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Abstract

We define k-diverse colouring of a graph to be a proper vertex colouring in
which every vertex x, sees min{k, d(x)} different colours in its neighbors. We
show that for given k there is an f(k) for which every planar graph admits a
k-diverse colouring using at most f(k) colours. Then using this colouring we
obtain a K5-free graph H for which every planar graph admits a homomorphism
to it, thus another proof for the result of J. Nešetřil, P. Ossona de Mendez.

1 Introduction

Let G and H be graphs. A homomorphism f of G to H is an edge preserving
mapping of V (G) to V (H). Homomorphism defines a quasiorder (a reflexive and
transitive binary relation) on the class of graphs, by G 4 H if and only if there is a
homomorphism from G to H. Given a class C of graphs we say that C is bounded
by H if for every G ∈ C we have G 4 H. In this setting the four colour theorem
simply states that the class P of planar graphs is bounded by K4. Similarly Grötsch
theorem (every triangle free planar graph is 3 colourable) states that the class of
triangle free planar graphs is bounded by K3.

The problem of the existence of a bound with some special properties, for a given
class of graphs has been a subject of study in graph homomorphism. Some par-
ticular cases of this problem has been studied in [4, 5, 6, 7]. In [7] authors have
proved the existence of Kk-free bound for any minor closed class of Kk-free graphs.
This indeed provides a K5-free graph H which bounds the class of planar graphs,
therefore answering a question of authors posed in [1]. Note that if we take the
categorical product of H with K5 we will find a bound for the set of planar graphs
which is smaller than K5 in the sense of homomorphism, this is a stronger result
than the five colour theorem whose proof does not use the four colour theorem.

In this note we define a new type of vertex colouring which we call it diverse colour-
ing. We give an algorithm to find a k-diverse colouring for any planar graph using
a fixed number of colours. Using the colouring obtained from this algorithm we
construct a K5-free bound for the class of planar graphs. This will be a completely
different method for proving the existence of a K5-free bound for the class of planar
graphs.
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The following theorem of Kotzig [3] will play an important role in our algorithm.

Theorem 1 (c. [3]) For every planar graph G with minimum degree at least 3 there
is an edge e = uv with d(u) + d(v) ≤ 13.

We say that a graph G is k-critical if it is k-chromatic but every proper subgraph
of G is k − 1 colourable. Obviously every k-chromatic graph contains a k-critical
subgraph. An alternative form of the four colour theorem is to state that “there is
no 5-critical planar graph”. In the absence of the four colour theorem the following
lemma will help us to achieve our goal of constructing a K5-free bound for the class
of planar graphs. The proof of this lemma is inherited from the proof of the 5-colour
theorem, the one which uses the Kempe’s chain method.

Lemma 2 If G is a 5-critical planar graph then δ(G) ≥ 5.

2 Diverse colouring

Definition For the given integers k and l we say that an l-colouring c, of a given
graph G is a k-diverse colouring if at least min{d(x), k} different colours appear
on the neighbors of x. A k-diverse colouring which uses at most l colours will be
denoted by (k, l)-colouring. 3

Theorem 3 Given an integer k ≥ 11, every planar graph admits a (k, 5k + 8)-
colouring.

Proof. We will prove this by induction on the number of vertices of G. For graphs
on at most 5k + 8 vertices we can colour all the vertices with different colours.
Suppose we have found a (k, 5k + 8)-colouring for every planar graph on at most n
vertices and let G be a planar graph on n + 1 vertices. We may assume G is con-
nected, because otherwise (k, 5k +8)-colourings of the components of G all together
will give a (k, 5k + 8)-colouring of G.

If G has a vertex x with d(x) = 1 then any (k, 5k + 8)-colouring of G\x can be
extended to a (k, 5k + 8)-colouring of G. To see this let y be the only neighbour of
x. If there are at least k-different colours on the neighbours of y, then any colour
different from the colour of y will work. Otherwise d(y) ≤ k − 1 and we choose a
colour which has not appeared on y or any of its neighbours, this is indeed possible
because there are more than k colours available.

If G does not have a vertex of degree 1 but it has a vertex x of degree 2 then we
identify x with one of its neighbours, remove the loop and the possible multiple
edge. We call the new graph Gx. By induction Gx admits a (k, 5k + 8)-colouring
cx. Colour all the vertices of G except x with the same colour as in the colouring
cx. Notice that neighbours of x have taken two different colours, and in order to
extend cx to a (k, 5k + 8)-colouring of G all we need to do is to choose a colour
for x different from colours of its neighbours in such a way that the requirement of
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diversity for the neighbours of x still holds.

For each neighbour y of x, either y already has k different colours on its neighbours
or d(y) ≤ k − 1. In the first case the only restriction for the colour of x, coming
from y, is to have a colour different from the colour of y, (in order to have a proper
colouring). In the second case, i.e., if d(y) ≤ k − 1, the vertex x must take a colour
different from the colours of y and all of its neighbours. In either of the cases, each
neighbour of x introduces at most k-colours not admissible for x. Since x has two
neighbours there are maximum of 2k colours not admissible for x, so cx can be ex-
tended to a (k, 5k + 8)-colouring of G.

If neither of the previous two cases happens, then δ(G) ≥ 3 and by Theorem 1
there is an edge e = uv with d(u) + d(v) ≤ 13. Without loss of generality assume
d(u) ≤ d(v). Therefore d(u) ≤ 6. Identify u and v, remove loops and possible mul-
tiple edges and call the new graph Ge. Let v′ to be the new vertex in Ge (obtained
from identifying u and v), then d(v′) ≤ 11. By induction Ge admits a (k, 5k + 8)-
colouring, we denote this colouring by ce. Note that all the neighbours of v′ have
taken different colours (this is because k ≥ 11).

To find a (k, 5k + 8)-colouring of G, colour every vertex x 6∈ {u, v} with ce(x) and
colour v with ce(v′). To complete this colouring all we need is to find an admissible
colour for u. Notice that all the neighbours of u have already received different
colours. Let t 6= v be a neighbour of u, if d(t) > k then t already has k neighbours
with k distinct colours and the only restriction coming from t is that c(t) be different
from the colour which we choose for u.

If d(t) ≤ k then the colour we would like to choose for u has to be different from
colours of t and all of its neighbours. This will remove at most k colours from the
list of available colours for u. Similarly there will be also at most d(v) forbidden
colours because of the diversity condition for v. In total there will be at most
k(d(u)− 1) + d(v) = (k− 1)d(u)− k + d(u) + d(v) ≤ 5k + 7 forbidden colours for u.
Since there are 5k + 8 possible colours, we can find an admissible colour for u. 2

Notice that in the proof of the last theorem we introduced an inductive algorithm to
find a (k, 5k+8)-colouring of any planar graph. We will call this algorithm k-diverse
colouring algorithm. In the next section we will show that the colouring obtained
from 11-diverse colouring algorithm satisfies the condition of the Theorem 7 of [4]
and hence provides us with a K5-free bound for the class of planar graphs.

3 K5-free bound

Theorem 4 Let G be a planar graph and c an (11, 63)-colouring of G obtained
from 11-diverse colouring algorithm. Then c has the property that every 5-chromatic
subgraph of G takes at least 6 different colours.

Proof. It will be enough to show that every 5-critical subgraph has taken 6 differ-
ent colours. We prove this by contradiction. Suppose this is not true and algorithm
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fails at some point. Let G be the smallest graph for which the 11-diverse colouring
algorithm fails, i.e., for every graph on at most |V (G)| − 1 vertices the (11, 63)-
colouring obtained from 11-diverse colouring algorithm has the required property
but the colouring obtained for G by this algorithm uses only five colours on some
5-critical subgraph H of G.

It is easy to see that G does not contain vertices of degree 1 or 2. In fact if δ(G) = 1
or 2 then (11, 63)-colouring of G has been obtained from (11, 63)-colouring of some
Gx where x is a vertex of degree 1 or 2. But then every 5-critical subgraph of G is
also a subgraph of Gx and therefore takes at least 6 different colours.

So we may assume δ(G) ≥ 3. Let u and v be the vertices of G as in the algorithm.
Recall that to obtain the colouring c we basically used an (11, 63)-diverse colouring
of Ge and we found an admissible colour for u. By the minimality of G the 11-diverse
colouring of Ge has used at least 6 different colours on any 5-critical subgraph of
Ge. So H could not be a subgraph of Ge, therefore it must contain both u and v.
By lemma 2 degree of u in H must be at least 5. But all the neighbours of u have
been given different colours. By adding the colour of u itself to this collection we
will find at least 6 different colours on the vertices of H which is a contradiction.
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Using this theorem and the results of [4] one can construct a K5-free bound for the
class of planar graphs. For the sake of completeness we will repeat the construction
here.

Constructing H(11,63): The vertices of this graph are the pairs (i, ϕ) where i ∈ [63]
and ϕ is any function from {S|S ⊂ [63], i ∈ S and |S| = 5} to {1, 2, 3, 4}. For the
edge set; (i, ϕ) is adjacent to (j, ψ) if i 6= j and ϕ(S) 6= ψ(S) whenever both ϕ(S)
and ϕ(S) are well defined, i.e. {i, j} ⊂ S.

Lemma 5 (c. [4]) H(11,63) is K5-free.

Theorem 6 H(11,63) bounds class of planar graphs.

Proof. Let G be a planar graph and c a (11, 63)-colouring of G obtained from the
algorithm. By Theorem 4, for any set S of 5 colours, the subgraph GS induced on
these colours is 4-colourable. Let ρS to be a 4-colouring of GS . The homomorphism
of G to H(11,63) is defined by:

for x ∈ V (G) let f(x) = (c(x), ϕx) where ϕx(S) = ρS (x).

Notice that for every 5-subset S containing c(x), ϕx is well defined. To see that f
is a homomorphism let x and y to be two adjacent vertices of G then c(x) 6= c(y)
and if {c(x), c(y)} ⊂ S then ϕx(S) = ρS(x) 6= ρS(y) = ϕy(S). Therefore by the
definition of H(11,63), f(x) is adjacent to f(y). 2
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4 Remarks

The K5-free bound for the class of planar graphs we provided here, has a large
number of vertices. The following problem, if it is answered without using the four
colour theorem, will provide us with a better K5-free bound which has fractional
chromatic number 24

25 . Notice that the best known bound for the fractional chromatic
number of planar graphs without using the four colour theorem is that it is strictly
smaller than 5.

Problem 7 Show that every planar graph can be coloured using 6 colours in such a
way that every 5-chromatic subgraph of it receives all 6 different colours.
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