigma_{5}^{\prime}\right)$. As there must be at least one such cycle, and as there are already two positive edges, all other edges must be negative. That implies that, in particular, at least one of the two edges $v v_{1}$ and $v v_{2}$ is negative in $\left(G, \sigma_{5}^{\prime}\right)$. We consider two cases depending on if only one is negative or both.

First assume the case that $\sigma_{5}^{\prime}\left(v v_{1}\right)=-$ and $\sigma_{5}^{\prime}\left(v v_{2}\right)=+$. Since each edge beside $u u^{\prime}$ is negative in only one of the signatures, we may assume $\sigma_{i}^{\prime}\left(v v_{1}\right)=-$. Then for each $j \neq i$, in $\left(G, \sigma_{j}\right)$ all the positive edges of each of the super negative cycle are incident to v, and, thus, by Claim 2 for $j \leq 4$ and by Claim 3 in the case of $j=5$ we have a super negative cycle in $\left(G, \sigma_{j}\right)$ in which the neighbour of u^{\prime} distinct from u is of degree at least 4 . We note moreover that the positive edges of any super negative cycle in $\left(G, \sigma_{j}\right)$ are negative in σ_{5}^{\prime}. This implies that $v v_{2}$ cannot be a positive edge in these cycles. Thus the second positive edge of any super negative cycle in $\left(G, \sigma_{j}\right), j \leq 4, j \neq i$ is $v v_{1}$. Again using Claim 2 the neighbour of v_{1} in each of these cycles must be at least of degree 4 . Since that is the case for the super negative cycle of (G, σ_{5}^{\prime}) as well, v_{1} must have at least four such neighbours.

Now we consider the case that $\sigma_{5}^{\prime}\left(v v_{1}\right)=\sigma_{5}^{\prime}\left(v v_{2}\right)=-$. In this case then for all j 's, $j=1,2, \ldots, 5$ every super negative has two positive edges incident with v. Thus, first of all u^{\prime} will have at least five 4^{+}-neighbours, secondly, each of the signatures will imply a 4^{+}neighbour for either v_{1} or for v_{2}, giving a total of at least five such neighbours for the two of them.

2.2 3-vertices

Similar to the last subsection, let $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}^{\prime}$ be the five signatures equivalent to σ such that, when restricted on $G-e$, for a fixed edge e, each edge in $G-e$ is negative in exactly one of these five signatures, and σ_{i} 's are minimal for $i=1,2,3,4$. Thus e is the only potentially common negative edge among some of these signatures. As $\left(G, \sigma_{i}\right)$ is a counterexample to Theorem 7, and by the equivalence to Conjecture 6, each (G, σ_{i}) contains at least one super negative cycle, one of which is named C_{i}.

Claim 7. Every 4-cycle of G contains a vertex of degree at least 4.
Proof. Suppose not, let $C=v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4 -cycle that all its vertices have degree at most 3. By the folding lemma, every face of G is of length 5 . Thus C is not a facial cycle,
hence it is a separating cycle. We note that G is a 2-connected graph. This can be observed either by using Theorem 3 and the fact that $\mathcal{S P C}_{d}^{o}$ is vertex transitive. Or by considering a vertex cut x, and applying induction on two subgraphs $G-G_{1}$ and $G-G_{2}$ where G_{1} and G_{2} each has all vertices of a connected component of $G-x$.

Therefore, at least two of $v_{1}, v_{2}, v_{3}, v_{4}$ have neighbours inside of C, and similarly at least two of them have neighbours outside. But since each v_{i} is a 3^{-}-vertex, it follows that they are all 3 -vertices and that precisely two of them have neighbours inside and two of them have neighbours outside. By symmetry, we consider two case: (1) v_{1}, v_{2} have neighbours inside C, (2) v_{1}, v_{3} have neighbours inside C. In case (1), the path $v_{1} v_{4} v_{3} v_{2}$ is part of a facial cycle inside C. As every facial cycle is a 5 -cycle, there is a common neighbour of v_{1} and v_{2}. But that would make triangle with $v_{1} v_{2}$. In case (2), considering the faces inside C formed by $v_{1} v_{2} v_{3}$ and $v_{1} v_{4} v_{3}$, we conclude that the neighbours x, y of v_{1} and v_{3} inside C are themself adjacent and that the edge $x y$ is part of both mentioned faces. That implies that x and y are adjacent 2-vertices. But we have already seen that for adjacent 2-vertices x, y their other neighbours must be of degree at least 6 .

Claim 8. If C is a shortest super negative cycle, then C contains no chord.
Proof. Observe that a chord on a negative cycle creates one positive cycle and one negative cycle. Let C be a shortest super negative cycle with a chord e. Let C^{\prime} be the negative cycle created by C and e. We claim that C^{\prime} is a shorter super negative cycle, contradicting the choice of C. That C^{\prime} is negative is by our choice. That it is shorter is by the fact that there are no parallel edges and e is a chord of C. It remains to show that C^{\prime} is super negative, i.e. it has at most two positive edges. Since C has at most two positive edges, in $C \cup\{e\}$ there are at most three positive edges. But as (G, σ) is switching equivalent to $(G,-)$, every negative cycle (which is an odd cycle of G) has an even number of positive edges, thus C^{\prime} has at most two positive edges.

Claim 9. Let v be a vertex of degree 3 in G and $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, such that both v_{2} and v_{3} have degree 3 . Let σ^{\prime} be a signature equivalent to σ in which every super negative cycle contains $v v_{1}$, noting that such a signature exists by the minimality of (G, σ). If (G, σ^{\prime}) has the extra property that every super negative cycle has two positive edges each of which is incident to at least one of v, v_{2} or v_{3}, then there exists a super negative cycle $C_{\sigma^{\prime}}$ such that every vertex not incident to a positive edge is of degree at least 4 in G.

Proof. Among all the signatures for which the conditions of Claim 9 hold but the conclusion does not, we take σ^{\prime} to be one where the number of super negative cycles of $\left(G, \sigma^{\prime}\right)$ is minimum. To get a contradiction we would like to show that this number must be 0 . Let $N\left(v_{i}\right)=\left\{v, x_{i}, y_{i}\right\}$ for $i=2,3$.

Let $C_{1}, C_{2}, \ldots, C_{r}$ be the set of super negative cycles of $\left(G, \sigma^{\prime}\right)$ and assume that C_{1} is a shortest one among these cycles. Since the conclusion of the claim on (G, σ^{\prime}) does not hold, C_{1} has a vertex z whose two neighbours on C_{1} are connected to it by negative edges (with respect to the signature σ^{\prime}) and $d_{G}(z) \leq 3$. If all edges incident to z are negative, then we consider $\left(G, \sigma^{\prime \prime}\right)$ obtained from (G, σ) by switching at z. We observe that super negative cycles of $\left(G, \sigma^{\prime \prime}\right)$ are exactly those super negative cycles of $\left(G, \sigma^{\prime}\right)$ which do not contain z.

Thus $\left(G, \sigma^{\prime \prime}\right)$ also satisfies the conditions of the claim, but it has less super negative cycles than $\left(G, \sigma^{\prime}\right)$, contradicting the choice of σ^{\prime}.

Since both edges of C_{1} incident to z are negative we must have $d_{G}(z)=3$ and that the third neighbour of z, say z^{\prime}, is adjacent to it with a positive edge. We claim $z z^{\prime}$ belongs to some super negative cycle of $\left(G, \sigma^{\prime}\right)$. Suppose not. Let π be the signature obtained from $\left(G, \sigma^{\prime}\right)$ by switching at z. Then, first of all, there is still no super negative cycle in (G, π) containing $z z^{\prime}$, because for cycles containing this edge the number of positive edges is the same in $\left(G, \sigma^{\prime}\right)$ and (G, π). Secondly, any super negative cycle of $\left(G, \sigma^{\prime}\right)$ containing z has two more positive edges in (G, π). Since we assume every super negative cycle of $\left(G, \sigma^{\prime}\right)$ has two positive edges, those containing z, in particular C_{1}, are not super negative in (G, π). This contradicts with the number of super negative cycles of $\left(G, \sigma^{\prime}\right)$ being minimum. Thus $z z^{\prime}$ is in a super negative cycle, say $C_{i}, 2 \leq i \leq r$.

Next we claim that $z \notin\left\{v, v_{1}\right\}$. We assume to contrary and first consider the case that $z=v$. Recall that $v v_{1}$ is an edge of C_{1}. Between v_{2} and v_{3}, by symmetry, assume $v v_{3} \in C_{1}$. As edges of C_{1} incident to z are negative we have $\sigma^{\prime}\left(v v_{1}\right)=\sigma^{\prime}\left(v v_{3}\right)=-$ and since not all edges incident to z are negative we have $\sigma^{\prime}\left(v v_{2}\right)=+$. Since C_{1} must have two positive edges, and they must be incident to v or v_{2} or v_{3}, the vertex v_{2} should be on C_{1} and, moreover, should be incident to a positive edge of C_{1}. Noting that $v v_{2}$ is not an edge of $C_{1}, x_{2} v_{2} y_{2}$ should be a part of C_{1}. This implies that $v v_{2}$ is a chord of C_{1}, contradicting Claim 8. Next we consider the case that $z=v_{1}$. In this case, since both edges of C_{1} incident to z are negative, and since $v v_{1}$ is an edge of every super negative cycle, $v v_{1}$ is a negative edge. Thus, noting that $z z^{\prime}$ is a positive edge, $z^{\prime} \neq v_{1}$. However, we have already noted that $v_{1} z^{\prime}$ must be in super negative cycles, say C^{\prime}. But then by the assumption on the positive edge of super negative cycles, $z^{\prime} \in\left\{v_{2}, v_{3}\right\}$ in either case then G must have a triangle.

Since $z z^{\prime}$ must be a positive edge of the super negative cycle C_{i} and since all such edges are incident to one of v, v_{2}, v_{3} we must have $z \in\left\{v_{2}, v_{3}, x_{2}, y_{2}, x_{3}, y_{3}\right\}$. By symmetries we consider only two possibilities of $z=v_{2}$ or $z=x_{2}$. First let $z=v_{2}$. If $z^{\prime}=v$, then C_{1} contains the edge $z z^{\prime}$ as a chord and we have contradiction with Claim 8. If $z^{\prime} \in\left\{x_{2}, y_{2}\right\}$, say $z^{\prime}=y_{2}$, then $\sigma^{\prime}\left(v v_{2}\right)=\sigma^{\prime}\left(v_{2} x_{2}\right)=-$, since $v v_{1}$ is also an edge of $C_{1}, v v_{3}$ is not. As all positive edges are incident to v, v_{2} or v_{3} and since there are two such edges in C_{1}, v_{3} is a vertex of C_{1}, but then again $v v_{3}$ is a chord contradicting Claim 8 .

Finally assume $z=x_{2}$ and let $N\left(x_{2}\right)=\left\{v_{2}, x_{2}^{\prime}, x_{2}^{\prime \prime}\right\}$. If $z^{\prime}=x_{2}^{\prime}$ or $z^{\prime}=x_{2}^{\prime \prime}$, since $z z^{\prime}$ belongs to a super negative cycle, positive edges of super negative cycles are incident to v, v_{2} or v_{3} and as G contains no triangle, $z^{\prime}=v_{3}$, in which case $v v_{2} x_{2} v_{3} v$ is a 4-cycle which contains four 3 -vertices, contradicting Claim 7. Therefore, we must have $z^{\prime}=v_{2}$, then $\sigma^{\prime}\left(x_{2} x_{2}^{\prime}\right)=\sigma^{\prime}\left(x_{2} x_{2}^{\prime \prime}\right)=-$ and $x_{2}^{\prime} x_{2} x_{2}^{\prime \prime}$ is a part of C_{1}. If $v v_{2} \in C_{1}$, then $z z^{\prime}$ is again a chord of C_{1}, which contradicts Claim 8. So $v v_{2} \notin C_{1}$, by symmetry we may write C_{1} as $v_{1} v v_{3} x_{3} P_{1} x_{2}^{\prime} x_{2} x_{2}^{\prime \prime} P_{2} v_{1}$. If $\sigma^{\prime}\left(v v_{2}\right)=-$, then again $v v_{2} x_{2}$ creates two cycles from C_{1} one of which is negative. And this negative cycle has at most two positive edges, therefore is a super negative cycle and thus contains the edge $v v_{1}$. By Claim 7, path $v v_{3} x_{3} P_{1} x_{2}^{\prime} x_{2}$ must have length at least 3 , as otherwise together with v_{2} we will have a 4 -cycle all whose vertices are of degree 3. Replacing this path with $v v_{2} x_{2}$ we find a shorter super negative cycle, contradicting the minimality of C_{1}. Next let $\sigma^{\prime}\left(v v_{2}\right)=+$. By the assumption on C_{1}, the fact that every cycle has even number of positive edges, and the fact that the edges of the path
$x_{2} x_{2}^{\prime \prime} P_{2} v_{1}$ are all negative, we must have $\sigma^{\prime}\left(v v_{1}\right)=-$, as otherwise the cycle $v_{1} v v_{2} x_{2} x_{2}^{\prime \prime} P_{2} v_{1}$ has three positive edges. Since positive edges of C_{1} must be incident to v, v_{2} or v_{3}, we have $\sigma^{\prime}\left(v v_{3}\right)=\sigma^{\prime}\left(v_{3} x_{3}\right)=+$. Furthermore $x_{2}^{\prime \prime} P_{2} v_{1}$ has an even number of edges since otherwise $v_{1} v v_{2} x_{2} x_{2}^{\prime \prime} P_{2} v_{1}$ is a shorter super negative cycle. Recall that $z z^{\prime}$ is also in the super negative cycle C_{i}. We consider the following two cases.

1. If $v v_{2} \in C_{i}$, then by our assumption $v v_{3} \notin C_{i}$, thus we may write C_{i} as $v_{1} v v_{2} x_{2} P_{3} v_{1}$, but then the cycle obtained from two paths from x_{2} to v_{1} of C_{1} and C_{i} forms a super negative cycle which does not contain $v v_{1}$ and contains no positive edge, a contradiction.
2. Otherwise $v v_{2} \notin C_{i}$, let $C_{i}=v_{1} v v_{3} y_{3} P_{3} x_{2}^{\prime} x_{2} v_{2} y_{2} P_{4} v_{1}$. But then the cycle $v v_{3} y_{3} P_{3} x_{2}^{\prime} x_{2} v_{2} v$ contains exactly three positive edges, which never happens in $\left(G, \sigma^{\prime}\right)$.

Claim 10. Let v be a vertex of degree 3 in G and $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, such that both v_{2} and v_{3} have degree 3 . Then v_{1} has at least two neighbours of degree at least 4 .

Proof. Let $G^{\prime}=G-v v_{1}$ and $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}^{\prime}$ be the five signatures equivalent to σ such that, when restricted on G^{\prime}, they have no common negative edge. Thus $v v_{1}$ is the only potentially common negative edge among some of these signatures. Each (G, σ_{i}) must contain a super negative cycle using the edge $v v_{1}$. If more than one, then we choose one and name it C_{i}. Let $N\left(v_{i}\right)=\left\{v, x_{i}, y_{i}\right\}$ for $i=2,3$.

We first claim that among all these five signatures, there are at least two, in which, after switching at v, v_{2} and v_{3} (if necessary), we have the following: first of all in each of the four paths $v_{1} v v_{i} x_{i}$ and $v_{1} v v_{i} y_{i}, i=2,3$, there are at least two positive edges, secondly, we do not create any new super negative cycle by the said switching. To see this we consider two cases.

Case 1. Assume $v v_{2}$ and $v v_{3}$ belong to the same signature, say $E_{\sigma_{5}^{\prime}}^{-}$. Then in each of the other signatures, namely $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and $\sigma_{4}, v v_{2}$ and $v v_{3}$ are both positive. If $v v_{1}$ is also positive in at least two of $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$, say σ_{1} and σ_{2}, then these two signatures are the desired ones, without a need for switching.

So we may assume that $v v_{1}$ is negative in σ_{1}, σ_{2} and σ_{3}. We discuss how to do the switching on $\left(G, \sigma_{1}\right)$ in order to build $\left(G, \sigma_{1}^{\prime}\right)$ have the required property. The same approach would work to build $\left(G, \sigma_{2}^{\prime}\right)$ (and $\left(G, \sigma_{3}^{\prime}\right)$ though not needed). To this end, in $\left(G, \sigma_{1}\right)$, we switch at v to have a signature $\sigma_{1}^{\prime \prime}$. As $\sigma_{1}\left(v v_{1}\right)=-$ and $\sigma_{1}\left(v v_{2}\right)=\sigma_{1}\left(v v_{3}\right)=+$, the number of positive edges of a cycle containing $v v_{1}$ does not change. A negative cycle containing both $v v_{2}$ and $v v_{3}$ is a negative cycle of $G-v v_{1}$, and thus must have at least one negative edge in each of $\sigma_{2}, \sigma_{3}, \sigma_{4}$ noting that none of these edges can be in $\left\{v v_{2}, v v_{3}\right\}$. Thus not such a negative cycle is super negative in $\left(G, \sigma_{1}^{\prime \prime}\right)$. Now for $i=2,3$, if one of $v_{i} x_{i}$ or $v_{i} y_{i}$ is negative in $\sigma_{1}^{\prime \prime}$, then we switch at v_{i}. Let σ_{1}^{\prime} be the resulting signature. Since v_{i}, which is of degree three, is adjacent to at least two negative edges in $\left(G, \sigma_{1}^{\prime \prime}\right)$, there is no new super negative cycle in $\left(G, \sigma_{1}^{\prime}\right)$. Moreover, in the final signature, $\left(G, \sigma_{1}^{\prime}\right)$, each of $v_{1} v v_{i} x_{i}$ and $v_{1} v v_{i} y_{i}$ has at least two positive edges as claimed.

Case 2. Assume $v v_{2}$ and $v v_{3}$ do not belong to the same E_{i}^{-}, by symmetries, say $v v_{2} \in E_{1}^{-}$ and $v v_{3} \in E_{2}^{-}$. Then in $\left(G, \sigma_{i}\right), i=1,2$, we could first switch at v (if necessary) to make $v v_{1}$ positive, since exactly one of $v v_{2}$ and $v v_{3}$ is positive, this switching will not create new super negative cycle. One $v v_{1}$ is positive, we could switch at either, both or none of v_{2} or v_{3} to obtain the required conditions.

In conclusion, we have switching equivalent signatures σ_{1}^{\prime} and σ_{2}^{\prime} obtained from σ_{1} and σ_{2} by potentially switching at v, v_{2} and v_{3}, such that all the super negative cycles in (G, σ_{1}^{\prime}) and in $\left(G, \sigma_{2}^{\prime}\right)$ use the edge $v v_{1}$ and their two positive edges are incident to v, v_{2} or v_{3}. Thus by Claim 9 , there exists a super negative cycle C_{1}^{\prime} of $\left(G, \sigma_{1}^{\prime}\right)$ (similarly C_{2}^{\prime} in $\left(G, \sigma_{2}^{\prime}\right)$) such that every vertex not incident to a positive edge is of degree at least 4 in G. Let v_{1}^{\prime} be the neighbour of v_{1} in C_{1}^{\prime} which is distinct from v. Since v_{1} is not adjacent to v_{2} or $v_{3}, v_{1} v_{1}^{\prime} \in E_{1}^{-}$. Then we claim that $d\left(v_{1}^{\prime}\right) \geq 4$. If not, v_{1}^{\prime} is incident to a positive edge of C_{1}^{\prime}, which means $v_{1}^{\prime} \in\left\{x_{2}, y_{2}, x_{3}, y_{3}\right\}$. By symmetries, we assume $v_{1}^{\prime}=x_{2}$ which means $x_{2} v_{2}$ is a positive edge of C_{1}^{\prime}. Since each super negative cycle has length at least 5 and C_{1}^{\prime} uses the edge $v v_{1}$, we have $v v_{2} \notin C_{1}^{\prime}$ and $x_{2} v_{3} \notin C_{1}^{\prime}$, for the latter if it exists. Therefore both $v_{2} y_{2}$ and $v v_{3}$ are edges of C_{1}^{\prime}. Thus one of $v_{3} x_{3}$ or $v_{3} y_{3}$, say $v_{3} x_{3}$, is also an edge of C_{1}^{\prime}. By what we proved above, there are at least two positive edges in $x_{3} v_{3} v v_{1}$ part of C_{1}^{\prime}. But $x_{2} v_{2}$ is also a positive edge of C_{1}^{\prime}, having a total of at least three positive edges, contradicting the fact that C_{1}^{\prime} is a super negative cycle. Therefore $d\left(v_{1}^{\prime}\right) \geq 4$. The second neighbour v_{2}^{\prime} of v having $d\left(v_{2}^{\prime}\right) \geq 4$ can be found by similar argument using $\left(G, \sigma_{2}^{\prime}\right)$.

Claim 11. Let u and v be two adjacent vertices of degree 3 in G. Assume σ^{\prime} is a signature equivalent to σ, such that every super negative cycle of (G, σ^{\prime}) contains $u v$ and contains two positive edges which are incident to either u or v. Then there exists a super negative cycle in which every vertex not incident to a positive edge is of degree at least 4 in G.

Proof. As in the proof of Claim 9 among all the signatures for which the conditions of Claim 11 hold but the conclusion does not, we take σ^{\prime} to be one where the number of super negative cycles of $\left(G, \sigma^{\prime}\right)$ is minimum, and, moreover, we take σ^{\prime} to be a minimal signature. Let $N(u)=\left\{u_{1}, u_{2}\right\}$ and $N(v)=\left\{v_{1}, v_{2}\right\}$.

Let $C_{1}, C_{2}, \ldots, C_{r}$ be the super negative cycles of $\left(G, \sigma^{\prime}\right)$, and assume w.l.o.g. that $\left|C_{1}\right| \leq$ $\left|C_{j}\right|, 2 \leq j \leq r$. If the conclusion does not hold, then C_{1} has a vertex z whose two neighbours on C_{1} are connected to it by negative edges and $d_{G}(z) \leq 3$. Minimality of σ^{\prime} implies that $d_{G}(z)=3$ and that the third neighbour of z, say z^{\prime}, is adjacent to it with a positive edge. Furthermore, $z z^{\prime}$ is in a super negative cycle, say $C_{i}, 2 \leq i \leq r$, as otherwise by switching at z we have less super negative cycles.

As each of u and v is incident to a positive edge of $C_{1}, z \notin\{u, v\}$. Considering the super negative cycle $C_{i}, z z^{\prime}$ is a positive edge, thus by our assumption one of the end point is u or v. As $z \notin\{u, v\}$, we have $z^{\prime} \in\{u, v\}$ and hence $z \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$. W.l.o.g. let $z=u_{1}$ and $z^{\prime}=u$. But then $u u_{1}$ is a chord of C_{1} and we have a contradiction with Claim 8 .

Claim 12. Let v_{1}, v_{2}, v_{3} and v_{4} be four vertices of degree 3 , and σ^{\prime} be a signature equivalent to σ such that the following holds.

1. v_{i} is adjacent to $v_{i+1}, i=1,2,3$.
2. $\sigma^{\prime}\left(v_{1} v_{2}\right)=-, \sigma^{\prime}\left(v_{2} v_{3}\right)=\sigma^{\prime}\left(v_{3} v_{4}\right)=+$.
3. Each of v_{2} and v_{3} is incident to exactly two positive edges.
4. Either v_{1} is incident to two positive edges or v_{4} is incident to three positive edges.

5 . Every super negative cycle of $\left(G, \sigma^{\prime}\right)$ contains the positive edge $v_{2} v_{3}$.
6. The other positive edge of any other super negative cycle must be incident to one of the $v_{i}(i \in\{1,2,3,4\})$.

Then there exists a super negative cycle of $\left(G, \sigma^{\prime}\right)$ in which every vertex not incident to a positive edge is of degree at least 4 in G.

Figure 2: Four vertices of degree 3 in Claim 12
Proof. Again among all the signatures for which the conditions of Claim 12 hold but the conclusion does not, we take σ^{\prime} to be one where the number of super negative cycles of (G, σ^{\prime}) is minimum. Let the other two neighbours of v_{i} be x_{i}, y_{i} for $i=1,4$, and the third neighbour of v_{j} be x_{j} for $j=2,3$, as shown in Figure 2. Suppose to the contrary that $C_{1}, C_{2}, \ldots, C_{r}$ are super negative cycles of $\left(G, \sigma^{\prime}\right)$ and assume that C_{1} is a shortest one among these cycles. Thus C_{1} has a vertex z whose two neighbours on C_{1} are connected to it by negative edges and $d_{G}(z) \leq 3$. It follows that $d_{G}(z)=3$ and that the third neighbour of z, say z^{\prime}, is a positive neighbour, moreover, $z z^{\prime}$ is in a super negative cycle, say $C_{l}, 2 \leq l \leq r$.

Since in $\left(G, \sigma^{\prime}\right)$ every super negative cycle contains $v_{2} v_{3}$ as a positive edge, $z \notin\left\{v_{2}, v_{3}\right\}$. And since each positive edge of any super negative cycle is incident to some v_{i}, we have $z \in\left\{v_{1}, v_{4}, x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{4}\right\}$. By symmetries we consider following possibilities.

1. $z=v_{1}$. Since $\sigma^{\prime}\left(v_{1} v_{2}\right)=-, v_{1} v_{2} \in C_{1}$ and at least one of $v_{1} x_{1}, v_{1} y_{1}$ is negative. By assumption v_{4} is incident to three positive edges, and thus $v_{4} \notin C_{1}$. This contradicts with the fact that positive edges of every super negative are incident to v_{i}.
2. $z=v_{4}$. Since $\sigma^{\prime}\left(v_{3} v_{4}\right)=+$, and edges in C_{1} incident to z are both negative, we have that $v_{4} x_{4}, v_{4} y_{4} \in C_{1}$ and $\sigma^{\prime}\left(v_{4} x_{4}\right)=\sigma^{\prime}\left(v_{4} y_{4}\right)=-$, and hence $z^{\prime}=v_{3}$. By the original assumption of the claim, $\sigma^{\prime}\left(v_{1} x_{1}\right)=\sigma^{\prime}\left(v_{1} y_{1}\right)=+$. Recall that every super negative cycle of (G, σ^{\prime}) must contain $v_{2} v_{3}$. But any cycle that contains both $v_{2} v_{3}$ and $v_{3} v_{4}$ must contain at least one more positive edge. This is a contradiction with the fact that $z z^{\prime}$ is in a super negative cycle.
3. $z=x_{2}$. Since $\sigma^{\prime}\left(v_{2} x_{2}\right)=+$ and $v_{2} x_{2} \notin C_{1}$ we must have $v_{1} v_{2} \in C_{1}$. But then $v_{2} x_{2}$ is a chord of C_{1} which contradicts the Claim 8 .
4. $z=x_{3}$. Since the super negative cycle C_{l} contains the positive edges $z z^{\prime}$ and $v_{2} v_{3}$, it contains no other positive edges, in particular $v_{2} x_{2} \notin C_{l}$. Thus $v_{1} \in C_{l}$. So each of v_{1} and x_{3} is incident with at least two negative edges, and they are not connected by a negative edge, since otherwise $v_{1} v_{2} v_{3} x_{3}$ induces a negative 4 -cycle. Recall that if a vertex of degree 3 is incident with at least two negative edges, then a switching at it may eliminate some super negative cycle, but will never create a new one. Thus if we switch at both v_{1} and x_{3}, then the remaining set of super negative cycles all must still contain the edge $v_{2} v_{3}$. But then in the new signature all edges incident to v_{2} and v_{3}
are positive, which implies that every cycle containing $v_{2} v_{3}$ has at least three positive edges and there can be no super negative cycle.
5. $z=x_{4}$. First suppose $v_{4} x_{4} \in C_{1}$, then $\sigma^{\prime}\left(v_{4} x_{4}\right)=-$ and by the assumption $\sigma^{\prime}\left(v_{1} x_{1}\right)=$ $\sigma^{\prime}\left(v_{1} y_{1}\right)=+$. Therefore $v_{3} v_{4} \notin C_{1}$, since otherwise there will be three positive edges in C_{1}. However in this case $v_{3} v_{4}$ is a chord of C_{1}, this contradicts the Claim 8. Now suppose $v_{4} x_{4} \notin C_{1}$, then $z^{\prime}=v_{4}$ and $\sigma^{\prime}\left(v_{4} x_{4}\right)=+$. We now consider the super negative cycle C_{l} containing $v_{4} x_{4}\left(=z z^{\prime}\right)$. As it must contain the positive edge $v_{2} v_{3}$ as well, it can have no other positive edge. In particular, $v_{3} v_{4}$ is not in C_{l}. This implies that first of all $v_{4} y_{4} \in C_{l}$ and, secondly, that $v_{4} y_{4}$ is a negative edge in $\left(G, \sigma^{\prime}\right)$. But then, by the assumption of $\sigma^{\prime}\left(v_{1} x_{1}\right)=\sigma^{\prime}\left(v_{1} y_{1}\right)=+$, the cycle C_{l} contains three positive edges, contradiction with C_{l} being a super negative cycle because it must contain at least one of $v_{1} x_{1}, v_{1} y_{1}$ and $v_{2} x_{2}$, all of whom are positive.
6. $z=x_{1}$. If $v_{1} x_{1}=v_{1} z$ is in C_{1}, then it must be a negative edge of C_{1}. Thus v_{1} is incident to at most one positive edge. The assumption of the claim implies that all edges incident to v_{4} are positive. That implies $v_{4} \notin C_{1}$ as otherwise C_{1} will have at least three positive edges. As each positive edge of C_{1} should be incident to one of v_{1}, v_{2}, v_{3}, the second positive edge of C_{1} can only be either $v_{1} y_{1}$ or $v_{2} x_{2}$, in either case it follows that $v_{1} v_{2}$ is not an edge of C_{1}, and hence it is a chord of C_{1} which contradicts Claim 8 .
So we may assume $v_{1} x_{1} \notin C_{1}$. This implies that $z^{\prime}=v_{1}$ and that $\sigma^{\prime}\left(v_{1} x_{1}\right)=+$. As C_{1} has no chord, $v_{1} \notin C_{1}$. This implies that $v_{2} x_{2} \in C_{1}$ and since $\sigma^{\prime}\left(v_{2} x_{2}\right)=+$, it is the only other positive edge of C_{1}. Thus $v_{3} v_{4} \notin C_{1}$ and hence, $v_{3} x_{3} \in C_{1}$. Furthermore, $x_{1} \neq x_{3}$, because otherwise $v_{1} v_{2} v_{3} x_{3} v_{1}$ is a 4 -cycle where all vertices are of degree 3 , contradicting Claim 7. We now claim that $x_{1} x_{2} \in C_{1}$. If not, then the part of C_{1} which connects $x_{1} v_{2}$ and is of even length is of length at least 4 , but then in the union of C_{1} and the path $x_{1} v_{1} v_{2}$ we will find a shorter super negative cycle. Moreover, we observe that $\sigma^{\prime}\left(x_{1} x_{2}\right)=-$. We now consider the cycle C_{1}^{\prime} obtained from C_{1} by replacing $x_{1} x_{2} v_{2}$ with $x_{1} v_{1} v_{2}$. This cycle is also a super negative cycle of (G, σ^{\prime}) and is of the same length as C_{1}, i.e. it is one of the shortest super negative cycles of $\left(G, \sigma^{\prime}\right)$. Hence we could restart the analysis with C_{1}^{\prime}, based on which we conclude that there must be a vertex z_{1} of C_{1}^{\prime} which is of degree three in G, and both edges of C_{1}^{\prime} incident to z_{1} are negative. Then we conclude that $z_{1} \in\left\{x_{1}, y_{1}\right\}$. The case $z_{1}=y_{1}$ is not possible as otherwise C_{1}^{\prime} contains a chord, and the case $z_{1}=x_{1}$ is not possible because $\sigma^{\prime}\left(v_{1} x_{1}\right)=+$.

Claim 13. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vertices of degree 3 in G such that v_{i} is adjacent to v_{i+1}, $i=1,2,3$, where other neighbours of v_{i} 's are labelled as in Figure 2. Then either each of x_{2} and x_{3} has at least three neighbours of degree at least 4 , or one of x_{2} and x_{3} has at least four neighbours of degree at least 4.

Proof. Let $G^{\prime}=G-v_{2} v_{3}$ and let $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}$ be the five signatures equivalent to σ such that, when restricted on G^{\prime}, they have no common negative edge. So $v_{2} v_{3}$ can be the only common negative edge among some of these signatures. Each (G, σ_{i}) must contain a super negative cycle using the edge $v_{2} v_{3}$, one of which is named C_{i}.

In each signature $\sigma_{i}, i=1, \ldots, 5$, if $v_{2} x_{2}$ and $v_{1} v_{2}$ have the same sign, then by switching at v_{2} and v_{3} (if necessary), we can either be sure that all the super negative cycles have exactly two positive edges and that each of them is incident to either v_{2} or v_{3}. Then by Claim 11, there exists a super negative cycle C_{1} such that every vertex not incident to a positive edge is of degree at least $4 \mathrm{in} G$. It is easy to observe that in at least three of the signatures $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}$, say σ_{1}, σ_{2}, and σ_{3}, the edges $v_{2} x_{2}$ and $v_{1} v_{2}$ have the same sign. Since we only switch at v_{2} and v_{3}, in each of the signatures σ_{1}, σ_{2}, and σ_{3}, either v_{1} or x_{2} has a negative neighbour of degree at least 4 in each of $\left(G, \sigma_{1}\right),\left(G, \sigma_{2}\right)$, and $\left(G, \sigma_{3}\right)$. If in each of $\left(G, \sigma_{4}\right)$ and $\left(G, \sigma_{5}\right)$ either the pair $v_{1} v_{2}$ and $v_{2} x_{2}$ have the same sign or the pair $v_{3} v_{4}$ and $v_{3} x_{3}$ have the same sign, then in total v_{1} and x_{2}, as well as v_{4} and x_{3} have five neighbours that are of degree at least 4 in G. As either v_{1} or v_{4} can have at most two such neighbours, each of x_{2} and x_{3} must have at least 3 of them. We note that the conclusion holds.

Hence we suppose $\sigma_{4}\left(v_{1} v_{2}\right)=-\sigma_{4}\left(v_{2} x_{2}\right)$ and $\sigma_{4}\left(v_{3} v_{4}\right)=-\sigma_{4}\left(v_{3} x_{3}\right)$. Since we can switch at either v_{2} or v_{3} (if necessary), we assume $v_{2} v_{3}$ is positive. If $\sigma_{4}\left(v_{2} x_{2}\right)=\sigma_{4}\left(v_{3} x_{3}\right)$, then we first make $v_{1} v_{2}$ and $v_{3} v_{4}$ to be negative by switching at v_{2} and v_{3} (if necessary). If at least one of $v_{1} x_{1}$ and $v_{1} y_{1}$ (resp. $v_{4} x_{4}$ and $v_{4} y_{4}$) is negative, then after switching at v_{1} (resp. v_{4}), we will not create any new super negative cycle. Otherwise, both $v_{1} x_{1}$ and $v_{1} y_{1}$ (resp. $v_{4} x_{4}$ and $\left.v_{4} y_{4}\right)$ are positive. In either case, each cycle containing $v_{2} v_{3}$ has at least three positive edges, which is a contradiction. Therefore, we may suppose $\sigma_{4}\left(v_{2} x_{2}\right)=-\sigma_{4}\left(v_{3} x_{3}\right)$, and w.l.o.g. assume $\sigma_{4}\left(v_{2} x_{2}\right)=+$. By switching at v_{1}, if necessary, we can make sure that v_{1} is incident to at least two positive edges, let the obtained signature be σ_{4}^{\prime}. Then the positive edges of each super negative cycle in $\left(G, \sigma_{4}^{\prime}\right)$ must be incident to either v_{1} or v_{2}. Since $\sigma_{4}^{\prime}\left(v_{3} v_{4}\right)=+$, every super negative cycle of $\left(G, \sigma_{4}^{\prime}\right)$ contains the edge $v_{3} x_{3}$. By Claim 12, there exists a super negative cycle such that every vertex not incident to a positive edge is of degree at least 4. Therefore, either x_{3} has a negative neighbour (in $\left(G, \sigma_{4}\right)$) of degree at least 4 , or x_{3} is adjacent to one of x_{1} and y_{1}. If we switch at v_{2} and v_{3}, by symmetry, we have that either x_{2} has a negative neighbour (in $\left(G, \sigma_{4}\right)$) of degree at least 4 , or x_{2} is adjacent to one of x_{4} and y_{4}. Now it suffices to consider two cases based on σ_{5}.

Case 1: Either $\sigma_{5}\left(v_{1} v_{2}\right)=\sigma_{5}\left(v_{2} x_{2}\right)$ or $\sigma_{5}\left(v_{3} v_{4}\right)=\sigma_{5}\left(v_{3} x_{3}\right)$. Applying the same argument as before that for each $\left(G, \sigma_{i}\right), i=1,2,3$, either v_{1} or x_{2} has a negative neighbour of degree at least 4. Similarly either v_{4} or x_{3} have a negative neighbour of degree at least 4 . Since $d\left(x_{1}\right)=d\left(x_{4}\right)=3$, both x_{2} and x_{3} have at least two neighbours of degree at least 4 . Suppose the conclusion of the claim does not hold, assume x_{2} has at most two neighbours of degree at least 4, w.l.o.g. assume x_{2} is adjacent to x_{4}. Since x_{3} can have at most three neighbours of degree at least $4, x_{3}$ is adjacent to either x_{1} or y_{1}, which implies x_{2} has at least three neighbours of degree at least 4 , a contradiction.

Case 2: $\sigma_{5}\left(v_{1} v_{2}\right)=-\sigma_{5}\left(v_{2} x_{2}\right)$ and $\sigma_{5}\left(v_{3} v_{4}\right)=-\sigma_{5}\left(v_{3} x_{3}\right)$. Applying the same argument as for σ_{4}, either x_{2} has a negative neighbour (in $\left(G, \sigma_{5}\right)$) of degree at least 4 , or x_{2} is adjacent to one of x_{4} and y_{4}. Similarly either x_{3} has a negative neighbour (in $\left(G, \sigma_{5}\right)$) of degree at least 4 , or x_{3} is adjacent to one of x_{1} and y_{1}. Again we suppose the conclusion does not hold, and assume x_{2} has at most two neighbours of degree at least 4. W.l.o.g. let x_{2} be adjacent to x_{4} and $\sigma_{4}\left(x_{2} x_{4}\right)=-$. Since x_{3} can have at most three neighbours of degree at least 4 , w.l.o.g. we assume x_{3} is adjacent to x_{1} and $\sigma_{4}\left(x_{1} x_{3}\right)=-$. Therefore, both x_{2} and x_{3} have at least two neighbours of degree at least 4 . Hence, it must be the case that x_{2} is adjacent
to y_{4} and $\sigma_{5}\left(x_{2} y_{4}\right)=-$, which implies that x_{3} has three neighbours of degree at least 4 . But then x_{3} must be adjacent to y_{1} and $\sigma_{5}\left(x_{3} y_{1}\right)=-$, which implies x_{2} has three neighbours of degree at least 4 , a contradiction.

2.3 Discharging

In the following, we will use the discharging technique to get a contradiction. The initial charge ω on $V(G) \cup F(G)$ is defined as follows: $\omega(x)=d(x)-4$ for every $x \in V(G) \cup F(G)$. By the relation $\sum_{v \in V(G)} d(v)=\sum_{f \in F(G)} d(f)=2|E(G)|$ and Euler's formula, the initial total charge of the vertices and faces satisfies the following:

$$
\sum_{x \in V(G) \cup F(G)} \omega(x)=\sum_{x \in V(G) \cup F(G)}(d(x)-4)=-4|V(G)|+4|E(G)|-4|F(G)|=-8 .
$$

Since any discharging procedure preserves the total charge of G, after applying appropriate discharging rules to change the initial charge ω to the final charge ω^{*} such that $\omega^{*}(x) \geq 0$ for every $x \in V(G) \cup F(G)$, we can have the contradiction below:

$$
0 \leq \sum_{x \in V(G) \cup F(G)} \omega^{*}(x)=\sum_{x \in V(G) \cup F(G)} \omega(x)=-8,
$$

and thus completes the proof.
For brevity, we call a 4^{+}-vertex $b i g$, and a 3^{-}-vertex small. For a vertex v, by $n_{k}(v)$ we denote the number of k-neighbours of v and by $n_{b}(v)$ the number of big neighbours of v. Given a face $f, n_{k}(f)$ is the number of k-vertices incident to f. For $x, y \in V(G) \cup F(G)$, let $\tau(x \rightarrow y)$ denote the charge transferring from x to y. A pair of f and v_{2} where f is a 5 -face $f=\left[v_{1} v_{2} \cdots v_{5} v_{1}\right]$ is said to be special if following conditions hold: i. $n_{b}\left(v_{2}\right)=3$, ii. v_{2} is not adjacent to any 3 -vertex, $i i i$. $d\left(v_{1}\right)=d\left(v_{3}\right)=2$, finally $i v . v_{4}$ ad v_{5} are big vertices. We will do discharging in three stages. Below are our needed discharging rules for first stage:
(R1) Let $d(v) \geq 5$. If $n_{b}(v) \geq 4$, then v sends 1 to each adjacent small vertex. Otherwise if $n_{3}(v)+n_{b}(v) \geq 4$, then v sends 1 to each 2-neighbour, and $\frac{d(v)-4-n_{2}(v)}{n_{3}(v)}$ to each 3-neighbour. (R2) Let $d(f)=5$. If $n_{3^{-}}(f)=1$, then f sends 1 to the incident small vertex.

After the first round of discharging, each 3 -vertex which is adjacent to a 5^{+}-vertex v with $n_{b}(v) \geq 4$ or incident to a face f with $n_{3^{-}}(f)=1$, has a non-negative charge. If a 2 -vertex is incident or adjacent to at least two of the following, then it would end up with a non-negative charge: face with only one small vertex or 5^{+}-vertex with four 3^{+}-neighbours. We call these small vertices rich. In the following rules, if not specified, the small vertices that we consider are those who remain negative, and refer to them as poor vertices. We use 5^{i}-face to denote 5 -face incident to i poor vertices. A 3 -vertex is called $3_{k, l}$-vertex, if it is adjacent to k vertices each of which has at least three big neighbours, at least two 3-neighbours, and is incident to $l 5^{2}$-faces.
(R3) For the 5^{+}-vertex v such that $n_{b}(v) \leq 3$ and $n_{3}(v)+n_{b}(v) \leq 3, v$ sends $\frac{d(v)-4}{n_{2}(v)}$ to each 2-neighbour.
(R4) Suppose f is a non-special 5 -face. Then
(R4.1) If f is a 5^{1}-face, then f sends 1 to incident small vertex;
(R4.2) If f is a 5^{2}-face, then f sends $\frac{1}{2}$ to each small vertex incident to f.
(R4.3) If f is a 5^{3}-face then
(R4.3.1) If $n_{2}(f)=2$ and $n_{3}(f)=1$, then f sends $\frac{1}{2}$ to each incident 2-vertex.
(R4.3.2) If $n_{2}(f)=1$ and $n_{3}(f)=2$, then f sends $\frac{1}{2}$ to the incident 2-vertex. First suppose f is incident to a $3_{k, l}$-vertex. If $k+l \geq 2$, then f sends $\frac{1}{2}$ to the other 3 -vertex; If $k=1$ and $l=0$, then f sends $\frac{1}{6}$ to $3_{1,0}$-vertex and $\frac{1}{3}$ to the other 3 -vertex; If $k=0$ and $l=1$, and moreover it is incident to a 5^{3}-face which contains no 2 -vertex, then f sends $\frac{1}{6}$ to this $3_{0,1}$-vertex, and $\frac{1}{3}$ to the other 3 -vertex. Otherwise, f sends $\frac{1}{4}$ to each incident 3 -vertex.
(R4.4) If f is a 5^{3}-face such that $n_{3}(f)=3$ or a $5^{4^{+}}$-face, then f does not give charge to any incident $3_{k, l}$-vertex such that $k+l \geq 2$, but sends $\frac{1}{6}$ to each incident $3_{1,0}$-vertex, then distribute its remaining charge equally among the other incident 3 -vertices.

A charge pot at (F, v) is a set of consecutively adjacent special faces whose special vertex is v, as shown in Figure 3, noting that the number of face is unspecified. After carrying out (R1)-(R4), we apply (R5) as follows.

Figure 3: Charge pot
(R5) Each special face contributes 1 to its charge pot. These charges then will be redistributed to 2 -vertices of the special pot as follows. If a 2 -vertex is in a unique charge pot, then it will take as much charge as needed until its final charge is non negative. Assume a 2-vertex v is in two different charge pots, say $\left(F_{1}, v_{1}\right)$ and $\left(F_{2}, v_{2}\right)$ (where v_{1} and v_{2} are the two neighbours of v). Suppose v_{i} has given a charge of $c_{i}, c_{i}<1$, to v. Then $\left(F_{i}, v_{i}\right)$ gives a charge of $1-c_{i}$ to v.

First, we observe that the following facts are true.
Fact 1. Let $d(v)=2$ and $N(v)=\left\{v_{1}, v_{2}\right\}$, then $n_{b}\left(v_{1}\right)+n_{b}\left(v_{2}\right)+\frac{n_{3}\left(v_{1}\right)+n_{3}\left(v_{2}\right)}{2} \geq 6$.
Proof. By Claim 3, each of v_{1} and v_{2} has a big neighbour where the connecting edge is in $E_{\sigma_{5}^{\prime}}^{-}$. By Claim 4, in each of $\left(G, \sigma_{i}\right), i=1,2,3,4$, either v_{1} or v_{2} has a big neighbour connected to it by an edge in $E_{\sigma_{i}}^{-}$, or each of v_{1} and v_{2} has a 3 -neighbour connected to them by an edge in $E_{\sigma_{i}}^{-}$. Therefore, $n_{b}\left(v_{1}\right)+n_{b}\left(v_{2}\right)+\frac{n_{3}\left(v_{1}\right)+n_{3}\left(v_{2}\right)}{2} \geq 6$.

Fact 2. A non-special 5 -face sends charge at least $\frac{1}{2}$ to its incident 2-vertex.
In what follows, we are going to show that $\omega^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$ and the charge pot is also non-negative. Let $v \in V(G)$.

Case 1. $d(v) \geq 5$. If $n_{b}(v) \geq 4$, then $\omega^{*}(v) \geq d(v)-4-(d(v)-4)=0$ by (R1). Or if $n_{3}(v)+n_{b}(v) \geq 4$, then $\omega^{*}(v) \geq d(v)-4-n_{2}(v)-n_{3}(v) \times \frac{d(v)-4-n_{2}(v)}{n_{3}(v)}=0$ by (R1). Otherwise, by (R3), $\omega^{*}(v) \geq d(v)-4-n_{2}(v) \times \frac{d(v)-4}{n_{2}(v)}=0$.

Case 2. $d(v)=4$. Since 4 -vertex v does not participate in the discharging procedure, $\omega^{*}(v)=\omega(v)=d(v)-4=0$.

Case 3. $d(v)=3$. If v is rich, then it has non-negative charge. Suppose v is not rich. If v is incident to at least one 5^{1}-face, then $\omega^{*}(v) \geq 3-4+1=0$ by (R4.1). Otherwise let $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, denote by f_{i} the face that is incident to v such that $v v_{i}$ and $v v_{i+1}$ are its two boundary edges (indices modulo 3).

If v is adjacent to one 2-vertex, say $d\left(v_{1}\right)=2$, then by Claim 6, v_{2} or v_{3} has at least 4 big neighbours or in total they have at least 5 big neighbours. Since v is poor, w.l.o.g., assume $n_{b}\left(v_{2}\right)=3$ and $n_{b}\left(v_{3}\right)=2$. And the other neighbour of v_{1}, say v_{1}^{\prime} has at least 4 big neighbours. Since $n_{3}\left(v_{2}\right)+n_{b}\left(v_{2}\right) \geq 4, f_{1}$ is incident to at most two poor vertices possibly v and v_{1}, thus $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{2}$ by (R4.2). If $d\left(v_{3}\right)=3$, then f_{3} is a 5^{2}-face, and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{2}$ by (R4.2). Thus $\omega^{*}(v) \geq-1+2 \times \frac{1}{2}=0$. Suppose $d\left(v_{3}\right) \geq 4$. Let v_{2}^{\prime} and v_{3}^{\prime} be the other two vertices of f_{2}. By Claim 5 and Claim 6, either both of them have degree at least 3 or one of them has degree 2 and the other has degree at least 4. Therefore, either $\tau\left(v_{2} \rightarrow v\right)=\frac{1}{2}$ by (R1) or f_{2} is a 5^{2}-face and $\tau\left(f_{2} \rightarrow v\right)=\frac{1}{2}$, both imply that $\omega^{*}(v) \geq-1+2 \times \frac{1}{2}=0$.

Suppose now v is not adjacent to any 2-vertices.
Case 3.1. v is also not adjacent to any 3 -vertex. Then by the fact that v is poor, Claim 5 and Claim 6, for $i=1,2,3, f_{i}$ is either incident to three 3 -vertices or it is a 5^{2}-face, therefore $\tau\left(f_{i} \rightarrow v\right) \geq \frac{1}{3}$ by (R4.2) and (R4.4), $\omega^{*}(v) \geq-1+3 \times 1 / 3=0$.

Case 3.2. v is adjacent to exactly one 3 -vertex, say v_{1}. Then again f_{2} is either incident to three 3 -vertices or f_{2} is a 5^{2}-face, therefore $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ by (R4.2) and (R4.4). Let $f_{1}=v v_{1} x_{1} y_{1} v_{2}$ and $f_{3}=v v_{1} x_{2} y_{2} v_{3}$. Since $f_{i}, i=1,2,3$, cannot contain two 2 -vertices, each of them sends at least $\frac{1}{6}$ to v by (R4.3.2) and (R4.4). First if v is a $3_{k, l}$-vertex, such that $k+l \geq 2$, then $\omega^{*}(v) \geq-1+2 \times \frac{1}{2}=0$ by (R1) and (R4.2). For cases that $k+l \leq 1$, if $k=1$, then we have $\omega^{*}(v) \geq-1+\frac{1}{2}+\frac{1}{3}+2 \times \frac{1}{6}=\frac{1}{6}$ by (R1). If $l=1$, we consider following cases. If v is incident to a 5^{3}-face which contains no 2 -vertex, then $\omega^{*}(v) \geq-1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=0$ by (R4.2) and (R4.3.2). Therefore we could always assume that $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{4}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{4}$ by (R4), which implies that $\omega^{*}(v) \geq-1+\frac{1}{2}+2 \times \frac{1}{4}=0$ by (R4.2). Thus $k=l=0$, we suppose f_{1}, f_{3} are $5^{3^{+}}$-faces and f_{2} is a 5^{3}-face that contains no 2 -vertex. By (R4), we still have that $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{4}$ and $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{4}$.

1. First suppose both f_{1} and f_{3} do not contain any 2 -vertex, if they are both 5^{3}-faces, then both of them send a charge of $\frac{1}{3}$ to v by (R4.4) and thus $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$. So let f_{1} be a 5^{4}-face, then by Claim 13, $n_{b}\left(x_{2}\right)=3$. Then when $d\left(y_{2}\right)=3, \tau\left(f_{3} \rightarrow v\right) \geq \frac{2}{3}$ by (R4.4), and when $d\left(y_{2}\right) \geq 4, \tau\left(f_{3} \rightarrow v\right)=\frac{1}{2}$ by (R4.2). Thus $\omega^{*}(v) \geq-1+\frac{1}{3}+\frac{1}{2}+\frac{1}{4}=\frac{1}{12}$.
2. Either $d\left(x_{1}\right)=2$ or $d\left(x_{2}\right)=2$, by symmetry, we assume $d\left(x_{1}\right)=2$. Then by Claim 6, x_{2} has at least three big neighbours and y_{1} has at least four big neighbours. If $d\left(y_{2}\right)=3$,
then by (R4.4), $\tau\left(f_{3} \rightarrow v\right) \geq \frac{2}{3}$, and thus $\omega^{*}(v) \geq-1+\frac{1}{3}+\frac{2}{3}+\frac{1}{3}=\frac{1}{3}$ by (R4.3.2). Assume now that $d\left(y_{2}\right)=2$. If $n_{3}\left(x_{2}\right) \geq 2$ or $n_{b}\left(x_{2}\right) \geq 4$, then by (R4.3.2) and (R4.2), each of f_{1} and f_{3} will send v at least $\frac{1}{3}$, thus $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$. So suppose $n_{3}\left(x_{2}\right)=1$ and $n_{b}\left(x_{2}\right)=3$. Then by Claim 4, $n_{b}\left(v_{3}\right) \geq 2$ and f_{3} is a 5^{2}-face, which contradicts with our assumption that f_{3} is a $5^{3^{+}}$-face.
3. Either $d\left(y_{1}\right)=2$ or $d\left(y_{2}\right)=2$, by symmetry, we assume $d\left(y_{1}\right)=2$. Then $d\left(x_{1}\right) \geq 4$. And we know that $d\left(x_{2}\right) \geq 3$. By Claim 4 and the fact that f_{1} is a $5^{3^{+}}$-face, $n_{b}\left(x_{1}\right)=3$ or $n_{b}\left(v_{2}\right)=3$. First suppose $n_{b}\left(v_{2}\right)=3$, then by (R1), $\tau\left(v_{2} \rightarrow v\right) \geq \frac{1}{2}$ and thus $\omega^{*}(v) \geq-1+\frac{1}{2}+2 \times \frac{1}{4}+\frac{1}{3}=\frac{1}{3}$. Suppose now that $n_{b}\left(x_{1}\right)=3$, then $n_{b}\left(v_{2}\right)=1$ since otherwise y_{1} is rich. By Claim 4. $n_{3}\left(x_{1}\right) \geq 2$. By (R4.3.2), $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$. If f_{3} is also a 5^{3}-face, then we have $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Otherwise f_{3} is a 5^{4}-face such that all the small vertices have degree 3, then by Claim 13, the third neighbour of x_{2} has at least three big neighbours. The third face of v_{1} is either a 5^{2}-face or a 5^{3}-face with no 2 -vertex, therefore, either v_{1} is a $3_{1,1}$-vertex or both v_{1} and x_{2} are $3_{1,0}$-vertices, by (R4.4), we always have $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. And $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$.

Case 3.3. v is adjacent to two 3 -vertices, say v_{2} and v_{3}. Let the other two vertices of f_{i} be x_{i} and y_{i} in the clockwise order, $i=1,2,3$. By Claim 10, $n_{b}\left(v_{1}\right) \geq 2$. Again, since $f_{i}, i=1,2,3$, cannot contain two 2 -vertices, each of them sends at least $\frac{1}{6}$ to v by (R4.3.2) and (R4.4). Similarly if v is a $3_{k, l}$-vertex, such that $k+l \geq 2$ or $k=1$, then $\omega^{*}(v) \geq 0$. Suppose $k=0$ and $l=1$, if v is incident to a 5^{3}-face which contains no 2 -vertex, then $\omega^{*}(v) \geq-1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=0$ by (R4.2) and (R4.3.2). By (R4.3.2), f_{i} sends charge at least $\frac{1}{4}$ to v, except f_{2} is a 5^{5}-face.

If one of x_{2} and y_{2} has degree 2, then by Claim 6, f_{2} is a 5^{2}-face. Then $\omega^{*}(v) \geq-1+$ $\frac{1}{2}+2 \times \frac{1}{4}=0$ by (R4.2). If one of x_{2} and y_{2} has degree 3 , say $d\left(x_{2}\right)=3$, then by Claim 13 , either one of v_{1} or y_{1} has at least four big neighbours, or both of them have at least three big neighbours. Therefore either f_{1} is a 5^{2}-face, or $n_{b}\left(v_{1}\right) \geq 3$ and $n_{3}\left(v_{1}\right) \geq 2$, both imply that $\omega^{*}(v) \geq-1+\frac{1}{2}+2 \times \frac{1}{4}=0$. Therefore, we may assume both x_{2} and y_{2} have degree at least four, and $\tau\left(f_{2} \rightarrow v\right) \geq \frac{1}{3}$ by (R4.4).

If either y_{1} or x_{3} has degree at most 3 , by symmetry say $d\left(y_{1}\right) \leq 3$, then by Claim 6 and Claim 13, either f_{2} is a 5^{2}-face which implies $\omega^{*}(v) \geq-1+\frac{1}{2}+2 \times \frac{1}{4}=0$ by (R4.2), or both v_{1} and x_{2} have at least three big neighbours. If $n_{3}\left(v_{1}\right) \geq 2$, then $\tau\left(v_{1} \rightarrow v\right) \geq \frac{1}{2}$ by (R1) and thus $\omega^{*}(v)>0$. So we suppose $n_{3}\left(v_{1}\right)=1$ and $n_{b}\left(v_{1}\right)=3$. Then $d\left(x_{1}\right) \geq 4$ and $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$. If $d\left(x_{3}\right) \leq 3$, then similarly either f_{2} is 5^{2}-face or $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$, we have $\omega^{*}(v) \geq 0$. Therefore, we assume $d\left(x_{3}\right) \geq 4$. If $d\left(y_{3}\right) \geq 4$, then f_{3} is a 5^{2}-face which gives v enough charge. Otherwise $d\left(y_{3}\right)=2$ since $n_{3}\left(v_{1}\right)=1$, then by Claim 4 , either f_{3} is again a 5^{2}-face or f_{3} is a 5^{3}-face and v_{3} is incident to a 5^{2}-face and a 5^{3}-face which contains no 2 -vertex, in both cases $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$ by (R4.2) and (R4.3.2). So we always have $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$.

In the following we may assume both y_{1} and x_{3} have degree at least 4. If both x_{1} and y_{3} have degree at least 3 , then each f_{i} sends at least $\frac{1}{3}$ to v by (R4.2) or (R4.4), and $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$. Assume $d\left(x_{1}\right)=2$, if f_{1} is a 5^{2}-face, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{2}$ and $\omega^{*}(v) \geq-1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{1}{12}$. Suppose f_{1} is a 5^{3}-face. If v_{2} is incident to a 5^{2}-face, since
v_{2} is incident to another 5^{3}-face which contains no 2-vertex, by (R4.3.2), $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$. Otherwise we may assume the face $f^{\prime}=v_{2} x_{2} x_{2}^{\prime} y_{1}^{\prime} y_{1}$ that v_{2} incident is a 5^{3}-face, both x_{2}^{\prime} and y_{1}^{\prime} must have degree at most 3 . We first derive that $d\left(y_{1}^{\prime}\right)=3$, since otherwise by Claim 5 and Claim 6, y_{1} has at least four big neighbours. By Claim 4 and the fact that both x_{1} and v are poor, $n_{b}\left(y_{1}\right)=3$ and thus $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{3}$ by (R4.3.2). By symmetry, either $d\left(y_{3}\right)=2$ or $d\left(y_{3}\right) \geq 3, \tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{3}$. Thus we have $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$.

Case 3.4. Finally suppose v is adjacent to three 3 -vertices. Then by Claim 10, for $i=1,2,3$, each f_{i} is a 5^{3}-face that contains no 2 -vertex, thus sends at least $\frac{1}{3}$ to v by (R4.4), and $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}$.

Case 4. Assume now $d(v)=2$ and let $N(v)=\left\{v_{1}, v_{2}\right\}$. If v is rich, or it is incident or adjacent to at least two of the following, then it would end up with a non-negative charge by (R1) and (R4.1): 5^{+}-vertex which has at least four 3^{+}-neighbours, and face with only one 3^{-}-vertex, and 5^{1}-face.

Otherwise first suppose that v is adjacent to a 2 -vertex v_{1}. Then by Claim 5, v_{2} has at least five big neighbours and both incident faces are 5^{2}-faces and not special. So we have $\omega^{*}(v) \geq 2-4+1+2 \times \frac{1}{2}=0$ by (R1) and (R4.2).

Suppose now v is adjacent to a 3 -vertex v_{1}. By Claim6, v_{2} has at least four big neighbours and both incident faces are $5^{3^{-}}$-faces and not special, thus by (R1), (R4.2) and (R4.3), $\omega^{*}(v) \geq 2-4+1+2 \times \frac{1}{2}=0$.

Case 4.1. Suppose $d\left(v_{1}\right)=d\left(v_{2}\right)=4$. Then by the Fact 1, all the neighbours of v_{1} and v_{2} except v are big vertices. Thus the incident faces of v only contains one small vertex and v is rich.

Case 4.2. Suppose $d\left(v_{1}\right) \geq 5$ and $d\left(v_{2}\right)=4$. If v_{1} has at least four big neighbours, then by definition the incident faces of v are not special since otherwise v_{2} is a special vertex, thus $\omega^{*}(v) \geq 2-4+1+2 \times \frac{1}{2}=0$ by (R1) and Fact 2 . Otherwise since $d\left(v_{2}\right)=4$, by Fact 1 . $n_{b}\left(v_{1}\right)=3$. If $n_{b}\left(v_{2}\right) \leq 2$ or $n_{3}\left(v_{1}\right) \geq 1$, then $n_{b}\left(v_{1}\right)+n_{3}\left(v_{1}\right) \geq 4$, which implies that $\tau\left(v_{1} \rightarrow\right.$ $v)=1$ by (R1) and the incident faces of v are not special, so $\omega^{*}(v) \geq 2-4+1+2 \times \frac{1}{2}=0$. Suppose now $n_{b}\left(v_{2}\right)=3$ and $n_{3}\left(v_{1}\right)=0$. If the incident faces of v are not special, then both of them contain only one small vertex which implies that v is rich. Otherwise by (R5) v would get enough charge such that $\omega^{*}(v) \geq 0$.

Case 4.3. Suppose both v_{1} and v_{2} have degree at least 5 . If one of the incident faces of v is special, then, by (R5), $\omega^{*}(v) \geq 0$. Otherwise, if at least one of v_{1} and v_{2} has at least four 3^{+}-neighbours, then $\omega^{*}(v) \geq 2-4+1+2 \times \frac{1}{2}=0$ by (R1) and Fact 2 . Suppose now both v_{1} and v_{2} have at most three 3^{+}-neighbours. Then by Fact $1, n_{b}\left(v_{1}\right)=n_{b}\left(v_{2}\right)=3$, thus for $i=1,2 \tau\left(v_{i} \rightarrow v\right) \geq \frac{1}{2}$ by (R3). Since the incident faces are not special, each of them sends a charge of at least $\frac{1}{2}$ to v. Therefore $\omega^{*}(v) \geq 2-4+4 \times \frac{1}{2}=0$.

Let $f \in F(G)$ and $d(f)=5$. If f is special, then by (R5) $\omega^{*}(f) \geq 5-4-1=0$. Thus we may assume f is not special. If f is incident to at most one small vertex, then by (R2) $\omega^{*}(f) \geq 5-4-1=0$. If f is a 5^{1}-face, then $\omega^{*}(f) \geq 5-4-1=0$ by (R3). If f is a 5^{2}-face, then $\omega^{*}(f) \geq 5-4-2 \times \frac{1}{2}=0$ by (R4.2). Suppose f is a 5^{3}-face. If $n_{2}(f)=2$ and $n_{3}(f)=1$, then by (R4.3.1) $\omega^{*}(f) \geq 5-4-2 \times \frac{1}{2}=0$. If $n_{2}(f)=1$ and $n_{3}(f)=2$, then by
(R4.3.2), either $\omega^{*}(f) \geq 5-4-\frac{1}{2}+2 \times \frac{1}{4}=0$ or $\omega^{*}(f) \geq 5-4-\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=0$. Finally suppose f is a $5^{4^{+}}$-face, it has non-negative charge by (R4.4).

It remains to show that every charge pot has non-negative charge. Observe that in a special face, every 4^{+}-vertex except the special vertex has at least 3 big neighbours by Fact 1. Let P be a charge pot with special vertex v which is obtained by k consecutive special faces $f_{1}, f_{2}, \cdots, f_{k}$. Let $v_{1}, v_{2}, \ldots, v_{k+1}$ be the consecutive 2 -vertices on the special faces. Then by (R5) $\omega(P)=k$ and there are $k+12$-vertices which will take charge from P. By (R3), v in total sends charge at least $(k+1) \times \frac{k+1+3-4}{k+1}=k$ to these 2 -vertices. Let $N\left(v_{1}\right)=\left\{v, v_{1}^{\prime}\right\}, f_{0}$ and f_{1} be the incident faces of v_{1}. If $d\left(v_{1}^{\prime}\right)=4$, then f_{0} contains only one small vertex and thus $\tau\left(f_{0} \rightarrow v\right)=1$ by (R2). Suppose $v_{1}^{\prime} \geq 5$, then $\tau\left(v_{1}^{\prime} \rightarrow v_{1}\right) \geq \frac{1}{2}$ by (R3). If f_{0} is not special with respect to v_{1}^{\prime}, then $\tau\left(f_{0} \rightarrow v\right) \geq \frac{1}{2}$ by (R4.2). Otherwise by (R5) v_{1} gets charge 1 from v_{1}^{\prime} and the charge pot with respect to v_{1}^{\prime}. By symmetry v_{k+1} gets charge at least 1 which is not from v or the charge pot with respect to v. Thus $\omega^{*}(P) \geq k-(2(k+1)-k-2)=0$. This completes our proof.

3 Concluding remarks

In this work, using the result of [9] which itself is based on the 4-color theorem, we showed for every triangle free planar simple graph G, the signed graph (G, σ) has a packing number at least 5. Unlike the result of [9], the discharging technique used here is based on a planar embedding of G and thus cannot be applied to the class of K_{5}-minor-free graphs directly. However, an extension from planar graphs to K_{5}-minor-free graphs is already shown in [5].

It is unclear if this result can be proved independent of 4 -color theorem. It is also not clear how important is the choice of the all negative signature. More precisely we would like to ask:

Question 8. What is the best possible lower bound on the packing number of planar signed graph of girth at least g ?

Acknowledgement. We would like to thank Lan-Anh Pham for discussions. This work is supported by the ANR (France) project HOSIGRA (ANR-17-CE40-0022). The second author is supported by a Ph.D. scholarship from China Scholarship Council.

4 Compliance with Ethical Standards

This work is supported by the ANR (France) project HOSIGRA (ANR-17-CE40-0022). The second author is supported by a Ph.D. scholarship from China Scholarship Council. We declare that we have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

References

[1] Brewster, R. C., Foucaud, F., Hell, P., Naserasr, R. The complexity of signed graph and edge-coloured graph homomorphisms. Discrete Math. 3402 (2017), 223-235.
[2] Gan, H., and Johnson, E. L. Four problems on graphs with excluded minors. Math. Programming 45, 2, (Ser. B) (1989), 311-330.
[3] Kardoš, F., Narboni, J. On the 4-color theorem for signed graphs. European J. Combin. 91 (2021), 103215
[4] Klostermeyer, W., Zhang, C.Q. $(2+\epsilon)$-coloring of planar graphs with large odd girth. J. Graph Theory 332 (2000), 109-119.
[5] Naserasr, R., Nigussie, Y., Škrekovski, R. Homomorphisms of triangle-free graphs without a K_{5}-minor, Discrete Math. 30918 (2009), 5789-5798.
[6] Naserasr, R., and Pham, L. A. Complex and Homomorphic Chromatic Number of Signed Planar Simple Graphs. Graphs Comb. 38, 58 (2022).
[7] Naserasr, R., Rollová, E., and Sopena, E. Homomorphisms of planar signed graphs to signed projective cubes. Discrete Math. Theor. Comput. Sci. 15, 3 (2013), 1-11.
[8] Naserasr, R., Sopena, E., Zaslavsky, T. Homomorphisms of signed graphs: an updat. European J. Combin. 91 (2021), 103222.
[9] Naserasr, R., Yu, W.Q. Packing signatures in signed graphs, SIAM J. Discrete Math. 374 (2023), 2365-2381.
[10] Zaslavsky, T. Signed graphs. Discrete Applied Math. 41 (1982), 47-74.

