
1/30

Design principles of property graph languages
A theoretical and experimental study

Alexandra Rogova

November 27th 2024

2/30

Data is everywhere

A large majority of it is stored in relational tables.

Sometimes the important information is not only the data itself but

also how it’s connected.

3/30

Connected relational data
Ingredient

ID

i1
i2
i3
i4

Recipe
ID

r1
r2
r3

Require

ID Recipe Ingredient

rq1 r1 i1
rq2 r1 i2
rq3 r1 i3
rq4 r3 r1
rq5 r3 i4
rq6 r3 r2

Properties

ID Key Value

i1 Name Onion
i1 Type Vegetable
i1 Famility Alium
i2 Name Carrot
.
r3 Name Zupa ogórkowa
r3 Type Soup
rq1 Amount 1
rq2 Amount 3
rq3 Amount 2
rq4 Amount 1
rq5 Amount 4
rq5 Amount 0.5

A collection of recipes encoded in the relational model.

4/30

Storing data as a graph

We can take inspiration from a natural representation:

i2

Ingredient

Name: Carrot
Type: Vegetable
Family: Daucus

i1

Ingredient

Name: Onion
Type: Vegetable
Family: Allium

i3

Ingredient

Name: Celery
Type: Vegetable
Family: Apium

r1

Recipe

Name: Vegetable
 broth
Type: Broth

i4

Ingredient

Name: Potato
Type: Root
Family: Solanum

r2

Recipe

Name: Ogórki
 kiszone
Type: Preserve

r3

Recipe

Name: Zupa
 ogórkowa
Type: Soup

Requires
amount: 1

rq1

Requires
amount: 2

rq3

Requires
amount: 3

rq2

Requires
amount: 4

rq5

Requires
amount: 1

rq4

Requires
amount: 0.5

rq6

What we have drawn is called a property graph.

5/30

Querying data

What kind of questions do we want to ask about recipes?

1. Are there nuts in a zupa ogórkowa?

_

Ingredient

Name: _
Type: Nut
Family: _

r3

Recipe

Name: Zupa
 ogórkowa
Type: Soup

?

i.e. find a path from the recipe to a node of type “Nut”.

This is a reachability query.

6/30

Querying data

What kind of questions do we want to ask about recipes?

2. How many carrots are required to make a zupa ogórkowa?

r3

Recipe

Name: Zupa
 ogórkowa
Type: Soup

+i2

Ingredient

Name: Carrot
Type: Vegetable
Family: Daucus

Requires
amount: 2

rq7

r1

Recipe

Name: Vegetable
 broth
Type: Broth

Requires
amount: 1

rq4

Requires
amount: 3

rq2

i.e. find all nodes with name “Carrot” reachable from the recipe

and sum the appropriate amounts.

This is a counting query.

7/30

Querying data

What kind of questions do we want to ask about recipes?

3. What recipes can I make with this list of ingredients?

Requires
amount: _

_

Requires
amount: _

_

_

Recipe

i2

Ingredient

Name: Carrot
Type: Vegetable
Family: Daucus

i1

Ingredient

Name: Onion
Type: Vegetable
Family: Allium?

i.e. find a recipe node that can reach all ingredient nodes.

This is a back-and-forth reachability query.

8/30

Querying data

What kind of questions do we want to ask about graphs?

– Reachability

– Counting

– Back-and-forth reachability

– Many others (find cliques, covering, network flows, . . .)

Can we write them in the standard relational query language SQL?

Technically yes.

9/30

Querying data

Unweighted shorted path query in SQL:

WITH RECURSIVE paths(startNode, endNode, path, level, endNodeReached) AS (
SELECT node1id AS startNode, node2id AS endNode,

[node1id, node2id]::bigint[] AS path, 1 AS level,
max(CASE WHEN p2.Type = 'Nut' THEN true ELSE false END) OVER
(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endNodeReached

FROM requires
JOIN Node n1 ON n1.id = requires.node1id
JOIN Node n2 ON n2.id = requires.node2id WHERE n1.name = 'Zupa ogórkowa'
UNION ALL
SELECT paths.startNode AS startNode, node2id AS endNode,

array_append(path, node2id) AS path, level + 1 AS level,
max(CASE WHEN p2.Type = 'Nut' THEN true ELSE false END) OVER
(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
endNodeReached

FROM paths
JOIN requires ON paths.endNode = requires.node1id
JOIN Node n2 ON n2.id = requires.node2id WHERE n2.id != ALL(paths.path)
AND NOT paths.endNodeReached)

SELECT path, level, endNodeReached AS recipe
FROM paths;

From Peter Boncz’s tutorial at EDBT 2022

10/30

Querying graphs

To avoid this complexity, graph specific query languages were

developed.

The most famous is Neo4j’s Cypher.

The same unweighted shortest path query in Cypher:

MATCH p = ALL SHORTEST
({type: "Nut"})<-[:Requires⁎]-({name: "Zupa ogórkowa"})

RETURN p

This way of describing a graph shape is called pattern matching.

11/30

Other graph query languages

https://xkcd.com/927/

12/30

Standard graph query languages

In 2019, the International Organization for Standardization (ISO)

decided to standardize the way we query graphs.

Two new languages were created:

SQL/PGQ, an extension of SQL to query graphs stored in

relational tables (the usual approach) and

GQL, a brand new language completely separate from the

relational model (this has never happened before)

Pattern matching is the same in GQL and SQL/PGQ.

13/30

Inspecting GQL and SQL/PGQ

While it’s good that we now all speak the same language, the main

question of this thesis was

Are GQL and SQL/PGQ good graph languages?

In particular:

Can we write all common graph queries?

Can we write them easily (unlike in SQL)?

Is the time and space complexity of query evaluation sensible?

Does it work fast enough in practice?

14/30

Case study : increasing path

Consider the following query:

“Match all paths s.t. the values along the edges are increasing.”

I claim that

Theorem 1

1. There is no way to write it in graph pattern matching.

2. There is no way to write it GQL or SQL/PGQ such that it

works in pratice.

How do we prove it?

15/30

The property graph model

A property graph is composed of:

Nodes
r1

Recipe

Name: Vegetable
 broth
Type: Broth

Directed edges
Requires
amount: 1

rq1

Undirected edges
Pairs with

p1

Labels on both nodes and edges Requires Ingredient

Properties (key-value pairs) on both

nodes and edges

Name: Onion
Type: Vegetable
Family: Allium

amount: 1

16/30

Formalizing GQL and SQL/PGQ

Spring 2024

Any data structure

Native storage

Standalone

GQL

Spring 2023

On top of relational

Graphs are views

New part of SQL

SQL / PGQ

Pattern
matching

17/30

Formalizing GQL and SQL/PGQ

Both GQL and SQL/PGQ are

– Expensive ISO standards

– Hundreds of pages of formal

grammar

– With pseudo-code semantics

– Trying to convey a simple

Cypher-like syntax with all

encompassing semantics

Definition of a "simplified path pattern expression"

18/30

Formalizing GQL and SQL/PGQ

We1 read through the standards and produced:

– An explanation of GQL for the research community (A

Researcher’s Digest of GQL, ICDT 2023)

– A calculus that reflects all key pattern matching features of

GQL (GPC: A Pattern Calculus for Property Graphs, PODS 2023)

– Two formal languages for Core GQL and Core PGQ that link

them both to classical relational algebra (GQL and SQL/PGQ:

Theoretical Models and Expressive Power2, submitted to VLDB

2025)

1N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens, F. Murlak,
L. Peterfreund, A. R., D. Vrgoc

2A. Gheerbrant, L. Libkin, L. Peterfreund, A.R.

19/30

Core GQL/Core PGQ patt. match. syntax

A pattern matching expression is obtained from:

ϕ := ([x]) |

nodes

[x]→ | [x]← |

edges

ϕ1 ϕ2 |

concatenation

ϕn..m |

repetition

ϕ1 + ϕ2 |

union

ϕ⟨θ⟩

conditions

where conditions θ are given by

θ, θ′ := x.k = x ′.k ′ |

equality

x.k < x ′.k ′ |

inequality

ℓ(x) |

label

θ ∨ θ′ | θ ∧ θ′ | ¬θ

boolean comb.

20/30

Core GQL/Core PGQ patt. match. semantics

The result of evaluating a pattern matching expression on a graph

is a table called the driving table.

A driving table contains the graph elements assigned to each

variable for all the answers to the query.

r
(x)

y−→ (z)⟨x.Type = ”Broth”⟩
z

Recipes
=

x y z

r1 rq1 i1
r1 rq2 i2
r1 rq3 i3

where r1 is the vegetable broth node, i1 the onion node, i2 the

carrot node and i3 the celery node.

21/30

Inexpressibility of increasing path

Finding increasing node values is simple:

((x)→ (y)⟨x.k < y.k⟩)0..∞

But if we try the same for edges:(
()

x→ ()
y→ ()⟨x.k < y.k⟩

)0..∞

Some paths are wrongfully matched, e.g. 3 4 1 2

In a repeated pattern, only the last node is kept between iterations!

22/30

Proving inexpressibility of increasing path

Lemma: ϕ2..2 accepts the same paths as ϕϕ.

Proof idea of Theorem 1.1: Imagine there is a query Q that returns

exactly all paths with increasing values in edges in any graph.

By definition, Q must accept the path 1 2 3

But since Q necessarily contains repetition, by the lemma above

extended to arbitrary repetition, it must also accept the path 1

1 2 3 1 2 3

As this path is not strictly increasing, we have a contradiction and

so Q cannot exist.

1This is true only for pattern matching without←

23/30

Real-life GQL and SQL/PGQ

GQL and SQL/PGQ are not limited to just pattern matching.

In fact, both languages can be described as

Calls to pattern matching within a variant of relational algebra

The increasing path query could be encoded as

(all paths) \ (paths in which two consecutive values are decreasing)

But this forces the GDBMS to execute an inneficient algorithm:

first find all paths, then remove those that do not comply.

24/30

Graph queries in practice

Many graph problems are notoriously hard

– Finding a simple path/trail is NP-hard

– finding all maximal cliques requires exponential time!

Can graph systems execute these queries efficiently?

To find out we tested if this is the case for increasing path,we tested

Neo4j’s performance on random graphs generated with n nodes

and probability p of any two nodes being connected.

We measured the median running time on 10 graph for each

configuration, with a timeout set to 5 minutes.

25/30

Neo4j performance – Increasing path

Cypher does not include the “\”
operator so the increasing

condition is verified by a reduce

(fold) function:

MATCH p=()-[⁎2..]->()
WITH p, reduce(

acc=relationships(p)[0].val,
v in relationships(p) |
CASE WHEN acc=-1 THEN -1

WHEN v.val>=acc THEN v.val
ELSE -1

END) AS inc
WHERE NOT inc = -1
RETURN p

median execution time in ms percentage of timeouts

nodes
0

100,000

200,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30
0 0 0 1 1 0 1 0.5 1 0 1 1 1 2.5 4.5 11 15820.5

3321
554.5

3844
2831

6585

∞

25

(a) p = 0.1

median execution time in ms percentage of timeouts

nodes
0

100,000

200,000

300,000

∞

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1.5 2.5 2.5 2 2.5 2 75.5

10297

95961

106047

12

(b) p = 0.3

26/30

Fixing the increasing path query

Pattern matching cannot express the increasing path query.

We have to use the “\” operator in a way that is doomed to fail.

How can we fix this?

– Change the semantics of repetition

– Add a new "compare along the path" operator

27/30

General properties - Expressive power

The core of GQL and SQL/PGQ can be defined as relational algebra

combined with pattern matching and the path restrictors simple,

trail and shortest.

Theorem 2 - Expressive power

Core GQL and Core SQL/PGQ are at least as expressive as

– Unions of Conjunctions of Two-way Regular Path Queries,

– Nested Regular Expressions and

– Regular Queries.

28/30

General properties - Complexity

Definition 3 - The Enumerate Answers problem

Input: A graph G and a query Q

Output: Enumerate all answers to Q over G without repetitions.

Theorem 4 - Complexity

The complexity of GQL and SQL/PGQ is EXPSpace in combined

complexity and PSpace in data complexity for the Enumerate

Answers problem.

29/30

Are GQL and SQL/PGQ good?

We needed new tools to study GQL and SQL/PGQ.

We created formal models, simple yet powerful enough for

thorough mathematical reasoning.

Thanks to these models we were able to formally prove the

inexpressibility of the increasing path query.

We then confirmed experimentally that this is indeed a deficiency

of the languages.

We also determined the expressive power of GQL and SQL/PGQ

and their complexities for the Enumerate Answers problem.

30/30

What’s left to do

Now that we have a defined core of pattern matching, we need to

understand its behaviour:

How complex are its queries for various problems (query

answering, enumeration, containment, . . .)?

How do path or bag semantics affect this complexity?

How far can we extend this core before its queries become

intractable?

We have already identified some deficiencies,

Are there other desirable queries that are inexpressible?

Are some of the expressible queries dangerous?

How can we change the core to avoid both issues?

