
Projective cubes:
a coloring point of view

Reza Naserasr

July 7, 2017



2



Contents

1 Introduction 3
1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Cayley graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Kneser graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 t-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Clique sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Minor and planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Colorings and Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Proper coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Interval coloring and circular chromatic number . . . . . . . . . . . 6
1.4.4 Integer programming and fractional chromatic number . . . . . . . 7

1.5 Edge-coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Coloring and homomorphisms of planar graphs . . . . . . . . . . . . . . . . 9
1.7 Walk power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Weighted graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Homomorphism order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 Bounds and maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11 No-homomorphism lemmas and the odd-girth . . . . . . . . . . . . . . . . 12

2 Projective cubes 15
2.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 As projections of the hypercubes . . . . . . . . . . . . . . . . . . . 15
2.1.2 As augmented cubes . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 As Cayley graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 As power graphs of cycles . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Constructed from posets . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6 Inductive definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Examples and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3



4 CONTENTS

2.3 Subgraphs of PC(2i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Möbius ladders and circulant graphs . . . . . . . . . . . . . . . . . 20
2.3.3 Augmented toroidal grids . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Generalized Mycielski constructions . . . . . . . . . . . . . . . . . . 21
2.3.5 Kneser graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Coxeter graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Binary Cayley graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Automorphisms of the projective cubes . . . . . . . . . . . . . . . . . . . . 23
2.6 PC(k)-weighted complete graphs . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Transitivity of PC(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Homomorphisms to projective cubes 27
3.1 Homomorphisms of binary Cayley graphs to projective cubes . . . . . . . . 27
3.2 Homomorphisms of planar graphs into projective cubes . . . . . . . . . . . 28

3.2.1 The case r = k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 The case r = k + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 The case (r, k) = (5, 3) and the Coxeter graph . . . . . . . . . . . . 31
3.2.4 The case r ≥ 2k − 1 and the circular chromatic number . . . . . . . 31

3.3 Relation to edge-coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Bounding minor-closed families 35
4.1 Intersection of Forbm and Forbh . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 A subdivision of 2Kt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Bounding partial t-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Bounding partial 3-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Bounding K4-minor-free graphs . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Bounding by K(2k + 1, k) . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 Bounding by augmented toroidal grids . . . . . . . . . . . . . . . . 44
4.5.3 Optimal bounds for SPG5 and SPG7 . . . . . . . . . . . . . . . . . 45

4.6 Applications to edge-colourings . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Experience, possible projects and future work 49
5.1 Project on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Employing the notion of signed graphs . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Further ideas for progress on signed graphs . . . . . . . . . . . . . . 53



CONTENTS 5

Motivation

The four-color theorem has played a central role in development of graph theory. It was
originally stated as coloring (regions) of maps, but soon after was translated, through
duality, to vertex-coloring of graphs which gave birth to notions such as the chromatic
number and, in most general form, to homomorphisms of graphs. In its simplest form
it states that every loop-free planar graph can be 4-colored. However, a large number
of equivalent reformulations has been introduced since its introduction as a conjecture in
1852. One of its earliest reformulations is that of Tait’s which says: every cubic birdgeless
planar graph is 3-edge-colorable. This reformulation was then birth place of three of main
topics in graph theory. The statement itself raised the study of edge-coloring and edge-
chromatic number. False attempts in proving it introduced the notion of Hamiltonicity.
And Tait’s proof technique of the equivalence of this statement with the 4-color theorem
was extended to the theory of nowhere-zero flows by Tutte.
Through its extension to the theory of homomorphisms of graphs, the notion of coloring
can be viewed as algebraic concept of graphs, whereas the study of planarity through
extensions such as minors and crossing number is viewed as the topological counterpart.
Thus the 4-color theorem and its possible extensions lie at the heart of the study of
correlation of algebraic and topological properties of discrete structures.
Slight strengthening of the theorem using the terminology of minor and homomorphisms
claims that any graph with no K5-minor admits a homomorphism to K4. Hadwiger then
proposed strengthening that any graph with no Kk-minor admits a homomorphism to
Kk−1. The conjecture, known as “the Hadwiger conjecture”, is widely believed to be the
most difficult conjecture in graph theory. In many such attempts to better understand
the four-color theorem, the 4-coloring is understood as a homomorphism to the complete
graph on four vertices (each vertex being a distinct color).
In Tait’s proof of the equivalence between the classic statement of the 4-color theorem
and the edge-coloring formulation, he regarded the four colors as the four elements of the
group Z4

2 and then used the three non-zero elements (01, 10, 11) to color the edges. These
three elements being the set of all non-zero elements of Z4

2 lead Tutte to the study of
nowhere zero flows on graphs.
The work here is based on the observation by the author that K4 in the statement of
the 4-color theorem could be seen as the Cayley graph (Z4

2, {e1, e2, J}) where ei’s are the
standard basis and J is the all-1 vector. Defining PC(k) = Cayley(Zk2, {e1, e2, · · · , ek, J})
as the projective cube of dimension k we have conjectured in [39] that:

Conjecture 0.0.1. Every planar graph whose shortest odd-cycle is of length at least
2g + 1 admits a homomorphism to PC(2g).

This view has proved to be powerful. Indeed the notion of homomorphism of signed
graphs is introduced by B. Guenin [20] to capture the case of the homomorphism from
planar graphs to projective cubes of odd-dimension which are bipartite graphs. Using
the notion of signed graphs, where each edge is assigned one of the two signs {+,−}, the
relation between minor and homomorphism is not only more intuitive, but also stronger.
For example while the class of graphs with no K3-minor are the class of all forest, the
class of (signed) graphs with no negative signed K3-minor are the class of all signed graphs
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with underlying bipartite graphs. Thus while the chromatic number of both families of
graphs is bounded by 2, the latter is a much larger class of graphs.
In this work then we study the projective cubes. They are known to be among must
symmetric non-trivial graphs. They can be defined in various ways, with each definition
leading to different properties of these graphs and providing new tools to work with
them. They capture, as subgraphs, some of the most symmetric graphs such as the
Petersen graph and the Coxeter graph. They also provide connection to other subject of
mathematics such as algebraic surfaces which dates back to a time when there were no
notion of graphs.
We have special interest in the question of homomorphism to the projective cubes. In
general this question is related to a packing problem. A special case of this connection
says: a graph G is 4-colorable if and only if its edge-set can be partitioned into 3 sets E1,
E2 and E3 such that each odd-cycle intersects each Ei an odd number of times.
We show that questions on mapping planar graphs into projective cubes relates to the
study of several other notions such as circular chromatic number, fractional chromatic
and edge chromatic number of planar (multi)graphs.
In present format of this text, working with classic theories of graphs, the focus is on the
projective cubes of even dimension which are 4-chromatic. This work will be completed
later using the more general notion of signed graphs in which case the homomorphism
problem to (signed) projective cubes of odd dimension is no longer matter of triviality.
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Abstract. The projective cube of dimension k, denoted PC(k), is the graph obtained
from the hypercube of dimension k + 1 by identifying antipodal pairs of vertices. It is
equivalently the Cayley graph (Zk2, {e1, e2, . . . , ek, J}) where the ei’s are the vectors of the
standard basis and J is the all-1 vector. They can be defined in various ways and thus are
known under the names such as folded cubes and augmented cubes. Not only these graphs
themselves are among the most transitive graphs, but they also contain a number of highly
symmetric graphs as (induced) subgraphs. PC(2) is the complete graph K4, PC(3) is
K4,4 and PC(4) is known as one of the most symmetric graphs. It has received different
names for its appearance on different subjects: in most of the literature it is named after
Clebsch, an algebraic geometrist from the 19th century, as it is the intersection graph
of the 16 straight lines of a cubic surface obtained from blowing up of 5 points of the
projective plane. It is also, independently, named after Greenwood and Gleason in some
other literatures because of its appearance in Ramsey theory. In general, PC(2k + 1) is
a bipartite graph while PC(2k) is a graph of odd-girth 2k + 1 and chromatic number 4.
The goal of this work is to study these graphs from a homomorphism point of view. To
appreciate the full complexity of the study one must employ the notion of homomorphisms
for signed graphs, however, due to limitation, current focus of this work will be PC(2k).
The existence of a homomorphism from a graph G to PC(2k) is equivalent to partition of
edges of G into 2k + 1 sets E1, E2, . . . , E2k+1 such that each even-cycle (resp. odd-cycle)
intersects each Ei an even (resp. odd) number of times. Thus the problem mapping
graphs to the projective cubes is equivalent to a packing problem. Such mappings are
conjectured to exist for all planar graphs, or more generally for all graphs without a K5

minor, provided that a simple (necessary) condition is satisfied:
Conjecture. Any K5-minor free graph of odd-girth at least 2k + 1 admits a homomor-
phism to PC(2k).
With PC(2) being the graph K4, this conjecture is a direct extension of the four colour
theorem. More generally, assuming the conjecture is true, we ask what are subgraphs of
PC(2k) to which planar graphs of odd-girth 2l + 1, l ≥ k admit a homomorphism? We
show that the question captures a wide range of studies, such as finding the best bounds
for circular and fractional chromatic numbers of planar graphs of odd-girth 2k + 1.
We provide a necessary and sufficient conditions for a graph B of odd-girth 2k + 1 to
bound the class of partial t-trees of odd-girth 2k + 1. The condition of theorem can be
checked in polynomial time. Using this result we verify the conjecture for the class of
partial 3-trees which is a large subclass of K5-minor free graphs.
Independently we show that the surprising result of C. Payan, that there are no binary
Cayley graph of chromatic number 3, is about properties of homomorphisms among pro-
jective cubes of even dimensions. We then study possible generalizations.

Remark Results from about 11 published papers of the author are mentioned, a number
of them without a proof and some with sketches of proofs. Some of the presented results
are yet to be written as a paper. In particular Theorem 4.3.1 on bounding partial t-trees
and its application on bounding partial 3-trees are recent joint work with L. Beaudou, M.
Chen and F. Foucaud which are yet to be written as paper. They are strengthening of
results from a recently accepted paper [4].
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Chapter 1

Introduction

1.1 Graphs

A graph is a binary structure consisting of a (finite) set of vertices and collection of edges,
where each edge connects two (not necessarily distinct) vertices. Vertices connected by
an edge are adjacent and the edge connecting them is incident to each of them. An edge
connecting a vertex to itself is a loop. Two edges connecting a same pair of vertices are
referred to as parallel or multi edges. In this work we only consider graphs without loops.
Multi-edges are of importance, but we will use the term multi-graph when we consider
them. Thus a graph G consists of two sets: vertices (V ) and edges (E) where the latter
itself is a set of 2-subsets of V .

1.1.1 Cayley graphs

A Cayley graph is a graph whose vertices are the elements of an (additive) group Γ where
two such vertices are adjacent if their difference is in a given symmetric set S. Such a
Cayley graph will be denoted by (Γ, S). Considering the natural association of elements
of S to the edge of (Γ, S) we have the following important observation on Cayley graphs.

Observation 1. The total sum of the values associated to the edges of any cycle or any
closed walk of (Γ, S) is 0.

1.1.2 Hypercubes

The hypercube of dimension n, denoted H(n), is the Cayley graph (Zn2 , {e1, e2, . . . , en})
where the ei’s are the vectors of the standard basis. There are many equivalent ways of
defining these graphs. We will consider some of such definitions in the next sections in
order to have a newer definition of the projective cubes, the main objects of this work.

1.1.3 Kneser graphs

Another class of graphs that is important for this work is the class of Kneser graphs.
Given integers n and k, n ≥ 2k, the Kneser graph K(n, k) is a graph whose vertices are

3
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the k-subsets of an n-set where two such subsets are adjacent if they do not intersect.

1.1.4 t-trees

As a subclass of graphs, the class of t-trees is defined inductively as follows: A complete
graph on t vertices is a t-tree. Any graph built from a (previously built) t-tree by adding
a vertex which is adjacent to all vertices of a t-clique is also a t-tree. It is easy to observe
that the class of 1-trees is the class of all trees, this is the justification for the name
“t-trees”.
A partial t-tree is a subgraph of any t-tree.
Readers familiar with the notion of tree-width can check that a graph is of tree-width at
most t if and only if it is a partial t-tree (see [10]).

1.2 Clique sum

Given two graphs G and H on disjoint sets of vertices and each with a clique of order t,
a t-sum of G and H is a graph obtained by identifying the vertice of a t-clique of H with
the vertices of a t-clique of G.
The class of t-trees can be equivalently defined using the t-sum operation:
1. The complete graphs Kt and Kt+1 are t-trees.
2. A t-sum of any two t-trees is also a t-tree.

1.3 Minor and planarity

A minor of a graph G is any graph H which is built from G by the use of the following
operations (in any sequence): i. deleting edges or vertices ii. contracting edges, that is
identifying two ends of an edge. If H cannot be obtained as a minor of G, then G is
referred to as an H-minor free graph.
A class C of graphs is minor-closed if any minor of a graph in C is also in C. It is an easy
exercise to show that the class of partial t-trees is minor-closed.
Given a finite set H = {H1, H2, . . . , Hr} of graphs, the class of graphs containing none
of Hi as a minor is a minor-closed class of graphs, which is denoted by Forbm(H). The
graph minor project of Robertson-Seymour showed that, except for the class of all graphs,
every minor-closed family of graphs is Forbm(H) for some finite set H of graphs. However
for some minor-closed families of graphs, when defined by ulterior ways, it may not be
an easy task to find such a (unique) set H. Indeed the full class of forbidden minors
for partial t-trees are only known for t ≤ 3: The class of forests (i.e., partial 1-trees) is
Forbm({K3}). The class of partial 2-trees is the class Forbm({K4}). Thus the class of
edge-maximal graphs with no K3-minor (respectively no K4-minor) is the class of trees
(respectively 2-trees). The four graphs defining the class of partial 3-trees using the notion
of forbidden minor are given in Figure ?? (independent proofs are given in [3] and [54]).
A planar graph is a graph with an embedding on the plane where each vertex is presented
by a point on the plane and each edge is a simple continuous curve which does not
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Figure 1.1: Forbidden minors of partial 3-trees

intersect any other edge on an internal point. A planar graph together with a specific
planar embedding is called a plane graph. Class of graphs embeddable on any other given
surface is defined similarly. It is a well-known theorem of Wagner that the class of planar
graphs is Forbm{K5, K3,3}. A planar triangulation is a planar graph with maximum
number of edges, thus each face being isomorphic to a K3. Except for the plane and the
projective plane, for no other surface the precise list of forbidden minors is known.
Recall that the class Forbm(Kt) for t = 3, 4 is the class of partial t-trees. However a
direct extension is far from being true. Indeed the class Forbm({K5}) contains the class
of planar graphs which is not included in the class of partial t-tree for any choice of t. A
classification of K5-minor free graphs, based on planar graphs, is given by Wagner [61]:
The Wagner graph, which is the second (from right) graph of Figure 1.1, is a graph with
no K5-minor which is also the Möbius ladder, and the circulant clique C(8, 3). Wagner
proved that an edge-maximal graph with no K5-minor is built from planar triangulations
and the Wagner graph by the use of operations 2-sum or 3-sum.

1.4 Colorings and Homomorphisms

A Homomorphism of a multi-graph G to a multi-graph H is a mapping of vertices and
edges of G to (respectively) vertices and edges of H which preserves both adjacencies and
incidences. When G and H have no multi-edge, the definition is simplified to: a mapping
of vertices which preserves adjacencies. A (unique) mapping of edges is induced naturally
in this case. When there exists at least one homomorphism from a multi-graph G to a
multi-graph H we write G→ H.
Considering contraction as the main operation of producing a minor, homomorphism and
minors can be regarded as dual concepts: To produce a minor we (repeatedly) identify
adjacent pairs, to produce a homomorphic image we (repeatedly) identify non-adjacent
pairs. However, note that in the formal definition of a homomorphism, the target is not
the same as the image, there could be vertices or edges in the target that are not used by
the given homomorphism.

1.4.1 Core

Core of a graph G is a smallest subgraph of G to which there exists a homomorphism
from G. It is easy to show that core of a graph is well defined, i.e., any two distinct such
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subgraphs are isomorphic.
A core is a graph which is its own core.

Dual of map of France and its core

Figure 1.2: Example of a planar core

1.4.2 Proper coloring

A proper coloring of a graph G is an assignment of colors to the vertices such that adjacent
vertices receive distinct colors. From now on any coloring of vertices will be considered
as a proper coloring unless we specifically say otherwise. When H has no loop, then, by
viewing vertices of H as colors, any homomorphism of G to H is a coloring of G. The
chromatic number of G, denoted χ(G), is the smallest number of colors needed to color
vertices of G. It is thus the smallest number of vertices of a graph H to which G admits
a homomorphism. It is easily observed that such an image H must be a complete graph.

1.4.3 Interval coloring and circular chromatic number

Alternatively, the chromatic number of G is the length of a smallest interval on the
real line from which unit (open) intervals can be associated to the vertices such that
adjacent vertices receive nonintersecting intervals. Here the choice of the real line is
not of importance, the interval can be on any not self-intersecting Jordan-curve on the
plane. However, if we allow the two ends of the interval to be identified, thus using unit
length intervals from a closed Jordan curve, then we arrive at the definition of the circular
chromatic number of G, denoted χc(G).
It follows from this definition that circular chromatic number is a refinement of the chro-
matic number:

Theorem 1.4.1. For any graph G we have χ(G) = dχ(G)ce.

Given integers p and q, where p ≥ 2q, we define the circulant graph C(p, q) to be the graph
on vertex set {1, 2, . . . , p} where two vertices i and j are adjacent if q ≤ |i−j| ≤ p−q. One
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of the earliest results in the study of circular coloring is to prove that homomorphisms to
circulant graphs determine the circular chromatic number. More precisely:

Theorem 1.4.2. [see for example [25]] The circular chromatic number of a graph G is
the smallest value of p

q
such that G→ C(p, q).

The set of circulant graphs C(p, q), p ≥ 2, induces a total order in the homomorphism
order of graphs which can be taken as the embedding of rational numbers at least 2 in
the homomorphism order. Then, while finding the chromatic number of a graph is to find
its upper integer part, finding its circular chromatic number is to find its upper rational
part.

1.4.4 Integer programming and fractional chromatic number

Observing that in a coloring of a graph, each color induces an independent set of the
graph, we may redefine the chromatic number of a graph as follow: an assignment φ of
{0, 1} to independent sets of G is a coloring if for each vertex x the sum of values assigned
to independent sets containing x is at least 1 (i.e., it is in at least one independent set
which is assigned 1). Then χ(G) is the smallest possible total sum of values assigned
by a coloring φ. If we relax the assignment of values from the discrete set {0, 1} to the
continuous interval of [0, 1], the minimum sum over all feasible solutions is called the
fractional chromatic number of G and is denoted by χf (G).
This definition of fractional chromatic number is an alteration of the original definition
which was given, implicitly, in terms of homomorphisms to Kneser graphs:

Theorem 1.4.3 (See [55]). Given a graph G we have χf (G) = inf{p
q
| G → K(p, q)},

furthermore the infimum is attained.

Note that a homomorphism to Kneser graph K(p, q) is to assign q colors to each vertex
from a set of p colors such that adjacent vertices receive disjoint sets of colors. Denoting
by χq(G) the smallest p for which there exists such a coloring, we have χf (G) = inf{χq(G)

q
}.

This is how the original definition of the fractional chromatic number (see [55]).

1.5 Edge-coloring

Given a multi-graph G, a matching is a subgraph in which every vertex is of degree 1. A
proper edge-coloring of G is a partitioning of the edges of G such that each part, referred
to as a color-class, induces a matching. A proper edge-coloring with k color-classes is a
k-edge-coloring. Thus we may refer to edge-colorings that are not necessarily proper, but
when we say “k-edge-coloring”, then being proper is implicit. The smallest k for which G
admits a k-edge-coloring is the edge-chromatic number of G, denoted χ′(G).
For a graph G of maximum degree ∆(G), at least ∆(G) colors are needed for a possible
proper edge-coloring, but such number of colors is not always sufficient. The well-known
theorem of Vizing claims that

Theorem 1.5.1. [see [6]] For any multi-graph G we have χ′(G) ≤ ∆(G) + µ(G) where
µ(G) is the maximum multiplicity of an edge of G.
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Given an integer q, we define χ′q to be the smallest number of colors using which one can
assign q colors to each edge such that adjacent edges receive disjoint sets of colors. The
fractional edge-chromatic number of G, denoted χ′f (G), is defined to be inf{χ

′
q(G)

q
}.

Let L(G) be the line graph of G, that is the graph whose vertices are the edges of
G and whose edges are pairs of adjacent edges of G. It is then easily observed that
χ′(G) = χ(L(G)) and χ′f (G) = χf (L(G)).
Two lower bounds for the fractional edge-chromatic number can be obtained easily. The
first is ∆(G), as edges incident to a vertex of maximum degree need q∆(G) distinct colors
altogether. The second lower bound is based on the following observation: Let X be a
subset of vertices of odd order. Consider a proper edge-coloring φ of G which assigns q
colors to each edge. The restriction of φ to G[X] is a proper edge-coloring which assigns
q colors to each edge of this subgraph. Since X is a set of an odd order, each color class
induces a matching of size at most |X|−1

2
. Since each edge receives exactly q colors, we

conclude that G[X] has at most χ′
q(G)

q
× |X|−1

2
edges. Hence, χ′f (G) ≥ min{2|E(G[X])|

|X|−1
}.

A result of P. Seymour [58] shows that these lower bounds combined determine the
fractional edge-chromatic number of a multi-graph. We refer to [55] for a proof.

Theorem 1.5.2. For any multi-graph G we have χ′f (G) = max{∆(G), 2E(G[X])
|X|−1

}, where
the maximum is taken over all subsets of vertices of an odd order.

It’s worth noting that, unlike the fractional chromatic number or the edge-chromatic
number, the fractional edge-chromatic number can be computed in polynomial time (con-
sequence of Theorem 1.5.2), see [55] for details.
The fractional edge-chromatic number provides a lower bound for the edge-chromatic
number:

χ′(G) ≥ dχ′f (G)e. (1.1)

Equality holds for all graphs of maximum degree at most 2. However, Petersen indeed
built the well-known Petersen graph showing that this is not the case for cubic graphs
(though such notions were not developed at his time). For a nice proof of the fact that
the Petersen graph is not 3-edge-colorable we refer to [46].
Being the smallest example of a graph for which equality does not hold in (1.1), it is
expected that any other such example contains the Petersen graph as a minor:

Conjecture 1.5.3. If G is a multi-graph with no Petersen minor, then χ′(G) = dχ′f (G)e.

This is a deep conjecture which captures the four-color theorem as a very special case. It
is originally formulated by P. Seymour for the subclass of planar graphs:

Conjecture 1.5.4. If G is a planar multi-graph, then χ′(G) = dχ′f (G)e.

The restriction of this conjecture to cubic planar graphs is Tait’s reformulation of the
four-color theorem (see next section for details) and, therefore, was proved by Appel and
Haken in 1977 [1]. There has been some progress in recent years on the subclasses of
i-regular planar multi-graphs (see [8] for the latest result). It is proved for the subclass of
K4-minor free graphs by Seymour [59]. This has been extended to the subclass of graphs
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with no K3,3 and K−5 minor, where the latter is the complete graph on five vertices with
one edge removed [35]. However, it remains largely open, even on the subclass of planar
graphs of maximum degree 3.

1.6 Coloring and homomorphisms of planar graphs

Perhaps the most well-known theorem of graph theory is the four-color theorem. It simply
claims that:

Theorem 1.6.1. For every planar graph G we have χ(G) ≤ 4.

Creating a dual graph

Figure 1.3: Coloring map of France

It was originally asked by Francis Guthrie, who was a geographist. He asked if the regions
of any simple map can be colored using at most four colors such that one can always
distinguish neighbouring regions. Using the notion of duality, the question is translated
to a vertex coloring problem of graphs.
Tait introduced an equivalent statement claiming:

Theorem 1.6.2 (Tait’s reformulation of the 4CT). Every bridgeless cubic planar graph
can be properly 3-edge-colored.

The equivalence of this statement to the 4CT has given birth to several theories on graphs,
such as the notion of edge-coloring and the theory of nowhere-zero flows. A proof of the
equivalence between this statement and the four-color theorem will be given in Section 3.3
in a more general form.
In an attempt to prove the 4CT, normally the first step is to consider a minimum coun-
terexample. Then the first observation is that every face is a triangle, as, otherwise,
identifying a pair of non-adjacent vertices of a face would result in a smaller counterex-
ample. To study homomorphism questions of similar nature for planar graphs of odd-girth
higher than 3, Klostermyer and Zhang proved a similar tool which is known as the folding
lemma:
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Lemma 1.6.3 (Folding Lemma). [30] Let G be a 2-connected planar graph of odd-girth
2k + 1 and let F be a face whose boundary is not a (2k + 1)-cycle. Then there are three
consecutive vertices x, y and z on F (in the order xyz) such that identifying x and z
would not decrease the odd-girth of G.

That x and y are on a same face implies that the resulting graph is still planar. Thus
after a repeated application, until there are no more such faces, we have:

Lemma 1.6.4. Given a planar graph G of odd-girth 2k + 1, there is a plane graph G′ of
odd-girth 2k + 1 all whose faces are (2k + 1)-cycles and G→ G′.

1.7 Walk power

Given a graph G and a positive integer k, the kth walk power of G, denoted G(k), is a
graph on vertex set V (G) where vertices u and v are adjacent if there is a walk of length
(exactly) k connecting u and v. If G has at least one edge and k is an even number, then
G(k) has a loop. For odd values of k, G(k) is loop free if and only if it has odd-girth larger
than k.
The following fact, which is easy to observe, is what makes walk powers of special impor-
tance for this work:

Lemma 1.7.1. Given two graphs G and H, if G→ H, then G(k) → H(k).

1.8 Weighted graphs

A weighted graph is a pair (G,ψ) where ψ is an assignment of positive integers to the edges
of G. A weighted subgraph of (G,ψ) is a subgraph H of G together with weights induced
by ψ. Given a connected graph G, the complete G-weighted graph, denoted (KV (G), dG),
is the complete graph on V (G) together with the weight assignment dG, i.e., weight of a
pair x and y of vertices is their distance in G. Then any weighted subgraph of (KV (G), dG)
is called a partially G-weighted graph.
Given an integer k, to each weighted graph (G,ψ) where 1 ≤ ψ(e) ≤ k − 1, we associate
a graph (G,ψ)k built from G as follows: first each edge e of G is replaced by two parallel
edges e′, e′′, then e′ is subdivided into a path of length ψ(e) and e′′ is subdivided into
a path of length k − ψ(e). Then, for an odd-value of k, we say (G,ψ) is k-wide if
(G,ψ)k is of odd-girth k. Thus, when we claim (G,ψ) is k-wide, we implicitly imply that
1 ≤ ψ(uv) ≤ k − 1 for any edge uv of G.
Observe that if a partially G-weighted graph (H,ψ) contains G as subgraph and is k-wide,
then G is of odd-girth at least 2k + 1.

1.9 Homomorphism order

Since the composition of a homomorphism ψ : G→ H with a homomorphism φ : H → F
is a homomorphism of G to F , the relation → is a transitive one, and thus induces a
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quasi-order on the class of all graphs. It becomes a partial order when restricted to the
class of cores. See Figure 1.4 for a presentation of this order with a few well-known graphs.

Petersen
Wagner

Clebsch
Grötzsch

Figure 1.4: A presentation of the homomorphism order

This order is a universal one in the following sense:

Theorem 1.9.1. [53] Given any countable partial order, one can find an isomorphic copy
of it in the partial order of cores with respect to the homomorphism order.

Many notions in graph theory, especially the ones from the theory of coloring, follow the
mainstream language of mathematics using this order. We present a few such examples
here:
As a special case of Theorem 1.9.1, the (total) order of positive integers has a represen-
tation in the homomorphism order. The most natural one of such presentations is to
consider the order induced by complete graphs, where Ki represents the integer i. Then,
two of most studied parameters of graphs, the clique and the chromatic number, are to
find the lower and upper integer parts of a graph. Thus, we may indeed write: bGc for
the clique number of a graph and dGe for its chromatic number.
Similarly, by considering the circulant graphs C(p, q), p ≥ 2q, as the natural representation
of rational numbers p

q
, p
q
≥ 2, we can define the circulant clique number and circular

chromatic number of a graph as the lower and upper rational part of the graph.
Theorem 1.9.1 is based on incomparable pairs of graphs in the homomorphism order.
To find a first such pair has already received quite a bit of attention. As K1 and K2

are comparable to any other graph, K3 is the first core to be considered as one of the
elements of an incomparable pair. That leads to the study of the chromatic number of
triangle-free graphs. The results of [9], which strengthen result of Harary [22], can then be
translated as the pair {Grötzsch graph, K3} being the first pair of incomparable graphs
in the homomorphism order.
Two of the most famous coloring theorems on planar graphs, i.e., the four-color theorem
and the Grözsch theorem, are presented in Figure 1.5. The former is to say that "K4 is
the maximum of the planar cores in the homomorphism order" and the latter is to say
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that "K3 is a cut in the homomorphism order induced on planar graphs", i.e., that any
planar graph either admits a homomorphism from K3 or that it admits a homomorphism
to K3.

The homomorphism order on planar cores

Figure 1.5: Homomorphism order on planar cores

In [42] we have shown that K3 is also a cut in the class of K5-minor free graphs.
We end this section with following intriguing question:

Problem 1.9.2. Is it true that Kn−2 is a cut in the homomorphism order induced on the
class of Kn-free cores?

1.10 Bounds and maximum

Given a class C of graphs we say a graph B bounds C if every graph in C admits a
homomorphism to B. Furthermore, if B is a core and itself also a member of C, then we
say B is the maximum of C.
For example, using this terminology the 4-color theorem is to say that K4 is a bound for
the class of planar graphs. As K4 itself is a planar graph, in this case we may even say
K4 is the maximum of planar graphs.
In [41] we have shown that the Hadwiger conjecture can reformulated using this termi-
nology as follows:

Conjecture 1.10.1 (The Hadwiger conjecture reformulated). Every minor-closed family
of graphs admits a maximum in the homomorphism order.

1.11 No-homomorphism lemmas and the odd-girth

Given a pair G and H of graphs, the question "does G map to H?" is, usually, easier
to be handled when the answer would turn out to be YES. That is because, normally, a
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YES answer comes with a mapping which is easily verified to be a mapping. In contrast,
it is not so easy to verify a NO answer and a great deal of work is done to provide tools
for verification of such a case. A key tool here is the transitivity of the homomorphism
relation. That G → H and H → F implies G → F . Using this main property of graph
homomorphism, a number of so-called "no-homomorphism lemmas" are provided. The
followings are the two main examples:

Lemma 1.11.1. If G→ H, then χ(G) ≤ χ(H).

Lemma 1.11.2. If G→ H, then ω(G) ≤ ω(H).

While both lemmas are quite important, the fact that ω(G) and χ(G) are themselves
NP-hard to compute makes them not as practical as one would wish.
There are a few no-homomorphism lemmas based on parameter(s) of graph which are
computable in polynomial time. The odd-girth of a graph is one such parameter and the
corresponding no-homomorphism lemma would be of high importance in this text. It is
based on the following observation:

Lemma 1.11.3. If C2k+1 → C2r+1, then k ≥ r.

Since the image of any odd-cycle must contain an odd-cycle, we have:

Lemma 1.11.4. If G→ H, then odd-girth(G) ≥ odd-girth(H).

This lemma works similarly with the odd-girth of weighted graphs.
Another application of the fact that the image of any odd-cycle must contain an odd-cycle
is that C2k+1 is a core and that any mapping of a (2k + 1)-cycle to a (2k + 1)-cycle is an
isomorphism and, therefore, the distances between pairs of vertices are preserved. This
observation is extended as follows:

Theorem 1.11.5. Let G and H be two graphs of odd-girth 2k + 1. Let (G′, w1) and
(H ′, w2) be, respectively, partially G-weighted and partially H-weighted graphs such that
any edge of weight at least 2 of (G′, w1) (resp. (H ′, w2)) is in a (2k+ 1)-cycle of G (resp.
H). Then any homomorphism of G to H is also a homomorphism of (G′, w1) to (H ′, w2).
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Chapter 2

Projective cubes

2.1 Definitions and basic properties

In the following, projective cubes are defined in several different ways. Each definition,
given in a separate subsection, gives a new insight to these graphs.

2.1.1 As projections of the hypercubes

The first definition is the one from which the name "projective cube" is derived.

Definition 2.1.1. The projective cube of dimension k is the graph obtained from the
hypercube of dimension k + 1 by identifying antipodal pairs of vertices.

This projection is labeled as "folding“ in earlier papers and thus the term "folded cube"
is commonly used to refer to these graphs.

2.1.2 As augmented cubes

An alternative definition, yet obtained from hypercubes, which has granted the less com-
mon name of "augmented cubes" is as follows.

Definition 2.1.2. The projective cube of dimension k is the graph built from the hyper-
cube of dimension k by adding an edge between each pair of antipodal vertices.

To observe that the two definitions are equivalent, consider an inductive definition of
H(k + 1). In such a definition, H(k + 1) is built from two disjoint copies H1 and H2

of H(k) by adding a matching between corresponding pairs of vertices from two disjoint
copies. To find the antipodal of a vertex x1 in H1 part of H(k + 1), we first must find
x1, the antipodal of x1 in H1, then x2, the match of x1 in H2, is the antipodal of x1 in
H(k+1). This mapping of vertices of H1 to their antipodals in H2 is also an isomorphism
of H1 to H2. Thus, when the vertices of H2 are projected onto their antipodal vertices
in H1, the edges of H2 are mapped to the edges of H1. Therefore, the resulting graph of
this projection is the graph built on H1 where the only new edges are the images of the
matching between H1 and H2. Such images connect exactly the antipodal pairs of H1.

15
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2.1.3 As Cayley graphs

Definition 2.1.1 in turn invokes an algebraic definition of the projective cubes. Recall that
given a group Γ and a subset S which is closed under taking inverses, the Cayley graph
(Γ, S) is the graph on vertex set Γ where two vertices are adjacent if their difference is
in S. Noting that the antipodal of a vertex x in the hypercube H(k) is the vertex x+ J
(where J is the all-1 vector) we have the following equivalent definition of the projective
cubes.

Definition 2.1.3. The projective cube of dimension k is the Cayley graph (Zk2, {e1, e2, . . . , ek, J})
where the ei’s are the standard basis and J is the all-1 vector.

This definition leads to a natural edge-coloring of PC(k), where each edge is colored with
its corresponding element from {e1, e2, . . . , ek, J}. Observe that this is indeed a proper
edge-coloring, i.e., edges incident to a same vertex receive distinct colors. It is important
to note that in this definition, edges corresponding to J are not really different from
those corresponding to ei’s. Indeed, projective cubes are highly symmetric as we will see
later. But to see this symmetry, in the following proposition, we give a Cayley graph
presentation of PC(k) in a more general setting.

Proposition 2.1.4. Let S be a subset of size k + 1 of Zn2 such that the (binary) sum of
all elements of S is 0, but such a sum over any proper subset is nonzero. Then the Cayely
graph (Zn2 , S) consists of n− k + 2 disjoint copies of PC(k).

Proof. Observe that, since the only linear relation involves all elements of S, we have
n ≥ k− 1, thus n− k+ 2 is a positive integer. When n = k− 1, an isomorphism between
(Zn2 , S) and (Zk2, {e1, e2, . . . , ek, J}) is obtained from any 1-1 correspondence between S
and {e1, e2, . . . , ek, J}. If n ≥ k, then (Zn2 , S) has n− k+ 2 disjoint copies each in a coset
of the subgroup generated by S.

In particular, if we consider the set S of vectors in Zk2 with exactly two nonzero coordinates
which are also (cyclically) consecutive, we get two disjoint copies of PC(k). In this view
it is apparent that the graph is edge-transitive.

2.1.4 As power graphs of cycles

To give this definition we should first define the notion of power graph.

Definition 2.1.5. Given a graph H, the power graph of H, denoted Pow(H), is a graph
whose vertices are the subsets of the vertices of H (including the empty set), where two
vertices are adjacent if their symmetric difference is an edge of H.

Observe that for two vertices to be adjacent the symmetric difference is, in particular, of
order 2. Therefore, the set of vertices of odd order and the set of vertices of even order
induce two isomorphic graphs with no connection between their vertices. To obtain an
isomorphism between the two subgraphs, consider a fixed set F of an odd order and take
the symmetric difference with F . Each of these two parts is a connected component of the
graph if and only if H itself is a connected graph. The first part of this claim, i.e., that
if H is not connected, then Pow(H) has more than two components, is observed easily.
For the inverse, we will prove a stronger claim based on the following proposition.
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Proposition 2.1.6. Given a tree T of order n + 1, the power graph Pow(T ) consists of
two disjoint copies of H(n).

Proof. First we label the vertices of T by e1, e2, . . . , en+1 where the ei’s are the vectors
of the standard basis of Zn+1

2 . Each subset of vertices then corresponds to a vector of
Zn+1

2 by adding its elements, furthermore this is a one-to-one correspondence. Taking the
symmetric difference of two subsets then corresponds to the sum of their corresponding
vectors in Zn+1

2 .
Next we label edge of T : An edge eiej of T is labeled by ei+ej (addition is done in Zn+1

2 ).
Based on the fact that T has no cycle, it is easily observed that the set of labels of edges
is linearly independent in Zn+1

2 . Since there are n edges, they form a basis for a subspace
of dimension n. Since every vector generated by edges must have an even number of 1’s,
this subspace is contained in the subspace of Zn+1

2 formed by vectors with an even number
of 1’s. But considering the dimension, it follows that these two subspaces are exactly the
same.
Then, to build the power graph of T on subsets of even order, is to take edges as a basis,
and build the Hamming graph based on this basis. The result then is then hypercube of
dimension n.

Corollary 2.1.7. If H is a connected graph, then Pow(H) consists of two connected
components. Furthermore, each components contains the hypercube of dimension |V (H)|−
1 as a spanning subgraph.

Proof. Immediately from the definition it follows that if H ⊂ H ′, then Pow(H) ⊂
Pow(H ′). To complete the proof it is enough to consider a spanning tree of H.

We now give another definition of the projective cube of dimension n, we leave it as an
exercise to show that this definition is equivalent to anyone of the other definitions.

Definition 2.1.8. Given a cycle Cn, a connected component of the power graph Pow(Cn)
is the projective cube of dimension n.

2.1.5 Constructed from posets

When hypercubes are viewed as poset graphs, the projective cubes, built from the pro-
jection of hypercubes, find a new definition which we will frequently use. Recall that in
the definition by projection, antipodal vertices of the hypercube H(k + 1) are identified
in order to form PC(k). In the classic definition of the hypercube H(n) each vertex v
is a vector in Zn2 . By associating the set of coordinates at which v is 1, we obtain a
presentation of H(n) where vertices are all subsets of an n-set where vertices A and B are
adjacent if A ⊂ B and |A| = |B|−1. We refer to this as the poset representation of H(n).
In such a representation, the antipodal of a vertex (of H(k+ 1)) is its complement. Thus,
when PC(k) is formed from H(k+ 1) by identifying antipodal pairs of vertices, each new
vertex receives a label of two complementary subsets of the reference (k + 1)-set (the set
which is used to view H(k + 1) as a poset). The transition to the projective cubes is as
follows:
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Definition 2.1.9. Let S be a set of size k + 1. Then PC(k) is a graph whose vertices
are pairs of complementary subsets {A, Ā} of S where {A, Ā} and {B, B̄} are adjacent if
A ⊂ B and |B| = |A|+ 1.

We normally will take the set Sk = {e1, e2, . . . , ek, J} to be the reference (k + 1)-set.
For odd values of k, i.e., k = 2i+ 1, the poset 2Sk has a middle layer consisting of (i+ 1)-
subsets. As the antipodal of a vertex in this layer resides in the same layer, identification
of antipodals preserves the natural bipartition of the graph (every second layer is colored
black). In contrast, for even values of k, k = 2i, the two middle layers will be identified.
Since the two middle layers induce an (i + 1)-regular bipartite graph, this will create a
new layer which is indeed (i + 1)-regular, thus making the resulting graph nonbipartite.
The subgraph induced on this layer is introduced in the next proposition, whose proof we
leave as an exercise.

Proposition 2.1.10. In the poset presentation of PC(2i), the subgraph induced by ver-
tices {A, Ā}, |A| = i, is isomorphic to the Kneser graph K(2i+ 1, i).

In this presentation of PC(k), a vertex {A, Ā} may be simply represented by the smaller
of the two sets A and Ā. With such a labeling, the vertices of PC(2i) are subsets of order
at most i of S2i = {e1, e2, . . . , e2i, J}. However, to present vertices of PC(2i + 1), when
|A| = |Ā| = i+ 1 one must make a choice between A and Ā, but indeed any choice would
be ok.
With such a labeling of vertices, the distance between two vertices can be computed by
the following formula.

Proposition 2.1.11. The distance between vertices A and B of the projective cube PC(k)
is min{|A⊕B|, k + 1− |A⊕B|}.

Moreover, the set of vertices at distance i from A and j from B, d(A,B) = i+j determines
A ⊕ B. To simplify, we assume A = ∅. For the general case it would suffice to take the
symmetric difference with A (see Section 2.5 on the automorphisms of PC(k)).

Proposition 2.1.12. Given a vertex {B, B̄} (|B| < |B̄|) and positive integers i and j
such that i + j = |B|, the union of vertices at distance i from ∅ and j from B is the set
B. Furthermore, if |B| = |B̄|, then the internal vertices of all k+1

2
-paths connecting ∅ and

B induce two connected components. The union of vertices at distance i, (i ≤ k+1
2

), from
∅ in one component is B and in the other is B̄.

2.1.6 Inductive definition

Given PC(k) together with edges corresponding to J , the graph PC(k + 1) is defined as
follows: For each vertex u of PC(k) there are two vertices u1 and u2 in PC(k + 1). If uv
is an edge of PC(k) not corresponding to J , then u1v1 and u2v2 are edges of PC(k+1). If
uv is an edge corresponding to J , then u1v2 and u2v1 are edges of PC(k+ 1). Finally for
each vertex u of PC(k) we add an edge u1u2, these edges being the edges corresponding
to J in PC(k + 1). Thus each cycle with an odd number of edges corresponding to J
is replaced by a Möbius ladder. This definition is of higher interest when the notion of
signed graph is employed (to write more in Part II).
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2.2 Examples and properties

For k = 1, following the Cayley graph definition of the projective cube and noting that in
Z1

2 the vector J is the same as e1, we get K2 as the projective cube. However, in this case,
we allow multiple edges and let PC(1) be a complete (multi)graph on two vertices with
an edge of multiplicity two (one corresponding to e1, another corresponding to J). This
will be of importance when we consider signed projective cubes. The projective cubes
of dimension 2 and 3 are, respectively K4 and K4,4. The next case, i.e., PC(4) is a well
studied graph known as the Clebsch graph, also as GreenWood-Gleason graph and PC(5)
is known as the Kummer graph.
Considering the Cayley graph definition of the projective cubes, and noting that the sum
of colors of edges on each cycle is 0 (Observation 1), we have the following property which
separates the cycles of G into two essentially different types:

Proposition 2.2.1. Given a cycle or a closed walk C of PC(k) either all elements of
{e1, e2, . . . , ek, J} appear on edges of C an odd number of times, or they all appear an
even number of times.

Proof. Assume that an element x of Sk = {e1, e2, . . . , ek, J} appears an odd number of
times. Then in the sum of the values associated to edges of C (which equals to 0), x
appears with a coefficient of 1. As the only linear relation among elements of Sk is that
the total sum is 0, to null x each other element of Sk must also appear with a coefficient
1, that is to say it appears an odd number of times on C.

Corollary 2.2.2. Given a cycle C of PC(2i), a color appears an odd number of times if
and only if the cycle C is of an odd length. Furthermore, the length of a shortest odd-cycle
of PC(2i) is 2i+ 1.

On the other, hand if {e1, e2, . . . , ek, J} is of an even order, i.e., if k is odd, the graph
PC(k) has no odd-cycle, in other words PC(2i + 1) is bipartite for any values of i.
However, we keep in mind that PC(2i) has two essentially different types of cycles. The
notation of signed graph allows us to take advantage of this difference and develop an
analogue theory for PC(2k + 1).
Considering the Cayley graph definition of the projective cube and the corresponding
edge-coloring we have the following property.

Proposition 2.2.3. Given two vertices u and v of PC(k) and any shortest path P con-
necting them, all edges of P are colored distinctly.

Proof. Let cj1 , cj2 , . . . , cjl be the set of colors appearing on P an odd number of times.
Thus, v = u+

∑l
x=1 cjx . Then, the set {u, u+ cj1 , u+ cj1 + cj2 . . .+u+

∑l
x=1 cjx}, induces

a path of length l connecting u and v. As P is a shortest path connecting these u and v,
P contains exactly one edge of color cjx , x = 1, 2, . . . , l and it contains no other edge.
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2.3 Subgraphs of PC(2i)

2.3.1 Cycles

By Corollary 2.2.2, the shortest odd-cycle which is a subgraph of PC(2i) is C2i+1. There-
fore any such subgraph is induced. Furthermore we have:

Theorem 2.3.1. Given a pair u, v of vertices of PC(2i), there is a 2(i + 1)-cycle of
PC(2i) containing both u and v.

Proof. Suppose u and v are at distance d, and let P be a shortest path connecting u and
v. By Proposition 2.2.3, the edges of P are colored distinctly. Let c′j1 , c

′
j2
, . . . , c′jl be the

set of colors that do not appear on P . The set {u, u+ c′j1 , u+ c′j1 + c′j2 , . . . , u+
∑l

x=1 c
′
jx}

induces a path P ′ of length 2i + 1 − d whose edges are colored all distinctly and none
of which is used by edges of P . This path together with P induces a walk of length
2i + 1 whose edges have received all possible colors, exactly one of each. As a walk of
odd-length must contain a cycle of odd-length, and as PC(2i) is of odd-girth 2i+ 1, this
walk is indeed a cycle of length 2i+ 1.

Corollary 2.3.2. For any positive integer i the graph PC(2i) is a core.

Proof. If a homomorphism ρ of PC(2i) to itself (or to any other graph) identifies two
vertices u and v, then the image of any (2i + 1)-cycle passing through both u and v will
contain an odd-cycle of length strictly smaller than (2i + 1). As PC(2i) has odd-girth
2i+ 1, this implies that any mapping of PC(2i) to itself is one-to-one.

2.3.2 Möbius ladders and circulant graphs

Using the Cayley presentation of PC(2i), let vj =
∑j

l=1 el (thus v2i = J). {vj}2i
j=1 induces

a path of length 2i. These sets of vertices together with their antipodals (that is vj + J)
induces a 4i-cycle together with a perfect matching that connects antipodal pairs. This
is the graph known as the Möbius ladder M4k. It is also isomorphic to the circulant
graph C(4i, 2i − 1). Another way of observing Möbius ladders in PC(k) is to consider
the inductive definition of PC(k). By further analysis we observe that PC(4) can be
(vertex)-decomposed into two induced isomorphic copies of M8.

2.3.3 Augmented toroidal grids

Given positive integers a and b, the toroidal (a, b)-grid, denoted T (a, b), is the cartesian
product Ca�Cb. In a toroidal (2a, 2b)-grid, each vertex u has unique vertex at (maximum)
distance a+b, which therefore is referred to as the antipodal of u. The augmented toroidal
(2a, 2b)-grid, denoted AT (2a, 2b), is the graph obtained from T (2a, 2b) by adding an edge
between each pair of antipodal vertices. Figure 2.1 depicts a representation of T (24, 24)
and Figure 2.2 presents AT (6, 6).
We note thatAT (4, 4) is isomorphic to the projective cube PC(4), but in generalAT (2a, 2b)
is a proper subgraph of a corresponding projective cube as proved in the following theo-
rem.
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Figure 2.1: A representation of the 24× 24 toroidal grid.

Figure 2.2: The augmented toroidal grid AT (6, 6).

Theorem 2.3.3. Given positive integers a and b such that a + b = k, AT (2a, 2b) is a
subgraph of PC(k).

Proof. Considering the definition of PC(k) as the augmented hypercube, it would be
enough to show that the hypercube of dimension k contains a copy of C2a�C2b in such a
way that the antipodal of each vertex in the subgraph is the same as its antipodal in the
hypercube. To this end in fact we present an isometric embedding of C2a�C2b in H(k).
Considering H(k) as the Cartesian product of k K2’s we observe that H(k) = H(a)�H(b).
Now consider the Cayley graph definition of H(k) and assume e1, e2, . . . , ea are the basis
for H(a) and ea+1, ea+2, . . . , ek are the bases for H(b). Let v0 be the zero vertex of H(a),
and define v1 = v0 + e1, v2 = v1 + e2, . . . , va = va−1 + ea = J , similarly using reverse order
on ei, we define v′1 = v0 + ea, v′2 = v′1 + ea−1, . . . , v

′
a = v′a−1 + e1 = J . Thus va = v′a but

all other vertices are distinct. Consider a similar 2b-cycle of H(b). Then in the subgraph
induced by the Cartesian product of these two cycles, the distances are the same as the
hamming distances, hence this is an isometric subgraph of the hypercube H(k).

2.3.4 Generalized Mycielski constructions

Consider PC(2i) as a power graph of C2i+1 whose vertices are labeled v1, v2, . . . , v2i+1 in
the cyclic order. We consider the component induced by subsets of odd order. For given
j and r, 1 ≤ j ≤ 2i+ 1, 0 ≤ r ≤ k let vrj be the set of vertices at distance at most r from
vj. Thus in particular, v0

j = {vj}, vkj = {v1, v2, . . . , v2i+1}. Note that vrj is of (odd) order
2r + 1. It can then be checked:
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Theorem 2.3.4. The subgraph induced by the set {vrj |1 ≤ j ≤ 2i+ 1, 0 ≤ r ≤ k} is the
generalized Mycielski graph Mi(C2i+1).

Corollary 2.3.5. For every value of i we have χ(PC(2i)) = 4.

Proof. Payan ?? showed that generalized Mycielski Mi(C2i+1) has chromatic number 4.
Since PC(2i) contains the Mi(C2i+1) as subgraph, it has chromatic number at least 4.
In Section 3.1 we will see that PC(2i) → PC(2k) for any i satisfying i ≥ k. As PC(2)
is isomorphic to the complete graph K4, mapping PC(2i) to PC(2) is a 4-coloring of
PC(2i).

2.3.5 Kneser graphs

Given positive integers n and k, n ≥ k, the Kneser graph K(n, k) is a graph whose
vertices are all k-subsets of an n set where vertices A and B are adjacent if A∩B = ∅. By
labeling vertices of PC(2i) as in Definition 2.1.9, it is easy to show that the set of vertices
{{A, Ā}||A| = i} induces a subgraph isomorphic to K(2i + 1, i). In particular, K(5, 2),
which is the well-known Petersen graph, is a subgraph of PC(4), the Clebsch graph.

2.3.6 Coxeter graphs

The Kneser graphs K(2i + 1, i) in particular contains a number of highly symmetric
subgraphs which in turn are also subgraphs of PC(2i). One way of producing such
subgraphs is by considering vertices forming a design. Indeed, if we remove the seven
triples of a Fano plane from thirty five vertices of K(7, 3), the resulting graph is the
well-known Coxeter graph, which is a cubic graph of girth 7 on 28 vertices and, thus, an
induced subgraph of PC(6).

2.4 Binary Cayley graphs

A binary Cayley graph is any Cayley graph on a binary group (that is any subgroup of
Zk2). In 1990, C. Payan [52] presented a somewhat surprising result that any nonbipartite
binary Cayley graph has chromatic number at least 4. Here, we show that this result is
strongly related to the projective cubes of even dimension.

Theorem 2.4.1. Given a nonbipartite binary Cayley graph G = (Γ, S), if 2i + 1 is the
length of a shortest odd-cycle of G, then PC(2i) is a subgraph of G.

Proof. Let C be a cycle of length 2i+1 ofG. Then the edges of C are labeled γ1, γ2, . . . , γ2i+1,
γj ∈ S. Since C is a cycle we have γ1 + γ2 + . . . + γ2i+1 = 0. That C is a shortest
odd-cycle of G implies that the only linear relation among the γj’s is the one men-
tioned above. In particular, this means that all γj’s are distinct. Furthermore, the
assignment ρ(X) =

∑
γj∈X γj for subsets X of {γ1, γ2, . . . , γ2i+1} is a two-to-one assign-

ment, where X and its complement are assigned the same value (due to the fact that
γ1 + γ2 + . . . + γ2i+1 = 0). It can then be readily checked that Pow(C2i+1), after an
identification of two components, is a subgraph of G.
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Corollary 2.4.2. If G is a nonbipartite Cayley graph, then it has chromatic number at
least 4.

2.5 Automorphisms of the projective cubes

It is easier to find a full set of automorphisms of a given projective cube by considering a
labeling of vertices by pairs {A, Ā}, A ⊂ Sk as in Definition 2.1.9. Viewed such, it is easy
to verify that any nontrivial permutation of Sk is a nontrivial automorphism of PC(k).
Moreover, for a fixed nontrivial subset X of Sk, taking the symmetric difference with X
is also a nontrivial automorphism of PC(k). However, as taking the symmetric difference
with X and then with X̄ changes each set A to its complement Ā, the automorphism
induced by taking the symmetric difference with X is the same as the one obtained by
taking the symmetric difference with X̄. For clarification, we then only consider the
symmetric difference with X where J /∈ X. Finally, the composition of any two such
automorphisms is also an automorphism. In the next theorem it is shown that this is the
full set of automorphisms of PC(k).

Theorem 2.5.1. Each automorphism of PC(k) is a composition of a permutation of Sk
and a symmetric difference with a set X ⊂ Sk, J /∈ X.

Proof. We use the labeling of vertices by pairs {A, Ā} and, furthermore, we use the
smaller of A and Ā to denote the vertex {A, Ā} (when |A| = |Ā|, we may choose A or Ā
arbitrarily).
Let ψ be an automorphism of PC(k). First, we consider the case where ∅ is a fixed point of
ψ (i.e. ψ(∅) = ∅). Then, the neighbours of ∅, i.e., the singletons, are mapped to singletons
in a one-to-one manner. This induces a permutation πψ on Sk = {e1, e2, . . . , ek, J}. We
claim that ψ is the automorphism induced by this permutation. Consider a vertex A and
let A′ = ψ(A). As the distance from ∅ is solely determined by the order of A, A and A′
are of the same order. Furthermore, by Proposition 2.1.12, A is the union of singletons
on shortest paths connecting it to ∅. The automorphism ψ maps these shortest paths
to shortest paths from A′ to ∅. Thus, the singletons of shortest paths from A′ to ∅ are
determined by the permutation πψ, but by the same proposition, A′ is the union of these
singletons.
Next, we consider a general automorphism ψ. Assume ψ(∅) = B and let σB be an
automorphism obtained by taking symmetric difference with B. Then, ψ ◦ σB is an
automorphism which stabilizes ∅. Thus, ψ ◦σB = π where π is an automorphism induced
by a permutation of Sk. Then, noting that σB◦σB is the identity, we have: ψ = π◦σB.

2.6 PC(k)-weighted complete graphs

By the definition of a G-weighted complete graph, the PC(k)-weighted complete graph is
a weighted complete graph on 2k vertices labeled by the elements of Zk2 where the weight
of an edge xy is the distance of x and y in PC(k). We will denote this weighted graph by
KPC(k). We will use a finer notation to work with KPC(k), to present this notation we need
a strengthening of Proposition 2.1.11. To this end, in the rest of this section, we consider
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the poset presentation of PC(k), thus vertices are labeled by pairs of complementary
subsets of the set Sk = {e1, e2, . . . , ek, J}.
Proposition 2.6.1. Given vertices u = {A, Ā} and v = {B, B̄}, let Xuv be the smaller
of the two subsets A⊕B, A⊕ B̄. Then edges of any shortest path connecting u and v are
colored from the set Xuv in a one-to-one manner, unless |A ⊕ B| = k + 1 − |A ⊕ B| in
which case the color set X̄uv could be employed in place of Xuv.

It should be noted that while Xuv corresponds to a shortest path PXuv connecting u and v,
the complement of Xuv corresponds to a path PX̄uv

of length k+1−|Xuv| whose edges are
colored, in a one-to-one manner, from X̄uv. The union of PXuv and PX̄uv

is a (k+ 1)-cycle
which uses each color (that is elements of {e1, e2, . . . , ek, J}) exactly once. In particular,
in PC(2k) this is a (2k + 1)-cycle containing both u and v.
Given the PC(k)-weighted complete graph, we label an edge uv by the pair set {Xuv, X̄uv}
where Xuv is defined as above. We may then choose (freely) one of Xuv or X̄uv to denote
the label of this edge. The weight of an edge labeled {Xuv, X̄uv} is min{|Xuv|, |X̄uv|}
which is the same as min{|Xuv|, k + 1− |Xuv|}.
We may now give a classification of triples of the PC(2k)-weighted complete graph.

Theorem 2.6.2. Given a triple A, B and C of subsets of Sk, there is a triangle in the
PC(2k)-weighted complete graph whose edges are labeled A, B and C if and only if one
of the following happens:

• Every element of {e1, e2, . . . , e2k, J} appears in exactly two of A, B and C.

• Every element of {e1, e2, . . . , e2k, J} appears either in one or all three of A, B and
C,

Proof. We observe that the two conditions are actually the same. A triple A, B and
C satisfies the first condition if and only if the triple A, B and C̄ satisfies the second
condition.
Consider a triangle of the PC(2k)-weighted complete graph whose edges are labeled A, B
and C. By replacing C with C̄, if necessary, we may assume that |A|+ |B|+ |C| is odd.
That A, B and C correspond to edges of a cycle implies that the sum of the elements of
these three sets is 0 (in Z2k

2 ). As there are an odd number of elements, and similar to the
proof of Proposition 2.2.1, all elements must appear an odd number of times in the closed
walk corresponding to A, B and C passing through vertices of the triangle. Thus, each
element either appears only in one of the three sets, or in all three of them.
Conversely, assume A, B and C are so that each element of {e1, e2, . . . , e2k, J} appears
either in exactly one of the three sets or in all three of them. Then the sum (in Z2k

2 ) of
the elements is 0. Thus, for a given vertex x of the PC(2k)-weighted complete graph, if
y and z are chosen so that xy and xz labeled A and B, respectively, then zy is labeled
A ∪B which is either C or C̄.

2.7 Transitivity of PC(k)

As with any Cayley graph on a commutative group, PC(k) is a vertex-transitive graph,
that is to say that for any pair u and v of vertices, there is an automorphism of PC(k)
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which maps u to v. Indeed, assuming that uv is labeledX in the PC(k)-weighted complete
graph as in previous subsection, and considering the poset representation of PC(k), the
automorphism obtained by taking the symmetric difference with X exchanges u and v.
This implies higher levels of symmetries on PC(k). As discussed in the previous section,
the distance of a pair u, v of vertices is a function of the order of the set which the
edge uv is labeled by in the PC(k)-weighted complete graph. Thus, given a pair uv and
xy of edges of a same weight in the PC(k)-weighted complete graph, an automorphism
that maps x to u composed with a suitable permutation of {e1, e2, . . . , ek, J} would map
vertices u and v to vertices x and y respectively. This means that the PC(k)-weighted
graph is edge-transitive, or that, equivalently, PC(k) is distance-transitive. Yet, this is
not full strength of the symmetries of PC(k). It is known that PC(k) is triple-transitive,
see [37]. We give a proof of this using the terminology we have developed.

Theorem 2.7.1. Let {u, v, w} and {x, y, z} be two triples of vertices of PC(k) such
that dPC(k)(u, v) = dPC(k)(x, y), dPC(k)(u,w) = dPC(k)(x, z), dPC(k)(v, w) = dPC(k)(y, z).
Then, there exists an automorphism ψ of PC(k) such that ψ(u) = ψ(x), ψ(v) = ψ(y),
ψ(w) = ψ(z).

Proof. Consider the labeling Xuv, Xuw and Xvw of the edges of a triangle induced by
u, v and w in the PC(k)-weighted complete graph and consider the corresponding paths
PXuv , PXuw and PXvw . Since they form a closed walk, the sum (in Zk2) of elements
from Xuv, Xuw and Xvw must be 0. Thus, by Proposition 2.2.1, either all elements of
{e1, e2, . . . , ek, J} appear an even number of times in this sum, or they all appear an odd
number of times. If it is the former case, we replace Xuv by its complement, thus we
assume each element appears an odd number of times. That there is no repeated color on
each path means each element of Sk appears either in exactly one of Xuv, Xuw and Xvw

or in all three of them. More precisely, exactly t = |Xuv |+|Xuw|+|Xvw|−2k+1
2

of the elements
appear in all three of them, the rest appearing in exactly one of the three sets.
Thus, the positioning of a triple is only a function of their mutual distances. To find
an automorphism mapping vertices of a first triple to the second, we first choose a per-
mutation of Sk which maps the t common elements of the first triple to the second and
maps remaining elements of each path in the first triangle to its corresponding path in
the second triangle. To complete the automorphism, all we need is to take a symmetric
difference which maps one of the three vertices of the first triple to its corresponding
vertex in the second set of triples.
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Chapter 3

Homomorphisms to projective cubes

The existence of a homomorphism from a graph G to a projective cube is of special
interest (compared to other targets) as it captures a packing problem. This property is
better expressed using the language of signed graphs. Here we express the graph version
for projective cubes of even dimension, for general version and for a proof we refer to [?].

Theorem 3.0.1. A graph G admits a homomorphism to PC(2i) if and only if E(G) can
be partitioned into 2i + 1 sets E1, E2, . . . , E2i+1 such that each intersection of an Ej and
a cycle of G has an order of the same parity as the order of the cycle.

This theorem together with the fact that PC(2) ∼= K4 distinguishes 4-coloring from all
other k-colorings: To (properly) 4-color vertices of a graph is equivalent to 3-color its
edges such that each even cycle uses any of the three colors an even number of times and
each odd cycle uses each color an odd number of times. This is the hidden fact behind
Tait’s reformulation of the four-color theorem (see Section 1.6).
We study homomorphisms to projective cubes from two points of view; first we con-
sider homomorphisms from binary Cayley graphs to projective cubes. Then we consider
homomorphisms from planar graphs.

3.1 Homomorphisms of binary Cayley graphs to pro-
jective cubes

We consider the Cayley presentation of PC(2i), thus each vertex is also a vector in Z2i
2 .

A natural mapping of PC(2i+ 2) into PC(2i) is as follows: for a vector v of PC(2i+ 2)
let v12 be the vector of length 2 (in Z2

2) whose coordinates are (respectively) the first and
second coordinate of v, then let v′ be a vector of length 2i (in Z2i

2 ) whose coordinates are
the remaining coordinates of v in the same order. The mapping ρ is defined as follows:

ρ(x) =

{
ρ(v) = v′ if v12 ∈ {(00), (11)}
ρ(v) = v′ + J if v12 ∈ {(01), (10)}

where J is the all-1 vector of the same length as v′.

27



28 CHAPTER 3. HOMOMORPHISMS TO PROJECTIVE CUBES

Suppose that u and v are two adjacent vertices of PC(2i). Then u+ v = x where x ∈ S2i.
If x ∈ {e3, e4, . . . , e2i}, then ρ(u) and ρ(v) differ only at the coordinate corresponding
to x. If x ∈ {e1, e2} then by symmetry of u and v we have u12 ∈ {(00), (11)} and
v12 ∈ {(01), (10)} thus ρ(u) + ρ(v) = J with J being of length 2i − 2. If u + v = J (of
length 2i), then ρ(u) + ρ(v) = J (of length 2i− 2). Thus, in all cases, ρ(u) is adjacent to
ρ(v) in PC(2i− 2). Hence, considering the transitivity of homomorphism and odd-girth
of PC(2i), we have proved:

Theorem 3.1.1. There is a homomorphism of PC(2i) to PC(2j) if and only if i ≥ j.

In particular, for any value of i, PC(2i) maps to PC(2) which is isomorphic to K4.
Hence every PC(2i) is 4-colorable, and thus 4-chromatic (this completes the proof of
Corollary 2.3.5).
The result of C. Payan [52], proving that there are no binary Cayley graph of chromatic
number 3, can be restated as: if a non-bipartite Cayley graph maps to PC(2), then
any such mapping must be surjective. This then suggests the following generalization by
replacing PC(2i) with PC(2) which we proposed in [5].

Conjecture 3.1.2. If G is binary Cayley graph mapping to PC(2i), then any such
mapping is surjective.

This in particular claims that any mapping of PC(2j) to PC(2i), j ≤ i, is surjective.
However, by Theorem 2.4.1, if a binary Cayley graph G is non-bipartite, then it contains
PC(2j) as a subgraph, where 2j + 1 is the odd-girth of G. Therefore, Conjecture 3.1.2 is
equivalent to the following restricted version:

Conjecture 3.1.3. Given j ≤ i, any mapping of PC(2j) to PC(2i) is surjective.

The case i = j of the conjecture is to say that PC(2i) is a core, which is proved in
Proposition 2.3.2. For i = 1, the claim is to say that for any i the projective cube PC(2i)
is 4-chromatic, which is the case because it contains Mi(C2i+1) which are shown to be
4-chromatic by Payan [52]. The case j = 3 and i = 2 is proved in [5].

Theorem 3.1.4. Any homomorphism of PC(6) to PC(4) is surjective.

In [5] we proposed a stronger conjecture as a possible method of proving Conjecture 3.1.3.
That was to claim that PC(2j)2i−1, (j ≥ i), is of chromatic number 22i. If it was true, it
would have implied, in particular, that any homomorphism of PC(2j) to PC(2i) is onto,
as PC(2i)2i−1 is the complete graph on 22i vertices. However, computational work of
Gordon Royle showed that this stronger conjecture fails even for j = 4 and i = 2, indeed
a 12-coloring of PC(6)3 is given by G. Royle.

3.2 Homomorphisms of planar graphs into projective
cubes

Extending the four-color theorem, the following conjecture plays a central role in the
development of the theory of homomorphisms to projective cubes.
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Conjecture 3.2.1. Any planar graph of odd-girth 2g + 1 maps to PC(2g).

If we denote the class of planar graphs of odd-girth 2g + 1 by P2g+1, then the conjecture
claims that: P2g+1 is bounded by PC(2g) in the homomorphism order of graphs.
Since PC(2) ∼= K4, the case g = 1 is the 4-color theorem. The cases g = 2, 3 are verified
(using the 4-color theorem) as we will explain in Section 3.3. It remains open for larger
values of g.
A bipartite analogue of the conjecture, using the notion of signed graphs, is introduced
By B. Guenin, we refer to [?]. This general view using notion of signed graphs is of high
importance because, among other reasons, it would provide room for a finer inductive
approach: stepping from PC(k) into PC(k + 1) rather than PC(k + 2).
In the following subsection, we will see the construction of a planar graph of odd-girth
2k + 1 for which any homomorphic image of odd-girth 2k + 1 would have at least 22k

vertices. We will also see that if B is a minimal graph of odd-girth 2k+ 1 which admits a
homomorphism from any planar graph of odd-girth at least 2k+ 1, then B has minimum
degree no less than 2k + 1. Thus Conjecture 3.2.1, if true, provides an optimal solution;
PC(2k) would be the smallest graph (in terms of both number of vertices and number
of edges) of odd-girth 2k + 1 to which every planar graph of odd-girth 2k + 1 admits a
homomorphism.
This, in particular, implies that no subgraph of PC(2k) bounds the class P2k+1. However,
if we consider mapping planar graphs of odd-girth at least 2r + 1, r 	 k, into PC(2k),
the situation changes and we may not need the whole PC(2k). We will show that finding
minimal such subgraphs captures some classic theories and gives birth to new theories.
More formally we ask:

Problem 3.2.2. Given r ≥ k, what are the minimal subgraphs of PC(2k) to which every
planar graph of odd-girth 2r + 1 admits a homomorphism?

For r = k, or for values of r closer to k, the question would only make sense if Conjec-
ture 3.2.1 holds. We give suggestions of such possible solutions in special cases.

3.2.1 The case r = k

In this case there would be an answer only if Conjecture 3.2.1 holds. However, if so, then
the whole graph PC(2k) would be needed, in fact we will show a stronger result, proving
that if the conjecture holds, then PC(2k) is a smallest graph (in terms of both number of
edges and number of vertices) of odd-girth 2k+ 1 to which any planar graph of odd-girth
2k+ 1 admits a homomorphism. This claim in turn is a corollary of a yet stronger claim:

Theorem 3.2.3. There exists a planar graph G of odd-girth 2k+ 1 whose (2k− 1)th walk
power contains a 22k-clique. Furthermore, such a graph G can be chosen to be a partial
3-tree as well.

We explicitly build such a graph, here we give the construction and refer to [45] for details.
Let G0 be a subdivision of K4 where two parallel edges are subdivided each 2k− 2 times.
Thus, we have a planar graph with four faces, each of which is of length 2k + 1 and
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moreover the odd-girth of the graph is also 2k+ 1, i.e., there is no odd-cycle of length less
than 2k + 1. Let S0 be the set of two threads of length 2k− 1 of G0. In what follows, we
build graph Gi from the graph Gi−1 using the threads in Si−1 and we update our list of
threads to have a new list Si of (shorter) threads. When the length of threads in Si is 1,
that is when we have built Gk, we have our construction.
To build Gi from Gi−1 and Si−1. we introduce two operations:

Copy thread: For each thread in Si−1, add a new thread of same length which connects
its two ends but all internal vertices are new and distinct.

Shorten thread: For each thread T = v0v1 . . . vi, T ∈ Si−1, and its copy T = v0v
′
1 . . . v

′
i−1vi

add a new thread of length 2k + 1− i connecting v1 and v′i−1.

Note that, in operation Shorten thread, each original thread v0v1 . . . vi−1vi and its copy,
v0v
′
1 . . . v

′
i−1vi, is shortened by two vertices. Add these two shortened threads (v1 . . . vi−1

and v′1 . . . v′i−1) to Si (but not the thread which connects v1 and v′i−1).
The following three claims whose proofs we do not include imply the claim of the theorem:

1. The graph Gk is of odd-girth 2k + 1.
2. There is an odd-walk of length at most 2k − 1 between any pair u and v where u and
v are either vertices of the original K4, or a vertex of a selected thread at some step.
3. There are a total of 22k such vertices.

Remark. Observe that the construction given here is also a partial 3-tree.

3.2.2 The case r = k + 1

We propose the following subgraph of PC(2k) as one of possible answers for this case:

Conjecture 3.2.4. Every planar graph of odd-girth at least 2k + 3 admits a homomor-
phism to K(2k + 1, k).

For k = 1, since K(3, 1) is the complete graph on three vertices, the conjecture is equiv-
alent to the Grötzsch theorem. For k = 2 the best known result is that of [12] where it
is proved that every planar graph of odd-girth at least 9 admits a homomorphism to the
Petersen graph (our conjecture claims that odd-girth at least 7 suffices). For larger values
of k, the question is yet to study and for most cases the best known results are implied
from stronger claims of mapping into C2k+1 (to be discussed in the next sections).
This conjecture would imply, in particular, the slightly weaker conjecture that:

Conjecture 3.2.5. If G is a planar graph of odd-girth at least 2k+3, then χf (G) ≤ 2+ 1
k
.

The bound of 2 + 1
k
is the best possible if possible at all. Indeed, extending a result of

K. Jones [29], we have built planar graphs of odd-girth 2k + 1 whose independence ratio
(i.e., |V (G)|

α(G)
) is arbitrarily close to 2 + 1

k
. As this ratio is a lower bound for the fractional

chromatic number, Conjecture 3.2.5, if true, would prove the best possible bound.
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3.2.3 The case (r, k) = (5, 3) and the Coxeter graph

For the special case of (r, k) = (5, 3) we introduce the Coxeter graph as a possible answer.
That is, a highly symmetric cubic graph of girth 7, first built by Coxeter. We follow a
definition given in [19].
Recall that K(7, 3) is a subgraph of PC(6), and if Conjecture 3.2.4 is true, then K(7, 3)
would, in particular, be a bound for P11(⊆ P9). The Coxeter graph, a subgraph of K(7, 3)
defined below, is a candidate for being a smaller bound in this case.

Definition 3.2.6. A Fano plane is a collection of (seven) triples, called lines, from a set
of seven points where each pair of points appears exactly on one line. Given a Fano plane,
the Coxeter graph is a graph built from K(7, 3) by removing seven triples of the Fano
plane.

Conjecture 3.2.7. Any planar graph of odd-girth at least 11 admits a homomorphism
to the Coxeter graph.

Intuitively, Conjecture 3.2.4 suggests that each planar graph of odd-girth at least 9 admits
a (7, 3)-coloring, that is to assign a set of three colors to each vertex from a set of seven
available colors, such that each pair of adjacent vertices receive disjoint sets of colors. For
the subclass of planar graphs of odd-girth at least 11, Conjecture 3.2.7 strengthens this
by suggesting that: if the set of seven available colors are the vertices of a Fano plane,
then such a (7, 3)-coloring can be given so that the triple of colors at each vertex are not
co-linear.
So far, the best result toward Conjecture 3.2.7 is our result in [23] proving that P17 is
bounded by the Coxeter graph.
Since this conjecture depends on the Fano plane, we do not have a generalization for each
value of k. However, as pointed out by P. Cameron, we may propose another conjecture
based on the existence of an (11, 5, 2) design. That is a collection of 5-tuples from a set
of 11 points where each pair appears exactly once. Removing such collection of 5-tuples
from vertices of K(11, 5) we may expect that the remaining induced subgraph bounds the
class P15.
These examples show how the study of Problem 3.2.2 may lead to interesting new theories
on coloring graphs.

3.2.4 The case r ≥ 2k − 1 and the circular chromatic number

Recall that PC(2k) contains, as a subgraph, the circulant cliques C(4k, 2k − 1) and
C(2k+ 1, k). The former is the Möbius ladder of length 2k and the latter is the odd-cycle
of length 2k + 1.
We propose them as answers of Problem 3.2.2 for r = 2k− 1 and r = 2k, noting that the
latter is a well-known conjecture of Jaeger-Zhang.

Conjecture 3.2.8. Every planar graph of odd-girth at least 4k − 1 admits a homomor-
phism to C(4k, 2k − 1).

Conjecture 3.2.9. [30] Every planar graph of odd-girth at least 4k + 1 admits a homo-
morphism to C(2k + 1, k).
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Conjecture 3.2.9 is well-known as the Jaeger-Zhang conjecture. Jaeger conjectured that
every 4p connected graph admits an orientation where the difference between the number
of incoming edges and the number of outgoing edges mod 2p+ 1 is either +1 or −1. The
restriction of this conjecture to planar graphs would be that every planar graph of girth at
least 4p admits a homomorphism to C2p+1. Zhang then proposed that odd-girth suffices
for this conjecture. Several projects in support of this conjecture are completed. The
best result so far is that of [32]; introducing the notion of odd-connectivity, the authors
strengthen the original conjecture of Jaeger and then prove it for the smaller class of
6p-oddly-connected graphs. The restriction to planar graphs then implies:

Theorem 3.2.10. Every planar graph of odd-girth at least 6k+1 admits a homomorphism
to C(2k + 1, k).

The two conjectures introduced here can be combined to formulate a single conjecture in
bounding the circular chromatic number of planar graphs of odd-girth 2k + 1.

Conjecture 3.2.11. Given a planar graph G of odd-girth 2k+ 1 we have χc(G) ≤ 2 + 2
k
.

If true, this bound would be the best possible as (recently) shown by H. Qi and X. Zhu.

3.3 Relation to edge-coloring

In this section we show that Conjecture 3.2.1 is equivalent to a restricted version of
Conjecture 1.5.4.
Given a d-regular multi-graph G, d is an obvious lower bound for the edge-chromatic
number of G. What we are interested in, is conditions which would imply that G has
edge-chromatic number exactly d. This case is of special interest as it would imply a
partition of the edges of G into perfect matchings. Consider a subset X of vertices which
is of an odd order. Then, as discussed in Section 1.5, the value 2|E(X)|

|X|−1
is a lower bound

for the edge-chromatic number. Thus, one necessary condition would be 2|E(X)|
|X|−1

≤ d for
every X where X is subset of V (G) of an odd order. Denoting by δ(X) the set of edges
having exactly one end in X, and considering that G is d-regular, this is equivalent to
|δ(X)| ≥ d. Thus a restricted version of Conjecture 1.5.4 is to say:

Conjecture 3.3.1. If G is a planar d-regular multi-graph such that any subset X of an
odd number of vertices satisfies δ(X) ≥ d, then χ′(G) = d.

The case d = 3 of this conjecture is Tait’s reformulation of the four-color theorem (The-
orem 1.6.2). Being a special case of Seymour’s conjecture (Conjecture 1.5.4) it is widely
known as Seymour’s edge-coloring conjecture. Applying induction on d, thus using the
four-color theorem, the cases d ≤ 8 are settled in [21, 11, 7, 8].
Here we show the following equivalence. A similar equivalence, using the notion of homo-
morphism of signed graphs, is given for even values of d in [?].

Theorem 3.3.2. The case d = 2k+ 1 of Conjecture 3.3.1 is equivalent to the case 2k+ 1
of Conjecture 3.2.1.
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Proof. Let d = 2k + 1 and consider a d-regular planar multi-graph G. Then, since the
number of odd-degree vertices is always even, |X| and |δ(X)| are of same parity. Since
δ(X) corresponds to a cycle of GD, the dual of G, the condition of Conjecture 3.3.1 are
satisfied if and only if GD is of odd-girth 2k + 1. Then, assuming Conjecture 3.2.1 holds
for this value of k, there exists a mapping φ of GD to PC(2k). The mapping φ induces
an edge-coloring on E(GD) and, therefore, by correspondence, also on E(G). Since edges
incident to a same vertex correspond to a (2k + 1)-cycle in GD, and by Corollary 2.2.2,
the d-edge-coloring induced by φ on G is a proper one.
For the converse, suppose G is a planar graph of odd-girth 2k + 1. Assuming Conjec-
ture 3.3.1 holds for d = 2k + 1, we want to show that G admits a homomorphism to
PC(2k). Applying the Folding lemma (Lemma 1.6.4), if necessary, we may assume that
each face of G is a (2k+1)-cycle. Thus GD is a (2k+1)-regular planar multi-graph which
satisfies the conditions of Conjecture 3.3.1 and, therefore, admits a (2k+1)-edge-coloring.
In such an edge-coloring, given an odd set X of vertices, each color class must intersect
δ(X) an odd number of times. Thus, associating the corresponding colors to the edges of
G, we have a partition of the edges of G which satisfies the conditions of Theorem 3.0.1
(for PC(2k)). Hence, G admits a homomorphism to PC(2k).
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Chapter 4

Bounding minor-closed families

4.1 Intersection of Forbm and Forbh

In this chapter we consider a general question on homomorphism of minor-closed families
of graphs. Our goal is to develop tools to answer the question in the case the minor-closed
family is the class of partial t-trees.
Consider a finite set H = {H1, H2, . . . , Hi} of connected graphs. Let Forbh(H) be the
class of graphs G such that no Hi admits a homomorphism to G. Observe that for
H = {Kn} the class Forbh(H) is the class of all Kn-free graphs and for H = {C2k−1} it
is the class of graphs of odd-girth at least 2k + 1.
Let C be a minor-closed family of graphs. Note that by the graph minor theorem of
Robertson and Seymour, C can be presented in the form of Forbm(M) for some finite
set M = {M1,M2, . . . ,Mj} of graphs. A general question is to find a smallest graph in
Forbh(H) to which every graph in Forbh(H) ∩ Forbm(M) admits a homomorphism.
For H = M = {Kn}, Forbh(H) ∩ Forbm(M) is the class Forbm(M) and the question is
to find a Kn-free graph to which any graph from Forbm(M) admits a homomorphism to.
The smallest of such graphs would be Kn−1 if the Hadwiger conjecture is true.
When H = {C2k−1} and M = {K3,3, K5}, the intersection Forbh(H) ∩ Forbm(M) is the
class of planar graphs of odd-girth at least 2k + 1 for which the best bound of odd-girth
2k + 1 is proposed to be the projective cube PC(2k) (see Theorem 3.2.3).
The fact that such a bound always exists follows from a general result of J. Nešetřil and
P. Ossona De Mendez:

Theorem 4.1.1. [49] Given a finite set H = {H1, H2, . . . , Hi} of connected graphs, and
any finite set M = {M1,M2, . . . ,Mj} of graphs, there exists a graph in Forbh(H) to which
any graph in Forbh(H) ∩ Forbm(M) admits a homomorphism.

For an illustration of Theorem 4.1.1 see Figure 4.1.
A natural question is then the following:

Problem 4.1.2. What is the smallest order of a bound in Theorem 4.1.1?

As mentioned above, the question captures some of the most difficult theorems and con-
jectures in graph theory. Our goal in this chapter is to give an algorithm which, given

35
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H

Forbh(H)
Forbm(M)

Figure 4.1: Illustration of Theorem 4.1.1

a graph B of odd-girth 2k + 1 (i.e., B ∈ Forbh(C2k−1)) and for PT t being the class of
partial t-trees, decides, in polynomial time (with respect to the order of B), if B bounds
Forbh(C2k−1)∩PT t. The algorithm is an application of an “if and only if" theorem which
can also be checked theoretically.

4.2 A subdivision of 2Kt

By the definition, complete graphs of order t are the building blocks of t-trees. They will
then play an important role in our development of the theory of homomorphism bounds
for these classes in the format of weighted blocks.
A 2Kt is a multi-graph where there are exactly two pairs of (multi) edges between each
pair of vertices. Given a weight function w on the edges of Kt satisfying 1 ≤ w(e) ≤ 2k

for each edge e, recall that (Kt, w)2k+1 is the graph built from 2Kt by subdividing edges
where the two edges corresponding to e are subdivided into threads of lengths w(e) and
2k+ 1−w(e) respectively. Furthermore, by claiming that (Kt, w) is (2k+ 1)-wide first of
all we, implicitly, imply that 1 ≤ w(e) ≤ 2k for all edges, secondly that (Kt, w)2k+1 is of
odd-girth 2k + 1.

Observe that replacing w(uv) by 2k + 1 − w(uv) does not change the graph (Kt, w)2k+1
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and, therefore, for (Kt, w) to be (2k + 1)-wide is invariant under such a change.
Given a cycle C of Kt, each edge uv could be replaced by either a path of length w(uv) or
a path of length 2k+ 1−w(uv) in order to find a cycle corresponding to C in (Kt, w)2k+1.

Thus, there are 2|V (C)| cycles in (Kt, w)2k+1 corresponding to C, exactly half of which are

odd-cycles. However, the length of a shortest odd-cycle of (Kt, w)2k+1 can be determined
much simpler than calculating the length of all such odd-cycles. We first establish couple
of checks for a complete weighted triangle to be (2k + 1)-wide, then we show that the
shortest odd-cycle of a complete weighted graph can be determined by considering its
triangles only.

Proposition 4.2.1. Let (K3, w) be a weighted triangle with weights 1 ≤ a ≤ b ≤ c ≤ k.
Then it is (2k + 1)-wide if and only if one of the following holds:

i a+ b+ c is odd and a+ b+ c ≥ 2k + 1, or

ii a+ b+ c is even and a+ b ≥ c.

Proof. Let x, y and z be three vertices of K3. Consider a cycle of (K3, w)2k+1. If it uses
only two of x, y, z, then it is of length exactly 2k + 1 by construction. Otherwise, of the
eight cycles using all three of x, y, z the shortest cycle is of length a + b + c and exactly
four are odd-cycles. If a+ b+ c is an odd number, then [i] applies. If a+ b+ c is an even
number, then, since we have assumed a ≤ b ≤ c, the shortest odd-cycle of (K3, w)2k+1

containing all three vertices x, y, z is of length a + b + (2k + 1 − c) which is of length at
least 2k + 1 as [ii] applies.

To apply Proposition 4.2.1 the weight of each edge must be at most k (rather than at
most 2k). If a weighted triangle is given such that w(e) ≤ 2k for all edges but for some
edges we have w(e) ≥ k + 1, then to apply the proposition we may simply replace the
weight of each such edge e by 2k + 1− w(e).

Proposition 4.2.2. Let (K3, w) be a weighted triangle with weights 1 ≤ a, b, c ≤ 2k such
that a+b+c is odd. Let f2k+1(a, b, c) = 1

2
(a+b+c−(2k+1)). Then (K3, w) is (2k+1)-wide

if and only if 0 ≤ f2k+1(a, b, c) ≤ min{a, b, c}.

Proof. As before let x, y and z be three vertices of K3. Assume (K3, w)2k+1 is of odd-girth
2k + 1, then, since a+ b+ c corresponds to length of an odd-cycle containing all three of
x, y and z, we have f2k+1(a, b, c) ≥ 0. The three other odd-cycles of G containing all three
of x, y and z have length (2k + 1)− a+ (2k + 1)− b+ c, a+ (2k + 1)− b+ (2k + 1)− c,
(2k + 1) − a + b + (2k + 1) − c. Each of these cycles must be of length at least 2k + 1.
Considering the first one, we have (2k+ 1)− a+ (2k+ 1)− b+ c ≥ 2k+ 1 which is to say
2c ≥ a + b + c− (2k + 1) thus c ≥ f2k+1(a, b, c). By considering the other two cycles, we
get the other two required inequalities.
For the inverse, assume that f2k+1(a, b, c) is within the given interval. If a + b + c is
the shortest odd-cycle, then f2k+1(a, b, c) ≥ 0 implies that the odd-girth of (K3, w)2k+1 is
2k + 1. Otherwise, and without loss of generality, we may assume 1 ≤ a ≤ b ≤ c. Then
the length of a shortest odd-cycle of (K3, w)2k+1 containing all three vertices x, y and z
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is a+ (2k + 1)− b+ (2k + 1)− c = 2a+ (2k + 1)− 2f2k+1(a, b, c) which is at least 2k + 1
since a ≥ f2k+1(a, b, c).

To apply this Proposition 4.2.2, if the sum of the three weights of edges of a triangle
uvw is not an odd number, then it would suffice to replace one of the weights with the
complementary value of 2k + 1− w(uv).
Next, we want to check if (Kt, w) is (2k+1)-wide. In the next theorem, we show that it is
enough to apply either one of the previous propositions for allK3-subgraphs ofKt together
with the induced weights. Note that, when applying Proposition 4.2.2 on triangles of a
(Kt, w), given an edge e of weight a, one may consider the weight a in some triangles
containing e and the weight 2k + 1 − a in some other triangles containing e in order to
have an odd sum of weights in each of the triangles containing e.

Theorem 4.2.3. A complete weighted graph (Kt, w) is (2k + 1)-wide if and only if each
of its induced triangles is (2k + 1)-wide.

Proof. If (Kt, w) is (2k+ 1)-wide, then every induced triangle is also (2k+ 1)-wide, so we
only need to prove the converse.

By contradiction, assume every induced triangle of (Kt, w) is (2k + 1)-wide but itself is
not. Then (Kt, w)2k+1 has an odd-cycle C of length smaller than 2k + 1. Let C ′ be the
cycle of Kt corresponding to C and let x1, x2, . . . , xr be the vertices of C ′ in cyclic order.
Among all odd-cycles in (Kt, w)2k+1 of length less than 2k + 1, let C be one for which r
is minimized. By the assumption on the triangles of (Kt, w), we have r ≥ 4. Thus, C ′
has a proper chord (that is, a pair xixj which is not an edge of C ′). Let P1 and P2 be the
two paths connecting xi and xj in C ′. Let Q1 and Q2 be the two threads of (Kt, w)2k+1

connecting xi and xj, noting that the total length of Q1 and Q2 is 2k + 1. Since the sum
of lengths of P1 and P2 is odd (that is the length of C), we may assume (by relabeling
indices, if needed) that the length of Pi together with the length of Qi is an odd number
for i = 1, 2. Thus, we obtain two odd-cycles in (Kt, w)2k+1, corresponding to Pi ∪ Qi,
i = 1, 2. The total length of these cycles is 2k + 1 + |V (C)|. Since C is of length smaller
than 2k + 1, at least one of these two cycles is of length smaller than 2k + 1 but it uses
less vertices of Kt, contradicting the minimality of r.

Let (B,w) be a weighted graph and let W be a set of weighted (t+ 1)-cliques of (B,w).
Let W ′ be the collection of all weighted t-cliques each a subclique of a weighted (t + 1)-
clique of W . Observe that a member of W ′ could be derived as a subclique of more than
one clique in W .
Given a t-clique X of W ′, we say X is fully (t, k)-observed in W if for any extension of
X into a weighted (t + 1)-clique which is (2k + 1)-wide, there is a member of W which
realizes this extension. If all members of W ′ are fully (t, k)-observed, then W is said to
be (t, k)-closed.

Theorem 4.2.4. Let (B′, w) be a partially B-weighted graph which is (2k+ 1)-wide. If a
nonempty collection W of (t+ 1)-cliques of B′ is (t, k)-closed, then for any (2k+ 1)-wide
complete graph (Kt, w) there is an isomorphic copy of (Kt, w) in W ′.
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Proof. Let X = (Kt, w) be an element of W ′. We construct X+ from X by adding a
vertex u to X which is joined to each vertex of X by an edge of weight k. We claims
that X+ is (2k+ 1)-wide. That is because any cycle using vertex u (in the corresponding
graph) is of length at least 2k + 1 and every other cycle is also a cycle of X, thus by the
assumption on B, is of length at least 2k + 1. Thus X+ is also a member of W . Let X ′
be a weighted complete graph on t vertices obtained from X+ by removing a vertex other
than u.
Let Kk

t+1 be weighted complete graph on t+ 1 vertices where all edge-weights equal to k.
By repeated application of building X+ and X ′ from X we conclude that: First of all the
weighted Kk

t+1 is a member of W . Secondly that from any choice of X, as long as X is
(2k + 1)-wide, by repeated application of the operation described above, one can get to
Kk
t+1, and, furthermore, that this is a reversible operation.

Therefore, as W ′ is not empty, by starting from an arbitrary element X we can get to
each (Kt, w) which is (2k + 1)-wide.

4.3 Bounding partial t-trees

Let PT t be the class of partial t-trees, and PT t,2k+1 be the subclass of partial t-trees of
odd-girth at least 2k+ 1. As a special case of Problem 4.1.2 we would like to search for a
smallest graph B of odd-girth 2k + 1 to which there exists a homomorphism from every
member of PT t,2k+1. To this end we provide, in this section, a necessary and sufficient
condition for a graph B of odd-girth 2k + 1 to bound PT t,2k+1.

Theorem 4.3.1. A graph B of odd-girth 2k + 1 bounds the class of partial t-trees of
odd-girth at least 2k + 1 if and only if there exists a (2k + 1)-wide partially B-weighted
graph B̂ with a nonempty set W of (t+ 1)-cliques of B̂ that is (t, k)-closed.

Proof. First assume that B̂ and a (t, k)-closed collectionW of its (t+1)-cliques exist. Let
G be a partial t-tree of odd-girth 2k+1. We want to prove that G admits a homomorphism
to B. We prove a stronger statement as follows. Let G̃ be a t-tree which contains G as a
spanning subgraph. Consider the weighted graph (G̃, ϕ) where ϕ(xy) = min{dG(x, y), k}.
We claim that (G̃, ϕ) admits a (weight preserving) homomorphism to B̂.

To prove this, we first show that (G̃, ϕ) is (2k + 1)-wide. Consider (G̃, ϕ)2k+1 and let C̃
be an odd-cycle of this graph. We need to show that G̃ is of length at least 2k+ 1. Let C
be a cycle of G which corresponds to C̃. Recall that each edge of C corresponds to two

threads in (G̃, ϕ)2k+1, one of length ϕ(e), another of length 2k + 1 − ϕ(e). Thus there

are 2|C| cycles in (G̃, ϕ)2k+1 corresponding to C. If C̃ is a cycle where each edge of C is
replaced by a thread of length strictly less than k, then the length of each such thread
is the distance (in G) of its end points. In this case length of C̃ is equal to the length
of C, which implies that C is an odd-cycle of G. Since G has no odd-cycle of length less
than 2k+ 1, C̃ is also of length at least 2k+ 1. If two edges of C are replaced by threads
of length at least k, then the length of C̃ is at least 2k + 1. Finally suppose exactly one
thread, connecting x and y, corresponds to a path of length at least k. If this thread is
of length 2k + 1 − ϕ(xy), then the sum of lengths of other threads forming C̃ is, by the
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triangular inequality, at least ϕ(xy) and thus C is of length at least 2k + 1. If the x− y
thread is of length exactly k or k+ 1, then ϕ(xy) = k which means the distance of x and
y is at least k, and the same argument as before applies.
Now, to prove our claim, consider a sequence of (t+ 1)-cliques which are used to build G̃.
Let X1 be the first of these cliques. As X1 together with the edge-weights induced by ϕ
is (2k+ 1)-wide, and by Theorem 4.2.4, there is an isomorphic copy of (X1, ϕ) inW ′. Let
ρ be this isomorphism. Then ρ can easily be extended to a homomorphism of (G̃, ϕ) to
B̂ using the sequence of (t + 1)-cliques and the fact that W is (t, k)-closed. This proves
that the conditions of the theorem are sufficient for B to be a bound.
Next, we shall prove that the conditions are also necessary. Consider a graph B of odd-
girth 2k + 1 which admits a homomorphism from any partial t-tree of odd-girth at least
2k + 1. Our aim is to prove the existence of a nonempty set W of (t + 1)-cliques of the
complete B-weighted graph on V (B) which is a (t, k)-closed set. The partially B-weighted
graph B̂ is then obtained from the edges in the cliques of W .
Let PT t,2k+1 be the collection of all partial t-trees of odd-girth at least 2k + 1. De-
fine WPT t,2k+1 to be the class of weighted partial t-trees (G,w) satisfying the following
conditions:

• The subgraph G1 of edges of weight 1 is a connected spanning subgraph of G which
is of odd-girth at least 2k + 1.

• (G,w) is partially G1-weighted graph, i.e., for each edge xy of G, w(xy) is the
distance in G1 of x and y.

• For each edge xy ∈ E(G) of weight at least 2, there exists a (2k + 1)-cycle of G1

which contains both x and y.

Observe that each (2k+1)-wide weighted complete graph (Kt, w) is a member ofWPT t,2k+1,
thus this is a nonempty set of graphs.
LetB∗ be the completeB-weighted graph on V (B). Given a member (G,w) ofWPT t,2k+1,
since G1 is of odd-girth at least 2k+1 and by our assumption, it admits a homomorphism
to B. By Theorem 1.11.5 any such homomorphism is also a homomorphism of (G,w) to
B∗.
Observe that most members of WPT t,2k+1 contain many (t + 1)-cliques and that in the
mapping of an element (G,w) of B∗, the image of any such clique must be a (t+ 1)-clique
of B∗. Let W be a minimal set of (t+ 1)-cliques of B∗ satisfying the following:
Each element (G,w) of WPT t,2k+1 admits a homomorphism ϕ to B∗ where the images
of all (t+ 1)-cliques of G belong to the set W of (t+ 1)-cliques of B∗.
Let us say a mapping of (G,w) is a mapping to (B∗,W) if the images of all (t+ 1)-cliques
of G belong to W . Minimality of W implies that for any (t + 1)-clique W of W , there
exists a weighted graph (GW , wW ) ofWPT t,2k+1 for which any mapping to (B∗,W) must
map at least one (t+ 1)-clique of GW onto W .
We claim that W is (t, k)-closed. Let W be a (t+ 1)-clique of G. For a vertex v of W , let
W ′ be an extension of W − v into a (2k + 1)-wide (t + 1)-clique. Consider the weighted
graph (GW , wW ) as defined above. For any t-clique of this graph isomorphic to W − v,
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and for any such an isomorphism, add a vertex v and using it, build an isomorphic copy
of W ′. Furthermore, for each newly added edge e = xy of weight p, add two x− y paths,
one of weight p and another of weight 2k + 1− p.
Let (Ĝ, ŵ) be the resulting weighted graph. It can be checked that (Ĝ, ŵ) ∈ WPT t,2k+1.
Thus, by our choice of W , there exists a homomorphism ϕ of (Ĝ, w) to (B∗,W). Recall
that, this is a homomorphism of (Ĝ, w) to B∗ where all (t+1)-cliques of (Ĝ, w) are mapped
to elements of W . By the choice of (GW , wW ), at least one such (t+ 1)-clique is mapped
to W . Considering all extensions W ′ over this copy, the image of at least one extension
W ′ provides the extension we are looking for.

4.3.1 Algorithm

Theorem 4.3.1 implies an algorithm which, for a fixed pair t and k of positive integers,
decides, in polynomial-time, if a given graph of odd-girth 2k+1 bounds the class PT t,2k+1

of partial t-trees of odd-girth 2k + 1. The algorithm is given in the following whose
verification of validity is left to the reader.

Deciding whether a graph B of odd-girth 2k + 1 bounds PT t,2k+1.
Input: A graph B of odd-girth 2k + 1.
1: Compute the distance function dB of B.
2: Let (B̃, dB) be the k-partial distance graph of B obtained from the complete distance

graph of B by removing all edges of weight more than k.
3: Compute the set W of all weighted (t+ 1)-cliques.
4: if W = ∅ then
5: return NO # (B is not a bound)
6: end if
7: for W ∈ W and any vertex v of W do
8: Check if every extension of W − v to a (t + 1)-clique of odd-girth 2k + 1 has a

realization in W .
9: if not then

10: Delete W from the list of cliques, reset W and go back to Step 4.
11: end if
12: end for
13: if W is nonempty then
14: return YES # (B is a bound, and in the weighted graph induced by all edges in

cliques of W, the edges of weight 1 induce a subgraph of B which is also a bound.)
15: end if

4.4 Bounding partial 3-trees

As an application of Theorem 4.3.1, we show, in this section, that PC(2k), the projective
cube of dimension 2k, bounds the class PT 3,2k+1, that is the class of partial 3-trees of
odd-girth at least 2k + 1. Since the graphs built in the proof of Theorem 3.2.3 are also
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partial 3-trees, we conclude that projective cubes are indeed the optimal homomorphism
bound of odd-girth 2k + 1 for PT 3,2k+1.
Let PC(2k)∗ be the complete PC(2k)-weighted graph.

Theorem 4.4.1. The set W of all weighted 4-cliques of PC(2k)∗ is (3, k)-closed.

Proof. Considering Theorem 2.7.1 it is enough to show that PC(2k)∗ contains an isomor-
phic copy of each (2k + 1)-wide (K4, w).
Recall that each edge xy of PC(2k)∗ is associated with a pair of complementary subsets of
{e1, e2, . . . , e2k, J}. If, in the poset labeling of PC(2k), vertices x and y are labeled {A, Ā}
and {B, B̄}, then the edge xy is labeled {A ⊕ B,A ⊕ B̄}. Furthermore, note that the
orders of A⊕B and its complement correspond to dPC(2k)(x, y) and 2k+1−dPC(2k)(x, y).
Consider a (2k + 1)-wide (K4, w) on vertices x, y, z, u and assume w(xy) = a′, w(xz) =
b′, w(xu) = c′, w(zu) = a, w(yu) = b, w(yz) = c. By changing the weight of an edge with
the complementary weight of 2k+1−w, if necessary, we assume that: (i) The elements of
each pair {a, a′}, {b, b′} {c, c′} are of the same parity, (ii) the sum a+ b+ c is odd. Thus,
the four triangles of (K4, w) correspond to a+ b+ c, a+ b′ + c′, a′ + b+ c′ and a′ + b′ + c,
each being an odd number.
Let fx = 1

2
(a+ b+ c− 2k− 1), fy = 1

2
(a+ b′+ c′− 2k− 1), fz = 1

2
(a′+ b+ c′− 2k− 1) and

fu = 1
2
(a′ + b′ + c − 2k − 1). Note that since each of the four triangles are of odd-girth

2k+ 1 and by Proposition 4.2.2, each of the four values fv, v ∈ {x, y, z, u} is nonnegative
and is smaller than the minimum of the three elements defining it.
Our goal is to associate a subset Avv′ of {e1, e2, . . . , e2k, J} to each edge vv′ of the K4 such
that: 1. |Avv′ | is either w(vv′) or 2k + 1 − w(vv′) and 2. for each triangle of uvw of the
K4, each element of {e1, e2, . . . , e2k, J} appears either in exactly one of Auv, Auw and Avw
or in all three of them (in order to satisfy Theorem 2.6.2).
Assume without loss of generality that fx = min{fx, fy, fz, fu}. Let Sx be a subset of
order fx of S = {e1, e2, . . . , e2k, J}. In what follows we will add elements of Sx to all six
sets. We first define Ayz, Ayu and Azu. To do this we partition the set S \ Sx into three
sets Syz, Syu, Szu of order |S1| = a− fx, |S2| = b− fx and |S3| = c− fx respectively. Then
we define Ayz = Syz ∪ Sx, Ayu = Syu ∪ Sx and Azu = Szu ∪ Sx. Next we consider three
subsets S ′y, S ′z and S ′u such that S ′y ⊂ Azu and |S ′y| = fy−fx, S ′z ⊂ Ayu and |S ′z| = fz−fx,
S ′u ⊂ Azu and |S ′u| = fu − fx. The choice of these three sets implies, in particular, that
these three sets are disjoint. Then, the set Sy = S ′y ∪ Sx is of order fy, Sz = S ′z ∪ Sx is of
order fz and Su = S ′u ∪ Sx is of order fu.
We now complete our assignment of labels to the edges as follows: Aux = (Ayz−S ′u)∪Sy∪
Sz. Since c−c′ = fy+fz−(fx+fu), and since Ayz is of order c, Aux is of order c′. Similarly
we define Azx = (Ayu − S ′z)∪ Sy ∪ Su implying |Azx| = b′ and Ayx = (Azu − S ′y)∪ Sz ∪ Su
with |Azx| = a′.
Our choice of labels for the edges implies that the sum of the elements of the labels of
the edges of a cycle in K4 is 0 (in Z2k

2 ). Thus, to embed the given (K4, w) in the PC(2k)-
weighted complete graph, we let x be any vertex. To define y, z and u, respectively, we
add to x all elements of Axy, Axz and Axu. Then y, z and u are well-defined and their
distance from each other or from x is determined by the size of the corresponding set,
completing the proof.
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The first claim of the following theorem is then an immediate corollary of Theorem 4.3.1
and the previous theorem. The second part follows from further analysis of the construc-
tions given in the proof of Theorem 3.2.3.

Theorem 4.4.2. The projective cube PC(2k) bounds the class of partial 3-trees of odd-
girth at least 2k + 1. Furthermore, among such bounds of odd-girth 2k + 1, the projective
cube has smallest number of vertices and edges.

Remark. In the proof of Theorem 4.4.1, we gave a solution where the labels of all edges
contain all elements of Sx. This is not a necessity and in general other kinds of labeling
can be provided. This implies that being triple-transitive is the limit of transitivity of
PC(2k), meaning that one can find isomorphic 4-cliques of the PC(2k)-weighted complete
graph which cannot map to each other by an automorphism of PC(2k).

4.5 Bounding K4-minor-free graphs

Recall that the class of K4-minor graphs is also known under two other notations: 1. It is
the class of series parallel graphs, hence we may use SPG to denote the whole class and
SPG2k+1 to denote the class of K4-minor-free graphs of odd-girth at least 2k+ 1. 2. It is
the class of partial 2-trees. Thus applying Theorem 4.3.1 for t = 2 we have the following
special case:

Theorem 4.5.1. A graph B of odd-girth 2k + 1 bounds the class SPG2k+1 if and only
if there exists a partially B-weighted graph (B′, w) such that each edge e = xy of weight
w(e) = p of B′ satisfies the following condition:
If the triangle (K3, w) of edge weights {p, q, r}, p, q, r ≤ k, is of (2k + 1)-wide, then B′

contains vertices z and w adjacent to both x and y such that w(zx) = q, w(zy) = r,
w(wx) = r and w(wy) = q.

Proof. It is enough to note that the set of triangles of B′ used to fulfill the condition of the
theorem forms a set of 3-cliques (of (B′, w)) which is (2, k)-closed. Thus Theorem 4.3.1
can be applied.

As an application we give two classes of bounds for K4-minor-free graphs of odd-girth
2k+1. The first, being a Kneser graph, helps determining the exact value of the fractional
chromatic number of a K4-minor-free graph of given odd-girth. The second, being nearly
an optimal bound, gives an application to edge-coloring of K4-minor-free graphs. We
note since K4-minor-free graphs are in particular of partial 3-trees, and by Theorem 4.4.2,
PC(2k) bounds the class of K4-minor-free graphs of odd-girth 2k+1. The bounds we give
next are both subgraphs of PC(2k). In each case we prove that the set of all triangles of
the corresponding complete weighted graph is (2, 2k + 1)-closed. In an optimal bound of
odd-girth 2k + 1 perhaps only a proper subclass of triangles satisfy this property, indeed
we will see that this is the case for SPG7.

4.5.1 Bounding by K(2k + 1, k)

Theorem 4.5.2. The Kneser graph K(2k + 1, k) bounds SP2k+1.
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Proof. Consider theK(2k+1, k)-weighted complete graph and letW be the set of triangles
of this graph. It would be enough to show that W is (2, k)-closed. Given vertices A and
B of K(2k + 1, k) their distance is only a function of the size of A ∩ B and, therefore,
K(2k+1, k) is distance-transitive. Hence, it is enough to show that for each (2k+1)-wide
(K3, w) there is an isomorphic copy of it in the K(2k + 1, k)-weighted complete graph.
Given any such triangle (K3, w) consider an extension by adding a vertex u at distance
k from all three vertices. Observe that this is a weighted complete graph on four vertices
and its corresponding graph (K4, w) is also (2k+1)-wide. Therefore, by Theorem 4.4.1, it
is a subgraph of the PC(2k)-weighted complete graph. Since all three vertices of (K3, w)
are at distance k from u, and since the set of vertices at distance k from a fixed vertex of
PC(2k) induces a copy of K(2k + 1, k), there is an isomorphic copy of any (2k + 1)-wide
(K3, w) in K(2k + 1, k).

By the definition of fractional chromatic number, the following is an immediate corollary
of Theorem 4.5.2 and the fact that χf (C2k+1) = 2 + 1

k
.

Corollary 4.5.3. If G is a K4-minor-free graph of odd-girth 2k+ 1, then χf (G) = 2 + 1
k
.

4.5.2 Bounding by augmented toroidal grids

Recall that the augmented toroidal gird, AT (2k, 2k) is built from the Cartesian product
C2k�C2k by adding an edge between each pair of antipodal vertices (vertices at distance
2k). We saw in Theorem 2.3.3 that this is a subgraph of PC(2k). We have proved in [4]
that the set of all weighted triangles of the AT (2k, 2k)-weighted complete graph is (2, k)-
closed. Thus implying that AT (2k, 2k) is a bound of odd-girth 2k + 1 for SPG2k+1. The
key properties of AT (2k, 2k) needed for such a proof are stated below.
Recall that the toroidal grid T (2a, 2b) is of diameter a+b and, furthermore, given a vertex
v, there is a unique vertex at distance a + b of v which is, therefore, called the antipodal
of v; we denote it by v.

Lemma 4.5.4. Given a positive integer k, the augmented toroidal grid AT (2k, 2k) has
the following properties:

(i) It is vertex-transitive.

(ii) Any two vertices of it belong to a common (2k + 1)-cycle, it is of odd-girth 2k + 1
and hence has diameter exactly k.

(iii) For any pair u and v of vertices:

dAT (2k,2k)(u, v) = min{dT (2k,2k)(u, v), 2k + 1− dT (2k,2k)(u, v)}.

(iv) For any vertex u and any integer d, 1 ≤ d ≤ k, the neighborhood of u at distance d
in AT (2k, 2k) is the set

Nd
AT (2k,2k)(u) = Nd

T (2k,2k)(u) ∪Nd−1
T (2k,2k)(u).

Theorem 4.5.5. Given a positive integer k, the set of all weighted triangles in the
AT (2k, 2k)-weighted complete graph is (2, k)-closed.
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Therefore we have:
Theorem 4.5.6. For any positive integer k, the augmented toroidal grid AT (2k, 2k)
bounds SP2k + 1.

In a joint project with W. He and Q. Sun, we have built K4-minor-free graphs of odd-girth
2k + 1 whose (2k − 1)th-walk power has a clique of order

(
k+1

2

)
. Thus, a smallest graph

of odd-girth 2k + 1 bounding SPG2k+1 is of order at least
(
k+1

2

)
. As AT (2k, 2k) has 4k2

vertices, it is nearly an optimal bound.

4.5.3 Optimal bounds for SPG5 and SPG7

The graph C++
8 obtained from C8 by adding two main diagonals as in the Figure 4.3 is

a triangle-free bound for SPG5. Furthermore, this is the optimal triangle-free bound for
this class (see [4]) in terms of number of vertices and edges. Being a subgraph of C(8, 3)
this claim is a strengthening of the fact that 8

3
is the best upper bound for the circular

chromatic number of graphs in SPG5 (see [26, 50, 51]). On the other hand, this graph is
also obtained from the Petersen graph (K(5, 2)) by deleting two adjacent vertices. Thus,
this claim is also a strengthening of Theorem 4.5.2 for the specific case of k = 2.
An optimal bound of odd-girth 7 for the class SPG7 is the graph X15 on 15 vertices
presented in two different ways in Figure 4.2 (see [4] for a proof). As χc(X15) = 5

2
and

χf (X15) = 7
3
, this result is a simultaneous improvement of the best upper bounds for

circular and fractional chromatic numbers of series-parallel graphs of odd-girth 7.
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Figure 4.2: Two drawings of the graph X15, an optimal 15-vertex bound for SP7.

For larger values of odd-girth we do not, yet, know the optimal bound of odd-girth 2k+ 1
for SPG2k+1. But we expect that: (i.) It would be of order (k + 1)2 − 1, (ii.) That it
would provide a simultaneous improvement on the best known bounds for the fractional
and circular chromatic numbers of series-parallel graphs of odd-girth 2k+1. These bounds
also provide improvements on edge-coloring results as we will see in the next section.

4.6 Applications to edge-colourings

Using the proof technique of Theorem 3.3.2 and since we have verified Conjecture 3.2.1
for partial 3-trees, we have the following result.
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Theorem 4.6.1. Let G be a planar (2d+ 1)-regular multi-graph such that any subset X
of an odd number of vertices satisfies δ(X) ≥ d and that its dual is a partial 3-tree, then
χ′(G) = 2d+ 1.

As K4 is self-dual, dual of a (plane) K4-minor-free graph is also K4-minor-free. Thus,
Theorem 4.6.2 in particular implies:

Theorem 4.6.2. If G is a (2d+ 1)-regular plane multi-graph with no K4-minor such that
any subset X of an odd number of vertices satisfies δ(X) ≥ d, then χ′(G) = 2d+ 1.

This theorem is only an application of the fact that SPG2k+1 is bounded by PC(2k).
However, as pointed out in the previous subsection, a number of subgraphs of PC(2k)
bounds SPG2k+1. One may employ these bounds to obtain improved results on edge-
coloring of K4-minor-free regular multi-graphs. In the following, we give examples of such
improvements.
Consider an edge-colouring of C++

8 given in Figure 4.3. Note that this is a coloring induced
by PC(4) viewed as the Cayley graph (Z4

2, S4 = {e1, e2, e3, e4, J}).

v3

v2

v1

v8

v7

v6

v5

v4

Figure 4.3: A 5-edge-coloured C++
8 .

Note that there are only four 5-cycles in C++
8 , and there are only two different cyclic

orders of edge-colours induced by these four 5-cycles. Then, using the technique of the
proof of Theorem 3.3.2, we can prove the following.

Theorem 4.6.3. Let G be a 5-regular plane and K4-minor-free multi-graph where for
each set X of odd number of vertices δ(X) ≥ 5. Let {c1, c2, c3, c4, c5} be a set of five
colours. Then, one can colour the edges of G such that at each vertex, the cyclic order of
colours is either c1, c2, c3, c4, c5 or c1, c4, c5, c2, c3.

Proof. As in the proof of Theorem 3.0.1 it is enough to consider a mapping of the dual
of G (which is of odd-girth 5) to C++

8 .

A similar result can be stated for 7-edge-coloring of 7-regular K4-minor-free multi-graphs
using the mapping to X15. For the general case of (2k + 1)-regular multi-graphs with no
K4-minor, we consider the mapping to augmented toroidal grids. We observe that any
(2k+ 1)-cycle of AT (2k, 2k) uses exactly k horizontal edges, k vertical edges and an edge
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connecting antipodal pairs of T (2k, 2k). Furthermore, the set of horizontal edges, in their
order of appearance on the cycle, induces a cyclic order of e1, e2, . . . , ek and similarly the
set of vertical edges induces a cyclic order of ek+1, ek+2, . . . , e2k. Thus, we can derive the
following definition of special (2k + 1)-edge-colourings.
Given k, let B = b1, b2, . . . , bk be a sequence of k distinct colours in the family of blue
colours and let R = r1, r2, . . . , rk be a sequence of k distinct colours in the family of red
colours. Given a (2k + 1)-regular plane multi-graph G, we say that G is (B,R)-edge-
colourable if it can be properly edge-coloured using colours from B, R and a unique green
colour such that at each vertex v, the cyclic ordering of the blue colours (respectively red)
around v always induces the same cyclic order as in B (in R, respectively).

Theorem 4.6.4. Let B and R be two sequences of blue and red colours such that |B| =
|R| = k. Then, every plane K4-minor-free (2k+ 1)-regular multi-graph which is (2k+ 1)-
edge-colorable is also (B,R)-edge-colourable.
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Chapter 5

Experience, possible projects and
future work

In terms of my experience of working with graduate students I would like to point out
that I have collaborated with five ph. D. students during my post doctoral positions (J.
Macdonald, B. Seamone, F. Foucaud, P. Valicov and A. Parreau). Since I have began my
position at CNRS, I have co-supervised two Ph.D. students: Q. Sun and M. Abi Aad. One
of my students (Q. Sun) wrote part of his thesis on the subject of this work. Furthermore,
S. Sen who did a joint master with me and E. Sopena, and continued Ph.D. with Eric, did
also work with me during his Ph.D. on the subject of this work and our results formed
part of his thesis.
In my own view, the beauty of this work is that in one or two simple questions it cap-
tures a number of classic theories and it relates to several other theories. Furthermore,
by introducing the analogue question for the case of signed bipartite graphs (to briefly
mention in the next section) we reach to an ocean of untouched, but highly motivational,
problems each of which can be subject of a Ph.D. thesis.
In the following I present only a selection of projects that I already have ideas on how to
lead them to success. Of course the development of new ideas along the work would be
the highest point of achievement.

5.1 Project on graphs

One of the motivating conjectures of this project is the following:
Conjecture. Any K5-minor free graph of odd-girth at least 2k + 1 admits a homomor-
phism to PC(2k).
Being the four-color theorem for k = 1, the difficulty level of the conjecture itself is at
least as high as the 4CT. But below are some outline of possible projects motivated by
such an ambitious conjecture.

1. To prove a support for the conjecture by relaxing the girth condition. From the result
of [32] we now know that planar graphs of odd-girth 6k + 1 map to C2k+1 which is a
subgraph of PC(2k). Thus we would look for a value of odd-girth, noticeably smaller

49
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than 6k, which would work on the place of 2k + 1.

2. In this work we have shown that the conjecture is true if the condition of no K5-minor
is relaxed by considering partial 3-trees, thus in particular, the conjecture is verified for
the class of K4-minor free graphs. On the other hand it is believed that condition of no
K5-minor can be replaced with a weaker condition of no odd-K5-minor, thus claiming
same result for a larger class of graphs. A suitable project in this regard is to prove the
conjecture for the class of graphs with no odd-K4. The definition of odd-Kn-free is based
on the notion of signed graphs which we only mention briefly in the next section. But
we can define an odd-K4 as any subdivision of K4 where each of the four triangles have
become an odd-cycle. Then a graph is odd-K4-free if it has no odd-K4 as a subgraph.
A main idea here would be to use decomposition theorem of B. Gerard for the class of
graphs with no odd-K4. This decomposition is based on notion of signed graphs.

3. We have shown in this work that PC(2k) is the smallest graph of odd-girth 2k+1 which
bounds the class of partial 3-trees of odd-girth 2k + 1. The similar question of finding
smallest graph of odd-girth 2k + 1 which bounds the class of partial 2-trees of odd-girth
2k + 1 is still unsolved. We know the order of such an optimal bound is quadratic in k,
and we guess that the exact values is (k + 1)2 and that the optimal bound would be a
subgraph of PC(2k). Finding optimal bounds for small values of k can lead to a pattern
of construction for the general case. Once a correct pattern is found, a proof could be
possible using Theorem 4.3.1. To find solutions for such small values, one may search for
small subgraphs of PC(2k) which satisfies the condition of Theorem 4.3.1. This would
require some theoretical work to minimize the number of subgraphs to look at, then a
programming to look at all remaining subgraphs systematically.

4. Furthermore, the similar question for t-trees, t ≥ 4, is yet to be considered, and it is a
promising subject of research.

A more general question we considered in this work which also captures the above men-
tioned conjecture is the following.
Problem. Given r ≥ k, what are the minimal subgraphs of PC(2k) to which every
planar graph of odd-girth 2r + 1 admits a homomorphism?
Beside capturing the previous conjecture (for the case of r = k) this leads to following
conjectures:
Conjecture If G is a planar graph of odd-girth at least 2k + 3, then χf (G) ≤ 2 + 1

k
.

Conjecture Any planar graph of odd-girth at least 11 admits a homomorphism to the
Coxeter graph.
Conjecture Given a planar graph G of odd-girth 2k + 1 we have χc(G) ≤ 2 + 2

k
.

A prefect answer to each of the questions seems to be very challenging. In particular last
one (on circular chromatic number) is related to Jaeger conjecture on flows which is tried
by a number of well-known mathematicians. Here we give a few promising ideas on how
to proceed.
5. As in idea number 1 one possible approach is approximation results in support of
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these conjectures. The most classic idea for such work is to use discharging techniques.
However, by considering extended notion of list-coloring one may also hope to use recent
technique of C. Thomassen in proving such results. The notion of list-coloring is generated
in trying to extend a given partial coloring to the coloring of the whole graph. This then
naturally provides a better room for induction. However normally for such a claim to
be carried on by induction, it must be carefully formulated. C. Thomassen has given
a few such proofs on coloring planar graphs. The result of [32] seems to be of similar
nature but on the theory of flows. An application of their result is that planar graphs of
odd-girth at least 6k + 1 map to C2k+1 (i.e. χc ≤ 2 + 1

k
). I believe a translation of this

proof to coloring formulation would give ideas on improved approximation for the other
questions, in particular for the question of mapping planar graphs to the the circulant
graph C(4k, {2k−1, 2k, 2k+1}). Furthermore, as this graph is richer than C2k+1, I expect
a better approximation in this case and thus an improved bound on the circular chromatic
number.
6. To consider the general case of the question one must study structures in the projective
cubes. Since the Coxeter graph is redefined as the complement of the blocks of the Fano
plane in K(7, 3), one may consider similar structures using known block designs. Indeed
P. Cameron has proposed one such design for the case of K(11, 5), but it has yet to be
considered. Further such study, not only may answer some cases of our question, it may
also lead to discovery of highly symmetric graphs.
7. From an algorithmic point of view many questions can be considered. A most natural
one is: for which graphs H the H-coloring problem of planar graphs is polynomial time?
Indeed our main conjecture, if true, would imply that this is the case for the projective
cubes. But the question becomes NP-hard on subgraphs such as the Petersen graph. To
prove NP-completeness results we may either build cross-over gadgets to capture the H-
coloring problem on the class of all graphs or we may try the take advantage of recently
developed techniques from universal algebra.

5.2 Employing the notion of signed graphs

A signed graph is a graph equipped with an assignment σ which assigns to each edge a
sign (positive or negative). The set of negative edges is called the signature and is usually
denoted by Σ, we use (G,Σ) to denote this signed graph.
A key notion in the study of signed graphs, which separates it from 2-edge-colored graphs,
is the notion of resigning, that is to change the signs of all edges incident to a given vertex.
One may resign at more than one vertex, that would be equivalent to change the signs of all
the edges of an edge-cut of G. Two signatures Σ1 and Σ2 on a same graph G are said to be
equivalent if one can be obtained from the other by a resigning. Given a connected graph
G it is easily observed that there are 2|E(G)| signatures on G and 2|E(G)|−n+1 nonequivalent
signatures.
A closed walk of G is called unbalanced if it contains an odd number of negative edges,
i.e., if the product of the signs of its edges is negative. Observe that resigning does not
change the balance of a cycle or a closed walk. This also applies to loops which are closed
walks of length 1. A resigning at a vertex incident to a loop would change the sign of
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the corresponding loop twice, thus leaving it unchanged. Hence, if Σ1 is equivalent to Σ2,
then the set of balanced (resp. unbalanced) cycles of (G,Σ1) and (G,Σ2) are the same.
Zaslavsky proved that the converse is true as well:

Theorem 5.2.1. Two signed graphs (G,Σ1) and (G,Σ2) have a same set of balanced
cycles if and only if Σ1 and Σ2 are equivalent.

Consistent signed graphs are signed graphs in which all balanced cycles are of even length
and all unbalanced cycles are of a same parity. Thus they consist of two main subclasses:
I. The class of antibalanced signed graphs, these are signed graphs (G,Σ) where Σ ≡ E(G).
Thus a cycle of G is unbalanced in (G,Σ) if and only if its length is odd.
II. The class of signed bipartite graphs. Thus all cycles, including the unbalanced ones,
are of even length.
Signed projective cube of dimension k, denoted SPC(k) is obtained from PC(k), the
projective cube of dimension k, by assigning − to the edges corresponding to J and + to
all other edges. It can be easily checked that SPC(k) is a consistent signed graph. For
even values of k, SPC(k) can be resigned to be an antibalanced signed graph and for odd
values of k we have already seen that PC(k) is bipartite.
A minor of (G,Σ) is any signed graph obtained by operations of: deleting vertices and/or
edges, contracting positive edges, and resigning.
Observe that, while the parity of the length of a cycle changes after contraction of a single
edge, the balance remains stable. This is a key property that creates a stronger relation
between minor and homomorphism of signed graphs (compared to graphs). For example,
we have:

Proposition 5.2.2. A consistent signed graph (G,E(G)) is (K3, E(K3))-minor-free if
and only if G is bipartite.

As mentioned above, balance of closed walks are considered among basic structures of the
signed graphs. Thus it is only fitting to define homomorphisms of signed graphs to be
mappings which not only preserves adjacency, but also preserves balance of closed walks.
More formally:
A homomorphism of a signed graph (G,Σ) to a signed graph (H,Π) is a mapping of the
vertices of G to the vertices of H and the edges of G to the edges of H which preserves
adjacencies, incidences and balance of each closed walk. This general definition works for
signed graphs where loops and digons are allowed. When multi-edges are forbidden, a
homomorphism maybe given by mapping of vertices only, as such a mapping, when it is a
homomorphism, induces a unique mapping of edges. When there exists a homomorphism
of (G,Σ) to (H,Π) we write (G,Σ)→ (H,Π).
In practice we use a simpler definition given in the following theorem whose proof is based
on Theorem 5.2.1.

Theorem 5.2.3. There exists a homomorphism of a signed graphs (G,Σ) to (H,Π) if
and only if there is a signature Σ′ equivalent to Σ and a homomorphism of G to H which
preserves the sign of edges of G with respect to Σ′ (and Π).
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The definition of homomorphism of signed graphs is due to B. Guenin who defined it as
given in the theorem in order to introduce the following strengthening of Conjecture 3.2.1
(see [43] for more details).

Conjecture 5.2.4. The class of consistent signed planar graphs of unbalanced-girth k+1
is bounded by SPC(k).

The development of the theory of homomorphisms of signed graphs has then began as
part of my post doc project with E. Sopena. In our first paper on the subject, among
other results, we have shown that the notion of homomorphisms and coloring of graphs
are captured by the notion of homomorphisms of signed bipartite graphs. Thus we have
have a theory in our hand to develop which is barely touched, and hence a large number
of projects. In particular each of the ideas 1-7 may also apply to bipartite cases where
basically not much is known. But taking advatage of this theory, I would propose further
ideas next.

5.2.1 Further ideas for progress on signed graphs

7. Conjecture 5.2.4 for a fixed k is shown to be equivalent to an edge-coloring conjecture
of Seymour. Through recent verifications of the edge-coloring version, this conjecture is
verified for k ≤ 7. An accessible but challenging project is to give a direct proof of these
cases. The advantage here is that one can apply a direct induction on k, a technique
which was not possible for the edge-coloring conjecture. Developments here would may
then lead to either proof of further cases, or to support of the conjecture as proposed in
idea 1,
8. The analogue question of “finding minimal subgraphs of SPC(2k − 1) to which every
signed bipartite graph of unbalanced-girth at least 2r, r ≥ k,” not only leads to all ana-
logue studies, but it also propose the study of highly symmetric signed bipartite graphs.
Such subgraphs of SPC(2k − 1) could form nomination of optimal bounds. An example
of highly symmetric signed subgraph is the unbalanced cycle of length 2k. We conjecture
that every signed bipartite graph of unbalanced-girth 4k − 2 admits a homomorphism to
unbalanced cycle of length 2k. We hope to find an adaptation of the result of [32] for this
conjecture.
9. We may now formally define the notion of odd-Kn. Given a graph G, it is said to
be odd-Kn free if (G,E(G)) has no (Kn, E(Kn))-minor. The claim of Conjecture 5.2.4 is
believed to be true even for the larger class of consistent signed graphs with no odd-Kn.
Furthermore, many of the questions studied here are to be considered using a finer notion
of minor of signed graphs. A particular one to consider is Theorem 4.1.1. We would like to
know if one can extend this result to the class of fully negative signed graphs. While the
homomorphism implication of such an extension would be the same, the class to which
it may apply would normally be much larger. Indeed this theorem, as it is, can only be
applied to sparse families of graphs, while such an extension would allow application to
dense classes of graphs. We have some decomposition theorem for such notions of minor
form Kawarabayashi which may help achieving such goal.
10. Finally, a couple of ambitious projects for myself to consider: i. The first is to take
advantage of a natural graph operation on signed graphs. The notion of signed projective



54 CHAPTER 5. EXPERIENCE, POSSIBLE PROJECTS AND FUTURE WORK

cube allows a natural definition of projective cube to build SPC(k + 1) from SPC(k).
The operation is homomorphism preserving. Thus, assuming that SPC(2) bounds the
class of fully negative planar signed graphs (the four color theorem), the operation builds
a family of consistent signed graphs which are bounded by SPC(k) and are of average
degree at least k. Perhaps one possible approach to Conjecture 5.2.4 is to say that each
consistent signed planar graph is a subgraph of one member of this family. ii. The second
is a surprise connection with Algebraic geometry. That PC(4) is the intersection graph of
the straight lines of a cubic surface, suggests that in the case k = 4 of the conjecture, i.e.,
mapping triangle-free planar graphs to the Clebsch graph, perhaps ideas from Algebaric
geometry can be employed. On one hand one may look for a homeomorphism of the
plane to the cubic surface so that vertices of a given triangle free plane graph map to
points on straight line such that adjacent ones map to intersecting line. On the other
hand, considering the construction of the cubic surface by notion of “blowing up” one may
reduce the homomorphism problem to an embedding problem. More important subject
of investigation on this subject: is this relation unique for k = 4 or are there ways to
extend this relation? Perhaps one may have to surfaces of higher degree.
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