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Abstract

A class C of graphs is said to be bounded by a graph H if each graph in C admits

a homomorphism to H. Given an integer m and a graph U we say a graph G is

m-locally U-colourable if each induced subgraph of G with at most m vertices admits

a homomorphism to U . We study the following general question: Does a given a class

C of graphs admit a bound H which is m-locally U -colourable?

Let H be an m-locally U -colourable bound for a class C of graphs. Then every graph

G in C admits an H-colouring which satisfies the following property:

(∗) Any subgraph of G induced by the union of a set of m colour classes is

U -colourable.

This introduces a necessary condition for C to have an m-locally U -colourable bound.

We prove that this necessary condition is also sufficient. Then we give several appli-

cations of this result.

Exploring the connection between homomorphisms and the four colour theorem we

prove that the Hadwiger’s conjecture is equivalent to the following conjecture, of J.

Nešetřil and P. O. De Mendez: Any minor-closed class C of graphs admits a bound

H ∈ C.

We conjecture that the class of planar graphs of odd girth 2k + 1 is bounded by the

Cayley graph C(Z2k+1
2 , S), where

S = {(1, 1, 0, · · · 0), (0, 1, 1, 0, · · · 0), · · · (1, 0, · · · 0, 1)}.
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We prove that this conjecture is equivalent to a certain case of a well known conjec-

ture of P. D. Seymour. In support of our conjecture we prove that the class of planar

graphs of odd girth 4k + 1 is bounded by a Cayley graph on Z4 (of odd girth 2g + 1).

Finally, we study the chromatic covering number of graphs, introduced by A. Amit,

N. Linial and J. Matoušek. The chromatic covering number of a graph G, denoted by

Fχ(G), is the smallest integer k for which there are k induced subgraphs G1, G2, · · ·Gk

of G, such that every vertex x of G satisfies the inequality

∑
x∈Gi

1

χ(Gi)
≥ 1.

We prove that

χ(G) ≤
⌊(

Fχ(G) + 1

2

)2
⌋

.

We also characterize the graphs for which equality holds, and show that in most cases

the inequality is close to being tight.
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Chapter 1

Background and Summary

1.1 Historical background and the four colour the-

orem

The Four Colour Theorem is one of the problems in mathematics which is most easily

understood by non-mathematicians. It can even be explained to those who do not

know how to count without using their fingers. However it is arguably one of the most

difficult theorems in mathematics to prove. Heavy use of computers, together with

a large number of cases, make both of the published proofs of this theorem almost

unreadable.

The origin of the problem goes back to at least 1852. As quoted in [39], Kenneth O.

May in his paper on the origin of the four colour theorem concludes that: “It was

not the culmination of a series of individual efforts, but flashed across the mind of

Francis Guthrie while colouring a map of England · · · his brother communicated the

conjecture, but not the attempted proof to DeMorgan in October, 1852”.

The four colour theorem in its original form simply states that:

The regions of every (simple) map can be properly coloured using at most four

distinct colours.

1



CHAPTER 1. BACKGROUND AND SUMMARY 2

It requires some work to put everything in exact mathematical form, for example one

has to define boundaries using Jordan curves. Here we remark that a simple map is

a map in which every country is in one contiguous piece. A proper colouring is what

one should normally expect from colouring of a map, i.e., neighbouring countries must

receive different colours (in order to be distinguishable). Based on the account in [39],

the history of the four colour theorem continues as follows.

The first printed reference to the problem is due to Cayley, and was published in the

Proceedings of London Mathematical Society in 1878, [11]. Since then the attempts

to prove the problem have led to many beautiful theories. In 1879 Kempe published

a paper, [41], in which he claimed to have a proof of the four colour problem. But

10 years later Heawood discovered a gap in Kempe’s argument, [33]. He completed

Kempe’s idea, the Kempe chain method, to a proof of what is known as the Five

Colour Theorem (every simple map can be coloured properly, using at most five dis-

tinct colours).

Tait was the first person to notice there was much beauty in the structure of the

four colourings of planar graphs. Even at the time Kempe’s argument was accepted

Tait was trying different approaches to the four colour problem, [73]. His equivalent

statement of the four colour theorem is the birth place of some important subjects in

graph theory, such as the theory of edge colouring and the theory of flows in graphs.

This approach, with some generalizations, will be studied in Chapter 3.

A direct approach to the four colour theorem led to the theory of graph colouring. This

theory turned out to be a fruitful branch of mathematics with many applications in

modern technology such as networking and communication. So it has attracted large

number of researchers and mathematicians, who have developed numerous results

and posed numerous open problems, such as Brook’s theorem, the four colour theo-

rem and Hadwiger’s conjecture. Each of these examples will be described in details

in the forthcoming chapter.
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There also have been many different ways to generalize the theory; fractional colour-

ing, list colouring, circular colouring, acyclic colouring and the theory of graph ho-

momorphisms are examples of successful generalizations. Among the generalizations

with an algebraic flavor, graph homomorphisms seems to be the most general ap-

proach.

The four colour theorem was finally proved by W. Haken and K. Appel, [4]. Roughly

speaking, they introduced almost 1500 configurations, called “unavoidable configu-

rations”, and they showed that if a planar graph contains one of these unavoidable

configurations, then any four-colouring of the subgraph obtained by removing the

unavoidable configuration will be extendible to a four-colouring of the graph itself.

They complete the proof by showing that any minimal counter example to the four-

colour theorem must contain at least one of the unavoidable configurations. They

use the computer to verify both statements. A similar proof with a smaller number

of unavoidable configurations (exactly 633 of them) was found by N. Robertson, D.

Sanders, P. Seymour and R. Thomas ([66]).

However the four colour theorem has not yet passed into history, and is still one of

the main topics of research in graph theory. This is because, first of all, its proof is

not satisfactory, secondly, the theories that are arising from this theorem are not fully

developed, and also because these theories have been found to be very important for

applications in modern technology.

1.2 About this thesis

Throughout this text a graph is always a simple finite graph (i.e., no loops or multiple

edges). A finite graph with possible multiple edges but no loops will be called a multi-

graph. A set of size n will be called n-set. The set {1, 2, · · · , k} will be denoted by [k].

For the classical and standard definitions and notation of graph theory we refer to

[15] and [49]. The more advanced or the less standard ones will be given throughout
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the text. However since colouring and the chromatic number are the main subject of

this text we should repeat their definition here.

Definition 1.1 Given a graph G, a proper k-colouring of the vertices of G or simply

a k-colouring of G is an assignment of the colours 1, 2, . . ., k to the vertices of G in

such a way that any pair of adjacent vertices receive different colours. The minimum

number k for which there exists a k-colouring of G is called the chromatic number

of G and is denoted by χ(G). A graph G with chromatic number χ(G) = k will be

called a k-chromatic graph. 3

We will study certain homomorphism problems, some closely related to the four colour

theorem. In the next chapter, Chapter 2, we will consider problems of the following

type:

Problem 1.2 Given a class C of graphs, does every member of G admit a homomor-

phism to a graph F with certain properties?

Brooks’ theorem and the four colour theorem are examples of this type of the prob-

lems, (see Chapter 2 and Chapter 3 for more details). For some kind of properties,

like the property of being Kk-free or the property of having high odd girth, we show

that one can answer this question by answering a certain ordinary colouring problem.

As an application we include a new proof of a theorem of R. Häggkvist and P. Hell.

We also include a new proof (without using the four colour theorem) of the existence

of a K5-free graph F to which every planar graph admits a homomorphism. This can

be viewed as an improvement of the five colour theorem and was first proved by J.

Nešetřil and P. O. De Mendez in [60].

At the end of Chapter 2 we will include a section on Hadwiger’s conjecture. There

we prove that Hadwiger’s conjecture is equivalent to the fact that every minor-closed

family C of graphs contains a graph H which admits a homomorphism from every

member of C.
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Most of the new results of Chapter 2 can be found in [50]. The proof of the existence

of a K5-free bound for the class of planar graphs is from [51]. The results on the

reformulation of Hadwiger’s conjecture is from [53].

In Chapter 3 we will focus more on planar graphs and different approaches to the

four colour theorem. We will introduce a generalization of the four colour theorem in

the language of homomorphisms, and we will show equivalence between this general-

ization and some of the known generalizations. Using this equivalence a triangle-free

bound on 16 vertices will be found for the class of triangle-free planar graphs. In

support of our conjecture we will prove that class of planar graphs of odd girth at

least 4g + 1 is bounded by a graph of odd girth 2g + 1. These results are from [52].

It will be shown that if a graph H of odd girth 2k + 1 admits a homomorphism from

every planar graph of odd girth 2k +1, then H can not be planar. This result is from

[50]. We will also include a new proof of the fact that Petersen graph is not 3-edge

colourable; this proof is from [54].

In the last chapter we will study the chromatic covering number of graphs, introduced

in [3] . The chromatic covering number can be compared to the fractional chromatic

number, but unlike the fractional chromatic number, the chromatic covering number

is bounded by functions of the chromatic number from both sides. We will tighten the

bounds given in [3] and we show that our bounds are the best possible. The results

of this chapter are from [55].



Chapter 2

Homomorphisms and bounds

2.1 Introduction

Given two graphs G and H, a homomorphism of G to H is an edge preserving map-

ping f : V (G) → V (H), that is to say, for every edge xy of G, f(x)f(y) is an edge of

H. The existence of a homomorphism of G to H is denoted by G → H. If G → H,

then we say G maps to H. If f is a homomorphism of G to H, then the homomorphic

image of G in H is a subgraph H ′ of H such that for every vertex x ∈ V (H ′) there is

a vertex v of G with f(v) = x, and also for every edge xy ∈ E(H ′) there is an edge

uv with f(u) = x and f(v) = y.

Sometimes a homomorphism of G to H is called an H-colouring; in this case vertices

of H have been regarded as a set of colours and the homomorphism is an assign-

ment of these colours to the vertices of G. This is a generalization of classical vertex

colouring problem of graphs, as a graph G is k-colourable if and only if it admits a

homomorphism to the complete graph Kk.

The notation G 9 H will be used to represent the fact that there is no homomorphism

of G to H. Normally it is more difficult to show the nonexistence of homomorphisms

than the existence of a homomorphism. This is analogous to the problem of chro-

matic number, where the lower bounds are normally harder to prove than the upper

6
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bounds. The chromatic number, clique number and the odd girth are some parame-

ters that can help us to prove the nonexistence of homomorphisms. More precisely

we have the following two well known lemmas, each of which is sometimes called a

“no-homomorphism lemma”.

Lemma 2.1 [32] Given two graphs G and H, if ω(G) > ω(H) or if χ(G) > χ(H)

then G 9 H.

Proof. To see this, first observe that if k < l then there is no homomorphism of

Kl to Kk. Now let f : V (G) → V (H) be a homomorphism. Then for a complete

subgraph W in G, the homomorphic image of W , f(W ), is a complete graph in H

which has the same size as W . This proves that if ω(G) > ω(H) then G 9 H.

To see that G → H implies χ(G) > χ(H), assume g is a homomorphism of G to H.

If χ(H) = k then there is a homomorphism f : H → Kk. Let g be a homomorphism

of G to H. Now the composition f ◦ g is a homomorphism of G to Kk, i.e., G is

k-colourable and χ(G) ≤ k. 2

Another folklore no-homomorphism lemma is the following:

Lemma 2.2 [35] Given two graphs G and H, if odd−girth(G) < odd−girth(H) then

G 9 H.

Proof. First notice that any homomorphic image of an odd cycle, C2r+1 must contain

an odd cycle of size smaller than or equal to 2r + 1. Otherwise the image which

has at most 2r + 1 vertices would be bipartite which contradicts Lemma 2.1. Let

odd−girth(G) = 2g +1. If there is a homomorphism of G to H then the homomorphic

image of the shortest odd cycle of G in H contains an odd cycle of size at most 2g+1,

i.e., odd−girth(H) ≤ 2g + 1. This proves the lemma. 2

A graph parameter for which a no-homomorphism lemma holds is called a monotone

graph parameter. So another way of stating Lemma 2.1 and Lemma 2.2 is to say that

each of the three graph parameters, clique number, chromatic number and odd girth,
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is a monotone graph parameter.

Graphs G and H are said to be homomorphically equivalent provided that each of

them admits a homomorphism to the other one. If G and H are homomorphically

equivalent then we write G ∼ H. Any graph with the minimum number of vertices to

which G is homomorphically equivalent is called a core of G. The following classical

lemma proves that the core of a graph G is unique and that it is a subgraph of G.

Lemma 2.3 [35] For any given graph G there is a unique core (up to isomorphisms).

Moreover the core of G is isomorphic to a subgraph of G.

Proof. Let H1 and H2 be two cores of G. Let f be a homomorphism of H1 to G and

g be a homomorphism of G to H2. Then g◦f is a homomorphism of H1 to H2. Let H ′

be the homomorphic image of H1 in H2. H ′ maps to G because it is a subgraph of H2,

G maps to H ′ because it maps to H1. So H ′ is also homomorphically equivalent to G,

by the minimality of H2, H ′ cannot be a proper subgraph of H2, and by minimality of

H1, the mapping g◦f is one to one and therefore is an isomorphism of H1 to H ′ = H2.

To see that the core c(G) of G is a subgraph of G, consider a mapping of c(G) to G;

in this mapping the homomorphic image of c(G) is also homomorphically equivalent

to G and by the minimality of c(G), it must be isomorphic to c(G). 2

In this proof it was crucial that the graphs are finite; the concept of core for infinite

graphs have been studied by B. Bauslaugh in [5]. A core is a graph which is its

own core. Equivalently, a core is graph which does not admit a homomorphism to

any proper subgraph of itself. Complete graphs and odd cycles, or in general colour

critical graphs, are examples of cores. By the definition a k-colour critical graph is

a graph with chromatic number k such that every proper subgraph has chromatic

number smaller than k. Now applying Lemma 2.1 it is easy to see that every colour

critical graph is a core.

For an example of a core which is not a colour critical graph see the graph of Figure

2.1. To see that this graph is a core, note that every proper subgraph of it maps to
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Figure 2.1: A core which is not colour critical

C5 but the graph itself does not map to C5. This is so because if this graph maps

to C5 then the subgraph induced by deleting the central vertex x, which is a 9-cycle,

must map to C5 surjectively. On the other hand, every vertex y in this 9-cycle is

either adjacent to the central vertex x or there is a path of length three joining x and

y. This means that identifying x with any of the vertices of the outer 9-cycle will

produce a loop or a triangle, so there is no homomorphism of this graph to C5.

Homomorphisms allow us to treat many colouring problems in a more general setting.

One way of doing this is the following definition of homomorphism order (¹) on the

class of graphs:

G ¹ H if and only if G → H.

Following this notation we say G is smaller than H if G ¹ H .

The homomorphism order, which sometimes it is also called colouring order (for ex-

ample see [57]), is a quasi order. Below we give a proof of this folklore lemma.

Lemma 2.4 The homomorphism order (¹) on the class of graphs is a reflexive and

transitive binary relation.

Proof. This order is reflexive because the identity is a homomorphism of G to G.

To see that homomorphism order is transitive let f be a homomorphism of G to H

and g be a homomorphism of H to K, then g ◦ f is a homomorphism of G to K. 2

The homomorphism order does not have the antisymmetric property and therefore is

not a partial order on the class of all graphs. As an example consider two bipartite
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graphs G and H, then the inequalities G ¹ H and H ¹ G both hold but G and H

are not necessarily isomorphic. However if we identify all homomorphically equivalent

graphs, the induced order on the new class will be a partial order.

Lemma 2.5 The homomorphism order induced on the class of cores is a partial order.

Proof. Obviously this order inherits the properties of being reflexive and transitive.

To prove that it also antisymmetric let G and H be two cores for which G ¹ H

and H ¹ G. This means G and H are homomorphically equivalent and therefore by

Lemma 2.3 they have isomorphic cores, but each of G and H are isomorphic to their

own cores, because they are core themselves, so they must be isomorphic. 2

The concept of a bound for a family of graphs is a natural consequence of having the

homomorphism order. Given a class C of graphs, we say C is bounded by a graph H

if and only if every member of C admits a homomorphism to H. In other words H

is said to be a bound for C if for every G ∈ C we have G ¹ H. If the bound H is

also in C then we say H is a maximum of C. Moreover if H is a bound for the class C
of graph such that for any other bound F for C we have H ¹ F then we say H is a

supremum for the class C.

We would like to remark that the terminology of bound, maximum and supremum

and as well as the project of studying graphs in this order-theoretic approach has

been initiated by J. Nešetřil, see [50, 57, 60, 61]. The concept of bound has also been

introduced in [30] under the name of universal graph.

This notation allows us to put many important colouring and homomorphism results

in a form understandable to a broader group of mathematicians. For example if we

define C∆ to be the class of graphs with maximum degree ∆, then Brooks’ theorem

can be stated as follows:

Brooks’ theorem [10]

1) The class C2\{odd cycles} is bounded by K2, and
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2) The class C∆\{K∆+1} is bounded by K∆, for ∆ ≥ 3.

There are different ways of generalizing Brooks’ theorem in the literature, one simple

generalization is done by introducing the concept of k-degenerate graph. A graph G

is said to be k-degenerate if every subgraph of G contains a vertex of degree at most

k. The smallest integer k for which G is k-degenerate will be called the degeneracy

number of G and will be denoted by D(G). This concept has been introduced by

various authors in different equivalent forms, the oldest reference we found is a paper

of V. G. Vizing, [80]. Degeneracy number sometimes is called Szekeres-Wilf number

because of the following theorem of G. Szekeres and H. S. Wilf:

Theorem 2.6 [72] Let Cd be the class of all d-degenerate graphs. Then Cd is bounded

by Kd+1.

A nicer example of a reformulation, using this new terminology, is the reformulation

of Hadwiger’s conjecture which was introduced in [60]. To introduce Hadvigwer’s

conjecture we first define the concept of a minor.

Given two graphs G and H we say H is a minor of G if H can be obtained from

G by a series of operations: contracting edges, deleting vertices and deleting edges.

Contracting an edge xy means removing the edge xy and then identifying x and y. A

class C of graphs is said to be minor-closed if for every graph G in C and every minor

H of G, H is also in C. Moreover we say C is a proper minor-closed family of graphs

if it is not the class of all graphs. Note that a minor-closed family of graphs is proper

if and only if it does not contain all complete graphs Kn.

H. Hadwiger in [29] conjectured that every k-chromatic graph contains the complete

graph Kk as a minor. This is an almost trivial statement for k = 1, 2, 3. For k = 4 it

was proved by G. A. Dirac in [16]. For k = 5 it implies the four colour theorem, and

was in fact shown by K. Wagner to be equivalent to the four colour theorem in this

case, [81]. For k = 6 it also has been proved by N. Robertson, P. D. Seymour and R.

Thomas to be equivalent to the four colour theorem. It remains open for k ≥ 7 and is
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one of the most attractive conjectures in graph theory. One of the remarkable results

toward Hadwiger’s conjecture is due to W. Mader who proved the following fact.

Lemma 2.7 [47] For every positive integer k there exists an integer h(k) such that if

the minimum degree of a graph G is at least h(k), then G contains Kk as a minor.

An equivalent way of stating this lemma is to say that for every proper minor-closed

family C of graphs there is an integer k such that every graph in C is k-degenerate.

In view of Theorem 2.6 the following is an immediate corollary of Lemma 2.7. This

result was originally proved by Wagner in [81].

Lemma 2.8 [81] For every proper minor-closed family C of graphs, there is an integer

k, such that each graph in C is k-colourable.

Using Lemma 2.8 it is now easy to see that the following conjecture introduced in [60]

is a reformulation of Hadwiger’s conjecture.

Conjecture 2.9 [60] Every proper minor-closed family C of graphs contains a com-

plete graph as a maximum with respect to colouring order.

This formulation of the conjecture splits the problem into two different problems, each

of which has its own interest.

Conjecture 2.10 [60] Any bounded minor-closed family of graphs has a maximum.

Conjecture 2.11 The core of the maximum of a minor-closed family of graphs is a

complete graph.

Conjecture 2.10 has been introduced in [60] as a weaker form of Hadwiger’s conjec-

ture. However at the last section of this chapter we will prove that Conjecture 2.11 is

implied by Conjecture 2.10, therefore proving that Hadwiger’s conjecture is equivalent

to Conjecture 2.10. We believe Conjecture 2.11 should not be very difficult to prove;

an evidence for this belief is a theorem of P. Hell which will be introduced in the last

section.
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In the rest of this chapter and also in the next chapter, we will frequently refer to the

class of planar graphs with odd girth at least 2g +1. To simplify our notation we will

denote this class by P2g+1. Therefore P3 is the class of all planar graphs which we

will be simply denoted by P . The class P5 is the class of triangle-free planar graphs,

and so on.

Aside from the four colour theorem, one of the important results in the theory of

colouring of planar graphs is Grötzsch’s theorem which states that every triangle-free

planar graph is 3-colourable, [25]. With our terminology this theorem can be restated

as follows:

Theorem 2.12 The class P5 is bounded by K3.

This statement of Grötzsch theorem has been depicted in Figure 2.2, where it is con-

trasted to the four colour theorem. The four colour theorem states that the class of

planar graphs has a maximum, namely K4. But Grötzsch theorem only provides a

bound, K3, for the class of triangle-free planar graphs, P5.

It is an interesting question to ask whether the class P5 has a maximum or a supre-

mum. In the next chapter we will show that P5 does not have a maximum, but it

does not seem to be an easy task to decide whether P5 admits a supremum or not.

Problems of similar type has been studied in [62].

The following problem is the first step in the direction of deciding whether P5 admits

a supremum.

Problem 2.13 Does P5 admit a bound smaller than K3?

This question (in an equivalent form), was asked by J. Nešetřil in [57]. He then raised

two similar questions, in [17]. To state the Problem 2.13 in the equivalent form we

should first give a definition of the categorical product of two graphs. Categorical

products of graphs are discussed, e.g., in [18].
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P: Planar graphs

K1

 K4

 K 2 

 

K5

Kn

 K 3

P :  Class of triangle−free 
planar graphs

4CT: K  is maximum.

5

Grotzsch’s theorem:
P is bounded by K5 3

4

..

Figure 2.2: Order of graphs
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Definition 2.14 Given two graphs G and H, the categorical product of G and H,

denoted by G × H, is the graph with vertex set V (G) × V (H) where two vertices

(x, u) and (y, v) are adjacent if and only if x is adjacent to y in G and u is adjacent

to v in H. 3

The following two well known propositions are among the first important properties

of the categorical product of graphs. For more on the lattice theoretic aspects of the

categorical product we refer to [19] and [57]

Proposition 2.15 The categorical product of graphs, G×H, admits homomorphisms

to both G and H.

Proof. It is easy to check that the projection f1 defined by f1(x, u) = x is a homo-

morphism of G × H to G. Similarly the projection f2 defined by f2(x, u) = u is a

homomorphism of G×H to H. 2

Proposition 2.16 Let F be a graph which admits homomorphisms to both G and H

then F admits a homomorphism to the categorical product G×H.

Proof. To see this let fg and fh be homomorphisms of F to G and H respectively,

then f : V (F ) → V (G × H) defined by f(x) = (fg(x), fh(x)) is easily seen to be a

homomorphism of F to G×H. 2

These two propositions together show that G × H has the following two important

properties: First of all G × H is smaller than G and H both. Secondly if a graph

F is smaller than G and H both, then F is also smaller than G × H. Therefore in

the lattice obtained from homomorphism order on the class of cores, c(G×H) is the

meet of G and H in the homomorphism order.

The following proposition, which is a special case of a general phenomenon to be

detailed below, will help us to reformulate Problem 2.13.

Proposition 2.17 [59] If P5 admits a triangle-free bound then it admits a bound

smaller than K3.
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Proof. Let H be a triangle-free bound for P5, we will show that H × K3 is also

a bound for P5 which is smaller than K3. To see this let G be triangle-free planar

graph, then G → H because P5 is bounded by H. On the other hand because of the

Grötzsch theorem G → K3. Now by Proposition 2.16 G → H ×K3. This shows that

H ×K3 is also a bound for P5.

To see that H ×K3 is smaller than K3, note that by Proposition 2.15 H ×K3 → K3,

but K3 does not admit a homomorphism to H ×K3, as if it did then by Proposition

2.16 we would have K3 → H, which contradicts the fact that H is a triangle-free

graph. 2

In general, if C is a class of graphs bounded by B then to find a bound for C smaller

than B, it will be enough to find a bound B′ such that B � B′. If we find such a

bound, then B×B′ will be a bound for C, which is guaranteed to be smaller than B.

On the other hand, if there is a bound B for P5 with B ≺ K3 then B must be a

triangle-free graph. This observation, together with Proposition 2.17, shows that the

following problem of [57] is a new formulation of Problem 2.13.

Problem 2.18 [57] Does there exist a triangle-free bound for the class of all triangle-

free planar graphs?

This problem was studied in [17], where the following two similar problems were also

posed:

Problem 2.19 [17] Does there exist a K4-free bound for the class of all K4-free planar

graphs?

Problem 2.20 [17] Does there exist a K5-free bound for the class of all (K5-free)

planar graphs?

The answer to the Problem 2.20 is positive by virtue of the four colour theorem, but

in view of the difficulty of the four colour theorem it would be interesting to find an

independent proof. Each of these three problems have been answered positively by P.

O. De Mendez, and J. Nešetřil, in [60] and [61].
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Theorem 2.21 [60] The class of all triangle-free planar graphs is bounded by a tri-

angle free graph.

Theorem 2.22 [61] The class of all K4-free planar graphs is bounded by a K4-free

graph.

Theorem 2.23 [61] The class of all (K5-free) planar graphs is bounded by a K5-free

graph.

The proof of each of these theorems uses the constructive method of [50]. These con-

structions are the main subjects of this chapter. So our goal in this chapter is to show

how one can answer any of the questions mentioned above by answering certain other

problem on ordinary colouring. This will be a very useful tool as it is normally easier

to deal with ordinary colouring problems than with general homomorphism problems.

But before going any further we need to introduce some notation. For further details

on homomorphism and related topics we refer to [31].

We will talk about graph properties. The type of property we will be interested in is

the property of U -colourability, which we will denote it by P (U). In other words, G

has the property P (U) if it admits a homomorphism to U . As has been mentioned

earlier, when U ∼= Kk the property P (U) is the property of being k-colourable. For

simplicity this property will be denoted by P (k). The following definition will help

us to recognize certain kinds of colourings:

Definition 2.24 Given a graph property P , we say that a proper colouring of a graph

G is an (m,P )-colouring, if the subgraph of G induced by the union of any m colour

classes has property P . 3

For some properties P , the concept of (m,P )-colouring has been studied in the litera-

ture. For example, if P is the property of being independent, i.e., the property P (1),

then a (1, P )-colouring is just a proper colouring of graphs. If P is the property of

being acyclic then a (2, P )-colouring of a graph is an acyclic colouring. (An acyclic

colouring of a graph G, introduced by B. Grünbaum in [25], is a proper colouring of
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the vertices of G, in which every pair of colours induces an acyclic graph, i.e., a forest.)

For certain types of (m,P )-colouring the existence of (m,P )-colouring for G will

depend on the nonexistence of certain structures in G. The following two propositions

are examples of this phenomenon:

Proposition 2.25 A graph G admits a (k, P (k − 1))-colouring if and only if it is

Kk-free.

Proof. If G admits a (k, P (k−1))-colouring then any set of k colour classes induces

a (k − 1)-colourable graph, in particular G does not contain a Kk as a subgraph.

Conversely if G does not contain a Kk then one can colour (for example) all the

vertices with different colours to obtain a (k, P (k − 1))-colouring. 2

Proposition 2.26 Given a graph G, it admits a (m,P (2))-colouring if and only if

odd−girth(G) ≥ m + 1.

Proof. If G admits an (m,P (2))-colouring, then the union of any m colour classes

(therefore any set of m vertices) induces a bipartite graph, hence odd−girth(G) ≥ m+1.

Conversely if odd−girth(G) ≥ m + 1 then it is enough to colour (for example) all the

vertices with different colours to obtain an (m,P (2))-colouring of G. 2

We will also use the following notation:

For a finite set F of graphs we denote by Forbh(F) the class of all graphs G satisfying

F 9 G for all F ∈ F . For example, if F consist of only K3, then Forbh(F) is the

class of all triangle-free graphs. Or if F = {C5} then ForbF is set all graphs with odd

girth at least 7. More generally if F consists of all odd cycles, then Forbh(F) is the

set of bipartite graphs.

Now the following theorem is a reformulation, in our terminology, of a theorem of R.

Häggkvist and P. Hell from [30].
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Theorem 2.27 For a given positive integer d and a finite set of connected graphs F ,

let Cd be the class of all graphs in Forbh(F) with maximum degree at most d. Then

Cd is bounded by a graph H in Forbh(F).

A new proof of this theorem will be given in Section 2.3. The next section is devoted

to constructing a family of graphs with certain properties. We will show that for a

given class C of graphs these constructions can be used to form a bound with certain

properties, provided that each graph in C admits a certain type of colouring. In section

2.3, in addition to a new proof of Theorem 2.27, we also solve Problem 2.20 with a

method different from the one in [61]. Section 2.3 is devoted to providing a better

understanding of our constructions. In the last section we will prove that Hadwiger’s

conjecture is equivalent to Conjecture 2.10.

2.2 Construction of bounds

For a graph property P , we have introduced the notion of an (m,P )-colouring of a

graph G (namely, it is a colouring where the subgraph induced by the union of any m

colour classes has the property P ). We now define the (m,P )-chromatic number of a

graph G, denoted by χm,P (G), to be the minimum number of colours in an (m, P )-

colouring of G (provided that one exists).

Given a set A and an integer m, the notation of
(

A
m

)
is used to denote the set all

subsets of A with m elements. Moreover
(

A
m

)
i
will denote the set of all subsets of A

with m elements containing the particular element i. Recall that the set of integers

from 1 to n, i.e., {1, 2, . . . n}, will be denoted by [n] and that an m-set is a set of

m elements. Now the following definition introduces a key construction. It can be

compared to [2, 63, 65] for constructions of similar flavor:

Definition 2.28 Let m and n be two positive integers and let U be a graph. Then

the graph Π = Π(n,m, U) is defined as below:
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The vertex set V (Π) of Π is the set of all ordered pairs (i, φ), where i ∈ [n] and φ is

a function from
(
[n]
m

)
i
to V (U).

The edge set E(Π) of Π consists of all the unordered pairs {(i, φ), (j, ψ)} for which

the following two conditions hold:

1. i 6= j;

2. φ(S) is adjacent to ψ(S) in U whenever φ(S) and ψ(S) both are well defined,

that is for all the m-subsets S of [n] which contain both i and j.

3

To have a better understanding of this construction notice that if we colour each

vertex (i, φ) by the first coordinate, i, we obtain an n colouring of Π(n,m, U). The

graphs obtained from this construction, which we will call Π-graphs, are normally

very large. In general Π(n,m, U) has n× |V (U)|(n−1
m−1) vertices.

The smallest non-trivial Π-graph is the graph Π(3, 2, K2), which has 12 vertices and

is depicted in Figure 2.3. In this figure the label ixy represents the vertex (i, φ) with

φ({i, j1}) = x and φ({i, j2}) = y where j1 < j2. For example 3ba means the vertex

(3, φ) where φ({13}) = b and φ({23}) = a.

Our interest in these graphs is due to their homomorphism properties. But we may

restrict a discussion of graphs in the context of homomorphism to graphs which are

cores, since the core of a graph inherits all the homomorphism properties of the graph.

In the case of Π-graphs this may become very handy as the core of a Π-graph can be

much smaller than the Π-graph itself. As an example, the core of Π(3, 2, K2) is just

a K3, because it is 3-colourable and it contains K3 as a subgraph. However we do

not have an easy method to find the core of a Π-graphs in general. We will say more

about the chromatic number and the fractional chromatic number of Π(n,m, U) later

on in this chapter.
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Figure 2.3: Π(3, 2, K2)
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To give a taste of the importance of Π-graphs, consider the typical problem of finding

a Kk-free bound for some given family C of graphs. The point is that if there is such

a Kk-free bound then Π(n, k, Kk−1) is also such a bound, for n large enough. In fact

it will be sufficient to choose n large enough such that every graph G in C admits a

(k, P (k−1))-colouring using at most n colours. Each of these statements will be proven

in detail later on, but here we should remark that what makes it to work nicely, is

replacing the property of being Kk-free with the equivalent property of (k, P (k− 1))-

colourability (see Proposition 2.25). The following then is a generalization of this

concept:

Definition 2.29 Let G and U be graphs and m a positive integer. The graph G

is said to be m-locally U-colourable if every induced subgraph of G with at most m

vertices admits a homomorphism to U . 3

The following lemma is natural consequence of the definition.

Lemma 2.30 Let U be a graph and let F be the set of all cores on at most m vertices

which do not admit a homomorphism to U . Then a graph G is m-locally U-colourable

if and only if it belongs to Forbh(F).

Proof. Let G be a graph in Forbh(F), and let G′ be any subgraph of G on at most

m vertices. We show that G′ maps to U . By contradiction, suppose G′ does not admit

a homomorphism to U . Then the core c(G′) of G′ does not admit a homomorphism

to U either, so it must be in F . But c(G′) → G′ and therefore c(G′) → G which

contradicts the choice of G.

For the converse, assume G is m-locally U -colourable, and suppose for some F ∈ F
there exists a homomorphism f of F to G . By the definition of F , F and therefore

the homomorphic image f(F ) of F in G, has at most m vertices. Since G is m-locally

U -colourable, f(F ) maps to U by a homomorphism g. But then g ◦ f maps F to U

which contradicts the choice of F . 2
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Corollary 2.31 Let U be a graph and let F be the set of all cores on at most m

vertices which do not admit a homomorphism to U . Then a graph G is m-locally

U-colourable if and only if it does not contain any member of F as subgraph.

Proof. Let G be a graph which is not m-locally U -colourable. Then by Lemma 2.30

there is an F ∈ F which admits a homomorphism f to G. But then the core c(f(F ))

of the image of F in G, is also a member of F and a subgraph of G. 2

Obviously in applying this corollary we only need to consider the minimal elements

of F with respect to taking subgraphs, in other words we only consider the elements

of F which do not contain any other element as a subgraph.

Example 2.32 :

(a) m-locally K2-colourable graphs are precisely the graphs not containing an odd

cycle of length ≤ m.

(b) k-locally Kk−1-colourable graphs (equivalently (k + 1)-locally Kk−1-colourable

graphs) are precisely the graphs not containing Kk.

(c) 9-locally C5-colourable graphs are precisely graphs which do not contain any of

the three graphs shown in the Figure 2.4 as a subgraph. 3

Parts (a) and (b) of the example can be seen easily by Corollary 2.31. For (a), F is

set to be the set of odd cycles of size at most m, and for (b) F is set to be {Kk}.
For part (c) note that K3 does not admit a homomorphism to C5 and that any 4-

chromatic graph on at most 9 vertices must contain K3 as a subgraph. So applying

Corollary 2.31 it will be enough to find the set of 3-colourable cores on at most 9

vertices which do not admit homomorphism to C5. By an exhaustive search, aside

from K3 we found four such cores, which have been depicted in Figure 2.4 and Figure

2.5. The two graphs of Figure 2.5 contain the graph on the right side of the Figure

2.4. So in order to see if a graph G is 9-locally C5-colourable we only need to check

if it does not contain any of the three graphs in Figure 2.4.

We have the following important property of Π-graphs:
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Figure 2.4: Forbidden subgraphs of 9-locally C5-colourable graphs

Figure 2.5: More 3-colourable cores
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Proposition 2.33 The graph Π(n,m,U) is m-locally U-colourable.

Proof. Let {(ik, φk)}m
k=1 be any set of m vertices and let Π1 be the subgraph of

Π(n,m, U) induced by these vertices. If S is any m-set containing {i1, i2, · · · im}
(note that ij’s are not necessary distinct and {i1, i2, · · · im} may have fewer than m

elements), then the mapping (ik, φk) → φk(S) is a homomorphism of Π1 to U . To see

this let (ik, φk) be a vertex adjacent to (il, φl), then S contains both ik and il, and by

definition φk(S) must be adjacent to φl(S). 2

We are now ready to introduce the conditions under which one can construct an

m-locally U -colourable bound. The first step is the following proposition.

Proposition 2.34 Let P (U) be the property of U-colourability. If χm,P (U)(G) ≤ n

then there is a homomorphism of G to Π(n,m, U).

In other words if G admits an n-colouring in which the union of every m-colour classes

induces a U -colourable graph, then G admits a homomorphism to Π(n,m, U).

Proof. Let c : V (G) → [n] be an (m,P (U))-colouring of G and let S be any subset

of [n] of cardinality m. The vertices coloured by colours from S induce a subgraph

of G which we denote by GS. By the definition of (m,P (U))-colouring, the subgraph

GS must be U -colourable. Let ρS be the homomorphism of GS to U . We now define:

f : V (G) → V (Π(n,m, U)); f(v) = (c(v), φv),

where φv :
(
[n]
m

)
c(v)

→ V (U) is defined by φv(S) = ρS(v). The mapping φ(S) is well

defined because it is only defined for subsets of size m which contain c(v).

We now show that f is a homomorphism. Let u and v be two adjacent vertices in

G and set f(u) = (c(u), φu) and f(v) = (c(v), φv). To see that f(u) is adjacent to

f(v) in Π(n, m,U) first of all note that c(u) 6= c(v), because c is a proper colouring.

Secondly, if S is any set containing both c(u) and c(v) then φu(S) = ρS(u) is adjacent

to φv(S) = ρS(v) in U , because ρS preserve the adjacency. Therefore f(u) and f(v)

are adjacent in Π(n,m, U) and f is a homomorphism of G to Π(n,m, U). 2
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If we are searching for an m-locally U -colourable bound for a given family of graphs,

C, then using Proposition 2.33 and Proposition 2.34 it will be enough to bound the

(m,P (U))-chromatic number of graphs in C. The following theorem shows that this

sufficient condition is necessary too.

Theorem 2.35 A class C of graphs is bounded by an m-locally U-colourable graph if

and only if {χm,P (U)(G)| G ∈ C} is bounded above by an integer.

Proof. Let {χm,P (U)(G)| G ∈ C} be bounded by an integer n. Then for every G

in C, χm,P (U)(G) ≤ n and therefore by Proposition 2.34 G admits a homomorphism

to Π(n,m, U). In other words Π(n,m, U) is a bound for C, but by Proposition 2.33

Π(n,m, U) is an m-locally U -colourable graph. Therefore Π(n,m, U) is an m-locally

U -colourable bound for the class C.

For the converse, suppose that C is bounded by an m-locally U -colourable graph H.

We claim that |V (H)| is an upper bound for {χm,P (U)(G)| G ∈ C}. To prove our

claim, take a graph G in C, and consider a homomorphism φ : G → H. We show that

φ is an (m,P (U))-colouring, this will complete the proof. Let G′ be a subgraph of

G which takes at most m colours. Then the image φ(G′) of G′ in H has at most m

vertices. Since H is an m-locally U -colourable graph, φ(G′) maps to U . So φ is an

(m,P (U))-colouring and we are done. 2

We will be mainly concerned with applying following two versions of this theorem

(Proposition 2.36 and Proposition 2.37).

Proposition 2.36 Let n be a positive integer and C be a class of graphs. Then the

following statements are equivalent.

(a) C is bounded by a Kn-free graph.

(b) {χn,P (n−1)(G)| G ∈ C} is bounded above by an integer.

(c) {χn+1,P (n−1)(G)| G ∈ C} is bounded above by an integer.
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Proof. By Theorem 2.35 {χn,P (n−1)(G)| G ∈ C} is bounded above by an integer

if and only if C is bound by an n-locally Kn−1-colourable graph. Similarly the set

{χn+1,P (n−1)(G)| G ∈ C} is bounded by an integer if and only if C is bounded by an

(n+1)-locally Kn−1-colourable graph. But both the properties of being n-locally Kn−1-

colourable and being (n + 1)-locally Kn−1-colourable are equivalent to the property

of being Kn-free (see part (b) of Example 2.32). 2

The second application of Theorem 2.35 is to the property of being bipartite.

Proposition 2.37 Let n be a positive odd integer and C be a class of graphs. Let B

be the property of being bipartite. Then the following statements are equivalent.

(a) C is bounded by a graph of odd girth n.

(b) {χn−2,B(G)| G ∈ C} is bounded above by an integer.

(c) {χn−1,B(G)| G ∈ C} is bounded above by an integer.

Proof. The property of having odd girth at least n is equivalent (n − 1)-local K2-

colourability, and also to (n − 2)-local K2-colourability. Now apply Theorem 2.35.

2

2.3 Applications of Theorem 2.35

In this section, in two typical examples, we will show how one can apply Theorem

2.35, or Proposition 2.36 in particular, to construct bounds with certain properties.

The first application is a new proof of Theorem 2.27 given below:

Theorem [30] For a given positive integer d and a finite set of connected graphs F ,

let Cd be the class of all graphs in Forbh(F) with maximum degree at most d. Then

Cd is bounded by a graph H in Forbh(F).

Proof. By replacing every graph in F with its core, we may assume F is a finite set

of connected cores. Put m = max{|V (F )| ; F ∈ F} and let U be the disjoint union
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of all (non-isomorphic) graphs in Forbh(F) which have at most m vertices.

We claim that Forbh(F) is precisely the class of all m-locally U -colourable graphs.

To see this first consider a graph G which is in Forbh(F). Then any subgraph G′ of

G on at most m vertices is also in Forbh(F), and therefore, by the definition of U , G′

is a component of U , hence G′ → U . For the other direction, let G be an m-locally

U -colourable graph. We shall prove that G is in Forbh(F). By contradiction, sup-

pose there is an F ∈ Forbh(F) which maps to G. Since F is connected, the image

of F in G is a connected subgraph of G on at most m-vertices. This subgraph, and

therefore F , must map to U . So there is mapping of F to one component of U , but

this contradicts the definition of U .

We shall prove that for any G ∈ Cd we have χm,P (U)(G) ≤ d2m+1. This will com-

plete the proof as, by Theorem 2.35, the class Cd is then bounded by an m-locally

U -colourable graph H, but as we have shown above any m-locally U -colourable graph

is in Forbh(F).

Given G ∈ Cd we define a new graph G(m) as follows: G(m) has the same set of vertices

as G, and two distinct vertices are joined by an edge if and only if they are joined in G

by a path of length at most m. Note that ∆(G(m)) < dm+1 and therefore by Brooks’

theorem, G(m) admits a dm+1-colouring c. The colouring c is also a vertex colouring

of G with the property that any two distinct vertices of G in distance at most m are

coloured differently.

We now prove that c is an (m, P (U))-colouring of G. Let G′ be a subgraph of G

induced by any m colour classes and let G′′ be one of its components. Every pair of

vertices in G′′ is joined by a path in G′′. If any of these paths is of length at least m

then its vertices take at least m+1 colours (on the first m+1 vertices of the path). By

the choice of G′ this is impossible, so every two distinct vertices in G′′ are joined by a

path of length at most m− 1, and so take distinct colours. Therefore G′′ has at most

m vertices. But G′′ is in Forbh(F) because it is a subgraph of G and G ∈ Forbh(F).



CHAPTER 2. HOMOMORPHISMS AND BOUNDS 29

Hence by the definition of U , G′′ is U -colourable, and so is G′. 2

Given positive integers d and k let Ck
d be the class of all k-colourable graphs with

maximum degree at most d. The next theorem is a generalization of Theorem 2.27

which was first proved in [17].

Theorem 2.38 [17] Let d and k be positive integers and let F be a family of connected

graphs. The class C = Ck
d ∩Forbh(F) is bounded by a k-colourable graph in Forbh(F).

Proof. Let H be the bound obtained from Theorem 2.27, then H ∈ Forbh(F). By

definition C is also bounded by Kk. Now by Proposition 2.15 and Proposition 2.16

H ×Kk is a k-colourable bound for C from Forbh(F). 2

Remark As shown in [30], the condition of connectedness for the forbidden graphs in

Theorem 2.27 and Theorem 2.38 is necessary. For example, let F be a graph which is

disjoint union of two incomparable graphs G and H, i.e., G 9 H and H 9 G. Now

the subclass Cd of Forbh(F ) for d larger than the maximum degrees of both G and

H, contains both G and H. Thus any bound for Cd admits a homomorphism from F

and therefore Cd can not be bounded in Forbh(F ).

As a next application we will construct a K5-free bound for the class of planar graphs,

thereby providing another proof for 2.23 without using the four colour theorem. No-

tice that in order to find a K5-free bound using Theorem 2.35 we must show that

χ(4,P (5))(G) is bounded for the set of planar graphs. To do this we will define below a

certain kind of colouring called “diverse colouring”. Then we will show, by introduc-

ing a diverse colouring algorithm, that every planar graph admits a diverse colouring

using at most k colours, for some fixed k. Finally we will show that the colouring

obtained by the diverse-colouring algorithm is also a (4, P (5))-colouring.

A theorem of A. Kotzig, which is a consequence of Euler formula for planar graphs,

will play an important role in our algorithm. Given a graph G and a vertex x of G

let d(x) denote the degree of x in G. Then Kotzig’s theorem sates that:
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Theorem 2.39 [44] For a given planar graph G, either G contains a vertex of degree

at most 2, or it contains an edge e = uv with d(u) + d(v) ≤ 13.

In order to find a (m,P (k))-colouring of a graph G, we should find a colouring of G

in which every (k + 1)-chromatic subgraph of G, or equivalently every (k + 1)-critical

subgraph of G, takes at least m + 1 different colours. In particular to find a K5-free

bound for the class of planar graphs using Theorem 2.35, we should colour every pla-

nar graph in such a way that every 5-critical subgraph of it takes at least 6 different

colours. This leads us to a study of 5-critical planar graphs.

An alternative form of the four colour theorem is to state that “there is no 5-critical

planar graph”. In the absence of the four colour theorem the following lemma will help

us to achieve our goal of constructing a K5-free bound for the class of planar graphs.

The proof of this lemma is inherited from the Kempe-chain proof of the five colour

theorem, but since we have not found this lemma clearly stated in the literature, we

will include a proof here.

Lemma 2.40 If G is a 5-critical planar graph then δ(G) ≥ 5.

Proof. By contradiction, suppose G is a 5-critical planar graph with a vertex x of

degree 4 or less. If d(x) ≤ 3 then any 4 colouring of G\x can be extended to a 4

colouring of G. So we may assume d(x) = 4. Consider a 4 colouring of G\x, since

this is not extendable to a 4 colouring of G then all the four colours must appear on

the four neighbours of x.

Consider a planar drawing of G and let 1, 2, 3, and 4 be the four distinct colours of the

neighbours of x in a cyclic order. Let x1 and x3 be the neighbours of x with colours

1 and 3 respectively. Also let G13 be the subgraph of G\x induced by the colours 1

and 3. Then x1 and x3 must be in the same connected component of G13, otherwise

we will find an extendable 4-colouring of G\x just by exchanging the colours 1 and 3

only in the component of G13 containing x1.
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This means that there must be a path connecting x1 and x3 which uses only colours

1 and 3. Similarly there must be a path connecting the other two neighbours of x

which uses only colours 2 and 4. Obviously these two paths can not intersect in a

vertex, but they must intersect somewhere. This contradicts the planarity of G. 2

The next step is to define a diverse colouring:

Definition 2.41 For given integers k and l, we say that an l-colouring c of a given

graph G is a k-diverse colouring, if, for each vertex x of G, at least min{d(x), k}
different colours appear on the neighbours of x. A k-diverse colouring which uses at

most l colours will be called a (k, l)-colouring. 3

Theorem 2.42 Given an integer k ≥ 11, every planar graph admits a (k, 5k + 8)-

colouring.

Proof. We will prove this by induction on the number of vertices of G. For graphs

on at most 5k+8 vertices we can colour all the vertices with different colours. Suppose

we have found a (k, 5k + 8)-colouring for every planar graph on at most n vertices

and let G be a planar graph on n + 1 vertices. We may assume G is connected,

because otherwise (k, 5k + 8)-colourings of the components of G all together will give

a (k, 5k + 8)-colouring of G.

If G has a vertex x with d(x) = 1 then any (k, 5k + 8)-colouring of G\x can be ex-

tended to a (k, 5k + 8)-colouring of G. To see this let y be the only neighbour of x. If

there are at least k-different colours on the neighbours of y, then any colour different

from the colour of y will work. Otherwise d(y) ≤ k− 1 and we choose a colour which

has not appeared on y or any of its neighbours, this is indeed possible because there

are more than k colours available.

If G does not have a vertex of degree 1 but it has a vertex x of degree 2 then we

identify x with one of its neighbours, remove the loop and the possible multiple edge.

We call the new graph Gx. By induction Gx admits a (k, 5k +8)-colouring cx. Colour
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all the vertices of G except x with the same colour as in the colouring cx. Notice

that neighbours of x have taken two different colours, and in order to extend cx to

a (k, 5k + 8)-colouring of G all we need to do is to choose a colour for x different

from colours of its neighbours in such a way that the requirement of diversity for the

neighbours of x still holds.

For each neighbour y of x, either y already has k different colours on its neighbours or

d(y) ≤ k−1. In the first case the only restriction for the colour of x, coming from y, is

to have a colour different from the colour of y, (in order to have a proper colouring).

In the second case, i.e., if d(y) ≤ k − 1, the vertex x must take a colour different

from the colours of y and all of its neighbours. In either of the cases, each neighbour

of x introduces at most k-colours not admissible for x. Since x has two neighbours

there are maximum of 2k colours not admissible for x, so cx can be extended to a

(k, 5k + 8)-colouring of G.

If neither of the previous two cases happens, then δ(G) ≥ 3 and by Theorem 2.39

there is an edge e = uv with d(u) + d(v) ≤ 13. Without loss of generality assume

d(u) ≤ d(v). Therefore d(u) ≤ 6. Identify u and v, remove loops and possible multiple

edges and call the new graph Ge. Let v′ to be the new vertex in Ge (obtained from

identifying u and v), then d(v′) ≤ 11. By induction Ge admits a (k, 5k +8)-colouring,

we denote this colouring by ce. Note that all the neighbours of v′ have taken different

colours (this is because k ≥ 11).

To find a (k, 5k + 8)-colouring of G, colour every vertex x 6∈ {u, v} with ce(x) and

colour v with ce(v
′). To complete this colouring all we need is to find an admissi-

ble colour for u. Notice that all the neighbours of u have already received different

colours. Let t 6= v be a neighbour of u, if d(t) > k then t already has k neighbours

with k distinct colours and the only restriction coming from t is that c(t) be different

from the colour which we choose for u.

If d(t) ≤ k then the colour we would like to choose for u has to be different from
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colours of t and all of its neighbours. This will remove at most k colours from the list

of available colours for u. Similarly there will be also at most d(v) forbidden colours

because of the diversity condition for v. In total there will be at most k(d(u)− 1) +

d(v) = (k− 1)d(u)− k + d(u) + d(v) ≤ 5k + 7 forbidden colours for u. Since there are

5k + 8 possible colours, we can find an admissible colour for u. 2

In the proof of the last theorem we introduced an inductive algorithm to find a (k, 5k+

8)-colouring of any planar graph. We will call this algorithm k-diverse colouring

algorithm. In the next theorem we will show that the colouring obtained from the 11-

diverse colouring algorithm satisfies the condition of the Proposition 2.36 and hence

provides us with a K5-free bound for the class of planar graphs.

Theorem 2.43 Let G be a planar graph and c an (11, 63)-colouring of G obtained

from 11-diverse colouring algorithm. Then c has the property that every 5-chromatic

subgraph of G takes at least 6 different colours.

Proof. It will be enough to show that every 5-critical subgraph has taken 6 different

colours. We prove this by contradiction. Suppose this is not true and algorithm fails

at some point. Let G be the smallest graph for which the 11-diverse algorithm fails,

i.e., for every graph on at most |V (G)|−1 vertices the (11, 63)-colouring obtained from

11-diverse colouring algorithm has the required property but the colouring obtained

for G by this algorithm uses only five colours on some 5-critical subgraph H of G.

It is easy to see that G does not contain vertices of degree 1 or 2. In fact if δ(G) = 1

or 2 then (11, 63)-colouring of G has been obtained from (11, 63)-colouring of some

Gx where x is a vertex of degree 1 or 2. But then every 5-critical subgraph of G is

also a subgraph of Gx and therefore takes at least 6 different colours.

So we may assume δ(G) ≥ 3. Let u and v be the vertices of G as in the algorithm.

Recall that to obtain the colouring c we basically used an (11, 63)-diverse colouring

of Ge and we found an admissible colour for u. By the minimality of G the 11-diverse

colouring of Ge has used at least 6 different colours on any 5-critical subgraph of Ge.



CHAPTER 2. HOMOMORPHISMS AND BOUNDS 34

So H could not be a subgraph of Ge, therefore it must contain both u and v. By

lemma 2.40 degree of u in H must be at least 5. But all the neighbours of u have

been given different colours. By adding the colour of u itself to this collection we will

find at least 6 different colours on the vertices of H which is a contradiction. 2

Notice that this theorem has only been proved for a 11-diverse colouring obtained from

the 11-diverse colouring algorithm. We do not have a proof for a general 11-diverse

colouring.

Theorem 2.44 The class P is bounded by a K5-free graph.

Proof. Applying Theorem 2.35 and Theorem 2.43 we see that the class P is bounded

by Π(63, 5, K4). Proposition 2.36 shows that this graph is K5-free. 2

Some other applications of Theorem 2.35 can be found in the recent papers of P. O. De

Mendez and J. Nešetřil, [60] and [61]. In [60] the authors have answered Problem 2.18

affirmatively, by showing that every triangle-free planar graph admits a k-colouring

(for some fixed k) in which every odd-cycle takes at least 4 different colours. Also in

[61] they have generalized their method to prove the following general theorem.

Theorem 2.45 [61] Let C ′ be the class of all Kk-free graphs in a minor-closed family

C of graphs. Then C ′ is bounded by a Kk-free graph.

To see the elegance of this theorem compare it with the equivalent form of the Had-

wiger’s conjecture: “Any minor-closed family of Kk-free graphs is bounded by Kk−1”.

2.4 The Π-graphs

In this section we further investigate Π-graphs in order to have a better understanding

of them. We find an improved bound for the chromatic number of Π-graphs. We also

introduce bounds on the fractional chromatic number of these graphs. Fractional

chromatic number has been defined below, but it will be studied in more details in

Chapter 4.
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Definition 2.46 An n-set colouring of a graph G is an assignment of n-sets to the

vertices of G in such a way that any pair of adjacent vertices receive disjoint sets. The

minimum number of the total colours required in an n-set colouring of G is denoted

by χn(G). The fractional chromatic number of G, denoted by χf (G), is defined to be

liminf{χn(G)
n
}. 3

Fractional chromatic number is also a monotone graph parameter, a proof of this well

known fact will be given in Chapter 4. Fractional chromatic number is a difficult

parameter to calculate, but if G is a vertex transitive graph, then χf (G) is known to

be equal to |V (G)|
α(G)

, where α(G) is the size of maximum independent set, see [23] for a

proof of this.

On the other hand, while the problem of finding core of a graph in general is a difficult

problem, there are some methods which helps us to find the core of a vertex transitive

graph. For example, it is a known fact that the number of vertices of the core of a

vertex transitive graph G, divides the number of vertices of G, see [23]. For these

reasons our first attempt in this section is to investigate cases when Π(n,m,U) is

vertex transitive.

Lemma 2.47 Let n and m be any two integers. If U is a vertex transitive graph then

Π(n,m, U) is also vertex transitive.

Proof. Assume U is a vertex transitive graph. We first prove certain pairs of vertices

of Π(n,m, U) can be mapped to each other using an automorphism of Π(n,m, U). The

type of pairs we would like to consider first, are the pairs (A,B) with A = (1, ϕ) and

B = (1, ϕ′) where ϕ and ϕ′ differ only in one m-subset S0 of [n]. In other words we

may assume ϕ(S) = ϕ′(S) for every S containing 1, except S0 = {1, 2, · · ·m}. Let

ϕ(S0) = x and ϕ′(S0) = y, where x 6= y.

To prove the existence of an automorphism Θ that maps A to B, notice that since U

is a vertex transitive graph there is an automorphism θ of U which maps x to y (i.e.,

θ(x) = y). Now we may define the automorphism Θ of Π(n,m,U) this way:
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Θ((x, ψ)) = (x, ψ′), where ψ′(S) =

{
ψ(S) if S 6= S0

θ(ψ(S)) if S = S0.

It is easy to check that Θ is a one to one and onto homomorphism of Π(n,m, U) to

Π(n,m, U), therefore it is an automorphism of Π(n,m, U). Moreover by the choice of

A and B we find that Θ(A) = B.

Now consider a pair {C, D} of the vertices of Π(n,m, U) where C = (1, ϕ) and

D = (1, ψ), with no restriction on ϕ or ψ. Note that ϕ and ψ are defined on the

same m-subsets of [n]. Assume ϕ and ψ differ in k places, then it will be enough to

repeat the previous argument k times to find an automorphism of Π(n,m, U) which

maps C to D.

To complete our proof it will be enough to show that (1, ϕ) can be mapped (using an

automorphism of Π(n,m, U)) to a vertex of type (2, ψ). But this becomes an obvious

fact by considering the automorphism of Π(n,m, U) induced by any permutation of

{1, 2, · · ·n} which maps 1 to 2. 2

The second lemma concerns the chromatic number of the Π-graphs. The definition of

Π(n,m, U) implies a natural n-colouring, therefore χ(Π(n, m,U)) ≤ n. The following

easy lemma improves this bound in some cases.

Lemma 2.48 For any two positive integers m and n we have χ(Π(n,m, U)) ≤ d n
m
eχ(U).

Proof. Let c be a χ(U)-colouring of U using the colours {1, 2, · · ·χ(U)}. The fol-

lowing is then a proper colouring of Π(n,m, U) which uses at most (bn−1
m
c + 1)χ(U)

colours.

C((i, ϕ)) = bi− 1

m
cχ(U) + c(ϕ(S)), where S = {bi− 1

m
cm + 1, · · · b i− 1

m
cm + m}.

To see this is a proper colouring let A = (i, ϕ) and B = (j, φ) be two adjacent ver-

tices of Π(n,m, U). If b i−1
m
c 6= b j−1

m
c then A and B obviously receive different colours.
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Otherwise b i−1
m
c = b j−1

m
c and the m-subset S = {b i−1

m
cm+1, · · · b i−1

m
cm+m} contains

both i and j. But then C(A)−C(B) = c(ϕ(S))−c(φ(S)) 6= 0 because (i, ϕ) ∼ (j, φ)).

To complete the proof observe that bn−1
m
c + 1 = d n

m
e holds for every pair of positive

integers, m and n. 2

Example 2.49 As an example we have χ(Π(4n, 2n,Kn)) ≤ 2n. This bound improves

the trivial bound of 4n. 3

Our last lemma in this section is about the fractional chromatic number of the Π-

graphs. It can be easily seen from the definition that fractional chromatic number is

always bounded by the chromatic number, therefore Lemma 2.48 naturally provides

an upper bound of d n
m
eχ(U) for the fractional chromatic number χf (Π(n, m,U)), but

since fractional chromatic number admits non integer values we can improve this

bound to n
m

χ(U). This is done in the following lemma.

Lemma 2.50 The fractional chromatic number of Π(n,m, U) is smaller than or equal

to n
m

χ(U).

Proof. Let c be a χ(U)-colouring of U . We define an assignment A of
(

n−1
m−1

)
-sets to

the vertices of Π(n,m, U) as below:

A((i, ϕ)) = {(S, c(ϕ(S)))|i ∈ S}

.

We first claim that A is an
(

n−1
m−1

)
-set colouring of Π(n,m, U). To see this let a = (i, ϕ)

and b = (j, φ) be two adjacent vertices in Π(n,m, U). Then A(a) ∩ A(b) = ∅ because

for any S which contains both i and j, ϕ(S) and φ(S) are adjacent vertices in U and

therefore c(ϕ(S)) 6= c(φ(S)).

To complete the proof we show that A uses at most
(

n
m

)
χ(U) colours, but this is clear

because there are maximum of
(

n
m

)
choices for S and χ(U) choices for c(ϕ(S)). 2
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The K5-free bound for the class of planar graphs we provided in the last section, has

a large number of vertices. The following problem, if answered without using the four

colour theorem, would provide us with a better K5-free bound which by Lemma 2.50

would have a fractional chromatic number smaller than or equal to 24
5
. Notice that

the best known bound for the fractional chromatic number of planar graphs without

using the four colour theorem is that it is strictly smaller than 5.

Problem 2.51 Without using the four colour theorem, show that every planar graph

can be coloured using 6 colours in such a way that every 5-chromatic subgraph receives

all 6 different colours.

2.5 On Hadwiger’s Conjecture

Hadwiger’s conjecture was introduced in the introduction of this chapter, where we

also introduced a reformulation of the conjecture (from [60]), in our terminology.

This reformulation splits the conjecture into two different conjectures, Conjecture

2.10 and Conjecture 2.11. Conjecture 2.10 has been introduced in [60] as a weaker

form of Hadwiger’s conjecture. In this section we show that Conjecture 2.11 is implied

by Conjecture 2.10 and therefore prove that Hadwiger’s conjecture is equivalent to

Conjecture 2.10.

Theorem 2.52 Suppose every minor-closed family of graphs contains a maximum.

Let C be any minor-closed family of graphs with a maximum element H. Then H

must be homomorphically equivalent to a complete graph.

Proof. We will prove this by contradiction. Assume this is not true for some minor-

closed families. Let G/Kk be the class of all graphs which do not contain Kk as a

minor. By Lemma 2.8 any proper minor-closed family is contained in some G/Kk.

Let k be the smallest integer such that G/Kk contains a minor-closed subfamily, C,

for which the statement of the theorem does not hold. Note that k must be greater

than or equal to 7 (because for the smaller values of k Hadwiger’s conjecture has been
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verified).

Let H be a maximum of C. Then the class formed by H and all of its minors is a

finite minor-closed family of graphs for which the statement of the theorem also does

not hold. Because of this finiteness we may assume C is a minimal subfamily of G/Kk

with respect to having a maximum, H, which is not homomorphically equivalent to

a complete graph. By the minimality, C must be formed only by the family of all the

minors of H.

By the choice of k, we know Kk−1 must also be in C, otherwise C ⊆ G/Kk−1 and we are

done. Since H is a maximum of C, and Kk−1 is an element of C we have Kk−1 → H.

Thus Kk−1 must be also a subgraph of H. Let K be the subgraph of H which is

isomorphic to Kk−1.

We first claim that every vertex of K must be adjacent to a vertex of H which is

not in K. To see this, suppose there is a vertex x of K which is only adjacent to

the k − 2 vertices of V (K)\x. By the minimality of C, the graph Hx obtained from

H by deleting the vertex x must be (k − 1)-colourable. Otherwise Hx with all of

its minors form another minor closed family for which the maximum is not homo-

morphically equivalent to a complete graph. This family is properly contained in C,

which contradicts the minimality of C. Since x is adjacent to k− 2 vertices, any k− 1

colouring of Hx can be extended to a k− 1 colouring of H. This implies that H must

be homomorphically equivalent to Kk−1, which is a contradiction.

Our next claim is that the induced subgraph H ′ of H on V (H)\V (K) is connected.

Again by contradiction assume it has parts H ′
1 and H ′

2 with no edges from H ′
1 to H ′

2.

Then by a similar argument as before each of the subgraphs induced on V (H ′
1)∪V (K)

and V (H ′
2)∪V (K) must be (k−1)-colourable. But then just a permutation of colours

will produce a k− 1 colouring of H. Thus H must be homomorphically equivalent to

Kk−1.
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To complete the proof, note that because H ′ is connected, by contracting all the edges

in H ′ we will obtain a single vertex which must be adjacent to all the vertices of K.

Therefore Kk is a minor of H, but this contradicts the choice of C and H. 2

This theorem proves that the validity of Hadwiger’s conjecture for all graphs is equiv-

alent to the validity of Conjecture 2.10 for all minor-closed classes. For the sake of

completeness we give a proof of this equivalence in the following theorem.

Theorem 2.53 The following two statements are equivalent:

(a) Every graph G with χ(G) = k contains Kk as a minor.

(b) Every proper minor-closed family of graphs contains a maximum with respect to

homomorphism order.

Proof. Suppose (a) is true, and let C be a proper minor-closed family of graphs.

Then by Lemma 2.8 the chromatic number of the graphs in C is bounded. Let k be

the maximum chromatic number of the graphs in C and let G be a graph in C with

the chromatic number equal to k. Then by (a), G contains Kk as a minor, so Kk is

in the class, and therefore C contains a maximum.

For the other side assume (b) is true, and let G be a graph with χ(G) = k. Then the

class CG which is formed from G and all of its minors has a maximum. By Theorem

2.52 such a maximum can be chosen to be a complete graph Kr. But since G → Kr,

r ≥ χ(G) and therefore G contains Kk as a minor. 2

Note that the statement (b) of the Theorem 2.53 has been proved for an important

family of minor closed classes of graphs. Given a surface S, let CS be the class of

all graphs embedded on S. Then it is known that for every surface S, the class CS

is bounded by the maximal complete graph in CS. The most difficult case of this

statement is to prove it for the simplest surface, the sphere. This case is equivalent

to the four colour theorem.
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For any other surface, (that is a surface S with Euler characteristic ε < 2), it was

proved by P. J. Heawood that any graph embedded on S has chromatic number at

most H(ε) = b7+
√

49−24ε
2

c. Then in a series of work from 1891 to 1974 it was proved

by L. Heffter, H. Tietze, G. Ringel and J. W. T. Youngs that any surface of Euler

characteristic ε, except the Klein bottle, admits an embedding of a complete graph on

H(ε) vertices. For the Klein bottle the problem is settled by P. Franklin who proved

that any graph embedded on the Klein bottle is 6-colourable, (note that Klein bottle

has Euler characteristic 0, and H(0) = 7). We refer to [38] and [49] for further details

and proofs.

It will also be of interest to find an independent proof for Conjecture 2.11 for a

particular minor closed class of graphs. We believe this should not be very difficult

to achieve. A simple proof of the following Proposition, due to P. Hell, [34], is an

evidence for our claim.

Proposition 2.54 [34] If the class P of planar graphs is bounded by a planar graph

H, then H must be homomorphically equivalent to K4.

A proof of this proposition can be found in the next chapter, (see the second proof of

Theorem 3.37).

Note that in the proof of the Theorem 2.52 we only used the weaker assumption

that every minor closed family consisting of a graph and all of its minors contains a

maximum. Using this reformulation of the Theorem 2.52 it is easy to see that the

following is yet another reformulation of Hadwiger’s conjecture.

Conjecture 2.55 Let G be a graph and let H1 and H2 be two minors of G, then

{H1, H2} is bounded by a minor of G.



Chapter 3

Homomorphisms and Planarity

3.1 Introduction

In this chapter we shall consider some of the old colouring problems for planar graphs

in the context of graph homomorphisms. Sometimes we will need a specific planar

drawing of a planar graph (multi-graph); for this purpose a planar graph with an

specific planar drawing will be called a plane graph (multi-graph). Given a plane

multi-graph G, the dual of G is defined to be a multi-graph whose vertex set is the

set of faces of G, and two vertices are joined by an edge if they share an edge in G.

One classic result on colouring of planar graphs, is the celebrated theorem of Grötzsch.

In the previous chapter we stated Grötzsch’s theorem in two ways, and there are still

different ways of stating this theorem, each leading to a new subject of study in the

theory of colouring of planar graphs. One of the ways of stating Grötzsch theorem

is to say that “every planar graph of girth at least 4 admits a homomorphism to

C3”. The following conjecture is then a generalization of Grötzsch theorem. This

conjecture which is a nice example of an open problem in the theory of colouring of

planar graphs, has recently attracted the attention of many graph theorists.

Conjecture 3.1 Every planar graph of girth at least 4k admits a homomorphism to

C2k+1.

42
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This conjecture is in fact a restricted version of a conjecture of Jaeger [20], which will

be described (in terms of flows) in Section 3.3.

In support of Conjecture 3.1, it was proved by A. Galluccio, L. Goddyn and P. Hell

that every planar graph of girth at least 10k − 4 admits a homomorphism to C2k+1,

see [21]. It was also conjectured by P. Hell that the condition of “high girth” in

their theorem can be replaced by the weaker condition of “high odd grith”. Hell’s

conjecture was proved by W. Klostermeyer and C.Q. Zhang in the following form:

Theorem 3.2 [42] Every planar graph of odd girth at least 10k − 3 admits a homo-

morphism to C2k+1.

Their technique in proving this theorem was to show that the crucial cycles in C2k+1-

colouring of planar graphs with high odd girth are the facial cycles, then they in-

troduced a lemma so called “Folding lemma”. Folding lemma helps to find a homo-

morphic image of any given plane graph, without reducing the odd girth, while the

image is still a plane graph and has the additional important property that every

facial cycle is of the length of the odd girth. The following is the full strength of the

Folding lemma, but we will only use the weaker form stated below as a corollary.

Folding lemma [42] Let G be a plane graph with odd girth 2g + 1. If C =

v0v1 · · · vr−1v0 is a facial cycle of G with r 6= 2g+1, then there is an i ∈ {0, 1, · · · r−1}
such that the graph G′ obtained from G by identifying vi−1 and vi+1 (indices being

taken modulo r) is still of odd girth 2g + 1.

Corollary 3.3 Let G be a plane graph with odd girth at least 2g + 1. Then there is

a homomorphic image G′ of G, where G′ is also a plane graph, the odd girth of G′ is

equal to 2g + 1, and moreover every facial cycle of G′ is a (2g + 1)-cycle.

Proof. If every facial cycle of G is a (2g + 1)-cycle, then there is nothing to prove,

otherwise choose a facial cycle of length different from 2g + 1 and apply the Folding

lemma. Repeat this process till there is no facial cycle of length different from g. 2
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C. Q. Zhang has also proposed a strengthening of Jeager’s conjecture, cf. Section 3.3.

The following conjecture is Zhang’s strengthening of Jaeger’s conjecture, restricted to

the set of planar graphs and stated in the dual form.

Conjecture 3.4 Every planar graph G of odd girth at least 4k + 1 admits a homo-

morphism to C2k+1.

The first case in this conjecture, i.e., the case k = 1, is equivalent to the Grötzsch

theorem. For k ≥ 2 the best result in support of this conjecture is due to X. Zhu.

Using the folding lemma and the so-called discharging method (see e.g. [49]), Zhu im-

proved the condition of high odd girth in Theorem 3.2 from 10k−3 to 8k−3, (see [83]).

On the other hand examples provided by M. Albertson and E. Moore in [1] and M.

DeVos [12] show that the conditions of girth at least 4k in Conjecture 3.1 and odd

girth at least 4k + 1 in Conjecture 3.4, if true, are the best possible.

DeVos’ example of a planar graph of odd grith 7 which does not map to C5 has been

depicted in Figure 3.1. For general construction of planar graph of odd girth 4k − 1

which does not map to C2k+1, one can take a (4k − 1)-cycle with a centeral vertex

which is joined to every vertex of the (4k−1)-cycle with a disjoint path of length 2k−1.

To continue further we would like to restate Conjecture 3.4 in our framework of ho-

momorphism and bounds. Recall that P2g+1 represents the class of planar graphs of

odd girth at least 2g + 1.

Conjecture 3.4 The class P4k+1 is bounded by C2k+1.

In view of the difference between the odd girth of the proposed bound (i.e., 2k + 1)

and the minimum odd girth of the members of P4k+1 (which is 4k + 1) the following

conjecture has been posed in [50].

Conjecture 3.5 The class P2k+1 is bounded by a graph H of odd girth 2k + 1.
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Figure 3.1: DeVos’ Example

For k = 1, this conjecture claims that the class of planar graphs is bounded. This

claim is easy to see by Euler’s formula. For k = 2, the conjecture is a reformulation

of Problem 2.18, and has been answered positively in [60]. It remains open for k ≥ 3.

Our main propose in this chapter is to study Conjecture 3.5. On the one side, for

k ≥ 2, we will show that if P2k+1 admits a bound H2k+1 of odd girth 2k + 1, then

H2k+1 cannot be planar, concluding that the class P2k+1 does not contain a maximum

except when k = 1. On the other side we will strengthen this conjecture by proposing

some Cayley graphs to be the bounds we are looking for. This will turn out to be a

natural generalization of the four colour theorem. Then we will show that this new

conjecture is equivalent to an special case of a well known conjecture of P. Seymour

in the generalization of an equivalent form of the four colour theorem.

To reach our goals we need to have some introductory sections on the theories of edge-

colouring, flows and Cayley graphs. We will also include a section on Tait’s original

work on the four colour problem, as we believe his work on this problem is the origin

of some of these theories and conjectures. The section on edge colouring will also
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include a new proof of the fact that the Petersen graph is not three-edge colourable.

3.2 Edge colouring of graphs

A proper edge colouring of a graph G, or simply an edge colouring of G, is an as-

signment of colours to the edges of G in such a way that every pair of edges with

a common end vertex receive different colours. The minimum number of colours re-

quired for an edge colouring of G is called the edge chromatic number of G and is

denoted by χ′(G). One of the most important results in the theory of edge colouring

of graphs is the following theorem of Vizing.

Theorem 3.6 [79] Given a simple graph G with maximum degree ∆ we have ∆ ≤
χ′(G) ≤ ∆ + 1.

With a strong theorem like this, the only basic problem left in the theory of edge

colouring of simple graphs is to decide whether a given graph G is of type I (i.e.,

χ′(G) = ∆) or if it is of type II (i.e., χ′(G) = ∆ + 1). However this question turns

to be a difficult problem for ∆ ≥ 3, in fact as it has been proved by I. Holyer in [36],

that even deciding whether a given 3-regular graph is of type I or of type II is an

NP-complete problem.

Notice that the upper bound of ∆ + 1 in Theorem 3.6 only applies to simple graphs;

in the case of graphs with multiple edges if µ is the maximum multiplicity then the

correct upper bound is ∆ + µ. However the lower bound stays the same for both

simple graphs and multi-graphs.

The problem of edge chromatic number is closely related to the theory of matchings

and to the 1-factorization problem, specially when it is restricted to the family of

regular graphs. In fact a regular graph is of type I if and only if it admits a 1-

factorization. One natural obstacle which prevents an r-regular graph G from being

of type I is a small odd cut. The concepts of “cut” and “odd cut” are defined below.
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Definition 3.7 An edge cut of a graph, or simply a cut, is a partition of the vertices

of G into two sets X and Y . Such an edge cut is normally denoted by (X, Y ). The

set of all edges between X and Y will be denoted by [X, Y ]. The size of a cut (X,Y )

is the number of edges in [X, Y ] and is denoted by |[X, Y ]|. A graph is called k-edge

connected if it contains no cut of size smaller than k. An odd cut of G is a cut (X,Y )

where at least one of the parts, X or Y , contains an odd number of vertices. 3

Notice that an odd cut has been defined in general, and G does not have to be a

regular graph. This definition can be applied even to the multi-graphs. Also note

that even though the name “odd cut” suggests that an odd cut should contain an odd

number of edges, this is not true in general. However sometimes this is the case. The

following easy lemma establishes one of those cases. This lemma will be useful for us

later in this chapter.

Lemma 3.8 [70] Let G be an r-regular multi-graph with r being a positive odd integer.

Then a cut (X, Y ) is an odd cut if and only if it is of odd size.

Proof. Let (X,Y ) be a cut with an odd number of edges, then the subgraph GX

induced by X has odd number of even degree vertices. But the number of odd degree

vertices is always even, therefore there is an odd number of vertices in X, i.e., (X,Y )

is an odd cut.

Conversely if (X, Y ) is an odd cut then by the definition one of the parts X or Y , in

this case both of them, must have an odd number of vertices. Therefore the subgraph

GX of G induced on X, has an odd number of even degree vertices. On the other

hand the number of even degree vertices in GX is congruent to |[X,Y ]| modulo 2. So

(X,Y ) must be of odd size. 2

The following folklore lemma shows the importance of the odd cuts.

Lemma 3.9 Let G be an r-regular multi-graph. If G contains an odd cut of size

smaller than r then G is not r-edge colourable.
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Proof. Let G be an r-regular multi-graph and let (X,Y ) be an odd cut of G with

X having an odd number of vertices. If G is r-edge colourable then every colour class

(which is a perfect matching) must meet the edge set [X, Y ]. Therefore [X,Y ] must

contains at least r edges with different colours. 2

This lemma solves the problem of edge chromatic number of an r-regular graph with

an odd cut of size smaller than r. However the problem remains very difficult on

the rest of r-regular graphs, so these graphs deserve their own name. Following the

notation introduced by P. D. Seymour in [70], we will call them r-graphs.

Definition 3.10 An r-regular graph which does not contain any odd cut of size

smaller than r is called an r-graph. In a similar vein we define an r-multi-graph to be

an r-regular multi-graph which does not contain an odd cut of size smaller than r. 3

Unfortunately small odd cuts are not the only obstacles for a regular graph to be of

type I, in other words an r-graph can be either of type I or type II. A classical

example of an r-graph of type II is the Petersen graph. This graph which has been

a counter example to many conjectures was introduced by J. Petersen as an example

of a 3-regular 3-connected graph which is not 3-edge colourable.

The Petersen graph and its properties have been studied during more than a century;

there has been even a book written about it. But most known proofs for the fact that

it is not 3-edge colourable are based on case studies. The following proof is a simple

counting argument based on the symmetries of the Petersen graph:

Proposition 3.11 The Petersen graph is not 3-edge-colourable.

Proof. The Petersen graph is usually drawn as an outer 5-cycle, an inner 5-cycle

where edges join vertices that are cyclically two apart, and a matching joining cor-

responding vertices on the two cycles, drawn as depicted in Figure 3.2. Assuming a

proper 3-edge-colouring, we obtain a contradiction by showing that each of the three

colours must be used twice on the inner cycle, which has only five edges, a contradic-

tion.
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Figure 3.2: The Petersen graph

Since the outer cycle is of odd length, each of the three colours appears on it. Let

uv be an edge on the outer cycle with colour a. In a proper 3-edge-colouring of a

3-regular graph, each colour must appear at each vertex. Since a can not appear on

ux or vy, where x and y are the neighbours of u and v on the inner cycle, and xy is

not an edge, colour a appears on distinct edges of the inner cycle at x and y. 2

Constructing simple r-graphs of type II does not seem to be an easy problem for

general r. To our knowledge the best work in this direction is due to N. Biggs who

proposed the following generalization of Petersen graph (the odd graphs) to be the

examples of simple r-graphs.

Definition 3.12 Let S be any (2k + 1)-set. The odd graph Ok is a graph whose

vertices are the k-subsets of S, and the edge set of Ok has been formed by exactly

those pairs of vertices A and B for which A ∩B = ∅. 3

Notice that O1 is isomorphic to K3 and O2 is isomorphic to the Petersen graph.

It is easy to check that Ok is a (k + 1)-regular (k + 1)-edge connected graph, and

therefore it is a (k + 1)-graph. The following conjecture was posed by N. Biggs.
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Conjecture 3.13 [6] For a given positive integer k, the odd graph Ok is a (k + 1)-

graph which is not (k + 1)-edge colourable.

3.3 Flows

In this section we will do a short review of the concept of “flows” on graphs. To define

a flow we must consider oriented graphs, but as we will see the existence of a flow

only depends on the underlying simple graph. In an oriented graph G, an edge which

is oriented from x to y will be denoted by (x, y).

Definition 3.14 Let Γ be an abelian group and G be a graph whose edges have been

oriented in an arbitrary way. An assignment f : V (G)2 → Γ is a called a Γ-flow if

f(u, v) = −f(v, u), and for every vertex v of G we have:

(z)
∑

u∈N(v)

f(v, u) = 0,

where N(v) is the set of neighbours of v in the underlying simple graph. Moreover,

for a subset B of Γ, we say f is a (Γ, B)-flow if for every e ∈ E(G), f(e) ∈ B. 3

Notice that f is a function on V (G)2 rather than just the edge set of G. Therefore if

f satisfies (z) for one orientation of G, then it satisfies (z) for every orientation of

G. Thus we may speak of flow on a simple graph.

This definition can be generalized to a definition of flows of multi-graphs. Let µ be the

maximum multiplicity of a multi-graph G, where every edge is indexed by a number

i, 1 ≤ i ≤ µ. Then we define f : [µ]×V (G)2 → Γ to be a Γ-flow if f satisfies (z) and

if for every oriented edge (x, y) with index i, we have f(i, x, y) = −f(i, y, x).

If we let Γ∗ = Γ\{0}, then (Γ, Γ∗)-flow is the standard concept of nowhere zero Γ-flow.

A k-flow is a (Z, [k])-flow. If Γ = Z and B = {d, d + 1, · · · , k − d} then (Γ, B)-flow is

known as a (k, d)-flow in some literature.
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Given a graph G, let f1 be a (Γ1, B1)-flow on G and f2 a (Γ2, B2)-flow on G. Then f =

f1×f2, the product of f1 and f2, defined by f(e) = (f1(e), f2(e)) is a (Γ1×Γ2, B1×B2)-

flow on G. In particular if f1 and f2 are both nowhere zero flows then f1 × f2 is also

a nowhere zero flow. Products of a set of flows fi, i ∈ I, are defined analogously.

Given an orientation D of a simple graph G, and a subset X of V (G), let X+ denotes

the set of edges (x, y) with x ∈ X and y 6∈ X. Similarly we define X− to be the set of

edges (y, x) with y 6∈ X and x ∈ X. From (z) it is easy to see that for every subset

X of V (G) we have: ∑

(x,y)∈X+

f(x, y) = −
∑

(y,x)∈X−
f(x, y).

This, in particular implies that if there is an edge cut (x, y) of size one with e = xy

being the only edge in [X, Y ], then for any flow f on G, f(x, y) must be zero. In other

words, a graph which contains a cut of size one does not admit a nowhere zero flow.

Intuitively speaking, this is dual to the concept of colouring, where a graph with a

loop does not admit a proper vertex colouring.

Let G be a plane multi-graph and D be an orientation of G. Let F = {F1, F2, · · ·Ff}
be the set of faces of G. Every edge e = xy of G is incident with two faces, say Fi

and Fj, of G. We define e∗ = FiFj to be the dual of e, moreover if Fi is on the right

side of (x, y) then we orient FiFj from Fi to Fj. Then dual of G is now defined to be

the multi-graph G∗ = (F, E∗), where E∗ = {e∗|e ∈ E(G)}. The orientation induced

by D on the dual graph G∗ will be denoted by D∗.

This concept of dual will allow us to show that in the case of planar graphs, flows are

the dual concepts of vertex colourings. To see this consider a plane graph G with an

orientation D, and let f be a Γ-flow on G. Then we will define below a |Γ|-colouring

of the dual graph G∗. This colouring will be called the tension arising from f and

will be denoted by Tf .



CHAPTER 3. HOMOMORPHISMS AND PLANARITY 52

To define Tf we first define the assignment g : E(G∗) → Γ by g(e∗) = f(e), where

e∗ is oriented by D∗. Then we choose an arbitrary vertex v of G∗ and let Tf (v) = 0,

for any other vertex u we pick a path e∗0e
∗
1 · · · e∗l from u to v in the underlying simple

graph G∗, and let Tf (u) =
∑l

i=0 g(e∗i ). It is a well known fact that Tf is well defined,

an interested reader can find a proof in any text book on graph theory. It is easy

to see that Tf is a proper vertex colouring of G∗ if and only if f is a nowhere zero flow.

In fact W. T. Tutte proved that a plane graph G, admits a k-colouring if and only if

the dual G∗ admits a k-flow. It was also proved by Tutte that a multi graph admits a

k-flow if and only if it admits a (Zk,Z∗k)-flow. These two theorems of Tutte, together

with the four colour theorem imply the next theorem, but for the sake of completeness

we will include a proof of this special case.

Theorem 3.15 [77] Every 2-edge connected planar multi-graph admits a nowhere

zero Z4-flow.

Proof. Let G be any 2-edge connected planar multi-graph. Then the dual G∗ of G

is a planar multi-graph with no loop, and therefore by the four colour theorem it is

4-colourable. So we may use the elements of Z4 to colour the vertices of G∗. This is

in fact a four-colouring of the faces of G, using the four elements of Z4. Now choose

an arbitrary but fixed orientation for all the edges of G. For every edge e define f(e)

to be the difference between the colour of the left face and the right face of e. This

is a Z4-flow because in the sum
∑

u∈N(v) f(v, u) the colour of every face count twice,

once with a positive sign, once with a negative sign. And it is a nowhere zero flow

simply because the colouring was proper. 2

Unfortunately the duality between vertex colouring and flows does not extend to the

class of non planar graphs. In fact it was conjectured by Tutte, that every bridgeless

graph admits a 5-flow, and it was proved by P. D. Seymour that every bridgeless

graph admits a 6-flow. It seems that a better way of extending the nice properties of

flows on planar graphs to general graphs, is using the concept of (Γ, B)-flow with a

much more restricted B. The following conjecture of F. Jaeger is a good example of

this.
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Conjecture 3.16 [37] Every 4k-connected graph admits a (2k + 1, k)-flow.

Let G be a planar graph and let G∗ be the dual of G. Then it is easy to check that

G is 4k-edge connected if any only if G∗ is of girth at least 4k. Assume G admits

a (2k + 1, k)-flow f . It is not hard to see that the tension Tf is a C2k+1-colouring

of G∗. Conversely, any C2k+1-colouring of G∗ induces a (2k + 1, k)-flow on G. This

proves that Conjecture 3.16, restricted to the class of planar graphs, is equivalent to

Conjecture 3.1.

Conjecture 3.16 relates the problem of the existence of a (2k +1, k)-flow to the size of

smallest cut in G. The following strengthening of the conjecture, introduced by C. Q.

Zhang, suggests that in this relation between (2k +1, k)-flows and cuts the important

cuts are the ones with an odd size.

Conjecture 3.17 [82] Let G be a graph which does not contain any cut of odd size

smaller than 4k + 1. Then G admits a (2k + 1, k)-flow.

It can be seen in a similar vein that this conjecture, restricted to the class of planar

graphs, is equivalent to Conjecture 3.4.

3.4 Tait’s statement

While Kempe’s chain method was believed to be a correct proof for the four colour

problem, Tait, another mathematician of the time, was trying to apply different

methods on the problem. He discovered a certain algebraic structure in the set of

4-colourings of the faces of a planar graph, when the colour set is chosen to be the

integer group on base 4, Z4. He showed that the four colour theorem can be restated

as below, however the proof he offered for this statement was not correct.

Theorem 3.18 [73] The following two statements are equivalent:

1 Every planar graph is 4-colourable.
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2 Every planar 3-multi-graph is 3-edge colourable.

Statement 2 of the Theorem 3.18 is known as Tait’s statement. A proof of this the-

orem, with a generalization, will be given later (see Theorem 3.27). To recognize

the importance of Tait’s statement notice that it is the origin of the theory of edge

colouring of graphs. Also the ideas of proving the equivalence in Theorem 3.18 were

the first steps on introducing the theory of flows on graphs.

Tait’s statement has been, in addition to introducing these theories, a reference for

many generalizations of the four colour problem. Tait himself was the first one to gen-

eralize his statement. He thought the condition of planarity is not as important as the

other conditions, and therefore he claimed that “every 3-graph is 3-edge colourable”.

But J. Petersen disproved this generalization by introducing a 3-graph which is not

3-edge colourable. This counter example has been named after Petersen. In the pre-

vious section we saw a proof of the fact that Petersen graph is not 3-edge colourable.

A comprehensive study of Tait’s statement was done by W. T. Tutte who developed

the concept of the flows on graphs to a full theory. He observed that the structure

of the Petersen’s counterexample is essentially needed in any example of a 3-graph

which is not 3-edge colourable. Therefore he conjectured that:

Conjecture 3.19 [78] If a 3-graph G does not admit a 3-edge colouring then it must

contain Petersen graph as a minor.

This conjecture has been proved by N. Robertson, P. D. Seymour and R. Thomas,

but only the first step of the proof has so far been published, [67].

The next generalization of Tait’s statement we would like to talk about is the following

conjecture, which we believe was introduced by P. D. Seymour.

Conjecture 3.20 Every planar r-multi-graph is r-edge colourable.
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This conjecture is not only about simple graphs, here planar graphs are allowed to

have multiple edges but no loops. In fact due to the Euler formula there are no

r-regular planar graphs for r ≥ 6 and therefore the conjecture make sense only for

graphs with multiple edges.

This conjecture is a special case of a conjecture of P. Seymour, introduced in [71].

There are also various forms of strengthening of the conjecture. To our knowledge,

the most general form of the conjectures, that imply Conjecture 3.20, is due to L.

Goddyn, see [22].

The latest progress on Conjecture 3.20 is due to B. Guenin who has proved the fol-

lowing two cases of the conjecture by the discharging method and applying induction

on r, therefore using the case r = 3 which is equivalent to the four colour theorem.

Theorem 3.21 [28] Every planar 5-multi-graph (4-multi-graph) is 5-edge colourable

(4-edge colourable, respectively).

This theorem will be used in Section 3.6.

A supporting evidence for Conjecture 3.20 can be obtained from a general theorem

of M. De Vos and P. D. Seymour. To introduce their result we need some more defi-

nitions and more notation.

A graft is a multi-graph G, together with a subset of vertices, T , of even cardinality.

A T -cut of G is an edge cut which separates T into two sets of odd size. The size of

the smallest T -cut is denoted by τ(G). A T -join of G is a subgraph H of G with the

property that every vertex of x ∈ V (G) has an odd degree in H if and only if it is in

T . The maximum number of edge disjoint T -join subgraphs of G is denoted by ν(G).

It is easy to check that τ(G) ≥ ν(G). It was shown by M. De Vos and P. D. Seymour

that ν(G) ≥ 1
3
τ(G); they have also shown that in the special case when T is the set

of all the odd degree vertices of G this inequality can be improved.
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Theorem 3.22 [14] Let G be a graft with T = {v|v ∈ V (G), d(v) is odd}. Then

ν(G) ≥ τ(G).

Given a multi-graph G we say a subgraph H of G is an odd spanning subgraph if

every vertex of G has an odd degree in H. Therefore a perfect matching is an odd

subgraph with the minimum number of edges.

If every vertex of G is of odd degree then an important property of an odd spanning

subgraph of G is that it intersect every odd cut of G. In this case an odd spanning

subgraph is equivalent to a T -join of the graft G with T = V (G). The following then

is an special case of Theorem 3.22:

Theorem 3.23 Every (2k+1)-multi-graph contains at least k edge disjoint odd span-

ning subgraphs.

Conjecture 3.20 claims that every planar (2k+1)-multi-graph can be decomposed into

2k + 1 odd spanning subgraphs. Theorem 3.23 guarantees the existence of at least k

such edge disjoint subgraphs.

3.5 Cayley graphs

Let Γ be an additive group and S a subset of Γ closed under taking inverses. Then

the Cayley graph C(Γ, S) is defined to be a graph whose vertex set is Γ and whose

edge set is formed by those pairs of vertices x, y for which x− y ∈ S. Note that since

S is closed under taking inverses, C(Γ, S) is a simple graph.

Let k ≥ 1 and Γ = Zk
2 be the k-dimensional group over Z2. Let S be the set of vec-

tors with exactly two circularly consecutive 1s, i.e., S = {s1 = (1, 1, 0, 0, · · · 0), s2 =

(0, 1, 1, 0, 0, · · · 0), · · · sk = (1, 0, 0, · · · 0, 1)}. This set is closed under taking inverses

because −si = si. The Cayley graph C(Γ, S) has two isomorphic connected compo-

nents. The set of vertices with an even number of 1’s induces one component, and the

set of vertices with an odd number of 1’s induces the other component. We use the
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notation Hk to denote the graph which is isomorphic to either of the two components

of C(Zk
2, S).

The graphs H1, H2, and H3 are respectively isomorphic to K1, K2, and K4. In gen-

eral, Hk is a bipartite graph for all even values of k. The graph H5 is well known,

independently in two different areas. In Ramsey theory, it was introduced by R. E.

Greenwood and A. M. Gleason in [24], where the authors used this graph to partition

the edge set of K16 to three triangle-free subgraphs. Then in [40] J. G. Kalbfleisch

and R. G. Stanton proved that the only way to colour the edges of K16 using 3 colours

without producing a monochromatic triangle is to have each colour class isomorphic

to H5. Thus the graph is called the Greenwood-Gleason graph in some references

such as [8].

It is also sometimes called the Clebsch graph because it is one of the few known

triangle-free strongly regular graphs, and was introduced by Clebsch for this purpose

see [23] for more details. In the next section we will show that H5 is also a bound for

P5, and that this statement is a direct generalization of the four colour theorem. But

we should first introduce some of the properties of these Cayley graphs.

Lemma 3.24 The graph H2k+1 has the following properties.

(a) It is 2k + 1 regular.

(b) It has edge chromatic number equal to 2k + 1.

(c) It is of odd girth 2k + 1.

Proof. The statements (a) and (b) are obvious, since S has 2k + 1 elements, and

each s ∈ S defines a perfect matching on H2k+1, where every vertex x is matched to

s + x. (This is a matching since 2s = 0.) The corresponding edge colouring will be

called the canonical edge colouring of H2k+1.
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Figure 3.3: Greenwood-Gleason-Clebsch graph
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For (c), first note that H2k+1 is not a bipartite graph (for k ≥ 1). For example

the set C of vertices defined by C = {vi |vi = s1 + s2 + · · · si, i = 1, · · · 2k +1} induces

an odd cycle of length 2k + 1. To show that H2k+1 does not contain any smaller odd

cycle, consider the canonical edge colouring of H2k+1, and let C be any cycle in the

graph. Note that the sum of the colours of the edges of C is zero.

Now if C is an odd cycle then one of the colours, say si, appears an odd number of

times. In order for si to vanish in the sum, both si+1 and si−1 have to appear an

odd number of times. By repeating this argument we will conclude that all sj’s j =

1, 2, · · · 2k +1 must appear on C an odd number of times. In particular, |C| ≥ 2k +1.

2

In the proof of the last lemma we also proved the following:

Corollary 3.25 In the canonical (2k+1)-edge colouring of H2k+1, every (2k+1)-cycle

takes 2k + 1 different colours.

3.6 A generalization of the four colour conjecture

The following, which is an strengthening of the Conjecture 3.5, is in fact a direct

generalization of the four colour theorem.

Conjecture 3.26 The class P2k+1, class of planar graphs with odd girth at least

2k + 1, is bounded by the Cayley graph H2k+1.

Note that for k = 1 this statement is exactly the four colour theorem, as H3 is iso-

morphic to K4. For k = 2 it claims that the class of triangle-free planar graphs is

bounded by the Greenwood-Gleason-Clebsch graph. This latter case will be proven

here using the result of Guenin (Theorem 3.21).

The main result of this section is to prove that Conjecture 3.26 is in fact equivalent

to the corresponding case of Conjecture 3.20. More precisely we prove the following:
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Theorem 3.27 For a given positive integer k the following two statements are equiv-

alent:

1. The class P2k+1 is bounded by H2k+1.

2. Ever planar (2k + 1)-multi-graph is (2k + 1)-edge colourable.

Proof. First of all observe that to prove that P2k+1 is bounded by H2k+1, it will

be enough to show that every plane graph with odd girth 2k + 1 in which all facial

cycles are of length 2k + 1 admits a homomorphism to H2k+1. This is true by the

Folding lemma. In fact, by Corollary 3.3 every planar graph of odd girth 2k + 1 or

more admits a homomorphic image which is also planar, has odd girth 2k + 1, and

moreover all the facial cycles of this image are 2k + 1 cycles. To make the notation

easier we will denote this subclass by P ′2k+1, so P ′2k+1 consists of planar graphs with

odd girth exactly 2k+1, for which there is at least one planar representation such that

every facial cycle is a 2k + 1 cycle. When we talk about a member of P ′2k+1 we con-

sider it together with a plane representation in which every facial cycle is a 2k+1 cycle.

The second observation is that being a member of P ′2k+1 is dual to being a planar

(2k+1)-multi-graph. In fact a planar graph G is in P ′2k+1 if and only if G∗ the dual of

G is a planar (2k+1)-multi-graph. To see this, first note that for a planar graph being

(2k + 1)-regular is equivalent to have every facial cycle of its dual of length 2k + 1.

Secondly by Lemma 3.8 every odd cut of a (2k + 1)-regular graph has odd number of

edges, therefore the condition of no small odd cut is equivalent to the condition of no

small odd cycle in the dual.

The third important observation is about the dual of the edge colouring of a planar

(2k + 1)-multi-graphs. It is not hard to see that a planar (2k + 1)-multi-graph G∗,

admits a proper (2k + 1)-edge colouring if and only if its dual, G, admits an edge

colouring (possibly an improper one) in which every facial cycle takes all the 2k + 1

different colours.
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With these observations one direction of the theorem is easy to prove. Suppose P2k+1

is bounded by H2k+1, and let G∗ be a planar (2k + 1)-multi-graph. Then the dual G∗

of G, is in P ′2k+1 and therefore it admits a homomorphism to H2k+1. This homomor-

phism will induce a (2k + 1)-edge colouring on G using the canonical (2k + 1)-edge

colouring of H2k+1. This colouring has the property that every facial cycle of G takes

all the different colours by Corollary 3.25, and therefore it induces a proper (2k + 1)-

edge colouring on G∗.

For the other direction suppose every planar (2k + 1)-multi-graph is (2k + 1)-edge

colourable. By the first observation it will be enough to prove that every member

of P ′2k+1 admits a homomorphism to H2k+1. Let G be a graph in P ′2k+1. Then the

dual G∗ of G is a planar (2k + 1)-multi-graph. Therefore, by assumption, G∗ admits

a (2k +1)-edge-colouring. Let E1, E2, · · ·E2k+1 be the colour classes. Then for each i

the subgraph induced by Ei∪Ei+1 (indices are being taken modulo 2k +1) is a union

of cycles, and therefore admits a (Z2, {1})-flow. The product of all these flows will be a

(Z2k+1
2 , S)-flow on G∗ where S = {(1, 1, 0, 0, · · · 0), (0, 1, 1, 0, 0, · · · 0), · · · (1, 0, 0, · · · 0, 1)}.

The tension arising from this flow on the dual G of G∗ is in fact a homomorphism of

G to H2k+1. 2

The following theorem is now a consequence of Theorem 3.27 and Theorem 3.21.

Theorem 3.28 The class of triangle-free planar graphs, P5, is bounded by H5.

The last part of the proof of Theorem 3.27 can be read alternately as a proof of the

following interesting connection between edge colourings of (2k + 1)-regular graphs,

and the existence of a special kind of flows. For similar connections between colourings

and flows we refer to [13].

Theorem 3.29 A 2k + 1 regular graph G is (2k + 1)-edge colourable if and only if

it admits a (Z2k+1
2 , S)-flow, where S is the set of vectors with exactly two consecutive

ones.
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Note that planarity is not required in Theorem 3.29.

Let F2g+1 be the Cayley graph C(Z2g+1
4 , S), where S is the set of vectors with 2g − 1

circularly consecutive 0’s. In other words, S is the set of vectors with exactly two

(circularly consecutive) non zero coordinates. Applying the methods of the proof of

Lemma 3.24 we can see that F2g+1 is of odd girth 2g + 1:

Lemma 3.30 Let F2g+1 be the Cayley graph defined above, then odd−girth(F2g+1) ≥
2g + 1.

Proof. Let u be an edge of F2g+1 corresponding to an element of S with the i-th and

(i+1)-st coordinate (indices are modulo 2g+1) nonzero. Then assign to u the colour ci.

Now let C be an odd cycle of F2g+1. Then there must be a colour ci which appears on

an odd number of edges of C. Since the sum of vectors corresponding to the edges of

C is zero, colours ci+1 and ci−1 must also appear an odd number of times. Continuing

this process we find that every colour must appear an odd number of times, therefore

there are at least 2g + 1 different colours and C is of size at least 2g + 1. 2

In support of Conjecture 3.26 and Conjecture 3.5 we will prove that P4g+1 is bounded

by F2g+1.

Proposition 3.31 The class P4g+1 is bounded by F2g+1.

Proof. The proof of this proposition is similar to that of Theorem 3.27, and we will

use the same terminology as in the proof of that theorem. So P ′4g+1 denotes the class

of planar graphs of odd girth 4g +1, each with a planar representation in which every

facial cycle is a (4g + 1)-cycle. Again using Folding lemma it can be seen that, it

suffices to prove that P ′4g+1 is bounded by F2g+1.

To prove this we will use Theorem 3.23. Let G be a graph in P ′4g+1. Then G∗, dual

of G, is a (4g + 1)-graph and therefore by Theorem 3.23 it contains at least 2g edge

disjoint odd spanning subgraphs, T1, T2, · · ·T2g. The subgraph induced on ∪2g
i=1E(Ti)
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is an eulerian graph, therefore the subgraph induced by E\ ∪2g
i=1 E(Ti) is also an odd

spanning subgraph which we denote it by T2g+1. Hence {Ti}i=2g+1
i=1 is a decomposition

of G into 2g + 1 odd spanning subgraphs.

Let Ui be the subgraph induced on E(Ti) ∪ E(Ti+1), indices being taken modulo

2g + 1. We claim that Ui does not contain an edge cut of size one. By contradic-

tion, suppose (X, Y ) is an edge cut of Ui with |[X,Y ]| = 1. But this is impossible

because otherwise the subgraph of Ui induced on X has only one vertex of odd degree.

Now applying Theorem 3.15 we find that every Ui admits a (Z4,Z∗)-flow, φi. Let φ

be the product of all the flows φi. This is a (Z2g+1
4 , S)-flow. The tension Tφ will be a

homomorphism of G to F2k+1. 2

3.7 The absence of maximum

In this section we will study the properties of a possible bound of odd girth 2g +1 for

the class P2g+1. In particular we will prove that such a bound cannot be planar. We

will need the following classical result on transitive planar graphs.

Theorem 3.32 [27] Let P be a planar graph with a vertex of degree 3 or more.

Moreover assume P is vertex transitive, edge transitive and also face transitive. Then

P must be isomorphic to one of the platonic graphs, i.e., the cube, or the dodecahedron,

or the icosahedron, or the octahedron, or the tetrahedron.

Next we will introduce the following interesting family of planar graphs.

Definition 3.33 Given positive integer k, let C6k−3 be a (6k−3)-cycle with vertex set

{v1, v2, · · · , v6k−3} and vi being adjacent to vi−1 and vi+1, (indices being taken modulo

6k − 3). We define D2k+1 to be the graph obtained from C6k−3 by adding two new

vertices a and b, where a is adjacent to three vertices, v1, v2k and v4k−1 and b is adjacent

to v2, v2k+1 and v4k. In the case of k = 1, since {v1, v2k, v4k−1} = {v2, v2k+1, v4k}, we

identify a and b to a single vertex. So D3 is isomorphic to K4. The graph D5 has

been depicted in 3.4. 3
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Figure 3.4: D5

The following lemma, which is easy to see, shows an interesting property of the graph

D2k+1.

Lemma 3.34 Given a positive integer k, any two vertices of the graph D2k+1 are

joined by a path of odd length ≤ 2k − 1.

Using this lemma we can prove the following important property of D2k+1.

Lemma 3.35 Given any positive integer k and a homomorphic image D of D2k+1,

if D is of odd girth 2k + 1 then it is isomorphic to D2k+1.

Proof. Let D be a homomorphic image of D2k+1 with odd−girth(D) = 2k + 1. Let

f be a homomorphism of D2k+1 to D, then f is surjective. To complete the proof we

shall show that it is also injective. But if f is not injective then it has identified at

least two vertices of D2k+1 and thereby f has created an odd cycle of length at most

2k− 1, which is impossible. So f is indeed an isomorphism between D and D2k+1. 2

The following corollary is now easy to see.

Corollary 3.36 For any positive integer k, the graph D2k+1 is a core.
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Lemma 3.35 shows that a bound H for P2k+1, if it is of odd grith 2k + 1, cannot be

very small. In fact any such bound has to contain the graph D2k+1 as a subgraph.

It is also not difficult to prove that any such bound for P2k+1, if it exists, can not

be a planar graph. This fact will be proved below by two different methods. The

first one is an elementary proof based on the Euler formula, the second proof which

is somewhat more general argument will be based on Theorem 3.32.

Theorem 3.37 Given an integer k ≥ 2, assume P2k+1 is bounded by a graph B2k+1

of odd girth 2k + 1. Then B2k+1 cannot be a planar graph.

Proof. By contradiction, suppose P2k+1 admits a planar bound with odd girth 2k+1

and assume B2k+1 is such a bound. Moreover assume B2k+1 has the minimum number

of vertices among all the planar bounds for P2k+1 with odd girth 2k + 1. This implies

that B2k+1 is a core, otherwise the core of B2k+1 is an smaller bound with all the same

properties. It also follows from the Folding lemma that every facial cycle of B2k+1

must be a (2k + 1)-cycle. We first consider the case k ≥ 3. In this case, by the Euler

formula, B2k+1 must contain a vertex of degree at most 2.

To get to a contradiction we will show that B2k+1 must have minimum degree at

least 3. Let B be the graph obtained from B2k+1 by the following method: For every

vertex x add a copy of D2k+1 and identify x with the vertex a of D2k+1. The graph

B obtained this way is obviously planar and has odd girth 2k + 1, therefore B must

map to B2k+1. In this mapping, by Lemma 3.35 the image of every D2k+1 must be

isomorphic to itself. This implies that every vertex x of B2k+1 must have at least 3

neighbours, so B2k+1 is of minimum degree at least 3, which is a contradiction.

For k = 2, the Euler formula only guarantees the existence of vertices of degree 3

or less. In this case the proof follows the same lines. In fact by replacing D5 with

a more sophisticated structure, we prove that B5 must have minimum degree at least 4.

Let D′ be the graph obtained by joining two 5-cycles with an edge. This graph con-

tains a set of four vertices {x, y, z, t}, each of which is at distance three from the other
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three. Let D be a graph obtained from D′ by adding a new vertex a which is adjacent

to four vertices x, y, z and t of D′. In any triangle-free homomorphic image of D, the

four neighbours of a must be distinct.

Now for every vertex x of B we add a distinct copy Dx of D and identify x with the

vertex a. The graph B′ obtained this way is a triangle-free planar graph, so maps to

B5 surjectively (because of the minimality of B5). Therefore B5 has minimum degree

at least 4. This is a contradiction. 2

The second proof which has an algebraic flavor, is somewhat more general and reveals

the difference between the nature of the problem for k = 1 and k ≥ 2. This proof has

been adopted from the proof of P. Hell for Proposition 2.54, see [34].

Proof. Again we assume B2k+1 is planar graph of odd girth 2k + 1 which bounds

P2k+1, moreover we assume B2k+1 has minimum number of vertices among all these

bounds. Therefore B2k+1 must be a core, and that every facial cycle of B2k+1 should

also be a (2k + 1)-cycle, (we are using Folding lemma).

We claim that B2k+1 must be a vertex transitive graph. To see this let x and y be

two distinct vertices of B2k+1. Form a new graph B from two copies of B2k+1, where

the vertex x from one of the copies has been identified with the vertex y from the

other copy. Because of the minimality of B2k+1, this new graph B is also planar with

odd girth 2k + 1, so it must admit a homomorphism to B2k+1. This homomorphism

is an isomorphism when it is restricted on each copy of B2k+1 in B. This gives us an

automorphism which transforms x and y to each other.

A similar argument on the edge set will prove that B2k+1 must be also edge transitive.

In the same vein it must be face transitive too, therefore by Theorem 3.32, the graph

B2k+1 must be one the five platonic graphs. On the other hand B2k+1 must contain

D2k+1 as a subgraph, and the only possible case is k = 1 and B2k+1
∼= K4. 2

This second proof can also be read independently as a proof for Proposition 2.54,

which is a special case of Conjecture 2.11.
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3.8 Remarks and open problems

3.8.1 On the size of bounds

By Theorem 3.28 we know that every triangle-free planar graph can be mapped to

a triangle-free graph on at most 16 vertices. We believe it is not possible to do any

better than 16. In other words we believe the answer for the following question is

negative.

Problem 3.38 Does P5 admit a triangle-free bound on at most 15 vertices?

Let f(5) be the smallest integer for which there is a triangle-free bound for P5 on

f(5) vertices. By Theorem 3.28 we know that f(5) ≤ 16. For the lower bounds, by

Lemma 3.35, every triangle-free homomorphic image of D5 has 11 vertices, therefore

f(5) ≥ 11. Below we will extend D5 to a graph which proves f(5) ≥ 14.

Let A′ be the graph of Figure 3.5. This graph contains five vertices (named a, b, c, d

and e in the figure), such that between every two there is a path of length 3. Let A

be the graph obtained from A′, by adding a new vertex v which is joined to all the

five vertices a, b, c, d, and e. This new graph A is also a triangle-free planar graph.

We now construct a new graph D from D5 as below:

Example 3.39 For every vertex x of D5, add a distinct copy Ax of A and identify

v with x. Let Nx be the five neighbours of x in Ax. Obviously D is a triangle-free

planar graph. In the following theorem we prove that D can not be mapped to any

triangle-free graph with less than 14 vertices, therefore proving that f(5) ≥ 14. 3

Theorem 3.40 Any triangle-free homomorphic image of D consist of at least 14

vertices.

Proof. Let B be a triangle-free homomorphic image of D, and let c be a B-colouring

of D. Since D5 is a subgraph of D, by Lemma 3.35 the graph B also contains D5 as
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Figure 3.5: The graph A′
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a subgraph. To complete the proof we show that B contains three more vertices.

Let x be a vertex of the subgraph D5 of D. Then c does not map any two distinct

vertices of Nx to the same vertex of B (otherwise the image will contain a triangle).

It is also not hard to check that c can map at most four of the five vertices in Nx to

c(D5). So for every vertex x in the subgraph D5 of D, there is a vertex g(x) of D

which does not map to c(D5) under c.

On the other hand if x and y are adjacent in D5, then c(g(x)) must be distinct from

c(g(y)), otherwise B must contain a triangle. Therefore the assignment x → c(g(x))

is a proper colouring of D5. Since D5 is 3-chromatic, B must contain at least 3 more

vertices, so B must have at least 14 vertices. 2

Problem 3.38 can be naturally generalized to all the odd numbers. In the general case,

we would like to find the smallest integer f(2k +1), for which there is a bound of odd

girth 2k + 1 with f(2k + 1) vertices for the class P2k+1. Conjecture 3.5 is equivalent

to say that f(2k + 1) exists, and Conjecture 3.26 implies that f(2k + 1) ≤ 22k. We

also conjecture that this is the best possible:

Conjecture 3.41 For every odd integer 2k + 1, we have f(2k + 1) = 22k.

3.8.2 Powers of planar graphs

Let G be a graph with the adjacency matrix A(G). We define the k-th power Gk of G,

to be the graph whose adjacency matrix is the matrix obtained from the k-th power

of A(G), by replacing every nonzero element with 1. By this definition, for an odd

integer k, the graph Gk is a graph on the same vertex set as G where two vertices x

and y are adjacent if there is an odd path of length at most k in G, joining x and y.

We would like to consider the problem of colouring Gk. But notice that when k is

an even number then Gk contains a loop unless G does not have any edge. Also for

an odd k, the graph Gk is a loopless graph only if odd−girth(G) > k. So P2k+1 is a
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natural place to consider the problem of colouring powers of a graph.

Conjecture 3.26 if true would imply that for every planar graph G of odd girth at

least 2k + 1 we have χ(G2k+1) ≤ 22k. This observation leads to several interesting

problems. The first problem is about the existence of a maximum for the set A2k+1 =

{χ(G2k+1)|G ∈ P2k+1}. A positive answer can be viewed as a support for both

Conjecture 3.5 and Conjecture 3.26.

Problem 3.42 Does the set A2k+1 = {χ(G2k+1)|G ∈ P2k+1} have a maximum?

The graph D2k+1, introduced in Example 3.33, implies that the maximum of A2k+1,

if exists, is at least 6k − 1. But we believe the real value of the maximum should be

closer to 22k. This upper bound is being nominated from Conjecture 3.26.

For k = 2, the graph D of Example 3.39 provides an example of a graph with

χ(D3) ≥ 14, but we do not know if it is possible to construct a triangle-free pla-

nar graph G with χ(G3) = 15 or 16, however note that in this case by Theorem 3.26

χ(G3) = 16 is the best possible if possible at all.

Let g(2k + 1) be the maximum of A2k+1, then g(2k + 1) ≤ f(2k + 1), in other words

the existence of f(2k + 1) implies the existence of g(2k + 1). The following problem

is about the inverse of this observation.

Problem 3.43 Given a positive integer k, assume the set A2k+1 = {χ(G2k+1)} has a

maximum. Does this imply the existence of a bound of odd grith 2k + 1 for the class

P2k+1?

3.8.3 Edge colouring and odd graphs

Let H2k+1 be a component of C(Z2k+1
2 , S) induced on the set of vectors with even

number of 1’s. Then x0 = (0, 0, · · · 0) is a vertex of H2k+1. Any other vertex can be

seen as y = x0 + si1 + si2 + · · · sij , where si1 , si2 , · · · sij , are j distinct vectors of S. In

other words, every vertex of H2k+1 corresponds to an r-subset of S, with r ≤ k. Note
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that since
∑2k+1

i=1 si = 0, every subset produces the same vertex as its complement.

Now it is easy to check that in general the diameter of H2k+1 is k. To see this we take

any vertex x corresponding to a k-subset Sx of S, the distance from x to x0 is k. In

fact, a vertex x is at distance k to x0 if and only if it corresponds to a subset of size

k. On the other hand, two vertices x and y at distance k to x0, are adjacent if and

only if their corresponding k-subsets are disjoint. This proves the following lemma:

Lemma 3.44 Given the Cayley graph H2k+1, the set of vertices at distance k of x0

induces a subgraph which is isomorphic to the odd graph Ok.

The natural appearance of the odd graph Ok, as an induced subgraph of H2k+1 to-

gether with Theorem 3.29 and Conjecture 3.13 proposes the following generalization

of Conjecture 3.19.

Problem 3.45 Let G be a simple (2k + 1)-graph with no minor of O2k. Is it always

true that G is (2k + 1)-edge colourable?

A negative answer to this question perhaps will introduce another obstacle for the

existence of a 1-factorization for regular graphs (like the obstacle of having small odd

cut). A positive answer would be surprising but at same time very difficult to prove

because just for k = 1 this is stronger than the four colour theorem. And for k ≥ 2

we do not even know the edge chromatic number of the odd graph O2k itself.



Chapter 4

The chromatic covering number of

graphs

4.1 Fractional chromatic number

We have seen that there is a no-homomorphism lemma for each of the following

three graph parameters: the chromatic number, the clique number and the odd girth.

Aside from these three, there are several other graph parameters for which a no-

homomorphism lemma holds. Fractional chromatic number is one such a parameter.

There are different ways to define the fractional chromatic number. One basic defi-

nition is the Definition 2.46 of Chapter 3. According to this definition χf (G) is the

lim infk
χk(G)

k
where χk(G) is the minimum number of the colours required for a k-set

colouring of G. A k-set colouring is an assignment of the k colours to each vertex of

G in such a way that no two adjacent vertices have a colour in common.

Let G be a graph and let c be an n-set colouring of G. For any two non adjacent

vertices x and y of G, with c(x) ∩ c(y) = ∅, we add a new edge which connects x to

y. The graph obtained in this way has the property that every two vertices whose

corresponding n-sets are disjoint, are adjacent. This leads to the following definition

of a well known family of graphs.

72
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Definition 4.1 Given two positive integers n and k with n ≥ 2k, we define the

Kneser graph K(n, k) to be the graph whose vertex set is the set of k-subsets of the

n-set, [n], and whose edge set consists of all the pairs of disjoint k-subsets. 3

Notice that the odd graph Ok, defined in Chapter 3, is the Kneser graphs K(2k+1, k).

In particular the Petersen graph is a Kneser graph, namely K(5, 2).

The following lemma is now easy to see.

Lemma 4.2 If a graph G admits a homomorphism to the Kneser graph K(n, k), then

χf (G) ≤ n
k
.

Proof. Note that a omomorphism of G to K(n, k) will induce a k-set colouring using

at most n colours. Therefore χk(G) ≤ n and χf (G) = lim infk
χk(G)

k
≤ n

k
. 2

Definition 2.46 is not the only standard way of defining the fractional chromatic

number of graphs. The following equivalent definition helps us to establish some

basic properties of the fractional chromatic number.

Definition 4.3 Let G be a graph and I the set of all the independent subsets of

V (G). A fractional weight of G is a function f from I to R+ ∪ {0} for which the

inequality ∑
x∈I

f(I) ≥ 1 (4.1)

holds for every vertex x of G. Here the sum is taken over all the independent subsets

I which contain x. The fractional chromatic number is then defined to be the infimum

of
∑

I∈I f(I), where the infimum is taken over all the fractional weights of G. 3

It is not hard to see that the infimum of the Definition 4.3 is equal to that of the Defi-

nition 2.46. We do not give a proof here, instead we refer the interested reader to [68].

The inequalities of (4.1) in Definition 4.3 form a feasible linear program with integer

coefficients. This linear programming is feasible because there is a trivial solution
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defined by f(I) = 1 for every independent set I ∈ I. Therefore there exist an optimal

solution Xf (G). Moreover such an optimal solution must be a rational number. This

proves the following lemma.

Lemma 4.4 For any given graph G we have χf (G) = mink{χk(G)
k
} = minf

∑
I∈I f(I),

where the minimum in the sum is being taken over all the fractional weight functions.

Using this lemma, the Lemma 4.2 can be improved as below:

Lemma 4.5 For a given graph G the fractional chromatic number of G, χf (G), is

equal to the smallest ratio n
k

for which there exists a homomorphism of G to the Kneser

graph K(n, k).

Proof. By Lemma 4.4 the fractional chromatic number of G is equal to χk(G)
k

for

some k. The k-set colouring of G using χk(G) colours provides a homomorphism of

G to K(χk(G), k). 2

Notice that in the above lemma, n and k need not be relatively prime. For example

the Kneser graph K(2n, 2k) has the same fractional chromatic number as the Kneser

graph K(n, k), but if n > 2k then there is no homomorphism of K(2n, 2k) to K(n, k).

This can be seen from their chromatic numbers, see Theorem 4.6.

By Lemma 4.5, the role Kneser graphs play for the fractional chromatic number is

similar to the role that the complete graphs play for the ordinary chromatic number.

For this reason, and because Kneser graphs will be used later in this chapter, we

would like to say more about them.

The name Kneser is associated with these graphs because of a conjecture of M. Kneser

on their chromatic number. In order to colour a Kneser graph, notice that K(n, k)

has no edge for n < 2k, and therefore is 1-colourable. For n = 2k, K(n, k) is a perfect

matching and thus 2-colourable.
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For n > 2k a natural colouring can be constructed by induction on n. Let x be an

element of the n-set used to construct the Kneser graph K(n, k). Then the subset Kx

of all the vertices containing x, forms an independent set. Colour the vertices in Kx

with the same colour. The remaining vertices (i.e., those which do not contain x),

form a Kneser graph of K(n−1, k). Do the same procedure for the new Kneser graph

(using a new colour), and continue this process of colouring till the remaining graph

is the Kneser graph K(2k, k). Now, use two new colours to colour this last graph.

What we obtain, is a (n− 2k + 2)-colouring of K(n, k).

In [43] Kneser conjectured that this is the optimal colouring. This conjecture was

proved by L. Lovász in [46].

Theorem 4.6 [46] For given positive integers, n and k, with n ≥ 2k we have χ(K(n, k)) =

n− 2k + 2.

Proof of this theorem is one of the deep results in graph theory. Lovász used al-

gebraic topology and in particular Borsuk-Ulam theorem in his proof. Since then,

various authors have tried to improve this result by simplifying the proof, generaliz-

ing the theorem, and etc. Among all of these works a remarkable one is due to A.

Schrijver [69]. His nice argument for the theorem also characterizes the set of minimal

subgraphs of K(n, k) which has the chromatic number as the Kneser graphs, i.e., the

set of (n− 2k + 2)-critical subgraphs of K(n, k).

These minimal subgraphs which we call them Schrijver graphs are introduced below:

Definition 4.7 Let a, b be two integers such that b ≥ 2a. We define S(a, b) to be

the graph whose vertices are the a-independent sets of a b-cycle, where two of these

independent sets are joined by an edge if they are disjoint. 3

Obviously the Schrijver graph S(a, b) is a subgraph of the Kneser graph K(a, b).

Schrijver proved that they are the (n− 2k + 2)-critical subgraphs of K(n, k). We will

only need to know their chromatic number. This is stated in the next theorem.
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Theorem 4.8 [69] Let a, b be positive integers such that b ≥ 2a. Then χ(S(a, b)) =

b− 2a + 2.

To complete our discussion on the fractional chromatic number, notice that a com-

plete graph Kn is also the Kneser graph K(n, 1). Therefore, by Lemma 4.2, the

fractional chromatic number is bounded above by the ordinary chromatic number.

But the chromatic number does not provide any lower bound for the fractional chro-

matic number. This can be seen by considering the following family of the Kneser

graphs. Let n > 2k and let K = {K(an, ak)|a ∈ N} be a family of Kneser graphs.

The fractional chromatic number of the members of K is bounded above by n
k

while

the chromatic number tends to infinity when a tends to infinity, (by Theorem 4.6).

Recall that the fractional chromatic number is the minimum of
∑

f(I), where f runs

over the set of all functions from I → R+ ∪ {0}, satisfying the inequalities of 4.1.

The chromatic number can be defined in a similar vein, it is the minimum of
∑

f(I),

where f runs over the set of all functions from I → {0, 1}, satisfying the same in-

equalities. Hence there is more freedom for the choice of values of f in the definition

of the fractional chromatic number than that of the ordinary chromatic number. This

is responsible for the fact that ordinary chromatic number can be arbitrarily larger

than the fractional chromatic number. In the next section we will define a function

with a similar flavour as the fractional chromatic number but more dependent on the

structure of the graph.

We finish our discussion of the fractional chromatic number with the following no-

homomorphism lemma. This lemma can be compared to the other no-homomorphism

lemmas, Lemma 2.1 and Lemma 2.2.

Lemma 4.9 Let G and H be two graphs for which there is a homomorphism of G to

H. Then we have χf (G) ≤ χf (H).

Proof. Suppose χf (H) = n
k
, then by Lemma 4.5 for some positive integer a there

exists a homomorphism of H to the Kneser graph K(an, ak). But since G → H, the
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graph G also admits a homomorphism to K(an, ak). Therefore by Lemma 4.2 we

have χf (G) ≤ n
k
. 2

Our aim in this chapter is to study another graph parameter, namely the chromatic

covering number of graphs, which has a similar flavor as the fractional chromatic

number. This parameter has arisen naturally in the study of random lifts of graphs,

see [3]. Here we study this parameter for its own interesting properties, specially for

its homomorphism properties.

In the next section we will introduce the chromatic covering number and give lower

bounds and upper bounds for this parameter in terms of the chromatic number. In

Section 4.3 we construct a family of Kneser like graphs which play the role of complete

graphs for the chromatic covering number. Using these constructions we show that

the upper bounds for the chromatic covering number, obtained from the chromatic

number, are tight. In the last section we introduce some more properties of the chro-

matic covering number, together with some related problems.

4.2 Chromatic covering number

We start this section by the following definition of chromatic covering and the chro-

matic covering number.

Definition 4.10 Let G be a graph and G1, . . . , Gk induced subgraphs of G. If for

every vertex u of G we have
∑

u∈V (Gi)
1

χ(Gi)
≥ 1, then {G1, . . . Gk} is called a chromatic

covering of G. The chromatic covering number Fχ(G) of G is the smallest value k

such that G admits a chromatic covering with at most k induced subgraphs. 3

For example the chromatic covering number of the complete graph Kn is equal to n.

This can easily be seen from the following two lemmas.

Lemma 4.11 [3] The chromatic covering number of a graph G is less than or equal

to the chromatic number of G.
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Figure 4.1: The Grötzsch graph

Proof. Let c be a χ(G)-colouring of G, and let Gi be the subgraph induced on the

vertices of colour i, (so Gi has no edge and therefor χ(Gi) = 1). Then {G1, G2, · · ·Gx(G)}
is a chromatic covering of G. 2

Lemma 4.12 [3] The chromatic covering number of a graph G is bigger than or equal

to the fractional chromatic number.

Proof. Let {G1, G2, . . . Gk} be a chromatic covering of G where k = Fχ(G). For

i = 1, 2, . . . k, let Ii,1, . . . , Ii,χ(G) be the colour classes in a proper χ(G)-colouring of

Gi. Now we define a weight function on the set of the independent subsets of the

graph G as below:

µ(I) =

{
1

χ(Gi)
, if I = Ii,j for some i and j

0 otherwise.

The weight function µ satisfies the inequalities (4.1) of the Definition 4.3 because∑
u∈I µ(I) =

∑
u∈V (Gi)

1
χ(Gi)

≥ 1. Therefore µ is a fractional weight of G with a total

weight of k = Fχ(G). Hence χf (G) ≤ Fχ(G). 2

The next example shows how to find the chromatic covering number of the Grötzsch

graph.
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Example 4.13 Grötzsch’s graph G above provides a good illustration of the dy-

namics of chromatic coverings. It is well known that this graph is 4-chromatic, yet it

contains relatively large bipartite subgraphs. In particular the graph G1 obtained from

G by removing the vertices 0, 0′, u is bipartite, as is the subgraph G2 obtained from G

by removing 1, 2, 4. Noting that the subgraph G3 of G induced by {0, 0′, u, 1, 2, 4} is

again bipartite, we conclude that {G1, G2, G3} is a collection of bipartite induced sub-

graphs of G such that every vertex of G is in two of these subgraphs. Thus Fχ(G) ≤ 3.

On the other hand it is known (see [45]) that the fractional chromatic number of

Grötzsch’s graph is 29
10

. Now by Lemma 4.12 we find that Fχ(G) = 3. 3

Even though chromatic covering number is similar to the fractional chromatic number,

they behave differently in some other aspects. As we saw in the previous section, the

chromatic number is not bounded above by any function of the fractional chromatic

number. In contrary, it has been proven in [3] that for any graph G we have χ(G) ≤
2 (Fχ(G))2. It was asked by J. Matoušek, [48], whether this bound can be improved.

The next theorem answers this question, then in the next chapter we show that the

bound of this theorem is the best possible.

Theorem 4.14 For every graph G, χ(G) ≤
⌊(

Fχ(G)+1

2

)2
⌋

.

Proof. Let {G1, . . . Gk} be a chromatic covering of G, where k = Fχ(G). More-

over, by permuting the indices, if required, we may assume that χ(G1) ≤ χ(G2) ≤
. . . ≤ χ(Gk). Since

⋃k
i=1 V (Gi) = V (G), there exists a smallest index ` such that⋃`

i=1 V (Gi) = V (G). By the choice of ` there must exist a vertex u ∈ V (G`) \
(V (G1) ∪ . . . ∪ V (G`−1)). By the covering condition for the vertex u we have

1 ≤
∑

u∈V (Gi)

1

χ(Gi)
, (4.2)

but since u 6∈ Gi for i < l we see that

∑

u∈V (Gi)

1

χ(Gi)
≤

∑

i≥`

1

χ(Gi)
. (4.3)
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Finally, because χ(G`) ≤ χ(Gi) for i ≥ `,

∑

i≥`

1

χ(Gi)
≤ k − ` + 1

χ(G`)
. (4.4)

These three inequalities combined together imply that χ(G`) ≤ k − ` + 1. On the

other hand, since V (G) =
⋃`

i=1 V (Gi) and that Gi’s are induced we have

χ(G) ≤
∑

i≤`

χ(Gi) ≤
∑

i≤`

χ(G`) ≤ `(k − ` + 1) ≤
⌊(

k + 1

2

)2
⌋

. (4.5)

2

Notice that in order to have χ(G) =

⌊(
Fχ(G)+1

2

)2
⌋

each of the inequalities in (4.2) . . .

(4.5) must be an equality. In this case from (4.4) and the second inequality of (4.5)

we find that all Gi’s must have the same chromatic number. Therefore the equality

in (4.2) implies that every vertex must appear in the same number of Gi’s (in χ(Gi)

of them). Finally considering the relation between ` and k from the last inequality of

4.5 we will have two separate cases based on the parity of k.

For k odd, say k = 2p− 1, we have
⌊(

k+1
2

)2
⌋

= p2, and equality holds in the Theorem

4.14 only if {G1, . . . , G2p−1} are p-chromatic subgraphs such that every vertex u of G

is in p of these subgraphs.

For k = 2p we have
⌊(

k+1
2

)2
⌋

= p2 +p, and equality holds in the Theorem 4.14 only if

either {G1, . . . , G2p} are p-chromatic subgraphs such that every vertex u of G is in p

of these subgraphs, or {G1, . . . , G2p} are (p + 1)-chromatic subgraphs such that every

vertex u of G is in p + 1 of these subgraphs.

These considerations will help us to characterize likely candidates to reach the upper

bound in the next section. But before closing this section we should prove the fol-

lowing no-homomorphism lemma which for us is the most interesting property of the

chromatic covering number.
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Lemma 4.15 Let G and H be two graphs. If G → H then Fχ(G) ≤ Fχ(H).

Proof. The inequality Fχ(G) ≤ Fχ(H) when G is a subgraph of H is easy to see.

Now let f be a homomorphism of G to H, and let H ′ = f(G) be the image of G in H.

Let {H ′
1, H

′
2 · · ·H ′

k} be a chromatic covering of H ′. Then {f−1(H ′
1), f

−1(H ′
2) · · · f−1(Hk)}

forms a chromatic covering of G. So the chromatic covering of G is smaller than or

equal to chromatic covering number of H ′, but Fχ(H ′) ≤ Fχ(H). 2

4.3 Kneser-like graphs

The condition under which the upper bound of the Theorem 4.14 is tight leads to the

following construction which was first introduced by C. Tardif in [74].

Definition 4.16 Let n, r and s be positive integers such that r ≤ s. We define the

graph Kr,s
n as follows: The vertices of Kr,s

n are the subsets A = {(i1, j1), . . . , (ir, jr)}
of {1, . . . , s}×{1, . . . , n} such that i1, . . . , ir are all distinct. Two of these subsets are

joined by an edge in Kr,s
n if they are disjoint. 3

In [76], Kr,s
n is called a fractional multiple of the complete graph Kn. It can also be

represented as follows: The vertices of Kr,s
n represent independent r-sets in a disjoint

union of s copies of Kn, and two of these are joined by an edge in Kr,s
n if they are

disjoint.

The following lemma shows that for certain kind of chromatic covering the fractional

multiple graphs will play the role of a complete graph, when the chromatic covering

is compared to the ordinary colouring.

Lemma 4.17 A graph G admits a homomorphism to Kr,s
n if and only if G can be

covered by s n-colourable subgraphs G1, . . . , Gs such that every vertex of G is in r of

these subgraphs.

Proof. Suppose that {G1, . . . , Gs} is such a covering of G. For i = 1, . . . , n, fix an

n-colouring fi : Gi 7→ {1, . . . , n} of Gi. We first define the mapping φ : G 7→ Kr,s
n by

φ(u) = {(i, fi(u)) : u ∈ V (Gi)}.
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Now we will show that φ is in fact a homomorphism of G to the fractional multi-

ple Kr,s
n . To see this note that for every edge uv of G, if u, v ∈ Gi then we have

fi(u) 6= fi(v). Therefore, φ(u) is disjoint from (that is, adjacent to) φ(v). So φ is a

homomorphism.

Conversely, if φ : G 7→ Kr,s
n is a homomorphism, then for i = 1, . . . , s, let Gi to be the

subgraph of G induced by

V (Gi) = {u ∈ V (G) : φ(u) ∩ {(i, 1), . . . , (i, n)} 6= ∅}.

It is obvious that Gi is n-colourable. On the other hand if φ(u) = {(i1, j1), . . . , (ir, jr)}
then the vertex u belongs to only Gij for j = 1, 2, . . . r and therefore every vertex u

of G belongs to r of the induced subgraphs Gis. 2

In the previous section we showed that if a graph G satisfies Fχ(G) = 2p − 1 and

χ(G) = p2, then G can be covered by 2p − 1 p-chromatic subgraphs such that every

vertex of G is in p of these subgraphs. By Lemma 4.17, such a graph G would then

admit a homomorphism to Kp,2p−1
p . Therefore by Lemma 4.15, the upper bound of

p2 on the chromatic number of the graphs with chromatic covering number at most

2p− 1 is tight if and only if χ(Kp,2p−1
p ) = p2.

A similar argument holds in the case of even chromatic covering numbers, except that

this time there are two candidates which may satisfy the upper bound: a graph G

which satisfies Fχ(G) = 2p and χ(G) = p2 + p may be covered by 2p p-chromatic

subgraphs such that every vertex of G is in p of these subgraphs, or by 2p (p + 1)-

chromatic subgraphs such that every vertex of G is in p + 1 of these subgraphs. By

Lemma 4.17, such a graph admits a homomorphism into Kp,2p
p or Kp+1,2p

p+1 . Therefore

the upper bound of p2 +p on the chromatic number of the graphs with chromatic cov-

ering number at most 2p is tight if and only if χ(Kp,2p
p ) = p2+p or χ(Kp+1,2p

p+1 ) = p2+p.

So to prove the tightness of the upper bound of the Theorem 4.14 we must find the

chromatic number of certain type of the fractional multiple graphs. The following

easy lemma provides an upper bound on the chromatic number of Kr,s
n .
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Lemma 4.18 Let n, r and s be positive integers such that r ≤ s. Then Kr,s
n is

(n(s− r + 1))-colourable, i.e., χ(Kr,s
n ) ≤ n(s− r + 1).

Proof. To prove this we first label the elements of X = {1, . . . , s−r+1}×{1, . . . , n}
with n(s − r + 1) colours. Then for every vertex A of Kr,s

n choose a pair xA =

(i, j) which is both in X and A. Note that this is possible because A intersects

{1, . . . , s− r + 1} × {1, . . . , n}. Now colour every vertex A of Kr,s
n with the colour of

xA in X. In this way, since adjacent vertices have no element in common, they receive

different colours. Thus, χ(Kr,s
n ) ≤ n(s− r + 1). 2

The next step will be to show that the upper bound of the previous lemma is tight,

i.e., there are no colouring of Kr,s
n using less than n(s− r + 1) colours. This problem

has the flavor of Kneser’s conjecture. The next theorem will answer this problem for

the even values of n. We will use Schrijver’s strengthening on the chromatic number

of Kneser graphs (Theorem 4.8) in our proof of this theorem.

Theorem 4.19 Let n, r, s be integers such that n is even and r ≤ s. Then χ(Kr,s
n ) =

n(s− r + 1).

Proof. By Lemma 4.18 we have χ(Kr,s
n ) ≤ n(s− r + 1). To show that the bound is

tight, we first define a homomorphism φ from Schrijver graph S(a, b) to Kr,s
n , where

a = n
2
(r − 1) + 1 and b = ns.

Suppose that Cb is a b-cycle where the vertices are labelled consecutively by

(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (2, n), . . . , (s, 1), . . . , (s, n).

Then for any a-independent set I of the cycle, there exist at least r values i1, . . . , ir

such that I intersects {(ik, 1), . . . , (ik, n)} for k = 1, . . . , r. We can then select jk such

that (ik, jk) ∈ I for k = 1, . . . , r, and put

φ(I) = {(i1, j1), . . . , (ir, jr)}.
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By this definition if I and J are two independent a-subsets of Cb then φ(I) and φ(J)

are two independent r-subsets of {1, 2, · · · } × {1, 2, · · ·n}, therefore φ is a homomor-

phism of S(a, b) to Kr,s
n .

Now by Lemma 2.1 χ(Kr,s
n ) ≥ χ(S(a, b)). But by Schrijver’s theorem (Theorem 4.8)

χ(S(a, b) = b− 2a + 2 = n(s− r + 1), therefore χ(Kr,s
n ) = n(r − s + 1). 2

Corollary 4.20 Let k be an integer not congruent to 1 modulo 4. Then there exists

a graph with chromatic covering number k and chromatic number
⌊(

k+1
2

)2
⌋
.

Proof. If k is even, say k = 2q, then one of the two graphs Kq,2q
q and Kq+1,2q

q+1 is

guaranteed to fit the bound for chromatics number by Theorem 4.19. For k = 4p− 1,

the only candidate is K2p,4p−1
2p , and this graph is indeed 4p2-chromatic by Theorem

4.19. Lemma 4.17 shows that each of these graphs indeed has a chromatic k-covering.

2

We will end this chapter by some comments and open problems on the fractional

chromatic number and the chromatic covering number.

4.4 Concluding comments

4.4.1 Odd cases

We have shown that the bound in Theorem 4.14 is best possible in most cases. We

do not doubt that the bound should be tight in all cases; this only depends on the

identity χ(K2p+1,4p+1
2p+1 ) = (2p + 1)2 being valid for all p ≥ 1. This in turn would be

implied by the following conjecture in completion of Theorem 4.19.

Conjecture 4.21 Let n, r, s be integers such that n is odd and r ≤ s. Then χ(Kr,s
n ) =

n(s− r + 1).
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4.4.2 Some observations

We have shown that chromatic covering is also a monotone graph parameter, i.e.,

if G → H then Fχ(G) ≤ Fχ(H). The relation between chromatic coverings and

homomorphisms extends as follows:

For every sequence (a1, a2, . . . , ak), there exists a graph K(a1, a2, . . . , ak)

with the property that a graph G admits a homomorphism to K(a1, a2, . . . , ak)

if and only if G admits a chromatic covering {G1, . . . , Gk} such that

χ(Gi) ≤ ai for i = 1, . . . , k.

The proof essentially follows the lines of that of Lemma 4.17, given a suitable defi-

nition of K(a1, . . . , ak). Therefore among the graphs K(a1, . . . , ak) with ai ≤ k for

i = 1, . . . , k, we find a finite family of graphs which are maximal (in the sense of

homomorphisms) with respect to the property of having a chromatic covering number

at most k.

It can be shown that K2,3
2 is the only maximal graph with chromatic covering number

3, but the situation changes in the case of larger chromatic covering numbers. In fact

it can be shown that neither of the graphs K2,4
2 and K3,4

3 admits a homomorphism

to the other. Now consider the graph M = K2,4
2 ∪K3,4

3 . Then M does not admit a

homomorphism to K2,4
2 or to K3,4

3 ; however since M is 6-chromatic, this implies that

Fχ(M) > 4. Thus, the identity Fχ(G ∪ H) = max{Fχ(G), Fχ(H)} does not hold in

general.

It seems that the identity Fχ(G×H) = min{Fχ(G), Fχ(H)} (where × is the categor-

ical product ) should not hold either. Indeed, K4,10
10 ×K9,15

15 has a natural chromatic

covering induced by ten 10-chromatic subgraphs of K4,10
10 and fifteen 15-chromatic

subgraphs of K9,15
15 . Thus Fχ(K4,10

10 ×K9,15
15 ) ≤ 25, but there are no obvious chromatic

coverings of K4,10
10 or K9,15

15 with 25 subgraphs (though we have no proof that it cannot

be done).
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It is interesting to compare these observations with results and problems concerning

chromatic numbers: The inequalities χ(G∪H) ≥ max{χ(G), χ(H)} and χ(G×H) ≤
min{χ(G), χ(H)} both follow from the fact that if there is a homomorphism from

G to H, then χ(G) ≤ χ(H). It is easy to verify that equality always holds in the

first case, while the question as to whether equality always holds in the second case

is a notorious open problem. The situation is a bit more symmetric with chromatic

covering numbers, in the sense that both inequalities can be strict.

4.4.3 Degeneracy covering numbers

The degeneracy covering and degeneracy covering number is defined in a similar way.

Given a graph G, we say a collection G1, G2, · · ·Gk is a k-degeneracy covering of G is

for every vertex x of G the following holds:

∑

u∈V (Gi)

1

deg(Gi) + 1
≥ 1.

The degeneracy covering number is the smallest k for which G admits a k-degeneracy

covering.

By this definition and by Theorem 2.6, every k-degeneracy covering is also a k-

chromatic covering, therefore the degeneracy covering number is bounded by the

chromatic covering number. In fact the chromatic covering number was defined in

[3] in order to get bounds on the degeneracy covering number.

On the other hand it is not an easy problem to construct graphs with a difference be-

tween their chromatic covering number and colouring covering number. The problem

of finding such a graph in a certain case was posed by C. Tardif and the author in a

graph homomorphism workshop in Vancouver, 2000, and was answered affirmatively

by A. V. Pyatkin in [64].
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