
Université Paris Cité
École doctorale 386 Sciences Mathématiques de Paris Centre

Institut de Recherche en Informatique Fondamentale
Data Intelligence Institute of Paris

Design principles of property graph languages
A theoretical and experimental study

Par Alexandra ROGOVA

Thèse de doctorat d’informatique

Dirigée par Amélie Gheerbrant
Et par Leonid Libkin

Présentée et soutenue publiquement le 27/11/2024

Devant un jury composé de :

Andrea CALI, Prof. Université de Naples Rapporteur
Ioana MANOLESCU, DR INRIA Paris Saclay Rapportrice
Claire DAVID, MCF Université Gustave Eiffel Examinatrice
Diego Figueira, DR Université de Bordeaux Examinateur
Cristina SIRANGELO, Prof. Université Paris Cité Examinatrice
Michael THOMAZO, CR-HDR ENS Paris Examinateur
Amélie Gheerbrant, MCF Université Paris Cité Directrice de thèse
Leonid Libkin, Prof. University of Edinburgh Directeur de thèse

Acknowledgments

I would like to sincerely thank the following people for their guidance, inspiration, friendship and support
in these last three years. Writing this thesis would have been much less fun without them.

To my advisors, Amélie and Leonid, who have taught me so much about databases, science and life, despite
the ever increasing chaos. This thesis is a tribute to their knowledge, patience and talent in science and
supervision.

To my co-authors, especially Liat and Filip, writing with you was always a pleasure, even during the world’s
rapid descent into madness. I have learned a great deal from you and I am ever grateful for your kindness
and goodwill.

To Julo, for having the patience to listen to me talk about cooking, sewing, knitting (and a tiny bit about
databases), and for always encouraging me to try new things.

To Adrienne, who is always ready to fight the good fight. It was an honour to represent the non-permanent
members of IRIF with you and it is a real joy to be your friend. May the beers we share in the future be as
enjoyable as the ones we have shared in the past.

To the members of the automata team, especially Thomas, Sylvain and Marie, for the time and energy they
put into creating a community within the team.

To Aliaume, Bernardo, Olivier S., Mickael and Nicolas, my wonderful office mates. The time spent chatting
about anything and everything, silly and serious, was well worth it.

To Delia, Cristina and Sophie, who have helped and pushed me, all throughout my studies, to pursue
research. You are an inspiration, each in your own way, and I would not be here without you.

To Mariana, Gio, Avi, Laurent, Colin, Olivier I., Florian, Cécile, Loïc and everyone with whom we have
shared food and drink. From politics to cooking, by way of games, advisors and quick quick detour to
lambda calculus, our chats were always interesting and I hope we will have many more.

To Tristan, Olivier T., Léa, Anne-Claire, Madeleine, Alice, Théo and Lilya, who have put up with me for so
many years that I have stopped counting. Your friendship truly means a lot.

To the members of my jury, Andrea, Ioana, Michael, Claire, Diego and Cristina, and the members of my
Comité de suivi, Arnaud and Angela. Thank you for taking the time to listen and read my work, and for the
thorough feedback. Your corrections and suggestions have allowed me to improve this thesis and myself
as a researcher.

And of course, thank you to my mother for her support and advice throughout all my life.

Résumé court
Principes de conceptions des languages de graphes de propriété

une étude théorique et expérimentale

Au cours des 50 dernières années, la quantité et la complexité des informations stockées dans les bases
de données ont augmenté et les besoins des utilisateurs ont évolué. Ces changements ont conduit à la
création de nouveaux modèles tels que XML, les bases de données clés-valeurs, de séries temporelles, etc.
Le sujet de cette thèse est l’un de ces modèles : la base de données graphe. Dans une base de données
graphe, les données sont stockées sous la forme d’un graphe, ou d’une collection de nœuds, représentant
les entités, reliés entre eux par des arêtes, représentant les relations entre les entités. Des informations
supplémentaires sur les entités et leurs relations peuvent être attachées aux nœuds et aux arêtes. Ce
modèle puissant, popularisé par Neo4j en 2010, est aujourd’hui incontournable dans divers secteurs tels
que la biologie, les réseaux sociaux et la banque. En mettant en avant les liens entre les données, les bases
de données de graphes permettent aux utilisateurs de raisonner non seulement sur les éléments individuels,
mais aussi sur la structure du graphe entier. En conséquence, l’objectif d’une requête de graphe typique
est de trouver un chemin reliant des nœuds spécifiques.

Comme les traversées de graphes reposent intrinsèquement sur la transitivité, les langages de requête
traditionnels ne sont pas adaptés au contexte des graphes, et de nouveaux langages ont donc été créés.
Dans la communauté théorique, les éléments de base d’un langage de graphe sont les requêtes de chemins
réguliers (RPQ), qui définissent les contraintes de chemin au moyen d’expressions régulières. Le pouvoir
d’expression et la complexité des RPQ et de leurs extensions (par l’union, la conjonction, la navigation
bidirectionnelle, les comparaisons de valeurs de données et les propriétés de chemin, par exemple) sont
étudiés depuis les années 1990, mais leurs propriétés commencent à peine à être comprises.

Le langage graphe pratique le plus populaire aujourd’hui est Cypher de Neo4j. Dans Cypher, un chemin
peut être décrit par une expression régulière, mais il comprend également de nombreuses autres fonc-
tionnalités, notamment l’agrégation, différentes sémantiques de chemin, la projection, les sous-requêtes
et les mises à jour. Ces éléments diffèrent de ceux d’autres langages, comme GSQL de Tigergraph ou PGQL
d’Oracle, mais tous les systèmes de graphes partagent le même noyau : le pattern matching.

En 2019, un nouveau groupe de l’Organisation internationale de normalisation (ISO) a été créé pour su-
perviser la normalisation des langages graphes pratiques. Cela a donné lieu à deux nouvelles normes:
SQL/PGQ et GQL. L’idée de SQL/PGQ est d’ajouter un mécanisme de pattern matching basé sur les vues
à SQL et d’interpréter les données relationnelles en tant que graphe uniquement lorsque cela est néces-
saire, tandis que GQL est autonome et stocke les données en tant que graphe natif. Bien que ce travail de
normalisation soit un pas dans la bonne direction, il manque un ingrédient crucial: un modèle théorique
correspondant.

L’objectif de cette thèse est de définir un langage théorique pour les bases de données de graphes, sem-
blable à l’algèbre relationnelle pour SQL, qui reflète les aspects essentiels de GQL et de SQL/PGQ tout en
étant suffisamment simple pour une étude théorique. Nous commençons par présenter en détail les car-
actéristiques de pattern matching partagées par SQL/PGQ et GQL. Nous identifions et formalisons ensuite
le noyau de ce langage. Ensuite, nous positionnons nos formalisations de SQL/PGQ et GQL par rapport à
l’algèbre relationnelle, ce qui nous permet de mettre en évidence leurs styles distincts, tout en prouvant
leur équivalence. Enfin, nous explorons l’impact de l’extension du pattern matching avec des fonctions de
liste et montrons que cet ajout n’est pas seulement dangereux en théorie, mais qu’il échoue également en
pratique.

Mots clefs: théorie des bases de données, langages de requete, informatique theorique, informatique fon-
damentale

Short abstract
Design principles of property graph languages

a theoretical and experimental study

In the last 50 years, the amount and complexity of information stored in databases has grown and the
needs of database users have evolved. These changes have led to the creation of new models such as XML,
key-value stores, time series databases and so on. The subject of this thesis is one such model: the graph
database. In a graph database, data is stored as a “graph”, or a collection of nodes, representing the enti-
ties, connected together by edges, representing relationships between the entities. Additional information
about the entities and their relationships can be attached to the nodes and edges. This powerful model,
popularized by Neo4j in 2010, is now a staple in various industries such as biology, social networks and
banking. By putting the links between the data points front and center, graph databases allow users to
reason not only about individual elements but also about the structure of the graph. Accordingly, the goal
of a typical graph query is to find a “path” connecting specific nodes.

Because graph traversals inherently rely on transitivity, traditional query languages are not suitable in
the graph context, and thus new languages have been created. In the theoretical community, the basic
building blocks of a graph language are the Regular Path Queries (RPQs), which define path constraints
by way of regular expressions. The expressive power and complexity of RPQs and their extensions (by
union, conjunction, two-way navigation, data value comparisons and path properties for example) have
been studied since the 1990s but their properties are barely beginning to be understood.

The most popular practical graph language today is Neo4j’s Cypher. In Cypher, a path can be described
by a regular expression but it also includes many other features among which aggregation, different path
semantics, projection, subqueries and updates. These elements differ from those of other languages, like
Tigergraphs’ GSQL, or Oracle’s PGQL, but all graph systems share the same kernel: pattern matching.

In 2019, a new International Organisation for Standardization (ISO) group was created to oversee the
standardization of practical graph languages. This led to two new standards: SQL/PGQ and GQL. The
idea of SQL/PGQ is to add a view-based pattern matching mechanism to SQL and interpret the relational
data as a graph only when necessary, whereas GQL is standalone and stores the data as a native graph.
While this standardization work is a step in the right direction, there is one crucial ingredient missing: a
corresponding theoretical model.

The goal of this thesis is to define a theoretical language for graph databases, akin to relational algebra
for SQL, that reflects the essential aspects of GQL and SQL/PGQ while being simple enough for theoretical
study. We start by presenting in detail the pattern matching features shared by SQL/PGQ and GQL.We then
identify and formalize the core of this language. Afterwards, we position our formalisations of SQL/PGQ
and GQL in comparison to relational algebra, which allows us to highlight their distinct styles, while also
proving their equivalence. Finally, we explore the impact of extending pattern matching with list functions
and show that this addition is not only dangerous in theory, but also fails in practice.

Keywords: database theory, query languages, theoretical computer science

List of symbols and acronyms

Theoretical query languages
Symbol Meaning Chapter
FO First Order Logic 2
RA Relational Algebra 2
1NF First Normal Form 5
CQ Conjunctive Query 2
UCQ Union of Conjunctive Queries 2
BCCQ Boolean Combinations of Conjunctive Queries 5
DFA Deterministic Finite Automaton 2
RA A 𝑘-Register Automaton 2
Regex Regular Expression 2
REM Regular Expression with Memory 1
RPQ Regular Path Query 1
CRPQ Conjunctive Regular Path Query 1
UCRPQ Union of Conjunctive Regular Path Queries 1
2RPQ 2-way Regular Path Query 1
C2RPQ 2-way Conjunctive Regular Path Query 2
UC2RPQ Union of 2-way Conjunctive Regular Path Queries 2
NRE Nested Regular Expression 1
ECRPQ Extended Conjunctive Regular Path Query 1
RDPQ Regular Data Path Query 2
RQM Regular Query with Memory 2
GPC Graph Pattern Calculus 4
GPC+ GPC extended with projection and union 4
LCRA Linear Composition Relational Algebra 5
sLCRA Simple Linear Composition Relational Algebra 5
+NF + Normal Form 5

Complexity
Symbol Meaning Chapter
DLOGSPACE Deterministic Logarithmic Space complexity class 2
NLOGSPACE Non-Deterministic Logarithmic Space complexity class 2
PTime Deterministic Polynomial Time complexity class 2
NP Non-Deterministic Polynomial Time complexity class 2
PSPACE Deterministic Polynomial Space complexity class 2
EXPSPACE Deterministic Exponential Space complexity class 2
2EXPSPACE Deterministic Twice-Exponential Space complexity class 2
AC0 Complexity class of problems solvable using a boolean circuit 2

of constant depth and polynomial width

Practical query languages
Symbol Meaning Chapter
SQL The standard query language for relational databases 1
ISO The International Organisation for Standardization 1
ISO/IEC JTC1 SC32 WG3 The ISO working group focused on SQL and GQL 2
XML A standard markup language 1
PGQL A graph query language by Oracle 1
GSQL A graph query language by Tigergraph 1
SAP HANA A database system by SAP 2
Cypher A graph query language by Neo4j 1
GQL The new standard query language for graph databases 1
SQL/PGQ The new SQL extension for graph databases 1
CODASYL The Conference/Committee on Data Systems Languages 2
DBPedia A database referencing Wikipedia data 2
YAGO Yet Another Great Ontology, an open source knowledge base 2
RDF Resource Description Framework, the standard ontology language 2
SPARQL The query language for RDF 5
IRI International Resource Identifier, the identifier set for RDF 2
W3C The World Wide Web Consortium 2
𝑅𝐷𝐹∗ An extension to RDF with a notion of nested triples 2
DBMS Database Management System 4

https://neo4j.com

Contents

Contents 8

1 Introduction 1

2 Background and Preliminaries 5
2.1 Storing data . 5

2.1.1 The relational model . 5
2.1.2 Querying Relational Data . 7

2.2 Comparing Query Languages . 11
2.3 Graph databases . 16

2.3.1 Property Graphs . 17
2.3.2 Short digression: The Resource Description Framework (RDF) 20

2.4 Querying property graphs . 23
2.5 Path semantics . 40

3 What is GQL? 49
3.1 GQL by Example . 50
3.2 Syntax of GQL . 53
3.3 Semantics . 56

3.3.1 Preliminaries . 57
3.3.2 Semantics of Path Patterns . 58
3.3.3 Semantics of Graph Patterns . 60
3.3.4 Semantics of Conditions and Expressions . 60
3.3.5 Semantics of Queries . 61

3.4 A Few Known Discrepancies with the GQL Standard . 62
3.4.1 User-Friendly Syntactic Restrictions . 63
3.4.2 Query Evaluation . 63
3.4.3 Missing Features . 65

3.5 What the Future Holds . 67

4 The Graph Pattern Calculus 71
4.1 Pattern calculus . 72
4.2 Type System . 75
4.3 Semantics . 77
4.4 Expressivity and Complexity . 83
4.5 Looking ahead . 91

5 Putting together Pattern Matching and Relational Algebra 96
5.1 Linear Composition Relational Algebra . 99

5.1.1 Linear Composition Relational Algebra (LCRA) 100
5.1.2 Expressivity results . 101
5.1.3 The origins of linear composition . 103

5.2 GQL and SQL/PGQ: theoretical abstractions . 103
5.2.1 Pattern Matching: Turning Graphs into Relations 104
5.2.2 GQL Vs. PGQ . 106
5.2.3 Example . 107

5.3 Case study 1: Expressiveness of Pattern Matching . 107
5.3.1 Repeated local conditions . 108
5.3.2 Global conditions . 113
5.3.3 Cypher patterns . 115

5.4 Case Study 2: Expressiveness of GQL and SQL/PGQ . 118
5.4.1 Datalog on Graphs . 122

5.5 Conclusions and future work . 123

6 Lists and Graphs languages 127
6.1 Cypher Pattern Matching . 129
6.2 Adding Lists . 131

6.2.1 Cypher limitations . 131
6.2.2 Cypher support for lists . 132
6.2.3 Operations on lists . 133

https://neo4j.com

6.3 Expressing RPQs and beyond . 133
6.3.1 Extended CRPQs . 136

6.4 The Pitfalls of Lists . 137
6.5 Experimental results . 140
6.6 Can SQL help? . 144
6.7 Conclusion . 147

7 Conclusion 152

[1]: Codd (1970), “A Relational Model
of Data for Large Shared Data Banks”

1: at least relatively to what was previ-
ously available

[2]: Tsichritzis et al. (1976), “Hierarchi-
cal Data-Base Management: A Survey”
[3]: Taylor et al. (1976), “CODASYL
Data-Base Management Systems”

[4]: Angles et al. (2008), “Survey of
graph database models”

[5]: https://db-engines.com (),

Introduction 1
When databases are mentioned, most people think about the relational
model, or SQL, and with good reason. Introduced by Codd in 1970 [1],
this model combines a strong mathematical basis, the tradition of book-
keeping and the philosophy that the user should be as far removed from
the implementation as possible. This combination creates a tool that is
not only easy to use1, but also close to a theoretical model that can be
formally studied. It is still today the dominant database model at all
levels of data management.

Howver the last 50 years have seen an enormous growth in the size of
data and a shift in the needs of users. These changes have led to the
creation of new models, some specific to a particular domain, such as
time series databases for time-linked data, others capable of modelling
any kind of data, such as XML or key-value stores. The subject of this
thesis is one such specific model: the graph database.

As the name implies, the focus of graph databases is graph-like data,
i.e. data that represents heavily-linked information where the topology
is an important aspect. The family of graph models is popular in both
practical applications, from biology, to social networks, to banking, and
theoretical fields such asmathematics and computer science. It is no sur-
prise, then, that graphs were already considered a suitable model for
storing data in the 1970s, as attested by the hierarchical [2] and net-
work [3] models. In the former, data was sorted according to a strict
tree schema, detailing the relationships between its components. For
example, a schema could specify that an entry “book” requires a par-
ent “author”. The latter relaxes the tree constraint to general graphs in
which entries can have multiple parents, or even be the parent of their
parent, allowing for example a book to have multiple authors in the
previous example schema.

However, both of these models suffer from the pre-relational flaw: their
query languages were intrinsically linked with the in-memory structure
and required complicated procedures in order to extract simple infor-
mation. By the end of the 1990s, hierarchical and network databases
had almost completely disappeared as the industry’s interest shifted to
semi-structured data and the web.

From the 1980s to the 2000s, a number of graph database models have
been proposed (see [4] for an in-depth survey) but it is only in 2010
that a specific system, Neo4j, gained enough popularity to restart the
trend in earnest. As of July 2024, Neo4j is still the market leader, rank-
ing 1st among graph-specific systems, and 21st overall [5]. In a Neo4j
graph, called a property graph, nodes represent individuals or entities,
and the edges show the relationships between them. Nodes can be
thought of as the subject and object of a sentence, while the edge is
a verb. To store extra information about individuals or relationships,
nodes and edges can be decorated with labels, denoting that they be-
long to a given group, like “Book”, and properties, specifying the value
of some attribute, such as a “Title”. Unlike in a hierarchical or network
database, a Neo4j property graph does not have an associated schema,
meaning data can be added or updated regardless of the previous state,
making the system arguably easier to use and maintain.

2 1 Introduction

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”

[7]: Cruz et al. (1988), “G+: Recursive
Queries Without Recursion”
[8]: Consens et al. (1990), “GraphLog:
a Visual Formalism for Real Life Recur-
sion”
2: As well as an operation to reformat
the output graphs, but this idea did not
survive.

[8]: Consens et al. (1990), “GraphLog:
a Visual Formalism for Real Life Recur-
sion”
[9]: Barceló (2013), “Querying graph
databases”
[10]: Libkin et al. (2016), “Querying
Graphs with Data”
[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”
[12]: Wood (2012), “Query languages
for graph databases”
[13]: Figueira (2020), “Containment of
UC2RPQ: The Hard and Easy Cases”
[14]: Barceló et al. (2012), “Relative Ex-
pressiveness of Nested Regular Expres-
sions”
[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”
[16]: Language (2021), PGQL 1.4 Spec-
ification
[17]: Deutsch et al. (2020), “Aggrega-
tion Support for Modern Graph Analyt-
ics in TigerGraph”

One major difference between relational and graph databases is that
the focal point of the former is on the individual elements, whereas for
the latter, it is the links and structure between the elements. For exam-
ple, the purpose of a typical relational query could be to get the titles
of some author’s books, while a graph query might ask for groups of au-
thors who often write together.While it is possible to extend a relational
language, such as SQL, in order to incorporate navigational tools, this
tends to result in heavy, complicated queries. Instead, graph database
systems have developed their own query languages, often focused on
reachability and paths.

The first modern graph query language is G [6]. Introduced by I. Cruz,
A. Mendelzon and P. Wood in 1987, a query in G is a graph whose edges
are labelled by regular expressions. The answer to such a query is the
set of subgraphs of the database that match the graph described by the
query, i.e. where each regular expression has a corresponding path in
which the word formed by the labels of its edges belongs to the lan-
guage defined by the regular expression. This pattern matching mech-
anism is now at the heart of all contemporary graph query languages.
G was then extended to G+ [7] and GraphLog [8] to incorporate con-
junction and a limited form of negation2.

The notion of searching for paths using regular expressions was quickly
adopted by the research community and soon the ’Regular Path Query’
(RPQ) was considered the basic building block of any reasonable graph
query language. A new branch of study emerged, with the goal of un-
derstanding RPQs and its various extensions. The data complexity of
query evaluation was determined to be tractable even with conjunc-
tions (CRPQs), unions (UCRPQs), backwards edges (2RPQs), nesting
(NREs), data comparisons (REMs) and path properties (ECRPQs) [8–
11]. The combined complexity of the same problem turns out to be
polynomial only for basic RPQs [12], 2RPQs and NREs [9] and NP or
harder for all the other classes [9, 11]. A tractable class of UC2RPQs
was identified for the containment problem [13] and NREs were proven
to be incomparable with C2RPQs [14], among countless other results.

Although pattern matching also appears prominently in industry lan-
guages such as Neo4j’s Cypher [15], Oracle’s PGQL [16] and Tiger-
graph’s GSQL [17], every graph database system has developed its own
style and dialect, usually incompatible with the others. For instance, the
syntax of PGQL is much closer to SQL, with SELECT, FROM and WHERE

clauses, while Cypher’s is more imperative with MATCH and RETURN. A
path in GSQL is by definition the shortest, whereas in Cypher it can be
of any length as long as edges are not repeated.

Despite these kinds of variations, Cypher, PGQL and GSQL havemuch in
common: they use the same property graph model, a query is defined
by a regular expression, extra conditions on elements and properties
can be added with a WHERE clause, the output is a table containing
graph elements often grouped into paths, and so on. In 2019, a new In-
ternational Organisation for Standardization (ISO) group was created
to oversee the standardization of graph query languages. The work of
this group resulted in two new standards

▶ SQL/PGQ, a new part of the SQL Standard and
▶ GQL, an independent language focused solely on graphs.

In SQL/PGQ, graphs are stored inside a (possibly larger) relational
structure and viewed as graphs only during the pattern matching phase.

3

[18]: Angles et al. (2018), “G-CORE:
A Core for Future Graph Query Lan-
guages”

The advantages of this approach are that graph data can be easily inte-
grated with relational data, and that we can continue to benefit from
all the techniques that we have developed for relational databases. The
main drawback is that a relational structure is ill-suited to graphs and
forces the data to comply with a strict schema. GQL does not impose
a restriction on the storage of graphs, which is left to the discretion of
the implementation. This has the advantage of simplifying the imple-
mentation of algorithms specific to graphs and optimisations that are
not necessarily applicable in the relational context. Moreover, a “stan-
dard compliant” system should be easier to develop for GQL than for
SQL/PGQ, as the specification is “only” 600 pages long, compared to
SQL’s 4400. Apart from these differences (as well as some other details
concerning updates and the like), GQL and SQL/PGQ are identical, in
the sense that they share the same language for pattern matching. The
idea behind the design of this common core, was to combine the exist-
ing practical languages, keeping their shared components and leaving
to the user the choice to handle disagreements. For example, the kind
of path to be returned, be it shortest, no repeated nodes or no repeated
edges, can be selected for each individual query.

While this standardization work is a step in the right direction, there
is one crucial ingredient missing: a corresponding theoretical model.
When SQL was first being designed, the committee relied on relational
algebra and related theoretical work to create a powerful yet usable lan-
guage. On the other hand, GQL and SQL/PGQ are assembled together
from parts of already existing languages without a formal understand-
ing of how these parts behave, and especially how they interact. This is
the goal of this thesis: to define a theoretical language for graphs, akin
to relational algebra for SQL, that reflects the essential aspects of GQL
and SQL/PGQ while being simple enough for theoretical study.

Related Work
As mentioned previously, modern graph languages have been studied
since at least 1987, and RPQs are by now well understood. However,
none of these languages capture the core of GQL and SQL/PGQ. For in-
stance, data values have rarely been considered, and never in conjunc-
tion with path restrictors (shortest and the like). The only proposal com-
parable to what we will introduce in the next chapters is G-CORE [18],
a language developed by a group including theoreticians and imple-
menters from the most influential graph database systems. As G-CORE
was published in 2018, when the reflection on GQL and SQL/PGQ was
in its infancy, the published standards have deviated from it in non-
trivial ways; for example paths are no longer stored explicitly and the
central CONSTRUCT operation was not included. Furthermore, while G-
CORE is certainly more formal than the standards, it is still too far
removed from the simplicity of relational algebra and thus not quite
suitable for in-depth theoretical study.

Outline and main contributions
Chapter 2 is dedicated to the background and preliminaries required
to understand the rest of this thesis. In it we cover the definitions of
relational algebra and Datalog, two ubiquitous relational languages,
give an in-depth analysis of the differences between property graphs
and the competing model RDF, introduce RPQs and their most common

4 1 Introduction

3: This is also where the footnotes are
placed.

extensions and discuss the different path restrictors included in GQL.
Every language definition is accompanied by selected results whenever
it makes sense, to give an intuition of what is (or isn’t) feasible in our
context.

Im Chapter 3 we introduce the pattern matching language of SQL/PGQ
and GQL byway of examples, and present a first formalization that aims
to remain as close as possible to the standards.

In Chapter 4, we define the Graph Pattern Calculus, in the spirit of the
relational calculus, meant to reflect key aspects of graph pattern match-
ing. Together with its syntax and semantics, we present a typing system
that ensures that its expressions are well defined, and show two results,
the first on the complexity of enumerating answers, the second on its
expressive power compared to the common theoretical languages.

In Chapter 5 we bridge the gap between the graph and relational worlds
and formalizes the ’linear’ nature of GQL by proposing an alternative,
but equivalent, definition of relational algebra, allowing us to formally
distinguish between GQL and SQL/PGQ. We also prove that their com-
mon pattern matching language is not powerful enough to express a
number of very simple and natural queries, and even the full languages
are not as expressive as Datalog on graphs.

In Chapter 6 we consider lists and list operations, a popular extension
to core patternmatching, and show that not only do they add unwanted
complexity in theory but they also inevitably break the systems in prac-
tice.

Finally, we conclude in Chapter 7 and list some open questions and
possible extensions for future work.

Navigating this document As explained above, this thesis is sepa-
rated into Chapters, themselves separated into sections and subsections.
All of these parts are listed under Contents (page 8). Clicking on either
a title (or its corresponding page) will take you to its beginning.

Whenever an outside work is cited, its authors, title and publication
date appear in the large margin to the side of the text3. Clicking on
the id of a particular citation will take you to the end-of-chapter bibli-
ography page, where more detailed information is available. A global
list containing all citations of the thesis is available from page 157. Ci-
tations which are links to websites are simply underlined and do not
appear in the margin.

This document uses the knowledge package.With this package, all math-
ematical notions (in grey) become links to their definition (in red and
italicized). Please click on them if the acronym soup becomes too thick!
If you prefer reading on paper, an index of these same notions is avail-
able at the very end (from page 154).

While the use of this package was initially motivated by the need for an
index, it turned out to be of great help for writing as well. Having a new,
overarching way of looking at all the topics mentioned within the text
can be a great guide to determine the overall structure, or to see what’s
missing or out of place. It is also a good tool to catch mistakes such as
forgetting to define a particular notion or having multiple names for
the same concept. I highly recommend giving it a go, even for smaller
documents.

https://ctan.org/pkg/knowledge?lang=en

[1]: Codd (1970), “A Relational Model
of Data for Large Shared Data Banks”

[19]: Arenas et al. (2022), Database
Theory

Background and Preliminaries 2
2.1 Storing data
In the beginning of the 20th century, the world started shifting from
hand-written (and human-read) to electronic data. Over the course of
the next few decades, many systems were developed to store and re-
trieve this data efficiently. One thing they all had in common was that
the user needed to know the exact physical location of a piece of data
(its address on a disk for example) to be able to access it. Convinced
that there was a better way, Edgar F. Codd introduced the relational
model in his seminal paper A Relational Model of Data for Large Shared
Data Banks [1]. As the name suggests, this model is based on the math-
ematical concept of relations, subsets of the Cartesian product of a col-
lection of sets. Codd argues that this model has several advantages over
those proposed before. First, the relational model separates the repre-
sentation of the data the user has access to from the way the data is
organized in memory. This is not only easier to handle for the database
users, but also allows to simplify the query languages, which no longer
need to talk about the physical representation of data. Moreover, the
strong logical basis streamlines the study of the model independently
of the implementation and clarifies common definitions such as redun-
dancy and consistency. The rest of this section is dedicated to the basic
definitions of the relational model and the languages used to query it.
As this will not be the main focus of this thesis, only a handful of results
are mentioned.

2.1.1 The relational model
Unless stated otherwise, all definitions in this section are taken from [19].

We first fix disjoint infinite countable sets Rel of relation names (table
names), Attr of attribute names (column names)¸ Const of constants
(actual values) and Vars of variable names. We usually denote elements
of Rel by 𝑅, 𝑆, 𝑇, of Const by 𝑎, 𝑏, 𝑐 and of Vars by 𝑥, 𝑦, 𝑧with occasional
subscripts.

A relational database is composed of tables, which can be described
by their name and their attributes. Formally, we say that a relational
database has a schema which associates each relation name in that
database to its set of attribute names. By abuse of notation, we some-
times refer to relations by the name that represents them.

Definition 2.1.1 — Schema

A schema 𝑆 is a partial function from a finite subset of relation
names in Rel to finite sets of attribute names from Attr.

𝑆 ∶ Rel → 𝒫fin(Attr)

where 𝒫fin(Attr) is the finite powerset, i.e. the set of finite subsets,
of Attr.
For a relation name 𝑅 ∈ 𝑆 such that 𝑆(𝑅) = 𝐴1, 𝐴2,…𝐴𝑛, we call

6 2 Background and Preliminaries

𝐴1, 𝐴2,…𝐴𝑛 the sort of 𝑅, denoted by sort(𝑅), and 𝑛 the arity of
𝑅, denoted by arity(𝑅).
The set of relation names that appear in a given schema 𝑆 is called
its domain and denoted by 𝐷𝑜𝑚(𝑆).

One way of representing relationships between some individuals is to
store the information about specific persons in one table, and the infor-
mation about the relationship between them in as many tables as there
are relationships.

Example 2.1.2

The following schema 𝑆 can be used to represent a group of indi-
viduals who are either friends or members of the same family.

𝑆(Person) ={id, Name, Age}
𝑆(Friend) ={Person 1, Person 2, Since}

𝑆(Relative) ={Person 1, Person 2}

The entries of tables are called tuples. For a tuple to be part of a table
it must be of the same sort, that is have the same attributes.

Definition 2.1.3 — Tuple

Given a finite subset of attribute names 𝒜 = {𝐴1, 𝐴2,…𝐴𝑘} ∈
Attr𝑘, a 𝑘−tuple 𝑡 is a partial function from attribute names in 𝒜
to constants from Const.

𝑡 ∶ 𝒜 → Const

We call𝒜 the sort of 𝑡, denoted by sort(𝑡) and 𝑘 the arity of 𝑡, denoted
by arity(𝑡). When needed, we denote tuples explicitly by (𝐴1 ∶ 𝑎1, 𝐴2 ∶
𝑎2,…) where each 𝐴𝑖 is an attribute name and each 𝑎𝑖 is a constant.

Example 2.1.4

The following functions 𝑡1 and 𝑡2 are tuples over the set of at-
tributes {id, Name, Age}:
𝑡1(id) = 111 𝑡1(Name) = Alice 𝑡1(Age) = 35

𝑡2(id) = 444 𝑡2(Name) = Dana 𝑡2(Age) = 30

We fix Tup to be the set of all tuples of any sort and any arity, and
RelInst to be set of sets of tuples of the same sort, i.e relation instances.
The sort of a relation instance is the sort of the tuples it contains.

A database is a function that associates the relation names from its
schema to the tuples these relations contain.

2.1 Storing data 7

Person

id Name Age

111 Alice 35

222 Bob 35

333 Charlie 42

444 Dana 30

Friend

Person 1 Person 2 Since

111 222 02/02/2024

222 333 04/04/2024

222 444 03/03/2024

444 111 01/01/2024

Relative

Person 1 Person 2

222 333

222 444

333 444

444 111

Figure 2.1: A database of friends and relatives

[20]: Abiteboul et al. (1995), Founda-
tions of Databases

Definition 2.1.5 — Database

Given a schema 𝑆, a database 𝒟 over 𝑆 is a function from the rela-
tion names of 𝑆 to relation instances over the sorts of 𝑆.

𝒟 ∶ 𝐷𝑜𝑚(𝑆) → RelInst

such that for any 𝑅 ∈ 𝐷𝑜𝑚(𝑆), sort(𝑅) = sort(𝒟(𝑅)).

Example 2.1.6

Putting together the schema from Example 2.1.2, the tuples from
Example 2.1.4 and some other tuples, we get the database shown in
figure 2.1. Going forward, we will interpret the attributes Person 1
and Person 2 of the relations Friend and Relative as foreign keys
of, or references to, the attribute id of the relation Person. a For
example, we can say that the person with id 111 (whose name we
know is Alice) is friends with the person with id 222 (whose name
is Bob) since Feb. 2nd 2024.
a The formal definition of foreign keys is outside of the scope of this thesis.

The definitions above assume the named perspective, in which attributes
have names, as it is closer to actual database management systems. The
alternative, unnamed perspective, talks instead about the order of the
elements and is more suited to mathematical study. It is well-known
that these two models are equivalent [20].

2.1.2 Querying Relational Data
In order to extract information from a database, we need to formulate
our questions in some language. We call these questions queries.

Definition 2.1.7 — Queries and query languages

A query 𝑞 of arity 𝑘 ≥ 0 over a schema 𝑆 is a function of the form

𝑞 ∶ 𝒟 → 𝒫fin(Const
𝑘)

where 𝒟 is a database over 𝑆 and 𝒫fin(Const
𝑘) is the finite power-

set, i.e. the set of finite subsets, of Const𝑘. A query language is a
set of queries.

8 2 Background and Preliminaries

[21]: Libkin (2004), Elements of Finite
Model Theory
[22]: Hodges (1997), A Shorter Model
Theory

The semantics of a query executed on a database is its output, or what
it returns. The formal definition can change slightly depending on the
considered language, but in general it is the set of elements of the
database that render the query true.

The usual mathematical language we use to talk about relations is a
slight variation of First Order Logic (FO), called “Relational Calculus”
in the context of database theory. As a full introduction of FO is outside
the scope of this thesis, we refer the reader to any introductory logic or
model theory textbook such as [21] or [22].

Example 2.1.8 — FO as a query language

The following FO formula is a query over the schema of Exam-
ple 2.1.2.

𝜑 = ∃𝑠, Friend(𝑥, 𝑦, 𝑠) ∧ Relative(𝑥, 𝑦)

As the variables 𝑥 and 𝑦 are free, the semantics of 𝜑 is the
set of pairs (𝑝, 𝑠) such that 𝑝 and 𝑠 are both Friends and Rela-
tives. On the data presented in figure 2.1, this would be the set
{(222, 333), (222, 444), (444, 111)}.

First order logic is inherently a “declarative” language, it describes the
results that we want without explaining how to get them. While this
is usually a desirable feature for the end user, it is not enough for the
machine to operate on. The naïve solution of translating directly from
FO to some low-level machine code is often not suitable: whenever mul-
tiple strategies exist, the information contained within the FO query is
not enough to chose one over the other. What we do instead is trans-
late from FO to an intermediate level query language, called Relational
Algebra, in which each query corresponds to a different low-level strat-
egy. Whenever an FO query has multiple translations, these Relational
Algebra queries can be compared in order to choose the best one. Fur-
thermore, Relational Algebra happens to be a very useful tool for theo-
retical reasoning and we will see in chapter 5 that, no matter how far
we stray, we always end up coming back to it.

Definition 2.1.9 — Relational Algebra Syntax

A condition 𝜃 over a set of attributes 𝑈 ⊆ Attr is a Boolean combi-
nation of statements of the form 𝐴 = 𝐵, 𝐴 = 𝑎, 𝐴 ≠ 𝐵 and 𝐴 ≠ 𝑎
where 𝑎 ∈ Const and 𝐴, 𝐵 ∈ 𝑈.
Given a schema 𝒮, Relational Algebra (RA) expressions, and their
sort, are defined inductively as follows:
Relations: Any 𝑅 ∈ 𝒮 is an RA expression of sort 𝒮(𝑅)
Constants: If 𝑎 is a constant from Const and 𝐴 is an attribute name
form Attr, then {(𝐴 ∶ 𝑎)} is an RA expression of sort {𝐴}
Selection: If 𝑒 is an RA expression of sort S and 𝜃 is a condition
over S, then 𝜎𝜃(𝑒) is an RA expression of sort S
Projection: If 𝑒 is an RA expression of sort S and ̄𝐴 is a subset of S,
then 𝜋 ̄𝐴(𝑒) is an RA expression of sort ̄𝐴
Join: If 𝑒1 and 𝑒2 are two RA expressions of sort S1 and S2 , then
𝑒1 ⋈ 𝑒2 is an RA expression of sort S1 ∪ S2
Rename: If 𝑒 is an RA expression of sort S and ̄𝐴 and ̄𝐵 are sets of
attributes such that ̄𝐴 ∈ S and ̄𝐵 ∈ Attr− S, then 𝜌 ̄𝐴→ ̄𝐵(𝑒) is an RA

2.1 Storing data 9

J𝑅K𝒟 = 𝒟(𝑅)
J(𝐴 ∶ 𝑎)K𝒟 = {(𝐴 ∶ 𝑎)}q
𝜎𝜃(𝑒)

y
𝒟 = {𝑡 ∣ 𝑡 ∈ J𝑒K𝒟 and 𝑡 ⊨ 𝜃}q

𝜋 ̄𝐴(𝑒)
y
𝒟 = {𝑡 � ̄𝐴∣ 𝑡 ∈ J𝑒K𝒟}

J𝑒 ⋈ 𝑒′K𝒟 = = {𝑡 ∣ ∀𝑡1 ∈ J𝑒K𝒟 , 𝑡2 ∈ J𝑒′K𝒟 , 𝑅 ∈ sort(𝑒) ∪ sort(𝑒′) s.t. 𝑡1(𝐴) = 𝑡2(𝐴)∀𝐴 ∈ sort(𝑒) ∩ sort(𝑒′),
𝑡(𝑅) = 𝑡1(𝑅) if 𝑅 ∈ sort(𝑒) and 𝑡(𝑅) = 𝑡2(𝑅) if 𝑅 ∈ sort(𝑒′) ∖ sort(𝑒)}q

𝜌 ̄𝐴→ ̄𝐵
y
𝒟 = {𝑡 ∣ 𝑡(𝐵) = 𝑡′(𝐴) and 𝑡(𝐶) = 𝑡′(𝐶) for all 𝐶 ∈ sort(𝑒) − {𝐴} for all 𝑡′ ∈ J𝑒K𝒟}

J𝑒 ∪ 𝑒′K𝒟 = J𝑒K𝒟 ∪ J𝑒′K𝒟
J𝑒 ∖ 𝑒′K𝒟 = J𝑒K𝒟 ∖ J𝑒′K𝒟

Figure 2.2: The semantics of RA

expression of sort (S ∖ 𝐴) ∪ 𝐵
Union: If 𝑒1 and 𝑒2 are two RA expressions of the same sort S, then
𝑒1 ∪ 𝑒2 is an RA expression of sort S
Difference: IF 𝑒1 and 𝑒2 are two RA expressions of the same sort S,
then 𝑒1 ∖ 𝑒2 is an RA expression of sort S

The semantics of a Relational Algebra query over a given database 𝒟
is defined as a set of tuples from 𝒟 ∪ Const. This set is generated by
applying the relational operators of the query one after the other to a
working table which contains the current tuples needed for the compu-
tation. Initially, the working table is empty. The Relations operator can
be used to populate it with tuples from the database, while the Con-
stants operator can be used for constants. The union, difference and
selection operators can manipulate the tuples, either adding or remov-
ing some, while projection and renaming change their sort, and join
can do both at the same time.

A tuple 𝑡 satisfies a condition 𝜃 if it satisfies the full boolean expression.
Formally, we say that 𝑡 ⊨ 𝜃 if:

𝜃 is of the form 𝐴 = 𝐵 and 𝑡(𝐴) = 𝑡(𝐵)
𝜃 is of the form 𝐴 ≠ 𝐵 and 𝑡(𝐴) ≠ 𝑡(𝐵)
𝜃 is of the form 𝐴 = 𝑎 (resp. 𝐴 ≠ 𝑎) and 𝑡(𝐴) = 𝑎 (resp. 𝑡(𝐴) ≠ 𝑎)
𝜃 is of the form 𝜃1 ∨ 𝜃2 and 𝑡 ⊨ 𝜃1 ∨ 𝑡 ⊨ 𝜃2
𝜃 is of the form 𝜃1 ∧ 𝜃2 and 𝑡 ⊨ 𝜃1 ∧ 𝑡 ⊨ 𝜃2
𝜃 is of the form ¬𝜃′ and 𝑡 ⊭ 𝜃′

The definition of the semantics of an RA expression 𝑒 over a schema 𝒮
evaluated on a database 𝒟, denoted by J𝑒K𝒟, is shown in Figure 2.2.

Example 2.1.10

The following RA expression is a query over the schema of Exam-
ple 2.1.2.

𝜋Name, Name 1(𝜎Age=Age 1(𝜌ID, Name, Age→ID 1, Name 1, Age 1(Person) ⋈ Person))

This query describes the following algorithm: take 2 copies of the
table Person and rename the attributes of one to differentiate it
from the other. In the resulting table, select the tuples in which the
attribute “Age” is equal to the attribute “Age 1” (i.e. “Age” from the
first and second copy respectively). Output the attributes “Name”

10 2 Background and Preliminaries

[20]: Abiteboul et al. (1995), Founda-
tions of Databases

1: The unique minimal model can be
obtained by taking the intersection of
all finite models.

and “Name 1” for each such tuple. In other words, this query com-
putes the pairs of people who have the same age.
On the data presented in figure 2.1, this would be the set
{(𝐴𝑙𝑖𝑐𝑒, 𝐴𝑙𝑖𝑐𝑒), (𝐵𝑜𝑏, 𝐵𝑜𝑏), (𝐶ℎ𝑎𝑟𝑙𝑖𝑒, 𝐶ℎ𝑎𝑟𝑙𝑖𝑒), (𝐷𝑎𝑛𝑎, 𝐷𝑎𝑛𝑎),
(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏), (𝐵𝑜𝑏, 𝐴𝑙𝑖𝑐𝑒)}

We have assumed here the named perspective to define RA. As in the
case of tuples, there exists an equivalent unnamed variant of RA [20].

As we will explain in section 2.2, if a query relies on transitivity (or
more generally recursion), we cannot write it in FO nor RA. To write
these kinds of queries we use a language called Datalog.

Definition 2.1.11 — Datalog Syntax

A Datalog rule is an expression of the form

𝑅(̄𝑢) ← 𝑅1(̄𝑢1),… , 𝑅𝑛(̄𝑢𝑛) 𝑛 ≥ 1

where 𝑅, 𝑅1,… , 𝑅𝑛 are relation names and ̄𝑢, ̄𝑢1,… , ̄𝑢𝑛 are se-
quences of variables and constants over Vars∪Const such that each
𝑣 ∈ ̄𝑢 appears in at least one of ̄𝑢1,… , ̄𝑢𝑛.
A Datalog program is a finite set of Datalog rules.

Given a Datalog rule 𝑒 = 𝑅(̄𝑢) ← 𝑅1(̄𝑢1),… , 𝑅𝑛(̄𝑢𝑛), we call 𝑅(̄𝑢) its
head and 𝑅1(̄𝑢1),… , 𝑅𝑛(̄𝑢𝑛) its body.

For a Datalog programΠ, the set of constants occurring in its rules, also
called its active domain, is denoted by adom(Π).

We say that a relation is extensional if it occurs only in the body of
the rules, and intensional if it occurs in the head of at least one rule.
It is sometimes useful to assume the existence of a special intensional
predicate called Ans or Out, which specifies the output of a program.
The extensional schema and intensional schema of a Datalog programΠ,
that is the sets of its extensional and intensional relations respectively,
are denoted by edb(Π) and idb(Π). The schema of Π is the union of
edb(Π) and idb(Π).

The semantics of Datalog can be defined in several different ways. We
present here the “model theoretic” approach, in which the Datalog pro-
gram is interpreted as a set of first-order sentences, to accentuate the
link between Datalog and FO.

Given a Datalog rule 𝜌 = 𝑅(̄𝑢) ← 𝑅1(̄𝑢1),… , 𝑅𝑛(̄𝑢𝑛), we denote by
𝜑𝜌 the corresponding first-order sentence ∀𝑥1,… , 𝑥𝑚 (𝑅1(̄𝑢1) ∧ … ∧
𝑅𝑛(̄𝑢𝑛) → 𝑅(̄𝑢)) where 𝑥1,… , 𝑥𝑚 are the variables in 𝜌. The set of
sentences corresponding to a Datalog program Π is denoted by ΣΠ.

We say that a database 𝒟 is a model of Datalog program Π if all sen-
tences of the translation ofΠ are satisfied in𝒟, i.e.𝒟 ⊨ 𝜋 for all 𝜋 ∈ ΣΠ.

For a Datalog program Π and a database 𝐷, the semantics of Π on 𝐷,
denoted by JΠK𝐷, is the unique minimum model1 over the schema of
Π that satisfies all sentences in ΣΠ and contains 𝐷. Notice that we re-
quire the model to be minimal since, if such a model exists, there are
necessarily infinitely many others that also satisfy these constraints.

2.2 Comparing Query Languages 11

[23]: Sipser (1996), “Introduction to
the Theory of Computation”
[24]: Hopcroft et al. (2007), Introduc-
tion to automata theory, languages, and
computation, 3rd Edition

Example 2.1.12

The following set of rules is a Datalog program over the schema of
Example 2.1.2.
1 Family(x,y) ← Relative(x,y)
2 Family(x,y) ← Relative(x,z), Relative(z,y)
3 Family(x,y) ← Family(y,x)

This query computes the transitive (rule 2) and symmetric (rule 3)
closure of the Relative table, i.e. the family tree. To compute the
family tree of a specific person we can simply fix the first argument
to the appropriate id.
FamilyAlice(y) ← Family(’111’,y)

The above rule uses Alice’s id. On the data presented in
figure 2.1, the set corresponding to Alice’s family tree is
{𝐵𝑜𝑏, 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, 𝐷𝑎𝑛𝑎, 𝐴𝑙𝑖𝑐𝑒}.

2.2 Comparing Query Languages
Relational algebra and first order logic are two examples of relational
query languages. Other languages can be defined as extensions (e.g.
with the addition of some aggregation operator like sum and average)
or restrictions (e.g. by removing negation) of these, or even from scratch,
like Datalog. To know how these languages relate to one another, we
can study either their expressive power, to answer questions like “Is
there a query that I can write in language 1 and that I cannot write in
language 2?”, or their complexity, to answer questions like “Is it harder
to find answers for queries written in language 1 or language 2?”.

The strategy to prove a positive expressive power result, i.e. “All queries
that can be written in language ℒ1 can also be written in language
ℒ2”, is usually to provide an explicit translation algorithm, from ℒ1
to ℒ2. Proving a negative expressive power result, i.e. “There exists
a query in language ℒ1 that cannot be written in language ℒ2”, can
be challenging as it typically relies on tools from finite model theory,
automata theory, or even arithmetic.

For complexity results, languages are compared with respect to a spe-
cific problem, hence the first step is to analyze the complexity of the
languages for that problem independently. The result of this analysis is
a complexity class to which, the language belongs. In the rest of this
thesis, we will refer to the common complexity classes using the stan-
dard notation like NLOGSPACE, NP, PSPACE and so on. As usual, we
say that a problem is complete for a class if the problem is both hard
and a member of this class. For more information on these classes a
good introduction is provided in [23] or [24]. In addition to these, we
will also refer to two less standard classes. The first is AC0, the class of
problems which can be solved using only a boolean circuit of constant
depth and polynomial width. The second is the class of problems for
which the answers can be enumerated in polynomial delay, i.e. when
the time between an answer and the next is bounded by a function
polynomial in the input size.

Once we know the complexity classes of all the languages, we can com-
pare them and conclude, if say the first class is larger than the second,
that the first language is harder than the second for a specific problem.

12 2 Background and Preliminaries

In the rest of this section we give an example of positive and negative
expressive power results and present the two main problems we study
in this thesis.

Expressive power

What happens if we add a new rule to the grammar of a language? Nat-
urally, we can now write more queries, but are they different from the
ones we could write before, or can each one of them be rewritten in the
smaller language? The same question can be asked for languages de-
fined independently, when one is not the extension or restriction of the
other. The answer to this question allows us to classify languages with
respect to one another. When all queries of some language 𝐿1 can also
be written in a language 𝐿2, we say that 𝐿1 is subsumed by 𝐿2. When
this is true for both directions, 𝐿1 is subsumed by 𝐿2 and 𝐿2 is subsumed
by 𝐿1, the languages are said to be equivalent. In the following formal
definition, we assume that the data model for both languages is the
same, although it need not always be the case.

Definition 2.2.1 — Language subsumption and equivalence

Given two queries 𝑄1 and 𝑄2, we say that 𝑄1 and 𝑄2 are equivalent
if

q
𝑄1

y
𝒟 =

q
𝑄2

y
𝒟 on any database 𝒟.

A (query) language 𝐿1 is subsumed by a (query) language 𝐿2 if for
all queries 𝑄 ∈ 𝐿1 there exists a query 𝑄 ′ ∈ 𝐿2 such that 𝑄1 and 𝑄2
are equivalent. If 𝐿1 is subsumed by 𝐿2 and 𝐿2 is subsumed by 𝐿1,
𝐿1 and 𝐿2 are said to be equivalent.
A (query) language 𝐿1 is less expressive than a (query) language 𝐿2
if there exists a query 𝑄 ∈ 𝐿1 such that, for all queries 𝑄 ′ ∈ 𝐿2, 𝑄1
and 𝑄2 are not equivalent.

A famous database theory example of language equivalence is relational
algebra and Relational Calculus, known as Codd’s theorem.

Theorem 2.2.2 — Codd’s Theorem

Relational Algebra and Relational Calculus are equivalent [19, 20]
[19]: Arenas et al. (2022), Database
Theory
[20]: Abiteboul et al. (1995), Founda-
tions of Databases

.

The proof of this Theorem is by straightforward induction on the struc-
ture of the queries in both directions.

Thanks to this equivalence, Relational Algebra can benefit from the nu-
merous results on FO. One such classic result is of particular interest to
us as it will be the main motivating factor of the need for graph-specific
languages: graph reachability is not expressible in FO.

For now, we define a graph 𝐺 as a set of vertices 𝑉 and a set of edges
𝐸 where an edge is an ordered pair of vertices (see section 2.3 for the
definition of property graphs which will be the model used in the rest
of this thesis). The problem of graph reachability asks whether there
exists a path between two fixed vertices 𝑣𝑠 and 𝑣𝑡, i.e. a sequence of
edges 𝑒0,… 𝑒𝑛 such that the the second element of 𝑒𝑖 is the first element
of 𝑒𝑖+1, 𝑒0 starts in 𝑣𝑠 and 𝑒𝑛 ends in 𝑣𝑡.

2.2 Comparing Query Languages 13

2: Recursive queries are however ex-
pressible in SQL since 1999 but often
involve many joins, usually one per re-
cursive iteration. As this is a costly op-
erator, we will explore other ways of ex-
pand the expressive power of FO.

[25]: Jones (1980), “Undecidable dio-
phantine equations”

Definition 2.2.3 — The Reachability Problem

Problem Reachability
Input Graph 𝐺 = (𝑉, 𝐸), two vertices 𝑢, 𝑣 in 𝑉
Output true if there exists a path from 𝑢 to 𝑣 in 𝐺,

false otherwise

Intuitively, this problem cannot be solved in FO because we would need
infinitely many queries, one for each possible length of path. Assuming
our edges are stored in some relational table 𝐸 with schema 𝑆(𝐸) =
{𝑣1, 𝑣2}, we can write a query to answer the question “Is there a path
of length 1 between 𝑣1 and 𝑣2?”: ∃𝑥, 𝑦 𝐸(𝑥, 𝑦) ∧ 𝑥 = 𝑣1 ∧ 𝑦 = 𝑣2. We
can do the same for a path of length 2: ∃𝑥, 𝑦, 𝑧 𝐸(𝑥, 𝑧) ∧𝐸(𝑧, 𝑦) ∧𝑥 =
𝑣1 ∧ 𝑦 = 𝑣2. By iterating this construction, i.e. by adding more and
more existentially quantified intermediate variables, we may write a
query for any fixed length path. But notice that, no matter the query,
we can always build a graph in which 𝑣1 and 𝑣2 are further apart than
the longest path we have a query for.

Theorem 2.2.4 — FO and the Reachability problem

There is no FO query 𝑄 such that for all graphs 𝐺 = (𝑉, 𝐸) and
vertices 𝑢, 𝑣 ∈ 𝑉, J𝑄(𝑢, 𝑣)K𝐺 = 𝑡𝑟𝑢𝑒 if and only if there a path
from 𝑢 to 𝑣 in 𝐺. In other words, the Reachability problem is not
expressible in FO [19, 21] [19]: Arenas et al. (2022), Database

Theory
[21]: Libkin (2004), Elements of Finite
Model Theory

.

The proof of this Theorem, presented for example in [21], relies on
the notion of “locality”, which formalizes the above idea that FO can
only touch elements finitely many steps away from the starting point.
More generally, this entails that any inherently recursive problem is not
expressible in FO 2.

Complexity

Some queries are easy, for example “does this element belong to the
database?” can be answered by reading the whole database once. Other
queries are harder, for example “find all pairs of people of the same
age” clearly requires some memory to remember everyone’s age. And
some queries cannot be answered at all, for example “is there a set
of (integer) elements 𝑥1,… , 𝑥𝑘 from ℤ such that 𝑓(𝑥1,… , 𝑥𝑘) = 0”
where 𝑓 is a multivariate polynomial (this is called the Diophantine
equation problem and is known to be undecidable [25]). The study
of complexity tries to classify query languages into groups where all
elements are roughly as hard to evaluate as the others. The complexity
of a language is that of its hardest query, i.e. we always study the worst-
case scenario.

The complexity class of a query language does not depend only on the
language itself, but also on the type of problem we are trying to solve.
For example, it could be easier to answer whether there exists a pair
of people of the same age than to list all pairs of such people. The first
kind of problem is called a decision problem, as we are trying to decide
whether a property is true or not, the second is an enumeration problem,
as we want to enumerate all the answers without repetition. These are

14 2 Background and Preliminaries

[19]: Arenas et al. (2022), Database
Theory

[24]: Hopcroft et al. (2007), Introduc-
tion to automata theory, languages, and
computation, 3rd Edition

the two problems that we will study in the rest of this thesis and we
present them now.

In the context of databases, the decision problem is called the query
evaluation problem and the goal is to determine whether the input tu-
ple is an answer to the input query on the input database. The complex-
ity of the more intuitive problem of simply outputting all the answers
is often a direct consequence of the complexity of query evaluation as
we can enumerate all possible candidates and check whether each one
is, in fact, an answer.

We follow [19] to define, for any language ℒ, the query evaluation
problem for ℒ as follows.

Definition 2.2.5 — Query evaluation

Problem ℒ-evaluation
Input Query 𝑄 ∈ ℒ, database 𝒟, tuple ̄𝑎 over Const
Output true if ̄𝑎 ∈ 𝑄(𝒟), false otherwise

Studying query evaluation is usually the starting point for understand-
ing any language. In section 2.4, we will give the complexity of query
evaluation for all considered languages as, although this characteriza-
tion is quite broad and only considers the worst-case, it gives a first idea
of how these languages compare.

To give an idea of the kinds of results one can expect when studying the
query evaluation problem for database query languages, we now recall
the textbook result for Relational Algebra.

Example 2.2.6 — Relational algebra evaluation complexity

For the language of relational algebra, the complexity of query eval-
uation is PSPACE-complete [21]

[21]: Libkin (2004), Elements of Finite
Model Theory

.

Hardness is proved by reduction from the Quantified Boolean Formula
problem, the canonical complete problem for PSPACE [24], which asks
whether the input quantified boolean formula evaluates to true. Mem-
bership is given via a straightforward algorithm that tries to assign a
value to each variable.

As PSPACE is considered an “intractable” class, i.e. its problems have
a good chance of timing-out in practice, restrictions of FO have been
investigated to find “well-behaved” classes, i.e. “tractable” ones. One
particular class, that of Conjunctive Queries (CQs), is now considered
the basic building block of all the others as it corresponds to the most
frequently asked queries in real life. A conjunctive query is an FO for-
mula in which the only allowed operators are the conjunction ∧ and
the existential quantifier ∃.

Theorem 2.2.7 — Conjunctive Query Evaluation

For the language of conjunctive queries, the complexity of query
evaluation is NP-complete [26]

[26]: Chandra et al. (1977), “Optimal
Implementation of Conjunctive Queries
in Relational Data Bases”

.

Hardness can be proved by reduction from the 3-colorability problem,

2.2 Comparing Query Languages 15

[21]: Libkin (2004), Elements of Finite
Model Theory

which asks whether there exists a partition of the vertices of a graph
𝐺 = (𝑉, 𝐸) into three sets 𝐴, 𝐵 and 𝐶 such that for all edges (𝑢, 𝑣) ∈ 𝐸,
the vertices 𝑢 and 𝑣 do not belong to the same set. The algorithm for
membership is a series of guesses for each variable of the query [21].

Of course, the class of conjunctive queries is rather restricted with re-
gards to expressive power so it is common to consider larger classes.
A frequent extension is to Unions of Conjunctive Queries (UCQs), in
which queries are defined as union of CQs. This has no effect on com-
plexity of query evaluation as each CQ can be evaluated separately, but
it can make other problems more difficult (notably query enumeration).
Other extensions exist, such as negation or allowing inequality in con-
ditions, but are not within the scope of this thesis.

Notice that in the above definition of query evaluation, the query, data-
base and tuple are all three given as input. The resulting complexity is
therefore called the combined complexity, as it combines both database
and query in the input. Since, in practice, the query is usually much
smaller than the database, we also study the problem of query evalua-
tion for a fixed query and call its complexity data complexity. Formally,
we define this as follows.

Definition 2.2.8 — Query evaluation for a fixed query

Problem 𝑄-evaluation
Input Database 𝒟, tuple ̄𝑎 over Const
Output true if ̄𝑎 ∈ 𝑄(𝒟), false otherwise

By design, data complexity is generally lower than, and rarely equal to,
the corresponding combined complexity for a particular problem. For
RA, this gap is particularly large.

Example 2.2.9 — RA evaluation data complexity

For the language of relational algebra, the data complexity of query
evaluation is AC0 [21]

[21]: Libkin (2004), Elements of Finite
Model Theory

.

As the database is by definition finite, we can explicitly construct the
whole AC0 circuit which corresponds to the FO formula equivalent to
the query by replacing each existential (resp. universal) quantifier by
a disjunction (resp. conjunction) over all possible values. As all other
quantifiers have a corresponding boolean gate, we get the desired re-
sult.

The second problemwe consider is query enumeration the goal of which
is to list all tuples that satisfy the query without repetition. Given a lan-
guage ℒ, we define the query enumeration problem as follows.

Definition 2.2.10 — Query enumeration

Problem ℒ-enumeration
Input Query 𝑄 ∈ ℒ, database 𝒟
Output Enumerate all tuples ̄𝑎 such that ̄𝑎 ∈ J𝑄(𝒟)K

without repetition

16 2 Background and Preliminaries

[27]: Lima (2014), The book of trees :
visualizing branches of knowledge

As for query evaluation, we can define the query enumeration problem
for a fixed query 𝑄.

The interesting measure of complexity for query enumeration is slightly
different than for query evaluation. Instead of counting the total time
(and space) spent computing the final answer, we will measure the
ressources spent before the first answer, we call this step the “precompu-
tation phase”, and also the ressources spent between two consecutive
answers, we call this the “delay”. For example, if the answers to a par-
ticular query can be enumerated in polynomial delay, the time spent
in both the precomputation phase and the delay phase must be at most
polynomial in the size of the input (here the query and the database).

To the best of our knowledge, the complexity of query enumeration for
RA (or even CQs) is still an open question.

Note Another popular problem to study is query containment: given
two queries 𝑄1 and 𝑄2 are all answers to 𝑄1 also answers to 𝑄2? This is
equivalent to asking whether

q
𝑄1

y
𝒟 ⊆

q
𝑄2

y
𝒟 for all databases 𝒟? This

problem is strongly connected to optimisation questions as, in some
cases, a positive answer means that a complicated, hard to evaluate
query can be rewritten into a simpler one.

2.3 Graph databases
In essence, a graph is a collection of nodes connected by edges. This
model is used to represent interconnected data in many, if not all, do-
mains and communities. In biology, chemistry and physics, graphs may
describe the structure of particles, atoms, molecules (and so on) and
their interactions. In engineering, they explain how an object works
and its internal structure. In social sciences, they show the links be-
tween people, factions, countries, etc. According to Manuel Lima, one
of the first known graphs is an illustration of the biblical genealogy in
the shape of an abstract tree, by Stephanus Garsia Placidus, from the
11th century [27]. It is no surprise then, that the study of these objects
has motivated mathematicians since at least 1736 when Leonhard Eu-
ler solved the problem of the Seven Bridges of Königsberg. In the almost
300 years since, Graph Theory has become a many-faceted discipline
and an integral part of mathematics and computer science.

The formal definition of a graph depends on the level of detail required
by the application. The simplest model is arguably the undirected graph,
in which nodes are a set 𝑁 and edges are a set of unordered pairs from
𝑁×𝑁. When the edges are replaced by a set of ordered pairs from𝑁×𝑁,
we say that the graph is directed. If two nodes can have multiple edges
between them, the set is replaced by a multiset of pairs of nodes, or,
equivalently, a set of “ids” and a function associating each id with a pair
of nodes. This type of graph is called a multigraph. Extra information
can be affixed to nodes and edges by adding labels, usually from a finite
alphabet, or weights, from the natural numbers, integers, real numbers
or any mathematical structure. In the first case, we say that the graph
is labelled, in the second that it is weighted.

The first graph-based database model was the Network Model. Intro-
duced in 1969 by the CODASYL Data Base Task Group, this model stores
data as records that can be linked to one another under the condition
that the overall structure satisfies the graph-like schema. In previous

2.3 Graph databases 17

[4]: Angles et al. (2008), “Survey of
graph database models”

“hierarchical” models, the schema was strictly hierarchical (hence the
name), i.e. a tree, and thus did not allow children nodes to have more
than one parent node. As many models predating the relational one,
the Network model suffered from its low-level interface that required
users to know the structure of the data in-memory and its use stopped
in the 1980s. The idea of using a graph structure survived in the back-
ground, either as smaller projects or add-ons to other kinds of databases
until the 2010s when it came back into focus. For more information on
the historical context and a comparison of the different models see the
survey of Renzo Angles and Claudio Gutierrez [4].

Today, the graph database world is divided in two. On one side are
property graphs, a model in which graphs are enhanced with as much
information as needed: directed and undirected edges can co-exist in
the same graph, nodes and edges have arbitrarily many labels and prop-
erties. This model was popularized by Neo4j in 2010 and has been
implemented in other products such as Amazon Neptune, JanusGraph,
ArangoDB and Apache TinkerPop. Thismodel was standardized in 2023
by ISO, the organisation also responsible for SQL (among countless
other standards). This is the focus of this thesis.

On the other side is the Resource Description Framework, a W3C stan-
dard in which everything is a triple. The graph can be extracted from
these triples by viewing the middle element as an edge between the
other two. This structure greatly facilitates the use of a schema, which
can be integrated directly with the rest of the data, but makes prop-
erties harder to model and query. This is the model used in “Seman-
tic Web” applications such as DBPedia, YAGO, Wikidata and Creative
Commons. In subsection 2.3.2, we will show that these two models are
“hardly” comparable as translation from one to the other can cause an
exponential blow-up. Nevertheless, results about one model can often
be directly applied, or at least easily translated, to the other so, unless
necessary, the distinction will not be made when citing works focusing
on RDF.

In the rest of this section we present the property graph model in detail
and compare it to RDF.

2.3.1 Property Graphs
In a property graph, a node represents a “concept”, either physical, such
as a person or a soup, or immaterial, such as Polish cuisine. Edges de-
scribe the “relationships” between these concepts, like family relations
or belonging of the soup to the cuisine. In general, for a sentence of the
form “subject verb object”, the subject and object will be modeled as
nodes and the verb as an edge.

A directed edge represents an asymmetric relationship, such as belong-
ing (the soup belongs to the cuisine, not the other way around). In this
case, we say that the edge has a source, from which it starts, and a tar-
get, to which it goes. In the previous example, the soup is the source,
and Polish cuisine is the target. A undirected edge represents a symmet-
ric relationship, such as two dishes going well together. In this case, we
say the the edge has two endpoints without a distinguished order or
direction. If the source is the same as the target, or if both endpoints
are the same, we say that the edge is a self-loop.

Labels usually represent the category of the concept or relationship. To

https://neo4j.com
https://aws.amazon.com/neptune/
https://janusgraph.org
https://arangodb.com
https://tinkerpop.apache.org
https://www.iso.org/home.html
https://www.w3.org
https://www.dbpedia.org
https://yago-knowledge.org
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://creativecommons.org
https://creativecommons.org

18 2 Background and Preliminaries

distinguish between two elements of a same category, the particular-
ities of graph elements can be specified by properties. For example,
Alice and Bob of figure 2.1, would both get label Person but could be
distinguished by the value of the property name.

Nodes and edges are sets of ids that are linked together by functions,
giving the model flexibility. The source and target nodes of a directed
edge are given by the functions src and tgt respectively. The endpoints of
an undirected edge are given as pairs of nodes by the function endpoints.
The function 𝜆 returns the set of labels for each id while 𝛿 does the same
for properties.

Figure 2.3: Alice’s friends and relatives
as a property graph

Relative

r3

Relative

r1
Relative

r2

Relative

r4

Friend

since:01/01/2024
f1

Friend

since:02/02/2024
f2

Friend

since:03/03/2024
f3

Friend

since:04/04/2024
f4

ID: 222
name: Bob
age: 35

Person

p2

ID: 111
name: Alice
age: 35

Person

p1

ID: 444
name: Dana
age: 30

Person

p4

ID: 333
name: Charlie
age: 42

Person

p3

We assume disjoint countable sets 𝒩,ℰd, ℰu of node, directed, and
undirected edge ids, ℒ of labels and 𝒦 of keys.

Definition 2.3.1 — Property Graph

A property graph is a tuple 𝐺 = ⟨𝑁, 𝐸d, 𝐸u, 𝜆, endpoints, src, tgt, 𝛿⟩
where

▶ 𝑁 ⊂ 𝒩 is a finite set of node ids used in 𝐺;
▶ 𝐸d ⊂ ℰd is a finite set of directed edge ids used in 𝐺;
▶ 𝐸u ⊂ ℰu is a finite set of undirected edge ids used in 𝐺;
▶ 𝜆 ∶ 𝑁 ∪ 𝐸d ∪ 𝐸u → 2ℒ is a labelling function that associates

with every id a (possibly empty) finite set of labels from ℒ;
▶ src, tgt ∶ 𝐸d → 𝑁 define source and target of a directed edge;
▶ endpoints ∶ 𝐸u → 2𝑁 so that |endpoints(𝑒)| is 1 or 2 define

endpoints of an undirected edge;
▶ 𝛿 ∶ (𝑁 ∪ 𝐸d ∪ 𝐸u) × 𝒦 → Const is a partial function that

associates a constant from Constwith an id from (𝑁∪𝐸d∪𝐸u)
and a key from 𝒦.

We denote by 𝔾 the set of all property graphs.

2.3 Graph databases 19

3: As is usual in the graph database lit-
erature [9, 12, 28, 29], we use the term
path to denote what is called “walk” in
the graph theory literature [30].

Example 2.3.2

The graph represented in figure 2.3 encodes the same data as the
database shown in figure 2.1. In this representation, the circles de-
pict the nodes, the purple lines are undirected edges and the yellow
arrows are directed edges. The choice of translating the Friend re-
lation as directed edges, and the Relative relation as undirected
edges is arbitrary and many other translations are possible.

Nodes and edges can be assembled together into paths that go from one
node to the next by following the edges that connect them. Formally, a
path is an alternating sequence of nodes and edges that starts and ends
with a node, that is, it is a sequence of the form

𝑝 = 𝑢0𝑒1𝑢1𝑒2 ⋯𝑒𝑛𝑢𝑛 ,

where 𝑢0,… , 𝑢𝑛 are nodes and 𝑒1,… , 𝑒𝑛 are (directed or undirected)
edges. Note that we allow 𝑛 = 0, in which case the path consists of
a single node and no edges. As for directed edges, we denote 𝑢0 as
src(p) and 𝑢𝑛 as tgt(p); we also refer to 𝑢0 and 𝑢𝑛 as the path’s end-
points. The length of a path 𝑝, denoted len(𝑝), is 𝑛, i.e., the number
of occurrences of edge ids in 𝑝. We call the path of length zero (com-
posed of a single node) the edgeless path. We spell paths explicitly
as path(𝑢0, 𝑒1, 𝑢1,⋯ , 𝑒𝑛, 𝑢𝑛). Whenever a node repeats in the path, i.e
∃𝑖, 𝑗 𝑢𝑖 = 𝑢𝑗, we say that the path contains a cycle composed of all the
elements between 𝑢𝑖 and 𝑢𝑗. We denote the set of all paths by Paths.

Given a graph 𝐺, a path in 𝐺 is a path such that each edge in it connects
the nodes before and after it in the sequence.3 Formally, it is a path
path(𝑢0, 𝑒1,… , 𝑒𝑛, 𝑢𝑛) such that at least one of the following holds for
each 𝑖 ∈ [𝑛]:

(a) src(𝑒𝑖) = 𝑢𝑖−1 and tgt(𝑒𝑖) = 𝑢𝑖 in which case 𝑒𝑖 is as a forward
edge in the path;

(b) src(𝑒𝑖) = 𝑢𝑖 and tgt(𝑒𝑖) = 𝑢𝑖−1 in which case 𝑒𝑖 is a backward
edge in the path;

(c) endpoints(𝑒𝑖) = {𝑢𝑖−1, 𝑢𝑖} in which case 𝑒𝑖 is an undirected edge
in the path.

Here, both (a) and (b) can be true at the same time in the case of a
directed self-loop, but (c) is not compatible with neither (a) nor (b). By
Paths(G) we denote the set of paths in 𝐺. Notice that Paths(𝐺) can be
infinite.

Two paths 𝑝 = path(𝑢0, 𝑒0, 𝑢1, 𝑙𝑑𝑜𝑡𝑠, 𝑢𝑘) and 𝑝′ = path(𝑢′
0, 𝑒

′
0, 𝑢

′
1 …,𝑢′

𝑗)
concatenate if 𝑢𝑘 = 𝑢′

0, in which case their concatenation is defined as

𝑝 ⋅ 𝑝′ = path(𝑢0, 𝑒0, 𝑢1 …,𝑢𝑘, 𝑒
′
0, 𝑢

′
1 …,𝑢′

𝑗).

Note that if one of the paths consists of a single node, then it is a unit
of concatenation and does not change the result. That is, 𝑝 ⋅ path(𝑢) is
defined iff 𝑢 = 𝑢𝑘, in which case it equals 𝑝 (likewise for path(𝑢) ⋅ 𝑝
and 𝑢 = 𝑢0).

20 2 Background and Preliminaries

[31]: Hartig et al. (2024), RDF 1.2 Con-
cepts and Abstract Syntax

[31]: Hartig et al. (2024), RDF 1.2 Con-
cepts and Abstract Syntax

[32]: Schreiber et al. (2014), RDF 1.1
Primer

2.3.2 Short digression: The Resource Description
Framework (RDF)

Originally standardized by the W3C in 1999 as a metadata descrip-
tion language, RDF has since become the most popular language for
ressource description on the Web. RDF data holds information about
IRIs (short for International Resource Identifier), which serve as identi-
fiers for all resources. A resource can be any object, person or concept,
physical or immaterial, real or abstract. IRIs can be assigned to their
resource either by authorities such as the W3C, DBPedia or Wikidata,
or by any person or organisation by publishing a document describing
what each IRI refers to [31]. We denote the (countably) infinite set of
possible IRIs by Res.

To link resources with their values (like the name or birthday date of a
person), RDF data also refers to literals, which can be either a string, a
number or a date [31]. We denote the (countably) infinite set of literals
by Lit. If a resource has a relationship to an unknown (or unimportant)
entity, this entity can be replaced by a blank node [32]. We denote the
(countably) infinite set of blank nodes by Blnk.

IRIs, literals and blank nodes are assembled together into statements of
the form “subject predicate object” called triples. In such a statement,
the subject is the resource of interest, the object is another resource
and the predicate encodes the nature of the relationship between the
subject and the object.

Definition 2.3.3 — The RDF model [33]

An RDF triple is a tuple (𝑠, 𝑝, 𝑜) such that 𝑠 is an IRI or blank node
from Res∪Blnk, 𝑝 is an IRI from Res, and 𝑜 is an IRI, blank node or
literal from Res ∪ Blnk ∪ Lit. We call 𝑠 the subject, 𝑝 the predicate
and 𝑜 the object of the triple.
An RDF triple can be represented as a 𝑝-labelled edge from the
node 𝑠 to the node 𝑜, i.e. 𝑠

𝑝
−→ 𝑜. An RDF graph is a set of RDF

triples.

Example 2.3.4

Assume that there exists a document, say at
http://www.irif.fr/rdf, specifying that Alice and Dana
from Example 2.1.4 are identified by the IRIs :Alice and :Dana

respectively, and the concepts of having an id, name, age and
friend are identified by :hasID, :hasName, :hasAge and :Friend,
the following RDF triples (written in the Turtle syntax [34]

[34]: Carothers et al. (2014), RDF 1.1
Turtle

)
encode a subset of the information presented in figure 2.1.

https://www.w3.org
https://www.w3.org
https://www.dbpedia.org
https://www.wikidata.org/wiki/Wikidata:Main_Page

2.3 Graph databases 21

:Alice _:n :Dana

:Friend

rdf:object rdf:subject

rdf:predicate

Figure 2.4: An illustration of the naïve
approach to RDF reification

[35]: Tomaszuk et al. (2020), “RDF 1.1:
Knowledge Representation and Data In-
tegration Language for the Web”
[36]: Hernández et al. (2015), “Reify-
ing RDF: What Works Well With Wiki-
data?”

[37]: Hartig (2017), “RDF* and
SPARQL*: An Alternative Approach to
Annotate Statements in RDF”
4: the name has since been changed to
RDF-star

@prefix : <http://www.irif.fr/rdf> .

:Alice :hasID "111" .

:Alice :hasName "Alice" .

:Alice :hasAge "35" .

:Dana :Friend :Alice .

The same set of triples can be represented as the following graph.

:Alice :Friend :Dana:hasNameAlice

:hasID

111

:hasAge

35

One major difference between the RDF model and the property graph
model is of course the lack of properties on the RDF graph elements.
Indeed, in order to add the Since attribute to the last triple of Exam-
ple 2.3.4 (the one describing the friendship between Dana and Alice),
we need to extend the language with the ability to make statements
about statements, also known as reification. This feature has been stud-
ied and discussed in depth since the creation of RDF, and has led to a
number of proposals of extensions (see [35] for a survey of the different
proposals and [36] for a case study on Wikidata).

The naïve approach, the one that stays within the established frame-
work of RDF and does not require any additions to the language, amounts
to transforming the edge :Friend into a blank node _:n and linking _:n

with :Dana via the special predicate rdf:subject, with :Alice via the
special predicate rdf:object and with :Friend via the special predi-
cate rdf:predicate (the resulting topology is illustrated in Figure 2.4).
Since :Friend has now become the blank node _:n, we can use it as a
subject in new triples and add additional information about the rela-
tionship such as the date via a new triple _:n <:since> "01/01/2024".
This approach has three considerable drawbacks: first, as each affected
edge is replaced with three fresh edges, the size of the graph can in-
crease dramatically; second, the model becomes more complex and less
intuitive; third, it breaks all queries based on the previous model.

In [37], Hartig introduces RDF∗ 4, which he described as “an extension
of RDFwith a notion of nested triples”. In the new notation << triple >>,
one can use a triple as a subject, or object, of another triple. This pro-
posal solves two of the three problems of the naïve approach: the size
of the graph is unchanged and only one new triple is added for each
new piece of information; and the queries are still compatible since
the underlying data is unchanged. The complexity of the model is in-

https://www.wikidata.org/wiki/Wikidata:Main_Page

22 2 Background and Preliminaries

[38]: Angles et al. (2022), PG-Schema:
Schemas for Property Graphs

[39]: Angles et al. (2019), “RDF and
Property Graphs Interoperability: Sta-
tus and Issues”

creased due to the added levels of nesting but queries about the added
metadata remain readable and understandable.

Example 2.3.5

The information of Example 2.3.4 together with the Since at-
tribute on the relationship between Dana and Alice, can be en-
coded as follows in RDF∗.
@prefix : <http://www.irif.fr/rdf> .

:Alice :hasID "111" .

:Alice :hasName "Alice" .

:Alice :hasAge "35" .

<< :Dana :Friend :Alice >> :since "01/01/2024" .

In the graph representation of the above tuples, we display the
nesting of the triple <:Dana> <:Friend> <:Alice> as a dashed box
around the edge and both endpoints.

:Alice :Friend :Dana:hasNameAlice

:hasID

111

:hasAge

35

:since

01/01/2024

But property graphs are not necessarily more expressive than RDF. In
fact, the very thing that RDF was designed for, metadata and schemas,
cannot be easily translated into a property graph. For example, if we
wanted to add the information that both Friend and Relative are types
of “Relationships”, so we can write queries asking for people with any
kind of “Relationship” between them, we would need to either reify the
graph to transform the Friend and Relative edges into nodes, or add a
new label to each Friend or Relative edge. In RDF, this information can
be encoded by simply using the IRI encoding Friend (or Relative) as the
subject of a triple with predicate :type_of and object :Relationship.

The current solution consists in storing schema information separately
from the graph. In [38], the authors define the language PG-SCHEMA
to encode the schema information in a way compatible with the Graph
Query Language, which we introduce in chapter 3. The idea is to find all
graph elements (nodes and edges) satisfying some constraints and au-
tomatically add the schema information if it is missing. In the above ex-
ample, PG-SCHEMA would automatically add the label “Relationship”
to all Friend and Relative edges.

In [39], Angles, Thakkar and Tomaszuk survey and compare the dif-
ferent solutions proposed by the community to transform RDF graphs
into property graphs and vice versa. Although the situation has evolved
slightly since 2019, namely with the standardisation of the property
graphmodel, their conclusion still holds. The twomodels are far enough
apart that no unanimous decision has been reached on how to recon-
ciliate their differences. For this reason, all mentions of “graph” in the
rest of this thesis will refer to property graphs and we do not examine
the impact of our results for RDF.

2.4 Querying property graphs 23

[40]: Abiteboul et al. (1997), “Regular
Path Queries with Constraints”

2.4 Querying property graphs
Even though property graphs can be encoded as a relational database,
for example by having a relation for each element of the graph tuple,
and can therefore be queried using RA or FO, doing so is often not a
satisfactory solution, primarily because of the inability of FO to express
graph reachability (as shown in Theorem 2.2.4).

Moreover, the interesting features of a graph database are not its indi-
vidual elements, its nodes and edges, but rather their topology, that is
the overall graph structure and the way its nodes and edges are con-
nected to each other. Accordingly, graph query languages need to treat
paths as first class citizens and be able to express complex conditions
not only on sets of nodes, but also the structure linking them. Typically,
these conditions are expressed as regular expressions, a language that
arises from automata theory and formal languages, and is used in prac-
tice in countless applications such as text search, web scraping, input
processing, syntax highlighting and so on.

The class of Regular Path Queries, or simply RPQs, which return pairs
of nodes linked by some regular expression, is the simplest class of
navigational queries, i.e. languages that query the topology of a graph.
RPQs have been studied since (at least) 1997 [40], in the context of
semistructured data, and most of their properties are by now well un-
derstood. This small language can be extended in the usual way, ei-
ther with conjunction, leading to Conjunctive Regular Paths Queries
(CRPQs), or unions of conjunctions, leading to Unions of Conjunctive
Regular Paths Queries (UCRPQs). The language of RPQs with the ex-
tra ability to traverse edges backwards is called Two Way Regular Path
Queries, or 2RPQs, and can again be extended to Conjunctive 2RPQs
(C2RPQs) and Unions of Conjunctive 2RPQs (UC2RPQs). Adding a nest-
ing operator, which checks for the existence of branching paths, leads
to the class of Nested Regular Expressions. The end of this line of ex-
tensions is closed by Regular Queries, which can be seen either as the
transitive closure of UC2RPQs, or Datalog applied to graphs.

In another direction, Extended CRPQs add the ability to compare path
properties to CRPQs, by changing the regular languages underlying
RPQs to regular relations. The formalism that we explore last is that
of Regular Data Path Queries in which the query can access the data
values stored in the properties of the graph.

All of these languages describe ways to extract data from the graph,
whether it is stored in nodes, edges, paths or more complicated struc-
tures. This description usually takes the form of an example (”give me
all the paths that look somewhat like this one”) or several examples,
and instructions on how to combine them. We call these examples pat-
terns, and refer to the action of finding the parts of the graph that cor-
respond to these patterns as pattern matching.

In the rest of this section, we introduce the class of Regular Path Queries,
define its extensions, and cite the main results known for these classes.

Regular Path Queries
To formally define Regular Path Queries, we first need to define regular
languages, which can be described either imperatively by finite au-
tomata or declaratively by regular expressions.

24 2 Background and Preliminaries

[23]: Sipser (1996), “Introduction to
the Theory of Computation”

[24]: Hopcroft et al. (2007), Introduc-
tion to automata theory, languages, and
computation, 3rd Edition

[24]: Hopcroft et al. (2007), Introduc-
tion to automata theory, languages, and
computation, 3rd Edition

We start by recalling the definition of Deterministic Finite Automata,
for which we follow [23].

Definition 2.4.1 — Deterministic Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple (𝑄, Σ, 𝛿, 𝑞𝑜, 𝐹)
where

▶ 𝑄 is a finite set of states
▶ Σ is a finite set of input symbols
▶ 𝛿 ∶ 𝑄 ×Σ → 𝑄 is the transition function that takes as input a

state from 𝑄 and a symbol from Σ and returns a state in 𝑄.
▶ 𝑞0 ∈ 𝑄 is the initial state
▶ 𝐹 ⊆ 𝑄 is a set of final states

We say that a string 𝑤 = 𝑤1𝑤2 …𝑤𝑛 over Σ𝑛 is accepted by an automa-
ton 𝒜 = (𝑄, Σ, 𝛿, 𝑞𝑜, 𝐹) if there exists a sequence of states 𝑟0𝑟1 …𝑟𝑛 in
𝑄 such that

▶ 𝑟0 = 𝑞0,
▶ 𝛿(𝑟𝑖, 𝑤𝑖) = 𝑟𝑖+1 for each 𝑖 between 0 and 𝑛 − 1 and
▶ 𝑟𝑛 ∈ 𝐹

The set of strings recognized by an automaton𝒜 is called the language
of 𝒜 and is denoted by 𝐿(𝒜).

Example 2.4.2

The following picture represents a finite automaton on Σ =
{Friend,Relative} using the standard notation of states as circles
and transitions as labelled arrows. The initial state is pointed to by
an arrow from the word start and the final states are denoted by
a double circle.

𝑞0start 𝑞1
Friend

Relative

This automaton accepts words which start with arbitrarily many
Relative symbols and end with exactly one Friend symbol.

There are many ways to modify the above definition to obtain different
automata models. For example, one may change the transition func-
tion to a transition relation to obtain non-deterministic finite automata
(NFA) in which a state can have multiple outgoing transitions labelled
by the same letter. In this case, the automaton will follow all possible
routes in parallel in the hope that at least one reaches a final state.
Another possible modification is to allow so-called 𝜖 transitions which
can be taken without reading a letter. If Σ feels too restrictive, one can
authorize the use of regular expressions in transitions. While all these
alternatives might seem powerful, it has been known, since the very
beginning of automata theory, that all these definitions are equivalent
(although translating from one to the other may cause an exponential
blow-up in some cases) [24]. Because of this, we refer to an automaton
defined in an equivalent way as a finite automaton when the distinction
is unimportant.

For regular expressions we follow the definition of [24].

2.4 Querying property graphs 25

5: This standard definition assumes
that each edge has exactly one label.
This is easily extended to allow multi-
ple labels by considering a set of words
instead of a single word. For the sake of
clarity, we keep this assumption for the
rest of this section.

Definition 2.4.3 — Syntax of Regular Expressions

Given a finite alphabet Σ, REGular EXpressions (regex, sometimes
regexp) are defined by the following grammar:

𝑒 ∶= 𝜖 ∣ ∅ ∣ 𝑎 ∣ 𝑒 + 𝑒 ∣ 𝑒 ⋅ 𝑒 ∣ 𝑒∗

where 𝑎 is a letter in Σ.

The language of a regular expression, i.e the set of words it describes,
is defined inductively as follows.

(Base case) The languages of the constants 𝜖, the empty word, and ∅, the
empty set, are 𝐿(𝜖) = {𝜖} and 𝐿(∅) = ∅ respectively.

(Base case) The language of a letter 𝑎 ∈ Σ is 𝐿(𝑎) = {𝑎}.
▶ Given two regular expressions 𝑒1 and 𝑒2, whose languages are

𝐿(𝑒1) and 𝐿(𝑒2) respectively, the language of their union 𝑒1 + 𝑒2
is the union of both languages, i.e. 𝐿(𝑒1 + 𝑒2) = 𝐿(𝑒1) ∪ 𝐿(𝑒2).

▶ Given two regular expressions 𝑒1 and 𝑒2, whose languages are
𝐿(𝑒1) and 𝐿(𝑒2) respectively, the language of their concatenation
𝑒1 ⋅ 𝑒2 is the set of all words composed of one word from 𝐿(𝑒1)
followed by a word from 𝐿(𝑒2), i.e. 𝐿(𝑒1 ⋅ 𝑒2) = 𝐿(𝑒1)𝐿(𝑒2).

▶ Given a regular expression 𝑒 whose language is 𝐿(𝑒), the lan-
guage of the closure of 𝑒 under string concatenation 𝑒∗ is the set
of all words (finite and infinite) obtained by concatenating words
from 𝐿(𝑒) (possibly by taking the same word multiple times),
i.e. 𝐿(𝑒∗) = ⋃𝑖≥0 𝐿(𝑒)

𝑖 where 𝐿(𝑒)0 = {𝜖}, 𝐿(𝑒)1 = 𝐿(𝑒) and
𝐿(𝑒)𝑖 = 𝐿(𝑒)⋯𝐿(𝑒)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖 times
for 𝑖 > 1.

Example 2.4.4

Assuming the same alphabet as in Example 2.4.2, namely Σ =
{Friend,Relative}, the following regular expression describes the
same language as the automaton of that same example.

Relative∗ ⋅ Friend

Even though they look different, and describe words in very different
ways, it turns out that regular expressions and finite automata define
exactly the same set of languages. We say that a language is regular if
it can be described by a regular expression (or a finite automaton).

Theorem 2.4.5 — Regex and DFA equivalence

Given a regular expression 𝑒, there exists a deterministic finite au-
tomaton 𝒜 such that 𝐿(𝑒) = 𝐿(𝒜).
Given a deterministic finite automaton 𝒜, there exists a regular
expression 𝑒 such that 𝐿(𝒜) = 𝐿(𝑒).

Now that we have defined regular languages, we can also define Regu-
lar Path Queries. Essentially, RPQs specify what kind of path we want
to find between two nodes. As previously mentioned, these constraints
are expressed as a regular language over edge labels. Formally, we say
that the label of a path 𝑝 = path(𝑢0, 𝑒1,… , 𝑒𝑛, 𝑢𝑛) is the concatenation
of its edge labels, i.e. 𝜆(𝑝) = 𝜆(𝑒0) ⋅ … ⋅ 𝜆(𝑒𝑛)

5.

26 2 Background and Preliminaries

[23]: Sipser (1996), “Introduction to
the Theory of Computation”

6: To avoid the potential exponential
blow-up, the constructed automaton is
allowed to be non-deterministic.

Definition 2.4.6 — Regular Path Query

Given a finite alphabet Σ, a Regular Path Query (RPQ) is an expres-
sion 𝑄 = 𝑥 𝐿−→ 𝑦 where 𝐿 is a regular language over Σ.

The semantics of an RPQ 𝑄 evaluated on a graph database 𝐺, denoted
by J𝑄K𝐺, is the set of pairs of nodes in 𝐺 such that there exists a path
labelled by a word in 𝐿 between them.

Example 2.4.7

The following RPQ 𝑄 is defined by the regular expression of Ex-
ample 2.4.4 and returns all pairs of nodes connected by a path
consisting of, first, an arbitrary amount of Relative labelled edges,
and ended by a Friend labelled edge.

𝑄(𝑥, 𝑦) ∶= (𝑥) Relative∗ ⋅ Friend−−−−−−−−−−→ (𝑦)

The semantics of 𝑄, when evaluated on the graph represented in
Figure 2.3, is the set of all pairs of nodes in the graph as there is
always a way, from any fixed node, to reach any other node (in-
cluding itself) by taking Relative labelled edges and a final Friend
labelled edge, and so computes the set of friends of the family.

The query evaluation problem for RPQs is called the RPQ Evaluation
problem. As the semantics of an RPQs is a set of pairs of nodes, the
input tuple is replaced by a pair of candidate nodes and the algorithm
must answer true if there exists path between the two nodes labelled
by the regular expression underlying the RPQ.

Definition 2.4.8 — The RPQ Evaluation Problem

Problem RPQ-evaluation
Input RPQ 𝑄, graph 𝐺, two nodes 𝑠, 𝑡 ∈ 𝑁𝐺 ×𝑁𝐺
Output true if there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺

labelled by a word in 𝑄, i.e. 𝑠, 𝑡 ∈ J𝑄K𝐺,
false otherwise

No matter which variation one studies, whether one changes RPQs
to a different language or applies other constraints on the path, the
lower bound of the RPQ Evaluation problem will always be (at least)
NLOGSPACE, as the problem which asks whether there exists a directed
path between two input nodes is itself NLOGSPACE-complete (for a
proof of this result, see for example [23]).

Theorem 2.4.9 — Complexity of RPQ Evaluation

The data complexity of the RPQ Evaluation problem is
NLOGSPACE-complete [9]

[9]: Barceló (2013), “Querying graph
databases”

and its combined complexity is in
PTime [12]

[12]: Wood (2012), “Query languages
for graph databases”

.

One possible algorithm satisfying these bounds is the following. First,
if the regular language is specified as a regular expression, construct an
equivalent automaton 𝒜 6 (otherwise we call 𝒜 the provided automa-

2.4 Querying property graphs 27

[41]: Mäkinen (1997), “On Lexico-
graphic Enumeration of Regular and
Context-Free Languages”
[42]: Ackerman et al. (2009), “Efficient
enumeration of words in regular lan-
guages”

[44]: Casel et al. (2023), “Fine-Grained
Complexity of Regular Path Queries”
[45]: Colazzo et al. (2015), “Typing
regular path query languages for data
graphs”
[46]: Pacaci et al. (2020), “Regular
Path Query Evaluation on Streaming
Graphs”

ton). Add a distinguished initial state 𝑞𝑠 and a distinguished final state
𝑞𝑓 to𝒜 and connect both states to the old initial and final states accord-
ingly. Construct the product automaton 𝒜 × 𝐺 of 𝒜 and the graph 𝐺.
For this, we see 𝐺 as an automaton over Σ, i.e. the nodes become states,
the edges become transitions specified by the label, the initial state is
𝑠 and the unique final state is 𝑡. The states of 𝒜 × 𝐺 are identified by
all the possible pairs in which the first element is a state in 𝒜 and the
second is a state in 𝐺. There is a transition between two states (𝑥, 𝑦)
and (𝑥′, 𝑦′) of𝒜×𝐺 if there is a transition from 𝑥 to 𝑥′ in𝒜 and from 𝑦
to 𝑦′ in the automaton obtained from 𝐺. Lastly check that the language
of the resulting automaton 𝒜 × 𝐺 is non-empty, i.e. contains at least
one word. This construction preserves both the structures of 𝐺 and of
𝒜, ensuring that, if there is a word in the language, it corresponds to
both a path in 𝐺 and a word in 𝐿(𝒜).

A different popular construction consists in building the cross-product
graph, instead of the cross-product automaton, and checking whether
any node containing 𝑠 can reach a node containing 𝑡. In this case, it
is the automaton that is viewed as a graph, its states becoming nodes
and its transitions becoming edges instead of the other way around.
As finite automata non-emptiness checking and graph reachability are
both in PTime, these two constructions are equivalent.

The RPQ Enumeration problem is defined analogously to the enumera-
tion problem, once again with the tuples replaced by pairs of nodes.

Definition 2.4.10 — RPQ Enumeration Problem

Problem RPQ-enumeration
Input RPQ 𝑄, graph 𝐺
Output Enumerate all pairs of nodes 𝑠, 𝑡 in 𝐺 such that

(𝑠, 𝑡) ∈ J𝑄K𝐺, without repetition

As for RPQ Evaluation, the complexity of RPQ Enumeration is directly
linked to the problem of enumerating the words that belong to some
regular language, which can be done in polynomial delay. This result
was first proved by Erkki Mäkinen for Deterministic Finite Automata
[41], then later extended to the non-deterministic context byMargareta
Ackerman and Jeffrey Shallit [42].

Theorem 2.4.11

The RPQ Enumeration problem can be solved with output in poly-
nomial delay [43]

[43]:Martens et al. (2018), “Evaluation
and Enumeration Problems for Regular
Path Queries”

.

The proof of the above Theorem, relies on the same construction as for
the evaluation problem. Once the product-automaton is built, we can
simply run the enumeration algorithm for finite automata.

The literature on RPQs is vast, varied and still on-going. The results
presented in this section represent a fraction of the current knowledge.
The fine-grained complexity of RPQ Evaluation and RPQ Enumeration
has been studied in depth by Katrin Casel andMarkus L. Schmid in [44].
Dario Colazzo and Carlo Sartiani devised a typing system which simpli-
fies query optimisation [45]. Anil Pacaci, Angela Bonifati and M. Tamer
Özsu have developed an algorithm for RPQ evaluation over streaming
graphs [46]. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-

28 2 Background and Preliminaries

Figure 2.5: An illustration of how the
different languages presented section 6
relate to one another

RDPQ

ECRPQ

CRPQ

C2RPQ

UC2RPQ

Regular Queries

UCRPQ

2RPQ NRE

RPQ

[47]: Calvanese et al. (2003), “Reason-
ing on regular path queries”
[48]: Calvanese et al. (2000), “Answer-
ing Regular Path Queries Using Views”

erini and Moshe. Y. Vardi study the containment problem for RPQs in
[47] and the RPQ Evaluation problem restricted by views in [48].

Extensions of RPQs
RPQs can be extended in many ways, from conjunctions and unions, to
nesting and data. In this subsection, we present the handful extensions
to which we will compare the various languages of the next chapters.
Figure 2.5 shows an overview of the 4 branches of extensions consid-
ered here.

Conjunction and Union The first extension we consider does not
change the structure of the queries nor does it add to, or remove any-
thing from the allowed regular languages. Rather, it is a way to compose
multiple RPQs in order to build more complicated patterns. By adding
conjunctions, we can get more information about the path by adding
intermediate variables, connect multiple path fragments into one path-
like structure, or even return several disconnected paths. Union intro-
duces a form of choice: the endpoints of a path belong to the set of
answers if the path between them satisfies at least one of the queries
in the union.

Definition 2.4.12 — CRPQ and UCRPQ

Given a finite alphabet Σ, a Conjunctive Regular Path Query (CRPQ)
is a conjunction of RPQs with a distinguished set of variables ̄𝑧.

𝑄(̄𝑧) = ⋀
1≤𝑖≤𝑘

𝑥𝑖
𝑒𝑖−→ 𝑦𝑖 where ̄𝑧 ⊆ ̄𝑥 ∪ �̄�

where ̄𝑥 = ⋃1≤𝑖≤𝑘{𝑥𝑖} and �̄� = ⋃1≤𝑖≤𝑘{𝑦𝑖}

2.4 Querying property graphs 29

A Union of Conjunctive Regular Path Queries (UCRPQ) is a union
of CRPQs which share the same set ̄𝑧 of distinguished variables.

𝑄(̄𝑧) = ⋃
1≤𝑖≤𝑘

𝑄𝑖(̄𝑧) where each 𝑄𝑖 is a CRPQ.

The semantics of a CRPQ 𝑄(̄𝑧) evaluated on a graph database 𝐺 is the
set �̄� of tuples of nodes of 𝐺 such that there exists an assignment from
the variables of 𝑄 to nodes in 𝐺 that satisfies each atom of 𝑄 and maps
elements of ̄𝑧 to element of �̄�.

q
𝑄(𝑧1,… , 𝑧𝑚)

y
𝐺 = {(𝑛1,… , 𝑛𝑚) ∈ 𝑁𝑚

𝐺 ∣ ∃𝜇 ∶ (̄𝑥 ∪ �̄�) → 𝑁𝐺,

∀1≤𝑖≤𝑘, (𝜇(𝑥𝑖), 𝜇(𝑦𝑖)) ∈
r
𝑥𝑖

𝑒𝑖−→ 𝑦𝑖

z

𝐺
∧

∀1≤𝑗≤𝑚, ∃𝑢𝑗, 𝜇(𝑧𝑗) = 𝑛𝑗}

The semantics of a UCRPQ 𝑄(̄𝑧) evaluated on a graph database 𝐺 is
the union of the output for each atom of 𝑄.

J𝑄(̄𝑧)K𝐺 = ⋃
1≤𝑖≤𝑘

q
𝑄𝑖(̄𝑧)

y
𝐺

Example 2.4.13

The following CRPQ 𝑄 returns the pairs of people who are both
Relatives and Friends with each other.

𝑄(𝑥, 𝑦) ∶= (𝑥) Relative−−−−→ (𝑦) ∧ (𝑥) Friend−−−−→ (𝑦)

When evaluated on the graph represented in Figure 2.3, the seman-
tics of 𝑄 is the set {(𝑝1, 𝑝4), (𝑝2, 𝑝3), (𝑝2, 𝑝4)}.

We call CRPQ Evaluation (resp. UCRPQ Evaluation) the problem of
query evaluation where the query must be a CRPQ (resp. UCRPQ).

Theorem 2.4.14 — Complexity of CRPQ Evaluation

The data complexity of CRPQ Evaluation remains
NLOGSPACE-complete [6, 9]

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[9]: Barceló (2013), “Querying graph
databases”

and its combined complexity is
NP-complete [11]

[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”

.

For data complexity, the NLOGSPACE algorithm consists of translat-
ing the graph intro a relational database and treating the CRPQ as a
Conjunctive Query. Since query evaluation for conjunctive queries is in
NLOGSPACE in data complexity [26]

[26]: Chandra et al. (1977), “Optimal
Implementation of Conjunctive Queries
in Relational Data Bases”

, we get the desired result.

The hardness for combined complexity is a direct consequence of the
NP-hardness of query evaluation for conjunctive queries over directed
graphs [26]. The idea of the upper-bound algorithm is to guess the
assignment for each variable, which requires space linear in the number
of variables, and verify whether this candidate does indeed belong to
the output, which can also be done in polynomial time.

30 2 Background and Preliminaries

7: It does however complicate static
analysis problems such as query con-
tainment.

Theorem 2.4.15 — Complexity of UCRPQ Evaluation

The complexity of UCRPQ Evaluation remains
NLOGSPACE-complete in data complexity [6, 9]

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[9]: Barceló (2013), “Querying graph
databases”

and NP-complete
in combined complexity.

Both results are of course a consequence of Theorem 2.4.14, as each
CRPQ forming the UCRPQ can be checked independently.

Two way queries By extending regular expressions with a special
symbol −, representing the ability to traverse a directed edge back-
wards, i.e. from its target to its source, we obtain the class of 2-way
Regular Path Queries. The popularity of this feature in practical lan-
guage has made it a standard addition in theoretical languages as well.

Given a finite alphabet Σ, we define Σ± as the extension of Σ with extra
symbols 𝑎− for each 𝑎 ∈ Σ. Given a graph database 𝐺, we define 𝐺±, the
completion of 𝐺, as the graph obtained from 𝐺 by adding a new edge
𝑒− for each directed edge 𝑒 in 𝐺 such that src(𝑒−) = tgt(𝑒), tgt(𝑒−) =
src(𝑒), 𝛿(𝑒−) = 𝛿(𝑒) and 𝜆(𝑒−) = {𝑎− ∈ Σ± ∣ 𝑎 ∈ 𝜆(𝑒)}.

Definition 2.4.16 — 2RPQ

A Two Way RPQ (2RPQ) is an RPQ over Σ±.

The semantics of a 2RPQ 𝑄 ∶ 𝑥 𝐿−→ 𝑦 evaluated on a graph database 𝐺
is the set of pairs of nodes in 𝐺± such that there exists a path labelled
by a word in 𝐿 between them.

Example 2.4.17

The following query 𝑄 returns all pairs of people 𝑥 and 𝑦 such that
𝑦 is Friends with 𝑥. For example if we fix 𝑥 to be Alice, we will
get the set of all people who consider themselves to be a Friend of
Alice.

𝑄(𝑥, 𝑦) ∶= (𝑥) Friend−−−−−−→ (𝑦)

When evaluated on the graph represented in Figure 2.3, the seman-
tics of 𝑄 is the set {(𝑝1, 𝑝4), (𝑝2, 𝑝1), (𝑝3, 𝑝2), (𝑝4, 𝑝2)}.

We call 2RPQ Evaluation the problem of query evaluation where the
query must be a 2RPQ. Unsurprisingly, the addition of this new feature
has no impact on the complexity of query evaluation7

Theorem 2.4.18 — Complexity of 2RPQ Evaluation

The complexity of 2RPQ Evaluation remainsNLOGSPACE-complete
in data complexity and in PTime in combined complexity [6, 9]

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[9]: Barceló (2013), “Querying graph
databases”

.

As 𝐺± can be computed in linear time and logarithmic space in the size
of 𝐺, both bounds persist from RPQ Evaluation.

As for RPQs, the class of 2RPQs closed under conjunction is called Con-
junctive 2 Way RPQ (C2RPQ) and the class of C2RPQs closed under

2.4 Querying property graphs 31

[49]: Romero et al. (2017), “The ho-
momorphism problem for regular graph
patterns”
[50]: Figueira et al. (2023), “Approx-
imation and Semantic Tree-Width of
Conjunctive Regular Path Queries”
[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”
[14]: Barceló et al. (2012), “Relative Ex-
pressiveness of Nested Regular Expres-
sions”
[51]: Barceló et al. (2016), “Semantic
Acyclicity on Graph Databases”

[13]: Figueira (2020), “Containment of
UC2RPQ: The Hard and Easy Cases”

[52]: Barceló et al. (2019), “Bound-
edness of Conjunctive Regular Path
Queries”

[53]: Arenas et al. (2007), “An Exten-
sion of SPARQL for RDFS”

[10]: Libkin et al. (2016), “Querying
Graphs with Data”

union is called Union of Conjunctive 2 Way RPQs (UC2RPQ). The se-
mantics of both classes are defined analogously to CRPQs and UCRPQs
respectively. We call C2RPQ Evaluation (resp. UC2RPQ Evaluation) the
problem of query evaluation where the query must be a C2RPQ (resp.
UC2RPQ).

Theorem 2.4.19 — C2RPQ and UC2RPQ Evaluation

The complexity of both C2RPQ Evaluation and UC2RPQ Evaluation
is NLOGSPACE-complete in data complexity and NP-complete in
combined complexity [9, 11].

Again, the bounds are preserved from the problems of CRPQ Evalua-
tion and UCRPQ Evaluation. The combined complexity can be lowered
to PTime for three known subclasses. The first is that of queries with
semantic tree width at most 𝑘 (folklore, explicitly stated in e.g. [49]).
Unfortunately, the membership problem for that class is in 2EXPSPACE
[50]. The second class is that of acyclic UC2RPQs, queries for which
the underlying graph is acyclic [11, 14]. Once again, the problem of de-
ciding whether a UC2RPQ is acyclic is untractable, namely EXPSPACE-
complete [51]. Relaxing the notion of acyclicity to semantic acyclicity,
which is true of queries equivalent to some acyclic query, does retain
the PTime query evaluation bound but, once more, testing membership
remains EXPSPACE-complete [51].

Apart from query evaluation, these 2-way classes have been studied
in the context of the query containment problem, which is known to
be EXPSPACE-complete for UC2RPQs in the general case but can be
solved in PSPACE for a particular class of well-behaved queries [13].
The related problem of “UC2RPQ boundedness”, which asks, given a
UC2RPQ whether it is equivalent to a union of UCQs, has also been
shown to be EXPSPACE-complete [52].

Nested Regular Expressions Nested Regular Expressions were intro-
duced by J. Pérez, M. Arenas and C. Guitierrez in [53] as a tool to study
the RDF language “nSPARQL”. As the name suggests, Nested Regular
Expressions extend RPQs with a nesting operator []. When a query en-
counters such an operator, it branches off to check for the existence of
a path labelled by the specified regular expression. Once the check is
complete, the query goes back to the starting node of the branch and
continues on with the rest of the path. We follow [10] for the definition.

Definition 2.4.20 — NRE

A Nested Regular Expression (NRE) over a finite alphabet Σ is an
expression over the extension of regular expressions over Σ with a
nesting operator, denoted by [], and inverses, denoted by 𝑎−. The
formal syntax is as follows:

𝑛 ∶= 𝜖 ∣ 𝑎 ∣ 𝑎− ∣ 𝑛 ⋅ 𝑛 ∣ 𝑛∗ ∣ 𝑛 + 𝑛 ∣ [𝑛] 𝑎 ∈ Σ

The semantics of an NRE 𝑒 evaluated over a graph database 𝐺 is the set
of pairs of nodes in 𝐺 such that there exists a path labelled by a word
in 𝑒 between them. This relation is defined inductively as follows.

32 2 Background and Preliminaries

J𝜖K𝐺 = {(𝑣, 𝑣) ∣ 𝑣 ∈ 𝑁}
J𝑎K𝐺 = {(𝑣, 𝑣′) ∣ ∃𝑒 ∈ 𝐸𝑑, src(𝑒) = 𝑣, tgt(𝑒) = 𝑣′, 𝑎 ∈ lab(𝑒)}

J𝑎−K𝐺 = {(𝑣, 𝑣′) ∣ ∃𝑒 ∈ 𝐸𝑑, tgt(𝑒) = 𝑣, src(𝑒) = 𝑣′, 𝑎 ∈ lab(𝑒)}
J𝑛 ⋅ 𝑛′K𝐺 = J𝑛K𝐺 ∘ J𝑛′K𝐺

J𝑛 + 𝑛′K𝐺 = J𝑛K𝐺 ∪ J𝑛′K𝐺
J𝑛∗K𝐺 = the reflexive transitive closure of J𝑛K𝐺

J[𝑛]K𝐺 = {(𝑣, 𝑣) ∣ ∃𝑣′, (𝑣, 𝑣′) ∈ J𝑛K𝐺}

Example 2.4.21

The following NRE 𝑒 returns all pairs of people linked by Relative
edges such that each intermediate Relative has at least one Friend.

𝑒 ∶= (Relative ⋅ [Friend])∗

When evaluated on the graph represented in Figure 2.3, the seman-
tics of the query defined by 𝑒 is the set of all pairs of nodes in the
graph except for those with p3 as the second component (except
for (p3, p3)) as it does not have any outgoing Friend edges.

We call NRE Evaluation the problem of query evaluation where the
query must be an NRE.

Theorem 2.4.22 — Complexity of NRE Evaluation

The combined complexity of NRE Evaluation is in time linear in the
size of the graph and the query [54]

[54]: Pérez et al. (2010), “nSPARQL: A
navigational language for RDF”

.

The proof of Theorem 2.4.22 relies on the same algorithm as for RPQ
Evaluation with an extra step prior to the construction of the product
automaton, in which the nodes of the graph are annotated with the set
of nested regular expressions to which the label of the path from the
start node to this node belongs.

Although NRE Evaluation has the same complexity as RPQ Evaluation,
and is easier (under the usual assumptions that PTime ≠ NP) than
UC2RPQ Evaluation, the expressive power of NREs is higher than that
of RPQs and incomparable with that of UC2RPQs.

Theorem 2.4.23 — Expressive power of NREs

Nested Regular Expressions are strictly more expressive than Regu-
lar Path Queries. In other words, there exists an NRE expression 𝑒
such that there is no RPQ query 𝑄 for which J𝑒K𝐺 = J𝑄K𝐺 on all
graphs 𝐺 [14]

[14]: Barceló et al. (2012), “Relative Ex-
pressiveness of Nested Regular Expres-
sions”

.
Nested Regular Expressions are incomparable with Conjunctive
Two-way RPQs. In other words, there exists an NRE expression
𝑒 such that there is no C2RPQ query 𝑄 for which J𝑒K𝐺 = J𝑄K𝐺 on
all graphs 𝐺 and vice versa [14].

The NRE of Example 2.4.21, (Relative ⋅ [Friend])∗, is a good example
of a query that is not expressible as an RPQ (or even a UC2RPQ). On

2.4 Querying property graphs 33

[55]: Bourhis et al. (2014), “How to
Best Nest Regular Path Queries”
[56]: Bourhis et al. (2015), “Rea-
sonable Highly Expressive Query Lan-
guages - IJCAI-15 Distinguished Paper
(Honorary Mention)”
[57]: Reutter et al. (2017), “Regular
Queries on Graph Databases”

the other hand, the “triangle” query 𝑥 𝑎−→ 𝑦,𝑦 𝑎−→ 𝑧, 𝑧 𝑎−→ 𝑥 requires the
power of conjunction and cannot be expressed as an NRE.

Regular Queries Just like in the case of relational algebra, Datalog
can be used to define the transitive closure of navigational languages. In
fact, themost natural fragment of Datalog for graphs, in which themain
restriction is that relations must have arity 2, extended with the power
to check if a pair belongs to the transitive closure of a relation, cor-
responds to the transitive closure of UC2RPQs. This language, known
as Regular Queries, was first studied in the Knowledge Representation
community (under the name “nested positive 2RPQs”) [55, 56], and
adapted to the context of graph databases by J. L. Reutter, M. Romero
and M. Y. Vardi in [57]. Intuitively, Regular Queries make it possible to
talk about patterns in which two nodes can be connected by more than
one edge and the main path can branch off to check for the existence
of arbitrarily complicated sub-paths. Before formally defining Regular
Queries, we first need to define the extension of non-recursive Datalog
in which rules can refer to the transitive closure of a relation.

An extended Datalog rule is an expression 𝑅(̄𝑢) ← 𝑅1(̄𝑢1),… , 𝑅𝑛(̄𝑢𝑛)
where 𝑅 is a relation name and each 𝑅𝑖 is either a relation name or
an expression 𝑆+(𝑦, 𝑦′) where 𝑆 is a relation name. A pair of elements
(𝑢, 𝑢′) belongs to J𝑆+(𝑦, 𝑦′)K if it is in the transitive closure of 𝑆.

An extended Datalog program is a finite set of extended Datalog rules.

Definition 2.4.24 — Regular Query [57]

Given a finite alphabet Σ, a Regular Query (RQ) is a non-recursive
extended Datalog program over Σwith a distinguished relation Ans
such that all relations (except possibly Ans) have arity 2.

Since we are in the graph database setting, each extensional relation
name represents an edge label of our graph. Like for RPQs and their
extensions, we build paths either in small steps by using a “pure” (as in
without transitive closure) relation name, or in big steps by using the
transitive closure construction.

Example 2.4.25

Assuming that we have relations Friend and Relative as in Exam-
ple 2.1.2, a Regular Query can describe the set of pairs of nodes
linked by a path in which each node is connected to the next by
both a Friend edge and a Relative edge.

𝐹𝑅(𝑥, 𝑦) ←𝐹𝑟𝑖𝑒𝑛𝑑(𝑥, 𝑦), 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒(𝑥, 𝑦)
𝐴𝑛𝑠(𝑥, 𝑦) ←𝐹𝑅+(𝑥, 𝑦)

We call RQ Evaluation the problem of query evaluation where the query
must be a Regular Query.

34 2 Background and Preliminaries

[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”

Theorem 2.4.26 — Complexity of RQ Evaluation

The data complexity of RQ Evaluation isNLOGSPACE-complete and
its combined complexity is NP-complete [57]

[57]: Reutter et al. (2017), “Regular
Queries on Graph Databases”

.

The proof of Theorem 2.4.26 relies on a translation to a fragment of
Datalog called “linear” for which the complexity bounds were already
known.

Extended CRPQs What if instead of talking about pairs of nodes, as
all prior languages do, wewant to reason on the entire paths? This is the
goal of Extended CRPQs. Introduced in [11], ECRPQs add to CRPQs the
ability to compare path properties, such as length, prefix, edit distance
and so on. From an automata theory point of view, this corresponds to
regular relations, which are recognized by automata capable of reading
multiple tapes at the same time and outputting letters.

Given a finite alphabet Σ, we denote by Σ⊥ the alphabet Σ extended
with the symbol ⊥. For ̄𝑠 = (𝑠1,… , 𝑠𝑛) an 𝑛-tuple of strings over Σ, we
denote by [̄𝑠] the string where the 𝑖-th symbol is a tuple (𝑐𝑖,… , 𝑐𝑛)
where each 𝑐𝑖 is the 𝑖-th symbol of 𝑠𝑘, if the length of 𝑠𝑘 is at least 𝑖, or
⊥ otherwise. A regular relation 𝑆 over Σ∗ is a relation over Σ∗ such that
the set {[̄𝑠] ∣ ̄𝑠 ∈ 𝑆} is either accepted by an automaton over Σ⊥ or,
equivalently, can be defined by a regular expression over Σ⊥.

Definition 2.4.27 — ECRPQ

Given a finite alphabet Σ, an Extended Conjunctive Regular Path
Query (ECRPQ), is an expression of the form:

𝑄(̄𝑧, �̄�) = ⋂
1≤𝑖≤𝑚

(𝑥𝑖, 𝜋𝑖, 𝑦𝑖), ⋂
1≤𝑗≤𝑡

𝑅𝑗(�̄�𝑗)

where
▶ 𝑚 > 0, 𝑡 ≥ 0
▶ each 𝑅𝑗 is a regular expression that defines a regular relation

over Σ
▶ ̄𝑥 = (𝑥1,… , 𝑥𝑚) and �̄� = (𝑦1,…𝑦𝑚) are tuples of node vari-

ables and �̄� = (𝜋1,… ,𝜋𝑡) is a tuple of distinct path variables
▶ {�̄�1,… , �̄�𝑡} are distinct tuples of path variables from �̄� such

that each �̄�𝑗 is of the same arity as 𝑅𝑗
▶ ̄𝑧 is a tuple of node variables form ̄𝑥 ∪ �̄� and �̄� is a tuple of

path variables from �̄�

The semantics of an ECRPQ is the set of pairs consisting of a mapping
from ̄𝑧 to nodes of 𝐺 together with a mapping from �̄� to paths in 𝐺.
Formally, we say that a pair (𝜎(̄𝑧), 𝜇(�̄�)) belongs to J𝑄K𝐺 if

▶ for each 1 ≤ 𝑖 ≤ 𝑚, 𝜇(𝜋1) is a path in 𝐺 from 𝜎(𝑥𝑖) to 𝜎(𝑦𝑖), and
▶ for each �̄�𝑗 = (𝜋𝑗1

,… ,𝜋𝑗𝑘
) the tuple of strings of labels of

𝜇(𝜋𝑗1
),… , 𝜇(𝜋𝑗𝑘

) belong to the relation 𝑅𝑗.

2.4 Querying property graphs 35

[58]: Figueira et al. (2022), “When
is the Evaluation of Extended CRPQ
Tractable?”

Example 2.4.28

The following ECRPQ 𝑄 returns two paths of nodes connected by
Friend edges of the same length.

𝑄(∅, {𝜋1, 𝜋2}) ← (𝑥1, 𝜋1, 𝑦1) ∧ (𝑥2, 𝜋2, 𝑦2) ∧ eqFriend(𝜋1, 𝜋2)

where the regular relation eqFriend is defined by the regular ex-
pression (𝐹, 𝐹)+.
When evaluated on the graph represented in Figure 2.3, the
semantics of 𝑄 is the set of mappings from 𝜋1, 𝜋2 to paths in the
graph (we ignore the mappings to nodes as the set ̄𝑧 is empty
in this example). This set consists of all the possible pairs in
{path(𝑝1, 𝑓2, 𝑝2), path(𝑝2, 𝑓3, 𝑝4), path(𝑝2, 𝑓4, 𝑝3), path(𝑝4, 𝑓1, 𝑝1)}
for paths of length 1, in {(𝑝1, 𝑓2, 𝑝2, 𝑓4, 𝑝3), path(𝑝1, 𝑓2, 𝑝2, 𝑓3, 𝑝4),
path(𝑝2, 𝑓3, 𝑝4, 𝑓1, 𝑝1), (𝑝4, 𝑓1, 𝑝1, 𝑓2, 𝑝2)} for paths of length 2, etc.

We call ECRPQ Evaluation the problem of query evaluation where the
query must be an ECRPQ and the input tuple is a pair of mappings from
�̄� to paths.

Theorem 2.4.29 — Complexity of ECRPQ Evaluation

The data complexity of ECRPQ Evaluation is NLOGSPACE and its
combined complexity is PSPACE-complete [11]

[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”

.

Once again, the product automaton construction is used to prove the
above result. To deal with potentially infinite paths in the answers, the
set of paths can be returned as an automaton recognizing the language
which describes these paths.

In [58], Diego Figueira and Varun Ramanathan refine the combined
complexity bounds by showing that, depending on how the “reachabil-
ity” and “path testing” parts of the query interact, the complexity of
ECRPQ Evaluation can fall within PTime, NP or PSPACE.

As expected, the addition of regular relations is significant and yields a
strictly more expressive class of languages.

Theorem 2.4.30 — Expressive power of ECRPQs

Extended CRPQs are strictly more expressive than CRPQs. In other
words, there exists an ECRPQ query 𝑄 such that there is no CRPQ
query 𝑄 ′ for which J𝑄K𝐺 = J𝑄 ′K𝐺 on all graphs 𝐺 [11]

[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”

7.

7: This notation assumes a slightly dif-
ferent presentation of CRPQ semantics
than the one defined above. For full
compatibility with ECRPQ semantics,
CRPQ semantics can also be defined as
a pair of mappings, the first from ̄𝑧 to
nodes in𝐺, and the second as the empty
mapping.

In [59]
[59]: Barceló et al. (2013), “Graph Log-
ics with Rational Relations”

, Pabló Barcelo, Diego Figueira and Leonid Libkin, show that it
is not possible to extend ECRPQs further to rational relations without
losing decidability, as the complexity of finding the intersection of a
regular language and a rational relation is only decidable for the sub-
sequence relation, but not for subword or suffix.

Queries with memory The last branch of extensions of RPQs we
consider are Regular Data Path Queries which, unlike all previous lan-
guages, can express conditions on the data values stored in the prop-
erties. In this language, the regular language of RPQs is replaced by a
register automaton or regular expression with memory. Unless stated

36 2 Background and Preliminaries

[60]: Libkin et al. (2016), “Querying
Graphs with Data”

[61]: Vrgoc (2014), “Querying graphs
with data”

[62]: Kaminski et al. (1994), “Finite-
Memory Automata”

[63]: Bojanczyk (2010), “Automata for
Data Words and Data Trees”
[64]: Bouyer et al. (2003), “An alge-
braic approach to data languages and
timed languages”
[65]: Bojanczyk et al. (2011), “Two-
variable logic on data words”

otherwise, all following definitions and results come from [60] and as-
sume a graph model, called data graph, in which only edges are la-
belled. Without loss of generality [61], we also assume that properties
appear only on nodes and that each node has exactly one property.

Introduced by M. Kaminski and N. Francez in [62], Register Automata
(originally “FiniteMemory Automata”) extend finite automatawith read
and write memory cells, called registers, which can take values from
an infinite alphabet. They operate on a variant of “data words” which
contain two letters at each position, one from a finite alphabet (of la-
bels for example), the other from an infinite alphabet (of data values for
example). These words have been studied by the automata theory com-
munity in contexts such as semi-structured data (specifically XML) [63],
timed automata [64] and extensions of first order logic [65]. In the con-
text of graph databases, the data words are replaced with data paths in
which the two values appear one after the other (instead of together)
and begin and end in a value from the infinite alphabet. Formally, a
data path over a finite alphabet Σ and an infinite domain 𝒱 is a finite
alternating sequence from (Σ ⋅ 𝒱)∗ starting and ending with elements
of 𝒱. Given a path 𝑝 in a graph, the data path corresponding to 𝑝 is
obtained by replacing each node with its data value from 𝒱 and each
edge with its label from Σ.

Whenmoving from one state to the next, a register automaton performs
three actions: first, it compares the current letter with the one specified
by the transition (just like finite automaton), second, it optionally com-
pares the current data value with the one stored in a particular register,
and third, it optionally writes the current data value to a register (or
multiple registers, the expressive power remains the same). In what
follows, we separate step 1 from steps 2 and 3 into two transition func-
tions to account for the data path structure.

The class of register automata can be further separated into sub-classes
described by the number of registers that the automaton has access to.
A 𝑘-register automaton is an automaton which uses at most 𝑘 registers.
For ease of notation, we assume that each register is assigned a numeric
identifier, between 1 and 𝑘, and refer to the contents of register 𝑖 as 𝑑𝑖.

The comparison condition for data values is a boolean combination
of equalities between variables and other data values defined by the
following grammar:

𝑐 ∶= 𝑥=
𝑖 ∣ 𝑥≠

𝑖 ∣ 𝑧= ∣ 𝑧≠ ∣ 𝑐 ∧ 𝑐 ∣ 𝑐 ∨ 𝑐 ∣ ¬𝑐

where 𝑥𝑖 ∈ {𝑥1,… , 𝑥𝑘} is a variable referring to the contents of the 𝑖-th
register and 𝑧 is a data value from 𝒱. We denote by 𝒞𝑘 the set of all
conditions on the 𝑘 registers.

We denote by 𝒱⊥ the extension of 𝒱 with the symbol ⊥ meaning that
the register is empty. Given a data value 𝑑 ∈ 𝒱, a tuple representing the
current register configuration 𝜏 = (𝑑1,… , 𝑑𝑘) ∈ 𝒱𝑘

⊥ and a condition 𝑐,
we say that 𝑑 and 𝜏 satisfy 𝑐, denoted by 𝑑, 𝜏 ⊨ 𝑐, inductively as follows:

▶ If 𝑐 = 𝑥=
𝑖 then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑 = 𝑑𝑖

▶ If 𝑐 = 𝑥≠
𝑖 then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑 ≠ 𝑑𝑖

▶ If 𝑐 = 𝑧= then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑 = 𝑧
▶ If 𝑐 = 𝑧≠ then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑 ≠ 𝑧
▶ If 𝑐 = 𝑐1 ∨ 𝑐2 then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑, 𝜏 ⊨ 𝑐1 or 𝑑, 𝜏 ⊨ 𝑐2
▶ If 𝑐 = 𝑐1 ∧ 𝑐2 then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑, 𝜏 ⊨ 𝑐1 and 𝑑, 𝜏 ⊨ 𝑐2
▶ If 𝑐 = ¬𝑐′ then 𝑑, 𝜏 ⊨ 𝑐 if 𝑑, 𝜏 ⊭ 𝑐′

2.4 Querying property graphs 37

Definition 2.4.31 — Register Automaton

A 𝑘-Register Automaton (RA) over Σ and 𝒱 is a tuple
(𝑄, 𝑞0, 𝐹, 𝛿, 𝜏0) where

▶ 𝑄 = 𝑄𝑤 ∪ 𝑄𝑑 is a union of disjoint sets of word states and
data states;

▶ 𝛿 ∶ (𝛿𝑤, 𝛿𝑑) is a pair of transition relations:
• 𝛿𝑤 ∶ 𝑄𝑤 × Σ× 𝑄𝑑 is the word transition relation
• 𝛿𝑑 ∶ 𝑄𝑑×𝒞𝑘×2{1,..,𝑘}×𝑄𝑤 is the data transition relation

▶ 𝑞0 ∈ 𝑄𝑑 is the initial state
▶ 𝐹 ⊆ 𝑄 is a set of accepting states
▶ 𝜏0 ∈ 𝒱𝑘

⊥ is the initial register configuration

Let 𝑝 = 𝑣0 𝑎0 … 𝑣𝑛−1 𝑎𝑛 be a data path over Σ and 𝒱; where all 𝑣𝑖s
are from 𝒱 and all 𝑎𝑖s are from Σ. A configuration of 𝒜 on 𝑝 is a tuple
(𝑗, 𝑞, 𝜏) where 𝑗 is the current position of 𝒜 in 𝑝, 𝑞 is the current state
and 𝜏 ∈ 𝒱𝑘

⊥ is the current content of the registers. The initial configura-
tion is (0, 𝑞0, 𝜏0) and any configuration with 𝑞 ∈ 𝐹 is called final. The
automaton can move from configuration 𝐶 = (𝑗, 𝑞, 𝜏) to configuration
𝐶 ′ = (𝑗 + 1, 𝑞′, 𝜏′) on 𝑝 if one the following holds:

▶ 𝑎𝑗 ∈ Σ, there is a transition (𝑞, 𝑎𝑗, 𝑞
′) ∈ 𝛿𝑤 and 𝜏′ = 𝜏

▶ 𝑣𝑗 ∈ 𝒱 and there is a transition (𝑞, 𝑐, 𝐼, 𝑞′) ∈ 𝛿𝑑 such that 𝑣𝑗, 𝜏 ⊨ 𝑐
and 𝜏′ is the same as 𝜏 except for the 𝑖th component, which is set
to 𝑣𝑗 whenever 𝑖 ∈ 𝐼

A data path 𝑝 is accepted by a register automaton 𝒜 if there exists a
sequence of configurations 𝐶0,… , 𝐶𝑚 such that 𝐶0 is the initial configu-
ration, 𝐶𝑚 is a final configuration and, for all 1 ≤ 𝑗 ≤ 𝑚, the automaton
can move from 𝐶𝑗 to 𝐶𝑗+1 by reading 𝑝. As for finite automata, we de-
note by 𝐿(𝒜) the set of data paths accepted by 𝒜.

Example 2.4.32

The following is a 1-register automaton on Σ = {Friend,Relative}
and 𝒱 = ℕ.

𝑞0start 𝑞1 𝑞2 𝑞3
⊤, {𝑥1} Friend 𝑥=

1 , ∅

This automaton accepts data paths of length 2, where the first letter
is Friend and the two data values are equal.

By replacing the finite automaton in the definition of RPQs by a register
automaton, we obtain the class of Regular Data Path Queries.

Definition 2.4.33 — Regular Data Path Query

Given a finite alphabet Σ and an infinite alphabet 𝒱, a Regular
Data Path Query (RDPQ) is an expression 𝑄 = 𝑥 𝒜−→ 𝑦 where 𝒜 is
a register automaton over Σ and 𝒱.

The semantics of an RDPQ evaluated on a graph 𝐺 is the set of pairs
of nodes in 𝐺 such that there exists a data path labelled by a word
recognized by 𝒜 between them.

Just as finite automata have an equivalent declarative syntax, namely

38 2 Background and Preliminaries

regular expressions, the language of a register automaton can be de-
scribed by a regular expression with memory, which extend regular
expressions with a ↓ (“store into register”) operator and conditions
from 𝒞𝑘.

Definition 2.4.34 — Regular Query with Memory

Given a finite alphabet Σ and a set of variables 𝑥1,… , 𝑥𝑘, a Regular
Expression with Memory (REM) is an expression obtained from the
following grammar:

𝑒 ∶= 𝜖 ∣ 𝑎 ∣ 𝑒 + 𝑒 ∣ 𝑒 ⋅ 𝑒 ∣ 𝑒+ ∣ 𝑒[𝑐] ∣↓ ̄𝑥.𝑒

where 𝑎 is a letter in Σ, 𝑐 is a condition in 𝒞𝑘 and ̄𝑥 is a tuple of
variables from 𝑥1,… , 𝑥𝑘.
A Regular Query with Memory (RQM) is an expression of the form
𝑄 = 𝑥 𝑒−→ 𝑦 where 𝑒 is a regular expression with memory.

Given a REM 𝑒 and a data path𝑤, we say that𝑤 satisfies 𝑒 if there exists
two register configurations 𝜎 and 𝜎′ such that (𝑒, 𝑤, 𝜎) ⊢ 𝜎′ where the
relation ⊢ is defined inductively as follows.

▶ (𝜖,𝑤, 𝜎) ⊢ 𝜎′ iff 𝑤 = 𝑣 for some 𝑣 ∈ 𝒱 and 𝜎′ = 𝜎.
▶ (𝑎,𝑤, 𝜎) ⊢ 𝜎′ iff 𝑤 = 𝑣1𝑎𝑣2 and 𝜎′ = 𝜎
▶ (𝑒1 ⋅ 𝑒2, 𝑤, 𝜎) ⊢ 𝜎′ iff there is a splitting 𝑤 = 𝑤1 ⋅ 𝑤2 and a

configuration 𝜎″ such that (𝑒1, 𝑤1, 𝜎) ⊢ 𝜎″ and (𝑒2, 𝑤2, 𝜎
″) ⊢ 𝜎′.

▶ (𝑒1 + 𝑒2, 𝑤, 𝜎) ⊢ 𝜎′ iff (𝑒1, 𝑤, 𝜎) ⊢ 𝜎′ or (𝑒2, 𝑤, 𝜎) ⊢ 𝜎′.
▶ (𝑒+, 𝑤, 𝜎) ⊢ 𝜎′ iff there is are a splitting 𝑤 = 𝑤1 ⋯𝑤𝑚 and con-

figurations 𝜎 = 𝜎0,⋯𝜎𝑚 = 𝜎′ such that (𝑒𝑖, 𝑤𝑖, 𝜎𝑖−1) ⊢ 𝜎𝑖 for all
𝑖 ∈ {1,… ,𝑚}.

▶ (↓ ̄𝑥.𝑒, 𝑤, 𝜎) ⊢ 𝜎′ iff (𝑒, 𝑤, 𝜎�̄�=𝑑) ⊢ 𝜎′ where 𝜎�̄�=𝑑 is the config-
uration obtained from 𝜎 by setting all variables in ̄𝑥 to the first
value of 𝑤.

▶ (𝑒[𝑐], 𝑤, 𝜎) ⊢ 𝜎′ iff (𝑒, 𝑤, 𝜎) ⊢ 𝜎′ and 𝜎′, 𝑑 ⊨ 𝑐 where 𝑑 is the last
data value of 𝑤.

The semantics, or language, of a regular expression with memory 𝑒 is
the set of data paths that satisfy it, i.e.ℒ(𝑒) = {𝑤 ∣ ∃𝜎, (𝑒, 𝑤, ⊥̄) ⊢ 𝜎}.

Example 2.4.35

The following RQM 𝑄 returns all pairs of nodes linked by a Friend
edge and that have the same data value. Notice that the underlying
REM is equivalent to the automaton of Example 2.4.32.

𝑄 ∶= ↓ 𝑥1.(𝑥)
Friend−−−−→ (𝑦)[𝑥=

1]

When evaluated on the graph represented in Figure 2.3, the seman-
tics of 𝑄 is the set {(𝑝1, 𝑝2)}.

It is no surprise that REMs define the same class of languages as Register
Automata.

2.4 Querying property graphs 39

[66]: Figueira et al. (2022), “Data
Path Queries over Embedded Graph
Databases”

Theorem 2.4.36 — Equivalence of RA and REMs

Register data path automata and regular expressions with memory
define the same class of data path languages. [60]

[60]: Libkin et al. (2016), “Querying
Graphs with Data”

The proof of this equivalence follows closely that of the equivalence
of finite automata and regular expressions. For the automata to REM
direction, the construction consists of merging the automaton’s states
while maintaining the transition information by putting increasingly
more complex regular expressions with memory on the new transitions.
In this way, the last remaining transition is labelled by the equivalent
REM. As in the case of non-register automata, this can lead to an ex-
ponential blow-up. For the REM to automata direction, the automa-
ton is constructed by induction on the form of the regular expression
with memory, using standard techniques for the union, concatenation
and Kleene star operations. Anytime the REM-specific operation ↓ is
encountered, the current value is stored into a register and all condi-
tions contained in [𝑐] operators are checked on the last transition of
the sub-automaton.

Of course, this equivalence extends to the two query formalisms built
on top of register automata and regular expressions with memory.

Corollary 2.4.37 — Equivalence of RDPQs and RQMs

For each regular data path query 𝑄, there exists a regular query
with memory 𝑄 ′ such that, for all data graphs 𝐷, J𝑄K𝐷 = J𝑄 ′K𝐷 and
vice versa.

We call RQM Evaluation the problem of query evaluation where the
query must be an RQM.

Theorem 2.4.38 — Complexity of RQM Evaluation

The data complexity of RQM Evaluation over data graphs
is NLOGSPACE-complete and its combined complexity is
PSPACE-complete [60]

[60]: Libkin et al. (2016), “Querying
Graphs with Data”

.

As REMs can be efficiently translated into register automata, both upper
bounds are obtained from the proof of the same statement for RDPQs.
For data complexity, the algorithm is the same as for RPQs, i.e. guessing
a word on the fly in the product automaton of the graph and the register
automaton. For combined complexity, the algorithm remains the same
with the extra need of space polynomial in the size of the query (as it is
not fixed). For the lower-bounds, the NLOGSPACE-completeness comes
directly from reachability on graphs, while the PSPACE-completeness
is obtained by reduction to the problem of non-universality problem
of finite automata, which asks, given an automaton 𝒜, whether there
exists a word that does not belong to 𝐿(𝒜).

The study of the impact of data values on patternmatching is further ex-
tended by Diego Figueira, Artur Jeż and AnthonyW. Lin in [66] to oper-
ations from first-order infinite structures. Somewhat surprisingly, they
show that for the real-closed fieldℝ×,+ and the integer linear arithmetic
ℤ𝐿𝐴 the data complexity of query evaluation remains in NLOGSPACE.

40 2 Background and Preliminaries

Figure 2.6: Complexity of query evalua-
tion for the languages presented in this
section. As usual, 𝐶 means the problem
is complete for its class

RPQ CRPQ/UCRPQ 2RPQ C2RPQ/UC2RPQ

Data complexity NLOGSPACE𝐶 NLOGSPACE𝐶 NLOGSPACE𝐶 NLOGSPACE𝐶

Combined complexity PTime NP𝐶 PTime NP𝐶

RQ NRE ECRPQ RDPQ / RQM

Data complexity NLOGSPACE𝐶 NLOGSPACE𝐶 NLOGSPACE𝐶 NLOGSPACE𝐶

Combined complexity NP𝐶 PTime PSPACE𝐶 PSPACE𝐶

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[67]: Libkin et al. (2013), “Querying
graph databases with XPath”
[68]: Abiteboul et al. (1999), “Regular
Path Queries with Constraints”

[69]: Arenas et al. (2022), “Temporal
Regular Path Queries”
[70]: Grahne et al. (2007), “Preferen-
tially Annotated Regular Path Queries”

Other extensions Many other navigational languages have been stud-
ied, some in the same context of graph databases, others for RDF or
more generally semi-structured data. Already in 1987, Isabel F. Cruz,
Alberto O. Mendelzon and Peter T. Wood introduced the language G, in
which queries are essentially unions of RPQs with extra label variables
[6]. The XML language XPath has been adapted to graphs by Leonid
Libkin, WimMartens and Domagoj Vrgoč in [67]. The problem of query
evaluation for RPQs in the presence of a schema has been shown to be
in EXPSPACE by Serge Abiteboul and Victor Vianu in [68]. The notion of
time, for situations when data can become stale or invalid, and prefer-
ence of a solution over another, have been investigated respectively by
Marcelo Arenas, Pedro Bahamondes, Amir Aghasadeghi and Julia Stoy-
anovich in [69] and Gösta Grahne, Alex Thomo and William Wadge in
[70].

2.5 Path semantics

All the query evaluation results of section 2.4 (except for ECRPQs) as-
sume the homomorphism semantics, also called walk semantics, for
paths, in which the results of queries are pairs of nodes and the path
that connects them is forgotten. When the path component must be
returned, the naïve approach is to compute the set of all paths that
satisfy the query. This is called the arbitrary path semantics. Though
it may seem like a desirable result, this semantic can lead to a difficult
problem: infinite answers, makings tasks such as outputting the answer
or counting the number of different paths near impossible. Indeed, if
a cycle in the graph happens to match a pattern under Kleene star in
the query, it can be traversed arbitrarily many times, creating a new
answer each time. Nevertheless, figure 2.8 shows that 3 of the 10 most
popular property graph database management systems do implement
it and leave to the user the responsibility to limit the number of outputs
in a reasonable way.

Figure 2.7: Illustration of the differ-
ence between shortest path, simple
path and trail semantics for paths be-
tween nodes 1 and 2

shortest

simple

trail

1 2

2.5 Path semantics 41

Engine Available path semantics Score
Neo4j Trail and shortest trail 44.46
ArangoDB Shortest and arbitrary 3.32
Memgraph Trail and shortest 3.02
Amazon Neptune Trail 2.20
NebulaGraph Arbitrary 2.14
TigerGraph Shortest 1.83
DGraph Shortest 1.45
AnzoGraph DB Arbitrary a 0.23
AgensGraph Shortest 0.20
Ultipa Shortest 0.13

Figure 2.8: Available path semantics in
Property Graph Database Management
Systems ordered by DBEngines score.
This score is a reflection of the popular-
ity of a system, based on the number of
results in search engines, frequency of
searches on Google, number of related
questions on technical websites, num-
ber of job offers, number of mentions
in professional profiles and number of
posts on X (formerly Twitter).

a only returns endpoints

[71]: Vrgoč (2022), Evaluating regular
path queries under the all-shortest paths
semantics
[72]: Baier et al. (2017), “Evaluat-
ing Navigational RDF Queries over the
Web”
[73]: Fionda et al. (2015), “NautiLOD:
A Formal Language for the Web of Data
Graph”

The usual solution to output paths while avoiding the infinite answers
problem is to consider a different semantic for the notion of path. The
three main alternatives to arbitrary paths are: shortest path, simple
path and trail. In the rest of this section we present these semantics
and the main associated results for query evaluation and query enu-
meration.

Shortest paths

As the name implies, the shortest path semantics restricts paths to those
that contain the least amount of edges among all the possible answers
to the query. This definition has the advantage of being both simple
to understand and to compute but it is often too restrictive and can
discard relevant answers.

Given a graph 𝐺, an RPQ 𝑄 and two nodes 𝑢 and 𝑣 in 𝐺, we call
single shortest path RPQ evaluation the problem of outputting a single
shortest path between 𝑢 and 𝑣 that conforms to 𝑄, and enumerate all
shortest paths the problem of enumerating all such paths.

Theorem 2.5.1 — Complexity of shortest path evaluation

The single shortest path RPQ evaluation problem can be solved in
linear time in the size of the graph and the query [71].

The idea of the algorithm, presented in full in [71–73], is to run a
shortest path finding algorithm, such as Breadth-First Search, on the
product of the graph 𝐺 and the automaton underlying the RPQ 𝑄. As
the shortest path finding algorithms run in time linear in the size of the
considered graph, and the product graph can be constructed in linear
size in the size of 𝐺 and 𝑄, we get the desired result.

Theorem 2.5.2 — Complexity of shortest path enumeration

The enumerate all shortest paths problem can be solved with out-
put in polynomial delay with a precomputation phase in linear time
in the size of the graph and the query [71]

[71]: Vrgoč (2022), Evaluating regular
path queries under the all-shortest paths
semantics

.

This result comes from a simple modification of the algorithm of Theo-
rem 2.5.1, extended to account for the need to remember which paths
have already been output.

https://db-engines.com/en/ranking/graph+dbms
https://www.wikiwand.com/en/Breadth-first_search

42 2 Background and Preliminaries

[74]: Mendelzon et al. (1989), “Find-
ing Regular Simple Paths in Graph
Databases”
[75]: Bagan et al. (2013), “A tri-
chotomy for regular simple path
queries on graphs”
[76]: Arenas et al. (2012), “Counting
beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption
of the standard”
[77]: Losemann et al. (2013), “The
complexity of regular expressions and
property paths in SPARQL”
[78]: Barrett et al. (1998), “Formal
Language Constrained Path Problems”
[79]: LaPaugh et al. (1984), “The
even-path problem for graphs and
digraphs”
[80]: Robertson et al. (1995), “Graph
Minors .XIII. The Disjoint Paths Prob-
lem”
[81]: Nedev et al. (2000), “A
Polynomial-Time Algorithm for
Finding Regular Simple Paths in
Outerplanar Graphs”
8: It is however very popular in RDF
systems

[75]: Bagan et al. (2013), “A trichotomy
for regular simple path queries on
graphs”
[43]:Martens et al. (2018), “Evaluation
and Enumeration Problems for Regular
Path Queries”
[43]:Martens et al. (2018), “Evaluation
and Enumeration Problems for Regular
Path Queries”
[82]: Martens et al. (2019), “Bridging
Theory and Practice with Query Log
Analysis”
[83]: Martens et al. (2019), “Di-
chotomies for Evaluating Simple Regu-
lar Path Queries”
[84]: Martens et al. (2020), “A Tri-
chotomy for Regular Trail Queries”
[85]: Martens et al. (2022), Represent-
ing Paths in Graph Database Pattern
Matching
[86]: Martens et al. (2022), “The Com-
plexity of Regular Trail and Simple Path
Queries on Undirected Graphs”
[87]: Popp (2022), “Evaluation and
Enumeration of Regular Simple Path
and Trail Queries”

Simple paths
In the simple path semantics, a path must traverse each node at most
once (usually this restriction is relaxed for the first and last nodes of
the path, otherwise we talk about acyclic paths). This allows for paths
longer than the shortest path but excludes paths that contain cycles.
First introduced in the context of graph databases in [74], the simple
path semantics has been extensively studied in the theoretical litera-
ture [75–81] but, as of May 2024, no graph database management sys-
tem implements it (see figure 2.8) 8. Unfortunately, this more flexible
semantics comes with a complexity cost as the problem of query evalu-
ation for simple paths is untractable.

Given a graph𝐺, an RPQ𝑄 and two nodes 𝑢 and 𝑣 in𝐺, we call Regular
Simple Path Query (RSPQ) the problem of RPQ Evaluation with the
additional condition that the path must be simple.

Theorem 2.5.3 — Complexity of RSPQ

The Regular Simple Path Query problem is NP-complete for both
data complexity and combined complexity [74].

The proofs of Theorem 2.5.3 rely on reductions from the Even Path Prob-
lem, which asks for a directed path of even length, and the Disjoint
Paths Problem, which asks for a pair of directed paths (between two
pairs of fixed nodes) that have no nodes in common. For the first re-
duction, it suffices to construct a graph 𝐺 ′ identical to the input graph
𝐺 except that all edges are labelled with the same letter, for example
𝑎. It is easy to see that finding a simple path labelled by (𝑎𝑎)∗ in 𝐺 ′

is equivalent to finding a path of even length in 𝐺. For the second re-
duction, build 𝐺 ′ the same way except for an additional edge labelled
by a different letter, say 𝑏, between the destination endpoint of the first
path and the source endpoint of the second path. With this construction,
finding a single simple path between the first source endpoint and the
second destination endpoint labelled by 𝑎∗𝑏𝑎∗ is equivalent to finding
two node-disjoint paths in 𝐺 as the node-disjoint condition is preserved
by the simple path semantics and the endpoints are preserved by the
necessity to traverse the single 𝑏 edge.

In [75], G. Bagan, A. Bonifati and B. Groz define the class of languages
SPtract for which the Regular Simple Path Query problem is tractable,
more specifically in NLOGSPACE. In [43], W. Martens and T. Traut-
ner (now T. Popp), investigate the complexity of the Query Enumer-
ation problem for simple paths constrained by RPQs. They show that
this problem can be solved in polynomial delay whenever the language
belongs to SPtract.

Trails
The trail semantics is the dual of the simple path semantics for edges:
a path is considered only if it traverses each edge at most once. This is
the most lenient of the three semantics as it allows both paths longer
than the shortest path and paths that go through a cycle once. Unlike
for simple paths, the interest in trails from the academic community
is very recent [43, 82–87], even though it is the most used in practice.
The trail semantics is the default path semantics in Neo4j, which domi-
nates the market of property graph database management systems by a
very large margin, as witnessed by its db-engines score (see figure 2.8).

https://neo4j.com
https://db-engines.com/en/ranking/graph+dbms

2.5 Path semantics 43

[84]: Martens et al. (2020), “A Tri-
chotomy for Regular Trail Queries”

[88]: David et al. (2023), “Run-Based
Semantics for RPQs”

[89]: Figueira et al. (2023), “Conjunc-
tive Regular Path Queries under Injec-
tive Semantics”

Unsurprisingly, like for simple paths, the problem of query evaluation
for trails is untractable.

Given a graph𝐺, an RPQ𝑄 and two nodes 𝑢, 𝑣 in𝐺, we call Regular Trail
Query (RTQ) the problem of RPQ Evaluation with the additional con-
dition that the path must be a trail.

Theorem 2.5.4 — Complexity of RTQ

The Regular Trail Query problem is NP-complete in data complex-
ity [87].

The proof is by reduction from the Two-edge disjoint path problem, which
asks for a pair of directed paths (between two pairs of fixed nodes) that
have no edges in common. The construction is the same as for the sec-
ond reduction of the proof of Theorem 2.5.3. The edge-disjoint condi-
tion is then preserved by the trail semantics.

In [84], W. Martens, M. Niewerth and T. Trautner define Ttract, the sub-
class of languages for which the query evaluation problem is tractable
(specifically NLOGSPACEcomplete) and the enumeration problem can
be solved in polynomial delay.

Remark 2.5.5

Although trail and simple path semantics returnmore answers than
shortest path for most queries, it is not always the case. For exam-
ple, the semantics of 𝑄(𝑥, 𝑦) = (𝑥) 𝑎+𝑏+𝑎+−−−−−→ (𝑦) on the following
graph 𝐺 is empty for trail and simple path but not for shortest path,
for which the path going through 𝑛0, 𝑛1, 𝑛3, 𝑛2, 𝑛1, 𝑛3, 𝑛4 is an an-
swer.

𝐺 =
𝑛0 𝑛1

𝑛2

𝑛3 𝑛4
𝑎 𝑎 𝑎

𝑏𝑏

In general, whenever J𝑄K𝐺 ≠ ∅ for arbitrary path semantics then
J𝑄K𝐺 ≠ ∅ for shortest path semantics, which makes shortest path
a reasonable candidate for both theoretical study and practical ap-
plications.

Other path semantics
Very few other path semantics have been studied in the theoretical liter-
ature. In 2006, Gösta Grahne and Alex Thomo proposed a Description
Logic flavored semantics, called the “approximate semantics”, in which
labels are enhanced with real-world knowledge on related concepts.
This requires less knowledge from the user on the internal representa-
tion and structure of the graph. Very recently C. David, N. Francis and
V. Marsault have introduced the “Run-Based” semantics [88]. The core
idea of this proposal is the separation of the regular expression into
“atoms” which can be evaluated separately (under the simple path or
trail semantics). This has the advantage of being less restrictive than
all alternatives seen in this section, including trail, while remaining
tractable, specifically NLOGSPACE-complete, for the query evaluation
problem. At roughly the same time, Diego Figueira and Miguel Romero
defined the “injective semantics” [89] which forces the assignment of

44 2 Background and Preliminaries

variables to nodes in the graph to be injective. When this restriction
is applied to the whole query, this semantics is equivalent to simple
paths. When applied to “atoms” of the regular expression underlying
the query, it allows the same node to be matched in different atoms
of the query. Unlike the “Run-Based”, the query evaluation problem
for the “injective semantics” remains NP-complete in data complexity
(trivially from the inclusion of simple path semantics).

References 45

References
[1] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Commun. ACM 13.6

(1970), pp. 377–387. doi: 10.1145/362384.362685.
[4] Renzo Angles and Claudio Gutierrez. “Survey of graph database models”. In: ACM Comput. Surv.

40.1 (2008), 1:1–1:39. doi: 10.1145/1322432.1322433.
[6] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query Language Supporting

Recursion”. In: Proceedings of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987. Ed. by
Umeshwar Dayal and Irving L. Traiger. ACM Press, 1987, pp. 323–330. doi: 10.1145/38713.38749.

[9] Pablo Barceló. “Querying graph databases”. In: Principles of Database Systems (PODS). 2013, pp. 175–
188.

[10] Leonid Libkin, Wim Martens, and Domagoj Vrgoc. “Querying Graphs with Data”. In: J. ACM 63.2
(2016), 14:1–14:53. doi: 10.1145/2850413.

[11] Pablo Barceló et al. “Expressive languages for path queries over graph-structured data”. In: ACM
Trans. Database Syst. 37.4 (2012), 31:1–31:46.

[12] Peter T. Wood. “Query languages for graph databases”. In: SIGMOD Record 41.1 (2012), pp. 50–60.
[13] Diego Figueira. “Containment of UC2RPQ: The Hard and Easy Cases”. In: 23rd International Confer-

ence on Database Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark. Ed. by Carsten
Lutz and Jean Christoph Jung. Vol. 155. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 9:1–9:18. doi: 10.4230/LIPICS.ICDT.2020.9.

[14] Pablo Barceló, Jorge Pérez, and Juan L. Reutter. “Relative Expressiveness of Nested Regular Expres-
sions”. In: Proceedings of the 6th Alberto Mendelzon International Workshop on Foundations of Data
Management, Ouro Preto, Brazil, June 27-30, 2012. 2012, pp. 180–195.

[19] Marcelo Arenas et al. Database Theory. Open source at https : / / github . com / pdm - book /
community, 2022.

[20] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.
[21] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS

Series. Springer, 2004.
[22] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
[23] Michael Sipser. “Introduction to the Theory of Computation”. In: SIGACT News 27.1 (1996), pp. 27–

29. doi: 10.1145/230514.571645.
[24] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, lan-

guages, and computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007.
[25] James Jones. “Undecidable diophantine equations”. In: Bulletin of the AmericanMathematical Society

3.2 (1980), pp. 859–862.
[26] Ashok K. Chandra and Philip M. Merlin. “Optimal Implementation of Conjunctive Queries in Re-

lational Data Bases”. In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA. Ed. by John E. Hopcroft, Emily P. Friedman, and Michael A.
Harrison. ACM, 1977, pp. 77–90. doi: 10.1145/800105.803397.

[27] Manuel Lima. The book of trees : visualizing branches of knowledge. New York : Princeton Architec-
tural Press, 2014.

[28] openCypher. Cypher Query Language Reference, Version 9. 2017. url: https : / / github . com /
opencypher/openCypher/blob/master/docs/openCypher9.pdf.

[29] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:
SIAM J. Comput. 24.6 (1995), pp. 1235–1258.

[30] Béla Bollobás. Modern Graph Theory. Vol. 184. Springer Science & Business Media, 2013.
[31] Olaf Hartig et al. RDF 1.2 Concepts and Abstract Syntax. Mar. 2024. url: https://www.w3.org/

TR/2024/WD-rdf12-concepts-20240307/.
[32] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. June 2014. url: https://www.w3.org/TR/

2014/NOTE-rdf11-primer-20140624/.
[33] Claudio Gutierrez, Carlos A. Hurtado, and Alberto O. Mendelzon. “Foundations of Semantic Web

Databases”. In: Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 14-16, 2004, Paris, France. Ed. by Catriel Beeri and Alin Deutsch.
ACM, 2004, pp. 95–106. doi: 10.1145/1055558.1055573.

[34] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 Turtle. Feb. 2014. url: https://www.w3.org/
TR/2014/REC-turtle-20140225/.

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/2850413
https://doi.org/10.4230/LIPICS.ICDT.2020.9
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://doi.org/10.1145/230514.571645
https://doi.org/10.1145/800105.803397
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240307/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240307/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://doi.org/10.1145/1055558.1055573
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/

46

[35] Dominik Tomaszuk and David Hyland-Wood. “RDF 1.1: Knowledge Representation and Data Inte-
gration Language for the Web”. In: Symmetry 12.1 (2020), p. 84. doi: 10.3390/SYM12010084.

[36] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. “Reifying RDF: What Works Well With
Wikidata?” In: SSWS@ISWC. 2015.

[37] Olaf Hartig. “RDF* and SPARQL*: An Alternative Approach to Annotate Statements in RDF”. In:
Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017.
Ed. by Nadeschda Nikitina et al. Vol. 1963. CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[38] Renzo Angles et al. PG-Schema: Schemas for Property Graphs. 2022.
[39] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “RDF and Property Graphs Interoperability:

Status and Issues”. In: Proceedings of the 13th Alberto Mendelzon International Workshop on Founda-
tions of Data Management, Asunción, Paraguay, June 3-7, 2019. Ed. by Aidan Hogan and Tova Milo.
Vol. 2369. CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[40] Serge Abiteboul and Victor Vianu. “Regular Path Queries with Constraints”. In: Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 12-14,
1997, Tucson, Arizona, USA. Ed. by Alberto O. Mendelzon and Z. Meral Özsoyoglu. ACM Press, 1997,
pp. 122–133. doi: 10.1145/263661.263676.

[41] Erkki Mäkinen. “On Lexicographic Enumeration of Regular and Context-Free Languages”. In: Acta
Cybern. 13.1 (1997), pp. 55–61.

[42] Margareta Ackerman and Jeffrey O. Shallit. “Efficient enumeration of words in regular languages”.
In: Theor. Comput. Sci. 410.37 (2009), pp. 3461–3470. doi: 10.1016/J.TCS.2009.03.018.

[43] Wim Martens and Tina Trautner. “Evaluation and Enumeration Problems for Regular Path Queries”.
In: International Conference on Database Theory (ICDT). Vol. 98. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018, 19:1–19:21.

[44] Katrin Casel and Markus L. Schmid. “Fine-Grained Complexity of Regular Path Queries”. In: Log.
Methods Comput. Sci. 19.4 (2023). doi: 10.46298/LMCS-19(4:15)2023.

[45] Dario Colazzo and Carlo Sartiani. “Typing regular path query languages for data graphs”. In: Pro-
ceedings of the 15th Symposium on Database Programming Languages, Pittsburgh, PA, USA, October
25-30, 2015. Ed. by James Cheney and Thomas Neumann. ACM, 2015, pp. 69–78. doi: 10.1145/
2815072.2815082.

[46] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. “Regular Path Query Evaluation on Streaming
Graphs”. In: Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020. Ed. by David Maier et al.
ACM, 2020, pp. 1415–1430. doi: 10.1145/3318464.3389733.

[47] Diego Calvanese et al. “Reasoning on regular path queries”. In: SIGMOD Rec. 32.4 (2003), pp. 83–
92. doi: 10.1145/959060.959076.

[48] Diego Calvanese et al. “Answering Regular Path Queries Using Views”. In: Proceedings of the 16th
International Conference on Data Engineering, San Diego, California, USA, February 28 - March 3,
2000. Ed. by David B. Lomet and Gerhard Weikum. IEEE Computer Society, 2000, pp. 389–398.
doi: 10.1109/ICDE.2000.839439.

[49] Miguel Romero, Pablo Barceló, and Moshe Y. Vardi. “The homomorphism problem for regular graph
patterns”. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1–12. doi: 10.1109/LICS.2017.
8005106.

[50] Diego Figueira and Rémi Morvan. “Approximation and Semantic Tree-Width of Conjunctive Regular
Path Queries”. In: 26th International Conference on Database Theory, ICDT 2023, March 28-31, 2023,
Ioannina, Greece. Ed. by Floris Geerts and Brecht Vandevoort. Vol. 255. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023, 15:1–15:19. doi: 10.4230/LIPICS.ICDT.2023.15.

[51] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. “Semantic Acyclicity on Graph Databases”. In:
SIAM J. Comput. 45.4 (2016), pp. 1339–1376. doi: 10.1137/15M1034714.

[52] Pablo Barceló, Diego Figueira, and Miguel Romero. “Boundedness of Conjunctive Regular Path
Queries”. In: 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece. Ed. by Christel Baier et al. Vol. 132. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 104:1–104:15. doi: 10.4230/LIPICS.ICALP.2019.104.

[53] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. “An Extension of SPARQL for RDFS”. In: Seman-
tic Web, Ontologies and Databases, VLDB Workshop, SWDB-ODBIS 2007, Vienna, Austria, September
24, 2007, Revised Selected Papers. Ed. by Vassilis Christophides, Martine Collard, and Claudio Gutier-

https://doi.org/10.3390/SYM12010084
https://doi.org/10.1145/263661.263676
https://doi.org/10.1016/J.TCS.2009.03.018
https://doi.org/10.46298/LMCS-19(4:15)2023
https://doi.org/10.1145/2815072.2815082
https://doi.org/10.1145/2815072.2815082
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1145/959060.959076
https://doi.org/10.1109/ICDE.2000.839439
https://doi.org/10.1109/LICS.2017.8005106
https://doi.org/10.1109/LICS.2017.8005106
https://doi.org/10.4230/LIPICS.ICDT.2023.15
https://doi.org/10.1137/15M1034714
https://doi.org/10.4230/LIPICS.ICALP.2019.104

References 47

rez. Vol. 5005. Lecture Notes in Computer Science. Springer, 2007, pp. 1–20. doi: 10.1007/978-
3-540-70960-2_1.

[54] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “nSPARQL: A navigational language for RDF”.
In: J. Web Semant. 8.4 (2010), pp. 255–270. doi: 10.1016/J.WEBSEM.2010.01.002.

[55] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. “How to Best Nest Regular Path Queries”.
In: Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria,
July 17-20, 2014. Ed. by Meghyn Bienvenu et al. Vol. 1193. CEUR Workshop Proceedings. CEUR-
WS.org, 2014, pp. 404–415.

[56] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. “Reasonable Highly Expressive Query Lan-
guages - IJCAI-15 Distinguished Paper (Honorary Mention)”. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge. AAAI Press, 2015, pp. 2826–2832.

[57] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. “Regular Queries on Graph Databases”. In:
Theory Comput. Syst. 61.1 (2017), pp. 31–83. doi: 10.1007/s00224-016-9676-2.

[58] Diego Figueira and Varun Ramanathan. “When is the Evaluation of Extended CRPQ Tractable?” In:
PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 203–212. doi: 10.1145/3517804.
3524167.

[59] Pablo Barceló, Diego Figueira, and Leonid Libkin. “Graph Logics with Rational Relations”. In: Log.
Methods Comput. Sci. 9.3 (2013). doi: 10.2168/LMCS-9(3:1)2013.

[60] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. “Querying Graphs with Data”. In: Journal of the
ACM 63.2 (2016), 14:1–14:53.

[61] Domagoj Vrgoc. “Querying graphs with data”. PhD thesis. University of Edinburgh, UK, 2014.
[62] Michael Kaminski and Nissim Francez. “Finite-Memory Automata”. In: Theor. Comput. Sci. 134.2

(1994), pp. 329–363. doi: 10.1016/0304-3975(94)90242-9.
[63] Mikolaj Bojanczyk. “Automata for Data Words and Data Trees”. In: Proceedings of the 21st Interna-

tional Conference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh,
Scottland, UK. Ed. by Christopher Lynch. Vol. 6. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010, pp. 1–4. doi: 10.4230/LIPICS.RTA.2010.1.

[64] Patricia Bouyer, Antoine Petit, and Denis Thérien. “An algebraic approach to data languages and
timed languages”. In: Inf. Comput. 182.2 (2003), pp. 137–162. doi: 10.1016/S0890-5401(03)
00038-5.

[65] Mikolaj Bojanczyk et al. “Two-variable logic on data words”. In: ACM Trans. Comput. Log. 12.4
(2011), 27:1–27:26. doi: 10.1145/1970398.1970403.

[66] Diego Figueira, Artur Jez, and AnthonyW. Lin. “Data Path Queries over EmbeddedGraphDatabases”.
In: PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 189–201. doi: 10.1145/3517804.
3524159.

[67] Leonid Libkin, WimMartens, and Domagoj Vrgoc. “Querying graph databases with XPath”. In: Joint
2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013. Ed. by Wang-
Chiew Tan et al. ACM, 2013, pp. 129–140. doi: 10.1145/2448496.2448513.

[68] Serge Abiteboul and Victor Vianu. “Regular Path Queries with Constraints”. In: J. Comput. Syst. Sci.
58.3 (1999), pp. 428–452. doi: 10.1006/JCSS.1999.1627.

[69] Marcelo Arenas et al. “Temporal Regular Path Queries”. In: 38th IEEE International Conference on
Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 2022, pp. 2412–2425.
doi: 10.1109/ICDE53745.2022.00226.

[70] Gösta Grahne, Alex Thomo, andWilliamW.Wadge. “Preferentially Annotated Regular Path Queries”.
In: Database Theory - ICDT 2007, 11th International Conference, Barcelona, Spain, January 10-12,
2007, Proceedings. Ed. by Thomas Schwentick and Dan Suciu. Vol. 4353. Lecture Notes in Computer
Science. Springer, 2007, pp. 314–328. doi: 10.1007/11965893_22.

[71] Domagoj Vrgoč. Evaluating regular path queries under the all-shortest paths semantics. 2022.
[72] Jorge A. Baier et al. “Evaluating Navigational RDF Queries over the Web”. In: HT. ACM, 2017,

pp. 165–174. doi: 10.1145/3078714.3078731.
[73] Valeria Fionda, Giuseppe Pirrò, and Claudio Gutierrez. “NautiLOD: A Formal Language for the Web

of Data Graph”. In: ACM Trans. Web 9.1 (2015), 5:1–5:43. doi: 10.1145/2697393.

https://doi.org/10.1007/978-3-540-70960-2_1
https://doi.org/10.1007/978-3-540-70960-2_1
https://doi.org/10.1016/J.WEBSEM.2010.01.002
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/3517804.3524167
https://doi.org/10.1145/3517804.3524167
https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPICS.RTA.2010.1
https://doi.org/10.1016/S0890-5401(03)00038-5
https://doi.org/10.1016/S0890-5401(03)00038-5
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/3517804.3524159
https://doi.org/10.1145/3517804.3524159
https://doi.org/10.1145/2448496.2448513
https://doi.org/10.1006/JCSS.1999.1627
https://doi.org/10.1109/ICDE53745.2022.00226
https://doi.org/10.1007/11965893_22
https://doi.org/10.1145/3078714.3078731
https://doi.org/10.1145/2697393

48

[74] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:
Proceedings of the Fifteenth International Conference on Very Large Data Bases, August 22-25, 1989,
Amsterdam, The Netherlands. 1989, pp. 185–193.

[75] Guillaume Bagan, Angela Bonifati, and Benoı̂t Groz. “A trichotomy for regular simple path queries
on graphs”. In: Symposium on Principles of Database Systems (PODS). Ed. by Richard Hull andWenfei
Fan. ACM, 2013, pp. 261–272.

[76] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. “Counting beyond a Yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard”. In: World Wide Web (WWW). 2012,
pp. 629–638.

[77] Katja Losemann and Wim Martens. “The complexity of regular expressions and property paths in
SPARQL”. In: ACM Trans. Database Syst. 38.4 (2013), p. 24.

[78] Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. “Formal Language Constrained Path
Problems”. In: Algorithm Theory - SWAT ’98, 6th Scandinavian Workshop on Algorithm Theory, Stock-
holm, Sweden, July, 8-10, 1998, Proceedings. Ed. by Stefan Arnborg and Lars Ivansson. Vol. 1432.
Lecture Notes in Computer Science. Springer, 1998, pp. 234–245. doi: 10.1007/BFB0054371.

[79] Andrea S. LaPaugh and Christos H. Papadimitriou. “The even-path problem for graphs and digraphs”.
In: Networks 14.4 (1984), pp. 507–513. doi: 10.1002/NET.3230140403.

[80] Neil Robertson and Paul D. Seymour. “Graph Minors .XIII. The Disjoint Paths Problem”. In: J. Comb.
Theory, Ser. B 63.1 (1995), pp. 65–110. doi: 10.1006/JCTB.1995.1006.

[81] Zhivko Prodanov Nedev and Peter T. Wood. “A Polynomial-Time Algorithm for Finding Regular
Simple Paths in Outerplanar Graphs”. In: J. Algorithms 35.2 (2000), pp. 235–259. doi: 10.1006/
JAGM.1999.1072.

[82] Wim Martens and Tina Trautner. “Bridging Theory and Practice with Query Log Analysis”. In: SIG-
MOD Rec. 48.1 (2019), pp. 6–13. doi: 10.1145/3371316.3371319.

[83] Wim Martens and Tina Trautner. “Dichotomies for Evaluating Simple Regular Path Queries”. In:
ACM Trans. Database Syst. 44.4 (2019), 16:1–16:46. doi: 10.1145/3331446.

[84] Wim Martens, Matthias Niewerth, and Tina Trautner. “A Trichotomy for Regular Trail Queries”. In:
International Symposium on Theoretical Aspects of Computer Science, (STACS). 2020, 7:1–7:16.

[85] Wim Martens et al. Representing Paths in Graph Database Pattern Matching. 2022.
[86] Wim Martens and Tina Popp. “The Complexity of Regular Trail and Simple Path Queries on Undi-

rected Graphs”. In: PODS ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 165–174. doi:
10.1145/3517804.3524149.

[87] Tina Popp. “Evaluation and Enumeration of Regular Simple Path and Trail Queries”. PhD thesis.
University of Bayreuth, Germany, 2022.

[88] Claire David, Nadime Francis, and Victor Marsault. “Run-Based Semantics for RPQs”. In: Proceedings
of the 20th International Conference on Principles of Knowledge Representation and Reasoning, KR
2023, Rhodes, Greece, September 2-8, 2023. Ed. by Pierre Marquis, Tran Cao Son, and Gabriele
Kern-Isberner. 2023, pp. 178–187. doi: 10.24963/KR.2023/18.

[89] Diego Figueira and Miguel Romero. “Conjunctive Regular Path Queries under Injective Semantics”.
In: Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2023, Seattle, WA, USA, June 18-23, 2023. Ed. by Floris Geerts, Hung Q. Ngo, and Stavros
Sintos. ACM, 2023, pp. 231–240. doi: 10.1145/3584372.3588664.

https://doi.org/10.1007/BFB0054371
https://doi.org/10.1002/NET.3230140403
https://doi.org/10.1006/JCTB.1995.1006
https://doi.org/10.1006/JAGM.1999.1072
https://doi.org/10.1006/JAGM.1999.1072
https://doi.org/10.1145/3371316.3371319
https://doi.org/10.1145/3331446
https://doi.org/10.1145/3517804.3524149
https://doi.org/10.24963/KR.2023/18
https://doi.org/10.1145/3584372.3588664

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”
[90]: Rest et al. (2016), “PGQL: a prop-
erty graph query language”
[17]: Deutsch et al. (2020), “Aggrega-
tion Support for Modern Graph Analyt-
ics in TigerGraph”
[91]: Rodriguez (2015), “The Gremlin
graph traversal machine and language”
[92]: Wikipedia contributors (2020),
GQL Graph Query Language

[93]: Chu et al. (2017), “HoTTSQL:
proving query rewrites with univalent
SQL semantics”
[94]: Guagliardo et al. (2017), “A For-
mal Semantics of SQL Queries, Its Vali-
dation, and Applications”
[95]: Benzaken et al. (2019), “A Coq
mechanised formal semantics for real-
istic SQL queries: formally reconciling
SQL and bag relational algebra”
[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

What is GQL? 3
This chapter is joint work with N. Francis, A. Gheebrant, P. Guagliardo,
L. Libkin, V.Marsault,W.Martens, F. Murlak, L. Peterfreund andD. Vrgoč
and was published under the title ”A Researcher’s Digest of GQL” at
ICDT 2023. The content has been adjusted to reflect the changes since
the paper was first written, namely the publication of both standards.

Graph databases’ widespread use happened without them having their
lingua franca, which is the role that SQL is playing for relational data-
bases. The landscape of graph languages — at least at first sight — is
very varied. Neo4j has its own language called Cypher [15], which is
also implemented in other products, including SAP HANA and Amazon
Neptune. Oracle introduced its language PGQL [90]; TigerGraph has
GSQL [17], and several products use the non-declarative graph traver-
sal language Gremlin [91]. However, upon a closer examination, one
discovers that declarative languages are more like different dialects of
the same language rather than different languages altogether. This led
to a proposal to define a new unifying standard for a Graph Query Lan-
guage (GQL) [92]. The proposal was given a go-ahead in 2019, and
since then was taken up by the same committee that produces and
maintains the SQL Standard. It is known as ISO/IEC JTC1 SC32 WG3
within the International Organization for Standardization, or ISO.

In fact, this committee has developed two projects in parallel:

▶ SQL/PGQ, a new Part 16 of the SQL Standard, that defines query-
ing graphs specified as views over a relational schema, published
in June 2023.

▶ GQL, a standalone language for querying property graphs, pub-
lished in April 2024.

The language of the Standard is hardly of the kind that the research
community is accustomed to. It consists of a grammar for the constructs,
supplemented with syntax and semantic rules, the latter written in nat-
ural language describing an algorithm for computing the result of a
particular operation (essentially a mix of prose and pseudocode). Such
descriptions are long, far from formal definitions suitable for initiat-
ing research in the area, and often prone to misinterpretation. To re-
searchers, such a text is therefore much like a 500+ page legal docu-
ment, instead of a workable definition that helps them understand the
essence of the language.

This motivates the goal of this chapter: to distill, in a form accessible to
the database research community, the principal elements of the forthcom-
ing GQL Standard, and provide their formal semantics.

The idea of finding calculi underlying programming languages and pro-
viding their formal semantics is mainstream in the programming lan-
guages field. Recently we saw it extended to database query languages,
specifically to core fragments of SQL [93–95] and Cypher [15]. The
present chapter follows this trend. It provides a significant simplifica-
tion of the GQL Standard, which at the same time covers its key features,
and yet is sufficiently simple to provide its formal semantics, thereby
enabling its further study and opening up new avenues of research on
graph query languages.

We do not follow GQL letter to letter to simplify some of the idiosyn-

https://neo4j.com
https://www.sap.com/products/technology-platform/hana.html
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://www.oracle.com/database/integrated-graph-database/
https://www.tigergraph.com
https://tinkerpop.apache.org/gremlin.html
https://www.iso.org/home.html
https://neo4j.com

50 3 What is GQL?

[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”

[97]: (2023), GQL Influence Graph
[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[29]: Mendelzon et al. (1995), “Find-
ing Regular Simple Paths in Graph
Databases”
[98]: Fernandez et al. (1997), “A Query
Language for a Web-Site Management
System”
[60]: Libkin et al. (2016), “Querying
Graphs with Data”
[57]: Reutter et al. (2017), “Regular
Queries on Graph Databases”

crasies of a real-life language to better highlight its essential features.
Queries presented here are close to the features of the language. They
come with a formal grammar that is a fragment of GQL’s grammar, and
a formal semantics, that is suitable as a starting point of new research
in graph query languages. This work focuses on read-only GQL queries,
to which we will simply refer as GQL queries. That is, we do not yet
consider data updates.

Previous AcademicWork on GQL The two graph languages currently
standardized — GQL and SQL/PGQ — share their pattern matching
facilities, which constitute the key part of any graph language. These
were described in [96], by a group that includedmembers of ISO’s Stan-
dard group, as well as members of LDBC’s Formal Semantics Working
Group (FSWG), whose goal was to analyze and formalize the design of
the language. This is the next installment in the effort to distill PGQ
and GQL standards for the research community.

Apart from this recent work on GQL, we note that academic foundations
already influenced its design process. As seen in GQL’s influence graph
[97], the language draws inspiration from regular path queries [6, 29],
STRUQL [98], GXPath [60], and regular queries [57].

3.1 GQL by Example
In this section we give a high-level description of GQL queries and their
evaluation. The graph database model used by GQL is simply a collec-
tion of one or more property graphs. As an illustration, Figure 3.1 is
a graph database consisting of two property graphs: the Fraud graph
has information about bank transactions that are to be investigated for
fraud, and the Social graph has information about people’s social activ-
ities such as membership in a yacht club. Notice that these two graphs
have a non-empty intersection: the nodes for Jay and Mike belong to
both graphs, but they are seen in a different way and therefore have
different labels and properties. In Fraud, the nodes have label Account
and properties owner and isBlocked, indicating the status of the ac-
count. In Social, these nodes have label Person and property name.

We start with a simple query that looks for large (over $1M) transfers
into a blocked account, and reports owners of accounts involved in such
transfers:

1 USE Fraud

2 MATCH (x) -[z:Transfer WHERE z.amount>1000000]->

3 (y WHERE y.isBlocked=true)

4 RETURN x.owner AS sender, y.owner AS recipient

The reader familiar with Cypher will parse this query easily; it roughly
follows Cypher’s ascii-art syntax for expressing patterns, and also per-
mits checking conditions on properties inside patterns. Essentially, the
pattern in lines 2 and 3 asks for nodes x and y that are connected with
an edge z that is labeled with Transfer. Furthermore, the amount prop-
erty of z should exceed one million and the isBlocked property of 𝑦
should be true. Such patterns, called path patterns in GQL, are the
main building block of GQL queries, and they roughly correspond to
RPQs.

Note also that the query is preceded by a USE clause stating explicitly in
which graph matches are sought. When evaluating a query, GQL keeps
track of

https://www.iso.org/home.html
https://ldbcouncil.org
https://neo4j.com
https://neo4j.com

3.1 GQL by Example 51

isBlocked: false

owner: Aretha

Account

a1

isBlocked: false

owner: Scott

Account

a2

name: Jay

isBlocked: false

owner: Jay

Person
Account

p1

name: Mike

isBlocked: true

owner: Mike

Person
Account

p2

name: Ankh-Morpork
 Yacht Club

address: Cable Street

YachtClub

c1

name: Emerald City
 Yacht Club

address: Yellow Brick Rd

YachtClub

c2

Transfer

amount: 3500000

t3

Transfer

amount: 2500000

t1

Transfer

amount: 2000000

t2

Transfer

amount: 2000000

t4

Member

m3

Member

m2

Member

m1

Fraud Social

Figure 3.1: A database with graphs Fraud and Social.

▶ the working graph, which is the current graph in the database on
which we do pattern matching and

▶ the working table, which contains intermediate results of the
query, up to the current evaluation point.

Intuitively, the working table is a collection of records that gets passed
from one part of the query to another in order to compute the final
result. Thus, while GQL is a graph query language, it uses tables to rep-
resent intermediate and end-results of queries. In Section 3.3, we also
discuss a third ingredient that GQL keeps track of, namely the working
record.

Coming back to our sample query, in the first line we write USE Fraud,
which turns the Fraud graph into our working graph. In lines 2 and 3,
we have our path pattern, preceded by the keyword MATCH. This clause
is the main workhorse of GQL, and it tells us to do the matching of the
pattern onto the working graph. When evaluating our query over the
database from Figure 3.1, after executing lines 2 and 3 of the query,
we will be left with the following working table:

x y z

p1 p2 t1

Continuing in line 4, the working table is modified by keeping only the
owner attribute of the nodes x and y, while renaming them, and the
following is returned to the user:

sender recipient

Jay Mike (3.1)

We next extend this query by checking for such transfers where both
account owners are members of the same yacht club, reporting this
time the address for the yacht club to send investigators to.

1 USE Fraud {

2 MATCH (x) -[z:Transfer WHERE z.amount>1000000]->

3 (y WHERE y.isBlocked=true)

4 RETURN x.owner AS sender, y.owner AS recipient

52 3 What is GQL?

1: Notice that the query uses Cypher’s
ascii-art () for nodes in the subexpres-
sions (x), (y), and (), but also uses ()
for indicating the subexpression over
which {1,} is applied.

5 THEN

6 USE Social

7 MATCH (x1) -[:Member]-> (z1:YachtClub),

8 (y1) -[:Member]-> (z1:YachtClub)

9 FILTER sender=x1.name AND recipient=y1.name

10 RETURN z1.address AS clubAddress

11 }

Here lines 1–4 repeat the previous query. The keyword THEN is used to
pipe the result of this query to the following subquery. While the curly
braces extend the scope of USE Fraud beyond THEN, in line 6 we switch
the working graph to Social in order to match the pattern:
(x1)-[:Member]->(z1:YachtClub), (y1)-[:Member]->(z1:YachtClub)

This pattern consists of two path patterns, separated by a comma. In
GQL, the comma performs a join on the results of the two path patterns.
From a theoretical point of view, it brings us in the realm of conjunctive
(two-way) regular path queries. In GQL, such patterns are called graph
patterns. When this pattern is evaluated over the Social graph, we
obtain the following (fresh) working table:

x1 y1 z1

p1 p2 c1

p1 p1 c1

p2 p2 c1

p2 p2 c2

(3.2)

this time with variables x1, y1, and z1. After evaluating the pattern, the
MATCH statement makes the natural join of table (3.2) with table (3.1),
leading to

sender recipient x1 y1 z1

Jay Mike p1 p2 c1

Jay Mike p1 p1 c1

Jay Mike p2 p2 c1

Jay Mike p2 p2 c2

In this case, this will be the Cartesian product since the two working
tables have no variables in common. The FILTER condition in line 9
selects only the first row of the latter table. The RETURN statement in
line 10 tells us to keep only the address attribute of z1, renamed as
clubAddress, resulting in:

clubAddress

Cable Street

This is also where our query ends, and the working table contains all
the results to our query.

The examples we have seen thus far illustrate only a limited part of GQL
since their variables only bind to single nodes or edges. Next, we show
what happens to variables that can bind to lists and paths. Concerning
lists, a query1 such as
USE Fraud

MATCH TRAIL (x) ((y)-[:Transfer]->()){1,} (x)

RETURN x AS source, y AS moneyTrail

would return the following table.

https://neo4j.com

3.2 Syntax of GQL 53

[29]: Mendelzon et al. (1995), “Find-
ing Regular Simple Paths in Graph
Databases”
[99]: Mendelzon et al. (1996), “Query-
ing the World Wide Web”
[100]: Calvanese et al. (2000), “Con-
tainment of Conjunctive Regular Path
Queries with Inverse”

source moneyTrail

p1 list(p1, p2, a2, a1)

p2 list(p2, a2, a1, p1)

a2 list(a2, a1, p1, p2)

a1 list(a1, p1, p2, a2)

Here, the variable y is bound to a list of nodes. The four outputs all
describe the same trail, which is the only Transfer-cycle in the graph,
but the bindings use different start nodes for x and therefore also order
the nodes in the lists for y differently. Concerning paths, the query
USE Fraud

MATCH TRAIL p = (x) (-[:Transfer]->()){1,} (x)

RETURN x AS source, p AS path

would return the following table.

source path

p1 path(p1, t1, p2, t2, a2, t3, a1, t4, p1)

p2 path(p2, t2, a2, t3, a1, t4, p1, t1, p2)

a2 path(a2, t3, a1, t4, p1, t1, p2, t2, a2)

a1 path(a1, t4, p1, t1, p2, t2, a2, t3, a1)

The output is similar but this time we have the entire path instead of
the list of nodes in each answer. We note that property graphs can have
multiple edges with the same end-nodes, so the list of nodes in a path
is not sufficient to determine the path.

3.2 Syntax of GQL
The full syntax of GQL queries is given in Figure 3.2 with 𝔾 a set of
property graphs, and the following pairwise disjoint countable sets:
ℒ of labels, 𝒦 of keys, Const of value constants with a designated
value null, and Vars of variables.

While somewhat intimidating at a first glance, the grammar can be
roughly divided into four parts:

▶ path patterns, which mimic regular path queries [29, 99] (see
Chapter 2 for an in-depth description), but have additional fea-
tures such as two-way navigation and conditioning;

▶ graph patterns, which generalize conjunctive two-way regular path
queries [100] with the ability to return different types of paths;

▶ queries, which allow us to manipulate the results of graph pat-
terns and combine their evaluation over different graphs in the
database; and

▶ expressions and conditions, which allow filtering results obtained
in previous three parts of GQL.

Of course, each of these parts has many specific features. For instance,
path patterns allow using descriptors, which bind a node/edge to a vari-
able, test its label or more complex conditions (e.g. amount is greater
than 1000000). Simple node/edge patterns can be combined into reg-
ular expressions, by using concatenation, union or repetitions. Graph
patterns, on the other hand, allow specifying the subset of matched
paths that is to be returned, or joining path patterns into more com-
plex queries. Finally, clauses/queries themselves allow us to manipu-
late results obtained from graph patterns, much like what is possible
in the relational. Complex features such as iteration over the returned

54 3 What is GQL?

elements, passing the results to another subquery, and changing the
evaluation graph, are also supported.

Well-Formed Queries
The syntax of path patterns defined in Figure 3.2 is permissive as it
allows expressions that do not type-check. For example,(x)-[x]->()
is syntactically permitted even though it equates a node variable with
an edge variable. Other patterns would provide great expressive power,
such as the graph pattern ()-[y]->{0,}(), ()-[y]->{0,}*(), which
implicitly joins on lists.

We will introduce in Chapter 4 a type system operating on a subset of
the patterns described in Figure 3.2. Its goal is to ensure that GQL path
patterns and graph patterns do not exhibit the pathological behavior
illustrated above. Here, we will only describe the resulting syntactic
restrictions informally.

Each variable is given a type 𝜏 from the set 𝕋 defined by the following
grammar.

𝜏 ::= Node ∣ Edge ∣ Path ∣ Maybe(𝜏) ∣ Group(𝜏)

The three atomic types are used for variables returning nodes, edges,
and paths, respectively. The type constructorMaybe is used for variables
occurring on one side of a disjunction only, while Group is used for vari-
ables occurring under repetition, whose bindings are grouped together.
As variables in pattern matching are never bound to data values, we do
not need the usual types like integers or strings here.

Types are computed in a bottom-up fashion as follows. Variables ap-
pearing in node patterns (resp. in edge patterns, resp. as names of path
patterns) are of type Node (resp. Edge, resp. Path). Variables appearing
on one side of a disjunction with type 𝜏 but not the other are of type
Maybe(𝜏). Variables appearing under a repetition with type 𝜏 are of
type Group(𝜏) higher-up in the syntax tree of the expression. Consider
the pattern (-[x]-> | -[y]->){0,}. The type of 𝑥 is Edge in -[x]->,
while it is Maybe(Edge) in -[𝑥]-> | -[𝑦]->, and Group(Maybe(Edge))
in (-[x]-> | -[y]->){0,} .

A variable 𝑥 appearing in a path/graph pattern 𝜉 is called:

▶ a singleton variable if its type is Node or Edge with respect to 𝜉
▶ a conditional variable if its type is Maybe(𝜏) for some type 𝜏;
▶ a group variable if its type is Group(𝜏) for some type 𝜏;
▶ a path variable if its type is Path.

3.2 Syntax of GQL 55

PATH PATTERN For 𝑥 ∈ Vars, ℓ ∈ ℒ, 0 ≤ 𝑛 ≤ 𝑚 ∈ ℕ:

(descriptor) 𝛿 ∶= 𝑥 ∶ℓ WHERE 𝜃 𝑥, ∶ℓ, and WHERE 𝜃 are optional

(path pattern) 𝜋 ∶= (𝛿) (node pattern)
∣ −[𝛿]− > ∣ < −[𝛿]− ∣ ~[𝛿]~ (edge pattern)
∣ 𝜋𝜋 (concatenation)
∣ 𝜋|𝜋 (union)
∣ 𝜋 WHERE 𝜃 (conditioning)
∣ 𝜋{𝑛,𝑚} (bounded repetition)
∣ 𝜋{𝑛, } (unbounded repetition)

EXPRESSION and CONDITION For 𝑥 ∈ Vars, ℓ ∈ ℒ, 𝑎 ∈ 𝒦, 𝑐 ∈ Const:

(expression) 𝜒 ∶= 𝑥 ∣ 𝑥.𝑎 ∣ 𝑐
(condition) 𝜃 ∶= 𝜒 = 𝜒 ∣ 𝜒 < 𝜒 ∣ 𝜒 IS NULL

∣ 𝑥 ∶ ℓ ∣ EXISTS {Q }
∣ 𝜃 OR 𝜃 ∣ 𝜃 AND 𝜃 ∣ NOT 𝜃

GRAPH PATTERN For 𝑥 ∈ Vars:

(path mode) 𝜇 ∶= (ALL ∣ ANY) [SHORTEST] [TRAIL ∣ ACYCLIC]

(graph pattern) Π ∶= 𝜇 [𝑥 =] 𝜋 ∣ Π,Π

CLAUSE and QUERY For 𝑘 ≥ 0, ℓ ≥ 1, and 𝑥, 𝑦, 𝑥1,… , 𝑥𝑘 ∈ Vars, and 𝐺 ∈ 𝔾:

(clause) C ∶= MATCH Π
∣ LET 𝑥 = 𝜒
∣ FOR 𝑥 IN 𝑦
∣ FILTER 𝜃

(linear query) L ∶= USE 𝐺 L

∣ C L

∣ RETURN 𝜒1 AS 𝑥1, … , 𝜒𝑘 AS 𝑥𝑘

(query) Q ∶= L

∣ USE 𝐺 {Q1 THEN Q2 ⋯ THEN Qℓ}
∣ Q INTERSECT Q ∣ Q UNION Q ∣ Q EXCEPT Q

Figure 3.2: Syntax of GQL

56 3 What is GQL?

2: For the full set of rules, please see
the type system presented in Chapter 4
(from page 75).

Here is a non-exhaustive list 2 of the conditions a pattern must meet in
order for its semantics to be defined. A pattern 𝜉 is well-formed if

1. Every variable appearing in a pattern 𝜉 has one and only one type
w.r.t. 𝜉.

2. In concatenation and join, variables appearing in both operands
are singleton variables with respect to each operand.

3. In a conditioned path pattern 𝜋 WHERE 𝜃, every variable appear-
ing in 𝜃 must have a type w.r.t. 𝜋.

4. In a graph pattern of the form 𝜇 𝜋 or 𝜇 𝑥 = 𝜋 such that 𝜇 is ALL
(which is possible since all of SHORTEST, TRAIL, and ACYCLIC are
optional), 𝜋 must contain no unbounded repetition, to avoid po-
tentially infinite outputs.

5. For every repeated pattern 𝜋{𝑛,𝑚} or 𝜋{𝑛,}, the minimum path
length ‖𝜋‖min of𝜋, defined below, is positive. This avoids applying
repetitions to paths that do not match an edge.

‖𝜈‖min = 0
‖𝜂‖min = 1
‖𝜋{𝑛, }‖min = ‖𝜋{𝑛,𝑚}‖min = 𝑛 ⋅ ‖𝜋‖min

‖𝜋 WHERE 𝜃‖min = ‖𝜋‖min

‖𝜋1 | 𝜋2‖min = min(‖𝜋1‖min, ‖𝜋2‖min)
‖𝜋1 𝜋2‖min = ‖𝜋1‖min + ‖𝜋2‖min

Note that the local nature of types is important in item 2: implicit joins
are allowed under repetitions, as in ((a)-[]->(b)-[]->(a)-[]->){1,}.
Moreover, item 1 implies the existence of a schema, defined as follows:

Definition 3.2.1 Pattern schema

A schema of a well-formed pattern 𝜉 is a function

sch(𝜉) ∶ var(𝜉) → 𝕋

where var(𝜉) is the set of variables appearing in 𝜉.

We will assume these syntactic restrictions to be in place when defin-
ing the semantics of GQL queries in Section 3.3. Moreover, we define
the semantics only when the computation goes as expected, that is,
when it satisfies preconditions we state explicitly. For instance, we will
assume that a variable is bound before being used, that we never run
into clashes in variable names, and that if a specific type is expected
for an operation, then the value will have that type at runtime. Some
of the preconditions could be checked syntactically, at the cost of a te-
dious type system. Some of the preconditions cannot be checked be-
fore run-time because they depend on the data stored in the database.
Deciding how to treat those cases (static analysis, runtime exceptions,
implicit casts) is outside the scope of this thesis. In some cases, the
GQL standard describes how they should be treated, in others, they are
implementation-dependent.

3.3 Semantics
In this section we present the formal semantics of GQL. At a high level,
when evaluating a query, GQL keeps track of three things: (i) theworking
graph , which is the property graph we are using to match our patterns

3.3 Semantics 57

currently; (ii) the working table, that stores the information computed
thus far; and (iii) the working record, which contains the tuple of the
result we are currently using. In this section we provide mathematical
abstractions for each of these concepts in order to define the semantics
of GQL. We start by setting the preliminary definitions, and then move
to defining the semantics for each portion of the language, as specified
in Figure 3.2.

3.3.1 Preliminaries
We use the standard definition of property graph and graph database
introduced in Chapter 2 Section 2.3.

As GQL patterns allow variables to bind to multiple elements, we intro-
duce a formal notion of lists.

Definition 3.3.1 — List

We use the notation list(𝑣1,… , 𝑣𝑛) to denote the list containing the
objects 𝑣1,… , 𝑣𝑛 in this order. Lists can be empty, in which case we
write list(). We use Lists to denote the set of all lists with elements
in 𝒩∪ℰd ∪ ℰu.

To define the formal semantics we use bindings which specify how vari-
ables are matched to values 𝕍 of the input graph database. Intuitively,
a binding is a mathematical formalization of the concept of a working
record in GQL. Formally, we set 𝕍 as the union Const ∪𝒩∪ℰd ∪ ℰu ∪
Paths ∪ Lists.

Definition 3.3.2 — Binding

A binding 𝜇 is a partial function 𝜇 ∶ Vars → 𝕍 whose
domain dom(𝜇) is finite. We denote bindings 𝜇 explicitly by
(𝑥1 ↦ 𝑣1,… , 𝑥𝑛 ↦ 𝑣𝑛) where 𝑥1,… , 𝑥𝑛 are variables in
dom(𝜇), 𝑣1,… , 𝑣𝑛 are values in 𝕍, and for every 𝑖 it holds that
𝜇(𝑥𝑖) = 𝑣𝑖.

Note that the domains of bindings are not ordered, hence for instance
(𝑎1 ↦ 𝑣1, 𝑎2 ↦ 𝑣2) = (𝑎2 ↦ 𝑣2, 𝑎1 ↦ 𝑣1). The empty binding, that is,
the binding with an empty domain, is denoted by ().

Definition 3.3.3 — Compatibility of bindings

Two bindings 𝜇1, 𝜇2 are said to be compatible, denoted by 𝜇1∼𝜇2,
if they agree on their shared variables, that is, for every 𝑥 ∈
dom(𝜇1) ∩ dom(𝜇2) it holds that 𝜇1(𝑥) = 𝜇2(𝑥).

If 𝜇1 and 𝜇2 are compatible, we define their join 𝜇1 ⨝𝜇2 as expected,
that is dom(𝜇1 ⨝𝜇2) = dom(𝜇1) ∪ dom(𝜇2) and (𝜇1 ⨝𝜇2) (𝑥) = 𝜇1(𝑥)
whenever 𝑥 ∈ dom(𝜇1) ∖ dom(𝜇2), and (𝜇1 ⨝𝜇2) (𝑥) = 𝜇2(𝑥) when-
ever 𝑥 ∈ dom(𝜇2).

We remark here that our definition allows joins on variables that are
bound to paths or lists. However, as we will see, the syntactic restric-
tions on queries limit this feature significantly.

58 3 What is GQL?

3.3.2 Semantics of Path Patterns

We start by defining the semantics of path patterns. For the remainder
of this subsection, we consider a fixed property graph

𝐺 = ⟨𝑁𝐺, 𝐸𝐺
d , 𝐸

𝐺
u , lab

𝐺, endpoints𝐺, src𝐺, tgt𝐺, prop𝐺⟩.

Moreover, we assume that all queries are well-formed and all patterns
considered are restricted syntactically as described in Section 3.2. The
semantics J𝜋K𝐺 of a pattern 𝜋 is a set of pairs (𝑝, 𝜇) where 𝜇 a binding,
and 𝑝 is a path in 𝐺. In J𝜋K𝐺, 𝐺 denotes the working graph in GQL
parlance (specified by the keyword USE), and the pairs (𝑝, 𝜇) model
what is computed over this working graph.

Semantics of Node and Edge Patterns

J()K𝐺 = {(𝑛, ()) | 𝑛 ∈ 𝑁𝐺 } J(𝑥)K𝐺 = {(𝑛, (𝑥 ↦ 𝑛)) | 𝑛 ∈ 𝑁𝐺 }

J(∶ℓ)K𝐺 = {(𝑛, ()) | 𝑛 ∈ 𝑁𝐺, ℓ ∈ lab𝐺(𝑛)}

Other cases are treated by moving the label and conditions outside of
the node pattern, i.e (𝑥:ℓ WHERE 𝜃) becomes (𝑥) WHERE (𝑥:ℓ AND 𝜃).

J-[]->K𝐺 = {(path(src𝐺(𝑒), 𝑒, tgt𝐺(𝑒)), ()) | 𝑒 ∈ 𝐸𝑑
𝐺 }

J-[𝑥]->K𝐺 = {(path(src𝐺(𝑒), 𝑒, tgt𝐺(𝑒)), (𝑥 ↦ 𝑒)) | 𝑒 ∈ 𝐸𝑑
𝐺 }

J-[:ℓ]->K𝐺 = {(path(src𝐺(𝑒), 𝑒, tgt𝐺(𝑒)), ()) | 𝑒 ∈ 𝐸𝑑
𝐺, ℓ ∈ lab𝐺(𝑒) }

Other cases of the forward edge patterns are treated by moving the la-
bel and conditions outside of the edge pattern, just as for node patterns.
Backward edge patterns and undirected edge patterns are treated sim-
ilarly, with the base cases given below.

J<-[]-K𝐺 = {(path(tgt𝐺(𝑒), 𝑒, src𝐺(𝑒)), ()) | 𝑒 ∈ 𝐸𝑑
𝐺 }

J~[]~K𝐺 = {(path(𝑢1, 𝑒, 𝑢2), ()),
(path(𝑢2, 𝑒, 𝑢1), ())

| 𝑒 ∈ 𝐸𝑢
𝐺

{𝑢1, 𝑢2} = endpoints𝐺(𝑒)}

Semantics of Concatenation, Union, and Conditioning

q
𝜋1 𝜋2

y
𝐺 = {(𝑝1 ⋅ 𝑝2, 𝜇1 ⨝𝜇2) |

(𝑝𝑖, 𝜇𝑖) ∈
q
𝜋𝑖

y
𝐺 for 𝑖 = 1, 2

𝑝1 and 𝑝2 concatenate
𝜇1 ∼ 𝜇2

}

Note that since 𝜋1 𝜋2 is assumed to be well-formed, all variables shared
by 𝜋1 and 𝜋2 are singleton variables (Condition 2 in Section 3.2). In
other words, implicit joins over group and optional variables are disal-
lowed; the same remark will also apply for the semantics of joins.

3.3 Semantics 59

Remark 3.3.4

Consider the pattern
(x) (-[:Transfer]->()-[:Transfer]->(x)){1,}

This pattern is disallowed in GQL because the leftmost x is a single-
ton variable, whereas the rightmost x is a group variable. In GQL
philosophy, the leftmost x will be bound to a node and the right-
most x will be bound to a list of nodes, which is a type mismatch.

q
𝜋1 | 𝜋2

y
𝐺 = {(𝑝, 𝜇 ∪ 𝜇′) | (𝑝, 𝜇) ∈

q
𝜋1

y
𝐺 ∪

q
𝜋2

y
𝐺 }

where 𝜇′ maps every variable in var(𝜋1 | 𝜋2) ∖ dom(𝜇) to null. (Recall
that var maps a pattern to the set of variables appearing in it.)

J𝜋 WHERE 𝜃K𝐺 = {(𝑝, 𝜇) ∈ J𝜋K𝐺 | J𝜃K𝜇𝐺 = true}

Semantics of Repetition

J𝜋{𝑛,𝑚}K𝐺 =
𝑚

⋃
𝑖=𝑛

J𝜋K𝑖𝐺

J𝜋{𝑛, }K𝐺 =
∞

⋃
𝑖=𝑛

J𝜋K𝑖𝐺

Above, for a pattern 𝜋 and a natural number 𝑖 ≥ 0, we use J𝜋K𝑖𝐺 to
denote the 𝑖-th power of J𝜋K𝐺, which we define as

J𝜋K0𝐺 = { (path(𝑢), 𝜇) | 𝑢 is a node in 𝐺}

where 𝜇 binds each variable in dom(sch(𝜋)) to list(), i.e. the empty-list
value; and

∀𝑖 > 0 J𝜋K𝑖𝐺 = {(𝑝1 ⋅ … ⋅ 𝑝𝑖, 𝜇
′) | (𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑖) ∈ J𝜋K𝐺

𝑝1,… , 𝑝𝑖 concatenate
}

where 𝜇′ binds each variable in dom(sch(𝜋)) to list(𝜇1(𝑥),… , 𝜇𝑖(𝑥)).
Recall that sch is defined in Section 3.2.

Remark 3.3.5

Since 𝜋{𝑛, } is assumed to be well-formed, it holds ‖𝜋‖min ≥ 1. A
simple induction then yields that each 𝑝𝑖 in the definition above has
positive length. A second induction then yields that, given a path 𝑝,
there are finitely many bindings 𝜇 such that (𝑝, 𝜇) ∈ J𝜋{𝑛,𝑚}K𝐺.
This fact is crucial to have a finite output in the end.

For instance, consider a graph with a single node 𝑢 and no edges, and
the pattern (a){0,}which is not well-formed (the minimal path length
of () is 0). For every 𝑖, the set J(a)K𝑖𝐺 contains (path(𝑢), 𝜇𝑖) where
𝜇𝑖 = (𝑎 ↦ list(𝑢,… , 𝑢⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖 times
)); hence the union in the definition of J𝜋{𝑛, }K𝐺

above would not only yield an infinite number of elements, but all of

60 3 What is GQL?

3: any need not be deterministic.

them would be associated to the same path. As a result a graph pattern
such as ALL SHORTEST (a){0,} would have infinitely many results.

3.3.3 Semantics of Graph Patterns

We now define the semantics of graph patterns. We first fully define
atomic graph patterns and then define their joins.

J𝑥 = 𝜋K𝐺 = {(𝑝, 𝜇 ∪ {𝑥 ↦ 𝑝}) ∣ (𝑝, 𝜇) ∈ J𝜋K𝐺 }

In the following we denote by �̃� a graph pattern that never uses the “,”
operator, hence it is of the form 𝜇 𝑥= 𝜋, where 𝜇 is a path mode, 𝑥 is a
variable, 𝜋 is a path pattern, and “𝑥=“ is optional.

JTRAIL 𝜋K𝐺 = { (𝑝, 𝜇) ∈ J𝜋K𝐺 | no edge occurs more than once in 𝑝}
JACYCLIC 𝜋K𝐺 = { (𝑝, 𝜇) ∈ J𝜋K𝐺 | no node occurs more than once in 𝑝}

JSHORTEST �̃�K𝐺 =

{(𝑝, 𝜇) ∈ J�̃�K𝐺 | len(𝑝) = min{ len(𝑝′) |
(𝑝′, 𝜇′) ∈ J�̃�K𝐺
src(𝑝′) = src(𝑝)
tgt(𝑝′) = tgt(𝑝)

}}

JALL �̃�K𝐺 = J�̃�K𝐺
JANY �̃�K𝐺 = ⋃

(𝑠,𝑡)∈𝑋
{any({ (𝑝, 𝜇) ∈ J�̃�K𝐺 | endpoints(𝑝) = (𝑠, 𝑡) })}

where 𝑋 = { (src(𝑝), tgt(𝑝)) | (𝑝, 𝜇) ∈ J�̃�K𝐺 } and any is a procedure
that arbitrarily returns one element from a set 3.

q
Π1, Π2

y
= {(̄𝑝1 × ̄𝑝2, 𝜇1 ⨝𝜇2) |

(̄𝑝1, 𝜇1) ∈
q
Π1

y
𝐺 , (̄𝑝1, 𝜇2) ∈

q
Π2

y
𝐺

and 𝜇1 ∼ 𝜇2
}

Here, ̄𝑝1 = (𝑝1
1 , 𝑝

2
1 ,… , 𝑝𝑘

1) and ̄𝑝2 = (𝑝1
2 , 𝑝

2
2 ,… , 𝑝𝑙

2) are tuples of paths,
and ̄𝑝1× ̄𝑝2 stands for (𝑝

1
1 , 𝑝

2
1 ,… , 𝑝𝑘

1, 𝑝
1
2 , 𝑝

2
2 ,… , 𝑝𝑙

2). Just as it is the case
of concatenation, since Π1, Π2 is well-formed, implicit joins can occur
over singleton variables only.

3.3.4 Semantics of Conditions and Expressions

The semantics J𝜒K𝜇𝐺 of an expression 𝜒 is an element in 𝕍 that is com-
puted with respect to a binding 𝜇 and a graph 𝐺. Intuitively, variables
in 𝜒 are evaluated with 𝜇 and we use 𝐺 to access the properties of an
element. It is formally defined as follows.

J𝑐K𝜇𝐺 = 𝑐
J𝑥K𝜇𝐺 = 𝜇(𝑥) for

J𝑥.𝑎K𝜇𝐺 = {
prop𝐺(𝜇(𝑥), 𝑎) if (𝜇(𝑥), 𝑎) ∈ dom(prop𝐺)
null else if 𝜇(𝑥) ∈ (𝒩 ∪ ℰd ∪ ℰu)

where 𝑐 ∈ Const, 𝑥 ∈ dom(𝜇) and 𝑎 ∈ 𝒦.

3.3 Semantics 61

Remark 3.3.6

Recall that different graphs may share nodes and edges. Hence the
condition (𝜇(𝑥), 𝑎) ∈ dom(prop𝐺), above, does imply that 𝜇(𝑥) is
a node or an edge in 𝐺, but does not imply that it was matched
in 𝐺.

The semantics J𝜃K𝜇𝐺 of a condition 𝜃 is an element in {true, false, null}
that is evaluated with respect to a binding 𝜇 and a graph 𝐺, and is
defined as follows:

q
𝜒1 = 𝜒2

y𝜇
𝐺 =

⎧
⎨
⎩

null if
q
𝜒1

y𝜇
𝐺 = null or

q
𝜒2

y𝜇
𝐺 = null

true if
q
𝜒1

y𝜇
𝐺 =

q
𝜒2

y𝜇
𝐺 ≠ null

false otherwise

q
𝜒1 < 𝜒2

y𝜇
𝐺 =

⎧
⎨
⎩

null if
q
𝜒1

y𝜇
𝐺 = null or

q
𝜒2

y𝜇
𝐺 = null

true else if
q
𝜒1

y𝜇
𝐺 <

q
𝜒2

y𝜇
𝐺

false otherwise

J𝜒 IS NULLK𝜇𝐺 = {
true if J𝜒K𝜇𝐺 = null
false otherwise

J𝜒:ℓK𝜇𝐺 = {
true if J𝜒K𝜇𝐺 ∈ 𝑁𝐺 ∪ 𝐸𝑢

𝐺 ∪ 𝐸𝑑
𝐺 and ℓ ∈ lab𝐺(J𝜒K𝜇𝐺)

false else if J𝜒K𝜇𝐺 ∈ 𝒩 ∪ ℰd ∪ ℰuq
𝜃1 AND 𝜃2

y𝜇
𝐺 =

q
𝜃1

y𝜇
𝐺 ∧

q
𝜃2

y𝜇
𝐺

(∗)

q
𝜃1 OR 𝜃2

y𝜇
𝐺 =

q
𝜃1

y𝜇
𝐺 ∨

q
𝜃2

y𝜇
𝐺

(∗)

JNOT 𝜃K𝜇𝐺 = ¬ J𝜃K𝜇𝐺
(∗)

JEXISTS{Q }K𝜇𝐺 = {
true if JQK𝐺 ({𝜇}) is not empty
false otherwise

(∗): Operators ∧, ∨, and¬ are defined
as in SQL three-valued logic, e.g. null ∨
true = true while null ∧ true = null.

3.3.5 Semantics of Queries
Clauses and queries are interpreted as functions that operate on tables.
These tables are our abstraction of GQL’s working tables.

Definition 3.3.7 — Table

A table 𝑇 is a set of bindings that have the same domains, referred
to as dom(𝑇).

Note that tables do not have schemas: two different bindings in a table
might associate a variable to values of incompatible types.

Semantics of Clauses The semantics JCK𝐺 of a clause C is a function
that maps tables into tables, and is parametrized by a graph 𝐺. Patterns,
conditions and expression in a clause are evaluated with respect to 𝐺.

JMATCH ΠK𝐺 (𝑇) = ⋃
𝜇∈𝑇

{𝜇⨝𝜇′ ∣ (𝑝, 𝜇′) ∈ JΠK𝐺 , 𝜇 ∼ 𝜇′}

Note that if Π uses a variable that already occurs in dom(𝑇), a join
is performed. Unlike in the case of path patterns and graph patterns,
this join can involve variables bound to lists or paths. While this is not
problematic mathematically, it is disallowed in GQL.

62 3 What is GQL?

4: Note that null is treated just as list()

If 𝑥 ∉ dom(𝑇), then

JLET 𝑥 = 𝜒K𝐺 (𝑇) = ⋃
𝜇∈𝑇

{𝜇⨝(𝑥 ↦ J𝜒K𝜇𝐺)}

JFILTER 𝜃K𝐺 (𝑇) = ⋃
𝜇∈𝑇

{𝜇 ∣ J𝜃K𝜇𝐺 = true} .

If 𝑥 ∉ dom(𝑇) and, for every 𝜇 ∈ 𝑇, 𝜇(𝑦) is a list or null,4 then

JFOR 𝑥 IN 𝑦K𝐺 (𝑇) = ⋃
𝜇∈𝑇

{𝜇⨝(𝑥 ↦ 𝑣) ∣ 𝑣 ∈ 𝜇(𝑦)} .

Semantics of Linear Queries

JUSE 𝐺 ′ LK𝐺 (𝑇) = JLK𝐺 ′ (𝑇)
J𝐶 LK𝐺 (𝑇) = JLK𝐺 (J𝐶K𝐺 (𝑇))

q
RETURN 𝜒1 AS 𝑥1,… ,𝜒ℓ AS 𝑥ℓ

y
𝐺 = ⋃

𝜇∈𝑇
{(𝑥1 ↦

q
𝜒1

y𝜇
𝐺 ,… ,

𝑥ℓ ↦
q
𝜒ℓ

y𝜇
𝐺)

}

Semantics of Queries The output of a query Q is defined as

Output(Q) = JQK𝐺 ({()}) ,

where {()} is the unit table that consists of the empty binding, and 𝐺 is
the default graph in 𝐷. We define the semantics of queries recursively
as follows.
q
USE 𝐺 ′ {Q1 THEN Q2 ⋯ THEN Q𝑘}

y
𝐺 (𝑇) =

q
Q𝑘

y
𝐺 ′ ∘ ⋯ ∘

q
Q1

y
𝐺 ′ (𝑇)

If dom(
q
Q1

y
𝐺 (𝑇)) = dom(

q
Q2

y
𝐺 (𝑇)), then we let

q
Q1 INTERSECT Q2

y
𝐺 (𝑇) =

q
Q1

y
𝐺 (𝑇) ∩

q
Q2

y
𝐺 (𝑇)

q
Q1 UNION Q2

y
𝐺 (𝑇) =

q
Q1

y
𝐺 (𝑇) ∪

q
Q2

y
𝐺 (𝑇)

q
Q1 EXCEPT Q2

y
𝐺 (𝑇) =

q
Q1

y
𝐺 (𝑇) ∖

q
Q2

y
𝐺 (𝑇)

3.4 A Few Known Discrepancies with the GQL
Standard

In pursuing the goal of introducing the key features of GQL to the re-
search community, we inevitably had to make decisions that resulted
in discrepancies between our presentation and the 500+ pages of the
forthcoming Standard. In this section, we discuss a non-exhaustive list
of differences between the actual GQL Standard and our digest. To start
with, in all our formal development we assumed that queries are given
by their syntax trees, which result from parsing them. Hence we com-
pletely omitted such parsing-related aspects as parentheses, operator
precedence etc. Also we note that many GQL features, even those de-
scribed here, are optional, and not every implementation is obliged to
have them all.

3.4 A Few Known Discrepancies with the GQL Standard 63

The remaining discrepancies are divided into three main categories:
syntactic restrictions (Section 3.4.1), query evaluation (Section 3.4.2),
and missing features (Section 3.4.3).

3.4.1 User-Friendly Syntactic Restrictions
The GQL Standard imposes restrictions on the syntax that aim at pre-
venting unexpected behavior, and that we generally did not describe.
Two such examples are given below.

First, consider the two following queries

𝑄1 = MATCH 𝜇 x=-[]->*

𝑄2 = MATCH 𝜇 x=-[]->*()

for some path mode 𝜇 (it does not matter which one). According to our
semantics, both return one binding, namely (𝑥 ↦ path(𝑢)), for each
node 𝑢 in the graph; however, 𝑄1 is syntactically forbidden in the GQL
Standard because no node pattern occurs.

Another interesting syntactic restriction concerns strict interior vari-
ables under path modes, such as c in the following:
MATCH ANY (:Person) -[]->* (c:Account) -[]->* (:Person),

ANY (:Person) -[]->* (c:Account) -[]->* (:Person)

The ANY path modes are evaluated independently, and before the im-
plicit join on variable c. Then, the node bound to the variable c by either
path pattern is arbitrary, and joining on them is very likely to fail. This
situation was not deemed user-friendly by the Committee, and there-
fore precluded.

3.4.2 Query Evaluation
Bag semantics

For simplicity, we described GQL as if it was following set semantics but,
in reality, GQL uses bags just like Cypher and SQL. In order to define
clauses and queries under bag semantics, small changes are needed:

▶ tables should be defined as bags, rather than sets, of bindings;
▶ unions (∪) over the elements of a table should be additive bag

unions (⊎); and
▶ set comprehensions should be replaced with bag comprehensions.

As an example, if we denote bags with double curly braces, then the
semantics of RETURN is

q
RETURN 𝜒1 AS 𝑥1,… ,𝜒ℓ AS 𝑥ℓ

y
𝐺 (𝑇) = ⨄

𝜇∈𝑇
{{{(𝑥1 ↦

q
𝜒1

y𝜇
𝐺 ,… ,

𝑥ℓ ↦
q
𝜒ℓ

y𝜇
𝐺)

}}}

Note that GQL partially eliminates duplicates during pattern matching,
which is reflected here by the semantics of graph patterns: JΠK𝐺 is a
set of path/binding pairs, while JMATCH ΠK𝐺 returns a bag of bindings
by projecting out the paths (see the definition of JMATCH ΠK𝐺 in Sec-
tion 3.3.5). Hence, different ways to compute the same path/binding
pair will only contribute to one copy of the binding in the output of
JMATCH ΠK𝐺. It is still possible to get multiple copies of some binding in
the output, but these come from pairs with different paths.

https://neo4j.com

64 3 What is GQL?

[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”

5: This is orthogonal to left-to-right
evaluation: -[x]-> could be placed on
the right instead.

Partial deduplication is an effort to unify the multiplicities of queries
that express the same pattern in different ways. To see this, consider
the queries

𝑄1: MATCH (a:Person)-[]->(b WHERE b:Person OR b:Account)

𝑄2: MATCH (a:Person)-[]->(b:Person) | (a)-[]->(b:Account)

and the path path(𝑣1, 𝑒1, 𝑣2) matched by either of them with the bind-
ing 𝜇1 = (𝑎 → 𝑣1, 𝑏 ↦ 𝑣2), where 𝑣2 bears both labels Person and
Account. As the disjunction in 𝑄1 is expressed using a Boolean condi-
tion, this query always returns a single copy of 𝜇1. In 𝑄2, however, the
disjunction is expressed with a union (|) of patterns; thus, if the se-
mantics of | were defined as a bag-union, the query would return two
copies of 𝜇1.

Finally, as in SQL, the operations INTERSECT, UNION, and EXCEPT re-
move duplicates in GQL, while the variants INTERSECT ALL, UNION ALL,
and EXCEPT ALL do not.

Path bindings

In a nutshell, a path binding is a path where each element may be an-
notated with variables, and it is inconsistent as soon as two different
elements have the same annotation (see [96] for details). Thus, a path
binding defines a single path/binding pair, whereas a path/binding pair
can define several path bindings. In GQL Standard, pattern matching
computes a set of consistent path bindings, while our semantics com-
putes a set of path/binding pairs, and the results are bags formed by
projecting away paths. Consequently, our semantics might sometimes
return fewer results than GQL’s, but the difference only affects multi-
plicity. For example, consider MATCH ()-[]->(a) | (a)-[]->() on a
graph with a single node 𝑢 and a single (looping) edge. According to
our semantics, only one copy of (𝑎 ↦ 𝑢) is returned, while two occur-
rences of it are returned according to GQL Standard.

Postponed evaluation of conditions.

In our treatment of the language, the semantics of the following query
is undefined:
MATCH ALL SHORTEST -[x]->

(()-[y]->() WHERE x.amount < y.amount){10,10}

Indeed, when the condition WHERE x.amount < y.amount is evalu-
ated, the variable x is not yet bound, as -[x]-> occurs in a different
branch of the query’s syntax tree. In GQL Standard, however, the above
query is legal, because the evaluation of WHERE conditions is postponed
for as long as possible.5 While the meaning of the query is clear, its eval-
uation is non-trivial. The context of each condition (here, y is bound
to ten successive edge ids) must be recorded, because it will be differ-
ent when the evaluation occurs. Note that the evaluation of conditions
must occur before the evaluation of SHORTEST, hence queries like
MATCH -[x]->,

ALL SHORTEST (-[y]-> WHERE x.amount < y.amount){10,10}

are not allowed in GQL.

3.4 A Few Known Discrepancies with the GQL Standard 65

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”
[101]: Francis et al. (2018), Formal Se-
mantics of the Language Cypher

Referencing the input table in conditions during pattern matching

In our semantics, the input table is not passed on to pattern matching,
so one cannot refer to variables from it in WHERE conditions. As an ex-
ample, the semantics of LET x=42 MATCH (a WHERE a.amount=x) is
undefined.

3.4.3 Missing Features

Syntactic sugar

The GQL Standard includes a lot of syntactic sugar that we disregarded.
For instance, several other types of edge patterns exist, such as -[𝛿]-,
which matches edges regardless of their direction. Another example is
the possibility of using * and + as shorthands for {0,} and {1,}.

Complex label expressions

We only allow a single label in descriptors, but the
GQL Standard allows complex label expressions, as in
MATCH (a:YachtClub|(Person&!Account)). Using WHERE, this
could be rewritten as
MATCH (a WHERE a:YachtClub OR (a:Person AND NOT a:Account))

Label expressions can also use the special atom “%” to check the nonempti-
ness of the label set. For example, MATCH (a:%)matches nodes with at
least one label and MATCH (a:!%) matches nodes with no labels. Note
that “%” cannot be used to define a regular expression of labels, unlike
its usage in the LIKE expressions of SQL.

Complex path modes

GQL allows more complex path modes than described here. Recall that
SHORTEST partitions matched paths by endpoints and returns the short-
est paths for each pair of endpoints. SHORTEST 𝑘 GROUPS generalizes this:
for each pair of endpoints, it returns all paths of length at most 𝑖𝑘, where
𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 are the 𝑘 smallest lengths of paths between these
endpoints. SHORTEST k PATHS returns 𝑘 shortest paths for each pair of
endpoints.

Another mode present in GQL is SIMPLE: it is similar to ACYCLIC but
allows the first and the last node on a path to be the same, i.e., a simple
cycle. There is also the keyword WALK to explicitly indicate the absence
of a path mode.

GQL’s TRAIL differs from Cypher’s trail semantics [15, 101]. The latter
corresponds to GQL’s match mode DIFFERENT EDGES, which is omit-
ted in this digest. Indeed, Cypher’s requirement that all matched edges
must be different operates at the level of graph patterns, whereas GQL’s
TRAIL operates at the level of path patterns. Hence, while the GQL
query MATCH TRAIL ()-[e1]->(), TRAIL ()-[e2]->() will return
bindings inwhich e1 and e2 are equal, MATCH ()-[e1]>(), ()-[e2]->()

in Cypher would not; the latter behavior is captured by the GQL query

https://neo4j.com
https://neo4j.com
https://neo4j.com

66 3 What is GQL?

[102]: Francis et al. (2023), “GPC: A
Pattern Calculus for Property Graphs”

[103]: Green et al. (2019), “Updating
Graph Databases with Cypher”

[103]: Green et al. (2019), “Updating
Graph Databases with Cypher”

MATCH DIFFERENT EDGES ()-[e1]>(), ()-[e2]->().

Finally, we only use pathmodes at the beginning of path patterns. GQL’s
rules are more involved, in that they allow TRAIL and ACYCLIC to be
used inside patterns.

Projection clauses

The GQL Standard includes several clauses similar to RETURN, such as
YIELD, PROJECT, and SELECT. We ignored these because, although they
are not allowed at the same positions in queries, they can be simulated
by simple rewritings in terms of RETURN.

Combination of queries

In addition to set operations (UNION, etc.) and bag operations (UNION
ALL, etc.), queries could be of the form Q1 OTHERWISE Q2. Its semantics
is as follows:

q
Q1 OTHERWISE Q2

y
(𝑇) equals

q
Q1

y
(𝑇) if table

q
Q1

y
(𝑇)

is non-empty, otherwise it equals
q
Q2

y
(𝑇).

Aggregation

The GQL Standard features two kinds of aggregation. The first one,
much like GROUP BY in SQL, groups together bindings under which the
evaluation of an expression produces the same value, then an aggre-
gate value is computed for each group. The second kind aggregates
along matched paths to compute a value, both during and after pattern
matching. Computing the length of a path is a typical example; one can
have more complex aggregates, such as the sum of the values n.amount
for each node n in the path. This is similar to reduce in Cypher. The use
of this feature in pattern matching requires strong syntactic restrictions
for query evaluation to be decidable [102].

Subqueries

GQL has a facility to run subqueries through the CALL 𝑄 clause, the
semantics of which is roughly as follows: for each binding 𝜇 in the input
table, J𝑄K𝐺 ({𝜇}) is evaluated in a sub-process, and the resulting table
is left-joined with the current working table. An important detail is
that CALL can only expand bindings. It cannot remove columns from
the input table nor change the values in them. The existence of read-
only columns matters in clauses like RETURN, which cannot therefore be
treated with our semantics as is. In GQL, this is handled with a notion
of working record.

Note also that CALL 𝑄will make nondeterminismmuch harder to detect
if updates happen in 𝑄. Tables are unordered sets (or bags) but in an
update clause each binding causes changes in the graph (see next item)
and so it can modify the evaluation of the clause for the next binding.
In such cases, inconsistent changes may be detected [103].

Updates

Graph database updates in GQL are outside the scope of this thesis.
They will work similarly to Cypher updates [103], by using clauses
that can add and remove elements (INSERT and DELETE), or modify
elements’ attributes (SET and REMOVE). Therefore, pattern matching

https://neo4j.com
https://neo4j.com

3.5 What the Future Holds 67

[19]: Arenas et al. (2022), Database
Theory
[20]: Abiteboul et al. (1995), Founda-
tions of Databases

[102]: Francis et al. (2023), “GPC: A
Pattern Calculus for Property Graphs”
[104]: Calvanese et al. (2003), “Reason-
ing on regular path queries”
[105]: Figueira et al. (2020), “Contain-
ment of Simple Conjunctive Regular
Path Queries”
[106]: Kostylev et al. (2018), “Contain-
ment of queries for graphs with data”
[71]: Vrgoč (2022), Evaluating regular
path queries under the all-shortest paths
semantics
[72]: Baier et al. (2017), “Evaluating
Navigational RDF Queries over the
Web”
[85]: Martens et al. (2022), Represent-
ing Paths in Graph Database Pattern
Matching
[107]: Yakovets et al. (2016), “Query
Planning for Evaluating SPARQL
Property Paths”
[108]: Gubichev et al. (2013), “Spar-
qling Kleene: Fast property paths in
RDF-3X”
[109]: Nguyen et al. (2015), “Join
Processing for Graph Patterns: An Old
Dog with New Tricks”
[110]: Hogan et al. (2019), “A Worst-
Case Optimal Join Algorithm for
SPARQL”

and updates can be mixed together and result in bulk updates to the
graph based on its contents, as in the example below:
MATCH (a:Account)

INSERT (p:Person)

SET p.name = a.owner

INSERT (p)-[:Owns]->(a)

REMOVE a.owner

3.5 What the Future Holds
In this chapter we have summarized the key elements of GQL, the new
standard graph query language.At the time when the first version of the
SQL Standard was produced, many key elements of relational theory
were already in place. For GQL, the standardization work is well ahead
of the academic developments it should ideally be based upon. In what
follows, we bring to the attention of the community several directions
of academic work that will facilitate the development of graph query
languages and their standardization.

Expressiveness and complexity

For relational query languages, the database research community has
uncovered a rich landscape of fragments (conjunctive queries, positive
queries, and queries with inequalities are some very well studied exam-
ples) and extensions (for example, adding counting and aggregation,
or adding recursion as in many instantiations of Datalog), see [19, 20].
For these, we understand the trade-off between their expressiveness
and the complexity of query evaluation. Here we have described a ba-
sic language for graphs, essentially the core of GQL, akin to relational
algebra and calculus. Now we need to develop its theory, starting with
understanding expressiveness and complexity and their trade-offs, in
a way similar to what we know about relational databases. For the pat-
tern matching facilities of GQL, shared with SQL/PGQ, some early re-
sults are available [102].

Query processing and optimization

Query processing and optimization is a central area in relational database
research that needs yet to be developed for GQL. In a more theoretical
level, the basis for understanding optimization is query equivalence and
containment. We know a thing or two about containment for (conjunc-
tive) regular path queries [104, 105] and extensions with data [106]
but not for queries that resemble the real-life language. Moving to more
practical aspects, one needs efficient and practical algorithms and data
structures for processing graph queries in GQL, whether in a native sys-
tem, or a relational implementation. Of course there is significant work
in this direction [71, 72, 85, 107–110] but it needs to be adjusted to
languages that could dominate the practical landscape for decades.

Design decisions and alternatives

We explained in Remark 3.3.4 how GQL currently forbids concatenat-
ing patterns that contain different kinds of variables. Notice, however,

68 3 What is GQL?

[103]: Green et al. (2019), “Updating
Graph Databases with Cypher”

[111]: Angles et al. (2021), “PG-Keys:
Keys for Property Graphs”
[38]: Angles et al. (2022), PG-Schema:
Schemas for Property Graphs

[112]: Gupta et al. (1999),Materialized
Views: Techniques, Implementations, and
Applications
[113]: Barbosa et al. (2004), “Efficient
Incremental Validation of XML Docu-
ments”

that this current state reflects a design decision and it may be interest-
ing to explore other avenues for graph query languages. For instance,
one could consider a semantics in which both occurrences of x in Re-
mark 3.3.4 should be bound to single nodes. Under such a semantics,
the pattern would essentially perform a join on the even nodes of the
path and would match “flower” shaped paths centered around node
x, consisting of Transfer-loops of length two. Alternatively, one could
consider a semantics in which, as soon as x occurs as a group variable,
all occurrences of x are considered to be group variable occurrences.
In this case, the query would match Transfer-paths of even length and
bind x to the list of “even” nodes on such paths. In line with this work
would be the study of an automaton model with group variables that
would allow classical evaluation and automata-theoretic constructions
such as the product, determinization, etc.

Since GQL is a complex language, there are many such places in which
fundamental research can either help to validate the current design
decisions or propose alternatives.

Updates

We have concentrated on the read-only part of the languages and have
not touched updates. Designing a proper update language is not a sim-
ple task: in Cypher, for example, the initial design exhibited a multi-
tude of problems [103]. GQL largely follows Cypher, which means its
updates and transaction processing facilities need to be designed with
care and subjected to the same research scrutiny as their relational
counterpart.

Graph-to-graph queries

GQL, as its precursors including Cypher, is a very good tool for turning
graphs into relations. The ever reappearing issue in the field of graph
languages is how to design a graph-to-graph language whose queries
output graphs. Queries are then composable: a query can be applied
to the output of a previous one. We also regain such basic concepts
as views and subqueries, taken for granted in relational databases, but
very limited in the current graph database landscape.

Metadata

Looking into the future, we need to have a good schema language for
graphs, and see how it interacts with graph query languages. Some
efforts in this direction have already been made: the PG-Keys proposal
introduces keys for property graphs [111] and more recently proposed
PG-Schema [38] specifies a schema language for property graphs that
should lead to future schema standards. As these are formulated, much
theory needs to be developed, for example semantic query optimization,
as well as incremental validation of schemas and constraints following
work for relational and semistructured data [112, 113].

https://neo4j.com
https://neo4j.com
https://neo4j.com

References 69

References
[6] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query Language Supporting

Recursion”. In: Proceedings of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987. Ed. by
Umeshwar Dayal and Irving L. Traiger. ACM Press, 1987, pp. 323–330. doi: 10.1145/38713.38749.

[15] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings
of the 2018 International Conference on Management of Data. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[17] Alin Deutsch et al. “Aggregation Support for Modern Graph Analytics in TigerGraph”. In: Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online con-
ference [Portland, OR, USA], June 14-19, 2020. ACM, 2020, pp. 377–392. doi: 10.1145/3318464.
3386144.

[19] Marcelo Arenas et al. Database Theory. Open source at https : / / github . com / pdm - book /
community, 2022.

[20] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.
[29] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:

SIAM J. Comput. 24.6 (1995), pp. 1235–1258.
[38] Renzo Angles et al. PG-Schema: Schemas for Property Graphs. 2022.
[57] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. “Regular Queries on Graph Databases”. In:

Theory Comput. Syst. 61.1 (2017), pp. 31–83. doi: 10.1007/s00224-016-9676-2.
[60] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. “Querying Graphs with Data”. In: Journal of the

ACM 63.2 (2016), 14:1–14:53.
[71] Domagoj Vrgoč. Evaluating regular path queries under the all-shortest paths semantics. 2022.
[72] Jorge A. Baier et al. “Evaluating Navigational RDF Queries over the Web”. In: HT. ACM, 2017,

pp. 165–174. doi: 10.1145/3078714.3078731.
[85] Wim Martens et al. Representing Paths in Graph Database Pattern Matching. 2022.
[90] Oskar van Rest et al. “PGQL: a property graph query language”. In: Proceedings of the Fourth Inter-

national Workshop on Graph Data Management Experiences and Systems. 2016, pp. 1–6.
[91] Marko A. Rodriguez. “The Gremlin graph traversal machine and language”. In: DBPL. ACM, 2015,

pp. 1–10.
[92] Wikipedia contributors. GQL Graph Query Language. 2020. url: https://en.wikipedia.org/

wiki/GQL_Graph_Query_Language.
[93] Shumo Chu et al. “HoTTSQL: proving query rewrites with univalent SQL semantics”. In: PLDI. ACM,

2017, pp. 510–524. doi: 10.1145/3062341.3062348.
[94] Paolo Guagliardo and Leonid Libkin. “A Formal Semantics of SQL Queries, Its Validation, and Appli-

cations”. In: Proc. VLDB Endow. 11.1 (2017), pp. 27–39. doi: 10.14778/3151113.3151116.
[95] Véronique Benzaken and Evelyne Contejean. “A Coq mechanised formal semantics for realistic SQL

queries: formally reconciling SQL and bag relational algebra”. In: CPP. ACM, 2019, pp. 249–261.
doi: 10.1145/3293880.3294107.

[96] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: SIGMOD. ACM, 2022, pp. 1–
12.

[97] GQL Influence Graph. https://www.gqlstandards.org/existing-languages. Accessed: 2023-
01-17. 2023.

[98] Mary F. Fernandez et al. “A Query Language for a Web-Site Management System”. In: SIGMOD Rec.
26.3 (1997), pp. 4–11. doi: 10.1145/262762.262763.

[99] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. “Querying the World Wide Web”. In:
Proceedings of the Fourth International Conference on Parallel and Distributed Information Systems,
December 18-20, 1996, Miami Beach, Florida, USA. IEEE Computer Society, 1996, pp. 80–91. doi:
10.1109/PDIS.1996.568671.

[100] Diego Calvanese et al. “Containment of Conjunctive Regular Path Queries with Inverse”. In: KR
2000, Principles of Knowledge Representation and Reasoning Proceedings of the Seventh International
Conference, Breckenridge, Colorado, USA, April 11-15, 2000. 2000, pp. 176–185.

[101] Nadime Francis et al. Formal Semantics of the Language Cypher. 2018.
[102] Nadime Francis et al. “GPC: A Pattern Calculus for Property Graphs”. In: Proceedings of the 42nd

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle, WA,

https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/3078714.3078731
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/3293880.3294107
https://www.gqlstandards.org/existing-languages
https://doi.org/10.1145/262762.262763
https://doi.org/10.1109/PDIS.1996.568671

70

USA, June 18-23, 2023. Ed. by Floris Geerts, Hung Q. Ngo, and Stavros Sintos. ACM, 2023, pp. 241–
250. doi: 10.1145/3584372.3588662.

[103] Alastair Green et al. “Updating Graph Databases with Cypher”. In: Proc. VLDB Endow. 12.12 (2019),
pp. 2242–2253.

[104] Diego Calvanese et al. “Reasoning on regular path queries”. In: SIGMOD Record 32.4 (2003),
pp. 83–92.

[105] Diego Figueira et al. “Containment of Simple Conjunctive Regular Path Queries”. In: International
Conference on Principles of Knowledge Representation and Reasoning (KR). 2020, pp. 371–380.

[106] Egor V. Kostylev, Juan L. Reutter, and Domagoj Vrgoc. “Containment of queries for graphs with
data”. In: J. Comput. Syst. Sci. 92 (2018), pp. 65–91. doi: 10.1016/j.jcss.2017.09.005.

[107] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. “Query Planning for Evaluating SPARQL Property
Paths”. In: SIGMOD Conference. ACM, 2016, pp. 1875–1889. doi: 10.1145/2882903.2882944.

[108] Andrey Gubichev, Srikanta J. Bedathur, and Stephan Seufert. “Sparqling Kleene: Fast property
paths in RDF-3X”. In: GRADES. CWI/ACM, 2013. doi: 10.1145/2484425.2484443.

[109] Dung T. Nguyen et al. “Join Processing for Graph Patterns: An Old Dog with New Tricks”. In:
GRADES. ACM, 2015, 2:1–2:8. doi: 10.1145/2764947.2764948.

[110] Aidan Hogan et al. “A Worst-Case Optimal Join Algorithm for SPARQL”. In: ISWC (1). Vol. 11778.
Lecture Notes in Computer Science. Springer, 2019, pp. 258–275. doi: 10.1007/978-3-030-
30793-6_15.

[111] Renzo Angles et al. “PG-Keys: Keys for Property Graphs”. In: SIGMOD ’21: International Conference
on Management of Data. ACM, 2021, pp. 2423–2436.

[112] A. Gupta and I.S. Mumick. Materialized Views: Techniques, Implementations, and Applications. MIT
Press, 1999.

[113] Denilson Barbosa et al. “Efficient Incremental Validation of XML Documents”. In: ICDE. IEEE Com-
puter Society, 2004, pp. 671–682. doi: 10.1109/ICDE.2004.1320036.

https://doi.org/10.1145/3584372.3588662
https://doi.org/10.1016/j.jcss.2017.09.005
https://doi.org/10.1145/2882903.2882944
https://doi.org/10.1145/2484425.2484443
https://doi.org/10.1145/2764947.2764948
https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1109/ICDE.2004.1320036

1: https://www.GQLstandards.org/

existing-languages

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[60]: Libkin et al. (2016), “Querying
Graphs with Data”
[57]: Reutter et al. (2017), “Regular
Queries on Graph Databases”

[9]: Barceló (2013), “Querying graph
databases”
[114]: Angles et al. (2017), “Founda-
tions of Modern Query Languages for
Graph Databases”

[9]: Barceló (2013), “Querying graph
databases”

[60]: Libkin et al. (2016), “Querying
Graphs with Data”

The Graph Pattern Calculus 4
This chapter is joint work with N. Francis, A. Gheebrant, P. Guagliardo,
L. Libkin, V.Marsault,W.Martens, F. Murlak, L. Peterfreund andD. Vrgoč
and was published under the title ”GPC: A Pattern Calculus for Property
Graphs” at PODS 2023.

In the previous chapter, we introduced and explained the two new stan-
dard graph query languages GQL and SQL/PGQ, and the pattern match-
ing they share. In this chapter, we proceed with the next step of formal-
ization by defining a calculus which captures a smaller fragment of the
languages but is a much better tool for theoretical study.

The development of GQL as a query language standard is rather dif-
ferent from SQL. The latter came out of a well-researched relational
theory; relational calculus led to its declarative approach, while rela-
tional algebra formed the foundation of RDBMS implementations. But
while GQL is “inspired” by the key developments of database research,
they are not represented directly in the language, which itself was de-
signed by an industry consortium. The GQL committee lists1 three main
academic influences: regular path queries [6], Graph XPath [60], and
regular queries on graphs [57]. While these provided important initial
orientation, the GQL development is much more in line with industry-
level languages such as Cypher, GSQL, and PGQL.

The theory of graph query languages on the other hand produced a
multitude of languages based on RPQs: CRPQs, UCRPQs, 2(UC)RPQs,
ECRPQs, just to name a few (see [9, 114] for many more). However,
none of them can play the role of relational calculus with respect to
the development of GQL, as they do not capture its key features with
respect to both navigation and handling data.

The goal of this chapter is to produce that missing piece, a theoretical
language that underlies GQL and SQL/PGQ pattern matching and can
be studied in the same way as the RPQ family has been studied over
decades.

Such a calculus should judiciously choose the key features leaving oth-
ers for extensions. Think again about the SQL/relational calculus anal-
ogy. The latter does not have bag semantics, nulls, aggregates, full typ-
ing, and many other SQL features. We adopt a similar approach here.
Our goal is to introduce a calculus that captures the essence of GQL
pattern matching, without every single feature present. Similarly to re-
lational calculus, we settle for the core set-semantics fragment without
nulls or aggregates, each of which can be added as extensions.

What is new? We now outline the main differences between the cur-
rently existing theoretical languages and real-life pattern matching in
property graphs that we need to capture.

▶ Much of the theoretical literature relies on an overly simplified
model of graph databases as edge-labeled graphs; this is com-
mon in the study of RPQs and extensions [9]. Typical patterns in
languages like Cypher combine graph navigation with querying
data held in nodes and edges. With data values, the theoretical
model of choice is data graphs [60]: in those, each node carries

https://www.GQLstandards.org/existing-languages
https://www.GQLstandards.org/existing-languages
https://neo4j.com
https://neo4j.com

72 4 The Graph Pattern Calculus

[115]: Bojanczyk et al. (2006), “Two-
variable logic on data trees and XML
reasoning”

[18]: Angles et al. (2018), “G-CORE:
A Core for Future Graph Query Lan-
guages”

[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”
[18]: Angles et al. (2018), “G-CORE:
A Core for Future Graph Query Lan-
guages”

[57]: Reutter et al. (2017), “Regular
Queries on Graph Databases”

a single data value, similarly to data trees studied extensively in
connection with tree-structured data [115]. Property graphs are
yet more complex, as each edge or node can carry an arbitrary
collection of key-value pairs.

▶ GQL patterns bind variables in different ways. As an example, con-
sider a pattern (in our notation, to be introduced in Section 4.1)
(𝑥 ∶ 𝑎) 𝑒∶𝑏−−→ (𝑦 ∶ 𝑎) that looks for 𝑏-labeled edges between two
𝑎-labeled elements. While producing a match, it binds variables 𝑥
and 𝑦 to the start and end-nodes of the edge, and 𝑒 to the edge it-
self. If, on the other hand, we look at (𝑥 ∶ 𝑎) 𝑒∶𝑏−−→1..∞

(𝑦 ∶ 𝑎), then
we match paths of length 1 or more (indicated by 1..∞) from 𝑥
to 𝑦. In this case 𝑒 gets bound not to an edge, but rather to a list
of edges. This has immediate implications on conditions in which
such a binding can be used.

▶ Property graphs are multigraphs (there can be multiple edges be-
tween two endpoint nodes), pseudographs (there can be an edge
looping from a node to itself), and mixed, or partially directed
graphs (as an edge can be directed or undirected). This means
edges can be traversed in different directions, or traversals can
be indicated as having no direction at all.

▶ To ensure the number of paths returned is finite, real-life lan-
guages put additional restrictions on paths, such as insisting that
they be trails (no repeated edges, as in Cypher), simple (no re-
peated nodes), or shortest (as in G-Core [18]). Typically in re-
search literature one considers each one of those semantics sepa-
rately, but GQL permits mixing them.

▶ As in Cypher, GQL allows to match paths and output them. In
theoretical languages this feature is rather an exception [11, 18].

▶ Finally, one can apply conditions to filter matched paths. For ex-
ample, after matching (𝑥 ∶ 𝑎) 𝑒∶𝑏−−→1..∞

(𝑦 ∶ 𝑎), one can apply a
condition 𝑥.𝑘 = 𝑦.𝑘 stating that property 𝑘 of both 𝑥 and 𝑦 is the
same. Notice that we cannot talk similarly about properties of 𝑒,
as they are bound to a list.

Other features of patterns are those in regular languages: concatena-
tion, disjunction, repetition; they can be applied on top of already ex-
isting patterns, similarly to [57].

The main contribution of this chapter is the Graph Pattern-matching
Calculus GPC that captures all the key features of GQL and SQL/PGQ
pattern matching. Its syntax is described in Section 4.1. To ensure the
well-definedness of its expressions, the calculus comes with a type sys-
tem, given in Section 4.2. We give a formal semantics of GPC in Sec-
tion 4.3, and provide a number of basic results on the complexity of
the language, and its relationship with classical theoretical formalisms
in Section 4.4. In Section 4.5 we outline some possible extensions and
describe two concrete examples where theoretical studies of the lan-
guage had a direct impact on the Standard as it was being written.

4.1 Pattern calculus
First note that throughout this Chapter we will use the standard defini-
tion of property graph and graph database as introduced in Chapter 2
Section 2.3.

The basic building blocks of GPC are node and edge (or arrow) patterns.

https://neo4j.com
https://neo4j.com

4.1 Pattern calculus 73

BASICS For 𝑥, 𝑦 ∈ Vars, ℓ ∈ ℒ, 𝑎, 𝑏 ∈ 𝒦, 𝑐 ∈ Const:

𝑑 ∶∶= 𝑥 ∣ ∶ ℓ ∣ 𝑥 ∶ ℓ descriptor
⇐⇒ ∶∶= −→ ∣ ←− ∣ −− direction
𝜃 ∶∶= 𝑥.𝑎 = 𝑐 ∣ 𝑥.𝑎 = 𝑦.𝑏 condition

∣ 𝜃 ∨ 𝜃 ∣ ¬𝜃
𝜌 ∶∶= simple ∣ trail ∣ shortest restrictor

∣ shortest simple ∣ shortest trail

PATTERNS For 0 ≤ 𝑛 ≤ 𝑚 ≤ ∞:

𝜓 ∶∶= () ∣ (𝑑) node pattern

∣ ⇐⇒ ∣
𝑑
⇐⇒ edge pattern

∣ 𝜓 + 𝜓 union
∣ 𝜓𝜓 concatenation
∣ 𝜓⟨𝜃⟩ conditioning
∣ 𝜓𝑛..𝑚 repetition

QUERIES For 𝑥 ∈ Vars:

𝑄 ∶∶= 𝜌𝜓 ∣ 𝑥 = 𝜌𝜓 path pattern
∣ 𝑄,𝑄 join Figure 4.1: GPC expressions

2: We use the same definition of bind-
ings and lists as in Chapter 3 through-
out this Chapter

Node patterns are of the form (𝑥 ∶ ℓ). Here 𝑥 is a variable, and ∶ ℓ
specifies the node label. The brackets “(” and “)” are mandatory, and
signify that we are talking about a node. Both the variable 𝑥, and the
label specification ∶ ℓ are optional, and can be omitted. This way, the
simplest node pattern is (), matching any node in the graph. The pres-
ence of a variable means that it gets bound2; the presence of a label ℓ
means that only ℓ-nodes are matched.

Edge patterns are of the form
𝑥∶ℓ
⇐=⇒, where again 𝑥 and ℓ are a variable

and an edge label, respectively, and ⇐⇒ is one of the allowed directions:
−→ (forward), ←− (backward), −− (undirected). Both 𝑥 and ∶ ℓ can be
omitted. In the case when they are present, the variable 𝑥 gets bound
to the matching edge, and ∶ ℓ constrains the allowed edge labels.

The full grammar of GPC is given in Fig. 4.1. Here:

𝑑 specifies node and edge descriptors; these may include a variable
to which that graph element is bound, and its label.

⇐⇒ specifies edge directions: forward, backward, or undirected.
𝜃 defines conditions: atomic ones compare property values held in

nodes or edges to one another or to constants, and conditions are
closed under Boolean connectives.

𝜌 specifies restrictors on paths to ensure a finite result set; paths can
be restricted to be simple (no repeated nodes), trail (no repeated
edges), or shortest, which can be optionally combined with sim-
ple or trail.

𝜓 defines patterns: the atomic ones are node and edge patterns,
which have an optional descriptor and, for the latter, a mandatory
direction; patterns are then built from these using concatenation

74 4 The Graph Pattern Calculus

3: Note that we use square brackets for
grouping, since () defines a node pat-
tern.

(denoted by juxtaposition), union (+), conditioning (akin to selec-
tion in relational algebra), and repetition of the form 𝑛..𝑚, mean-
ing that the pattern is repeated between 𝑛 and𝑚 times. Note that
the 0..∞ is precisely the Kleene star.

𝑄 defines a query: a non-empty list of optionally named (𝑥 = 𝜌𝜓)
path patterns, each qualified by a restrictor.

When we write patterns, we disambiguate with square brackets, and
the lower operator takes precedence. For instance, 𝜓𝜓′

⟨𝜃⟩+𝜓″ is equiv-
alent to [𝜓[𝜓′

⟨𝜃⟩]] + 𝜓″. By an expression of GPC we shall mean a
pattern or a query.

Examples The formal semantics is presented in Section 4.3. Next we
illustrate how GPC operates with several examples. Each path pattern
is matched to a path; such a path could be a single node, an edge (with
endpoints included), or a more complex path. For example, the pattern

(𝑥1 ∶ 𝐴)
𝑦1−−→ (𝑥2 ∶ 𝐵)

𝑦2←−− (𝑥3 ∶ 𝐶)
𝑦3−−→ (𝑥1)

matches a path from an 𝐴-node to itself via 𝐵- and 𝐶-nodes with the first
and third edges going forward and the second edge going backward.
Notice that this pattern introduces an implicit join over the endpoints
of the path by repeating the variable 𝑥1.

The pattern (𝑥 ∶ 𝐴) −→ (𝑧 ∶ 𝐵) [←− (𝑢 ∶ 𝐶)+()] is an optional pattern3,
a feature present in many languages such as SPARQL and Cypher. It
matches an edge from an 𝐴-node to a 𝐵-node, binding 𝑥 and 𝑧 to its
endpoints, and if the 𝐵-node has an incoming edge from a 𝐶-node, binds
𝑢 to its source. This pattern can be seen as the disjunction𝜓1+𝜓2 where
𝜓1 = (𝑥 ∶ 𝐴) −→ (𝑧 ∶ 𝐵) ←− (𝑢 ∶ 𝐶) and 𝜓2 = (𝑥 ∶ 𝐴) −→ (𝑧 ∶ 𝐵) (). In
𝜓2, the concatenated () must match the same node as 𝑧 and thus it
has no effect on the pattern; this accounts for the case where the node
bound to 𝑧 has no incoming edge from a 𝐶-node.

The pattern (𝑥 ∶ 𝐴)
𝑦
−→1..∞

(𝑧 ∶ 𝐵) looks for paths of arbitrary positive
length from an 𝐴-node to a 𝐵-node. It uses variable 𝑦 to bind edges
encountered on this path. Unlike the bindings for 𝑥 and 𝑧, which are
unique nodes, there may well be multiple edges encountered on the
path between them, and thus 𝑦 needs to be bound to a complex object
encoding all such edges on a path. Intuitively, in this case 𝑦 binds to the
list of edges on a matching path. However, in general the binding for
such variables, which we call group variables, is more complex. Indeed,
consider a pattern 𝜓𝑛..𝑚 and a particular match of this pattern in which
𝜓 is repeated 𝑘 times, 𝑛 ≤ 𝑘 ≤ 𝑚. These 𝑘 repetitions of 𝜓 are matched
by paths 𝑝1,… , 𝑝𝑘, and thus for every variable used in 𝜓 we need to
record not only which elements of 𝑝1 ⋯𝑝𝑘 it binds to, but also in which
paths 𝑝𝑖 these elements occur. Thus, in general, group variables will be
bound to lists of (path, graph element) pairs.

The pattern [(𝑥 ∶ 𝐴)
𝑦
−→1..∞

(𝑧 ∶ 𝐵)]⟨𝑥.𝑎=𝑧.𝑎⟩ is an example of a condi-
tioned pattern; here the condition ensures that the value of property 𝑎
is the same at the endpoints of the path. Note that conditions cannot
compare nodes or edges, only their properties.

A pattern cannot be used by itself as a query; for example, in the pattern
𝑢 = [(𝑥 ∶ 𝐴)

𝑦
−→1..∞

(𝑧 ∶ 𝐵)], the variable 𝑢 can be bound to infinitely
many paths. Indeed, if there is a loop on some path from 𝑥 to 𝑧, it can be
traversed arbitrarily many times, while still satisfying the condition of
the pattern. To deal with this, every pattern in a query is compulsorily

https://neo4j.com

4.2 Type System 75

(𝑥) ⊢ 𝑥 ∶ Node (𝑥 ∶ ℓ) ⊢ 𝑥 ∶ Node 𝑥
⇐⇒ ⊢ 𝑥 ∶ Edge 𝑥∶ℓ

⇐=⇒ ⊢ 𝑥 ∶ Edge

𝑥 ∉ var(𝜓)
𝑥 = 𝜌 𝜓 ⊢ 𝑥 ∶ Path

𝜓 ⊢ 𝑧 ∶ 𝜏
𝜓𝑛..𝑚 ⊢ 𝑧 ∶ Group(𝜏)

𝜓 ⊢ 𝑧 ∶ 𝜏
𝜌 𝜓 ⊢ 𝑧 ∶ 𝜏

𝜓 ⊢ 𝑧 ∶ 𝜏 𝑧 ≠ 𝑥
𝑥 = 𝜌 𝜓 ⊢ 𝑧 ∶ 𝜏

𝜓 ⊢ 𝑥 ∶ 𝜏 𝜏 ∈ {Node, Edge}
𝜓 ⊢ 𝑥.𝑎 = 𝑐 ∶ Bool

𝜓 ⊢ 𝑥 ∶ 𝜏 𝜓 ⊢ 𝑦 ∶ 𝜏′ 𝜏, 𝜏′ ∈ {Node, Edge}
𝜓 ⊢ 𝑥.𝑎 = 𝑦.𝑏 ∶ Bool

𝜓 ⊢ 𝜃 ∶ Bool 𝜓 ⊢ 𝜃′ ∶ Bool
𝜓 ⊢ 𝜃 ∧ 𝜃′ ∶ Bool

𝜓 ⊢ 𝜃 ∶ Bool 𝜓 ⊢ 𝜃′ ∶ Bool
𝜓 ⊢ 𝜃 ∨ 𝜃′ ∶ Bool

𝜓 ⊢ 𝜃 ∶ Bool
𝜓 ⊢ ¬𝜃 ∶ Bool

𝜓 ⊢ 𝜃 ∶ Bool 𝜓 ⊢ 𝑧 ∶ 𝜏
𝜓⟨𝜃⟩ ⊢ 𝑧 ∶ 𝜏

𝜓1 ⊢ 𝑧 ∶ 𝜏 𝜓2 ⊢ 𝑧 ∶ 𝜏
𝜓1 + 𝜓2 ⊢ 𝑧 ∶ 𝜏

𝜓1 ⊢ 𝑧 ∶ 𝜏 𝜓2 ⊢ 𝑧 ∶ Maybe(𝜏)
𝜓1 + 𝜓2 ⊢ 𝑧 ∶ Maybe(𝜏)

𝜓1 ⊢ 𝑧 ∶ Maybe(𝜏) 𝜓2 ⊢ 𝑧 ∶ 𝜏
𝜓1 + 𝜓2 ⊢ 𝑧 ∶ Maybe(𝜏)

𝜓1 ⊢ 𝑧 ∶ 𝜏 𝑧 ∉ var(𝜓2)
𝜓1 + 𝜓2 ⊢ 𝑧 ∶ 𝜏?

𝜓2 ⊢ 𝑧 ∶ 𝜏 𝑧 ∉ var(𝜓1)
𝜓1 + 𝜓2 ⊢ 𝑧 ∶ 𝜏?

𝜓1 ⊢ 𝑧 ∶ 𝜏 𝜓2 ⊢ 𝑧 ∶ 𝜏 𝜏 ∈ {Node, Edge}
𝜓1 𝜓2 ⊢ 𝑧 ∶ 𝜏

𝜓1 ⊢ 𝑧 ∶ 𝜏 𝑧 ∉ var(𝜓2)
𝜓1 𝜓2 ⊢ 𝑧 ∶ 𝜏

𝜓2 ⊢ 𝑧 ∶ 𝜏 𝑧 ∉ var(𝜓1)
𝜓1 𝜓2 ⊢ 𝑧 ∶ 𝜏

𝑄1 ⊢ 𝑧 ∶ 𝜏 𝑄2 ⊢ 𝑧 ∶ 𝜏 𝜏 ∈ {Node, Edge}
𝑄1, 𝑄2 ⊢ 𝑧 ∶ 𝜏

𝑄1 ⊢ 𝑧 ∶ 𝜏 𝑧 ∉ var(𝑄2)
𝑄1, 𝑄2 ⊢ 𝑧 ∶ 𝜏

𝑄2 ⊢ 𝑧 ∶ 𝜏 𝑧 ∉ var(𝑄1)
𝑄1, 𝑄2 ⊢ 𝑧 ∶ 𝜏

Figure 4.2: Typing rules for the GPC type system.

preceded by a restrictor, e.g., 𝑢 = trail [(𝑥 ∶ 𝐴)
𝑦
−→1..∞

(𝑧 ∶ 𝐵)]. Then
only trails, of which there are finitely many, that satisfy the conditions
of 𝜓 will be returned as values of variable 𝑢.

The necessity of type rules The calculus defined in Fig. 4.1 is very
permissive and allows expressions that do not type-check. For example,
(𝑥) 𝑥−→ () is syntactically permitted even though it equates a node vari-
able with an edge variable. As another example, adding the condition
𝑥.𝑎 = 𝑦.𝑎 to the pattern (𝑥 ∶ 𝐴)

𝑦
−→1..∞

(𝑧 ∶ 𝐵) seen above would result
in comparing a singletonwith a list of pairs. The type system introduced
next eliminates such mismatches.

4.2 Type System
The goal of the type system is to ensure that GPC expressions do not
exhibit the pathological behavior explained at the end of the previous
section.

76 4 The Graph Pattern Calculus

The set Types of types used to type variables is defined by the following
grammar

𝜏 ::= Node ∣ Edge ∣ Path ∣ Maybe(𝜏) ∣ Group(𝜏).

The three atomic types are used for variables returning nodes, edges,
and paths, respectively. The type constructor Maybe is used for vari-
ables occurring on one side of a disjunction only, while Group is used
for variables occurring under repetition, whose bindings are grouped
together. As variables in GPC are never bound to property values, we do
not need the usual types like integers or strings. However, to eliminate
references to unbound variables, we do need to type conditions (such
as for ⟨𝑥.𝑎 = 𝑦.𝑎⟩ in the example at the end of Section 4.1); we use an
additional type Bool for that.

Typing statements are of the form 𝜉 ⊢ 𝑥 ∶ 𝜏 stating that in expression
𝜉 (a pattern or a query), we can derive that variable 𝑥 has type 𝜏, and
𝜉 ⊢ 𝜃 ∶ Bool, stating that a condition is correctly typed as a Boolean
value under the typing of other variables.

The typing rules are presented in Figure 4.2. Here, var(𝜉) stands for
the set of variables used in expression 𝜉.

For a type 𝜏 we let 𝜏? = 𝜏 if 𝜏 = Maybe(𝜏′) for some 𝜏′ and 𝜏? =
Maybe(𝜏) otherwise.

The first five rules state that variables in node/edge patterns, and vari-
ables naming paths, are typed accordingly. The next four rules say that
variables of group type appear in repetition patterns, and that restric-
tors and path naming do not affect typing.

The next two lines deal with typing conditions: property values of sin-
gletons can be compared for equality; correctly typed conditions do not
affect the typing of variables in a pattern; and conditions are closed un-
der Boolean connectives.

The following two lines deal with the optional type Maybe(𝜏). It is
bound to a variable 𝑧 in a disjunction 𝜓1+𝜓2 if in one of the patterns 𝑧
is of type 𝜏 and in the other 𝑧 is either not present or of typeMaybe(𝜏).

Derivation rules for concatenation 𝜓1𝜓2 and join 𝑄1, 𝑄2 are similar: a
variable is allowed to appear in both expressions only if it is typed as a
node or an edge in both, or it inherits its type from one when it does
not appear in the other.

Definition 4.2.1 — Well-typed expressions

An expression is well-typed if for every variable used in it, its type
can be derived according to the typing rules.

A well-typed expression assigns a unique type to every variable appear-
ing in it, and only to such variables.

Proposition 4.2.2

For every well-typed expression 𝜉, variable 𝑥, and types 𝜏, 𝜏′,
▶ 𝜉 ⊢ 𝑥 ∶ 𝜏 implies 𝑥 ∈ var(𝜉);
▶ 𝜉 ⊢ 𝑥 ∶ 𝜏 and 𝜉 ⊢ 𝑥 ∶ 𝜏′ imply that 𝜏 = 𝜏′.

4.3 Semantics 77

Proof. The first item holds because a variable appears in the conclusion
of an inference rule only if it appears in one of its premises, or explicitly
in the expression. The second item holds because all inference rules
have mutually exclusive premises.

Definition 4.2.3

Let Θ denote a binary operator from GPC (Fig. 4.1). We say that Θ
is associative (resp. commutative) with respect to the type sys-
tem if the condition (4.1) (resp. (4.2)) below holds for all expres-
sions 𝜉1, 𝜉2, 𝜉3, types 𝜏, and variables 𝑥:

(𝜉1 Θ 𝜉2) Θ 𝜉3 ⊢ 𝑥 ∶ 𝜏 ⟺ 𝜉1 Θ (𝜉2 Θ 𝜉3) ⊢ 𝑥 ∶ 𝜏 , (4.1)
𝜉1 Θ 𝜉2 ⊢ 𝑥 ∶ 𝜏 ⟺ 𝜉2 Θ 𝜉1 ⊢ 𝑥 ∶ 𝜏 . (4.2)

The definition for the binary join on queries is the same.

Proposition 4.2.4

▶ Union, concatenation and join are associative and commuta-
tive with respect to the type system.

▶ There is no expression 𝜉, variable 𝑥, and type 𝜏 such that
𝜉 ⊢ 𝑥 ∶ Maybe(Maybe(𝜏)).

A schema 𝜎 is a partial function from variables Vars to types Types, with
a finite domain. With each well-typed expression 𝜉 we can naturally
associate a schema sch(𝜉), induced by the types derived from 𝜉. It is
defined formally below and it is well-defined by Proposition 4.2.2.

Definition 4.2.5 — Schema

Given a well-typed expression 𝜉, the schema of 𝜉, written sch(𝜉),
is the schema that maps each variable 𝑥 ∈ var(𝜉) to the unique
type 𝜏 such that 𝜉 ⊢ 𝑥 ∶ 𝜏.
A variable 𝑥 in var(𝜉) is called

▶ a singleton variable if sch(𝜉)(𝑥) ∈ {Node, Edge};
▶ a conditional variable if sch(𝜉)(𝑥) = Maybe(𝜏) for some 𝜏;
▶ a group variable if sch(𝜉)(𝑥) = Group(𝜏) for some 𝜏;
▶ a path variable if sch(𝜉)(𝑥) = Path.

Remark 4.2.6 — Schema compositionality

It is easily checked that the function sch is compositional, in the
sense that sch(𝜉1 Θ 𝜉2), for some binary operator Θ can be com-
puted by a function that depends only on Θ and takes as argu-
ments sch(𝜉1) and sch(𝜉2) (and likewise for unary operators).

4.3 Semantics
We begin by defining values, which is what can be returned by a query.
Since GPC returns references to graph elements, not the data they bear,
elements of Const are not values.

78 4 The Graph Pattern Calculus

Definition 4.3.1 GPC Values

Given a type 𝜏 ∈ Types, the set 𝒱𝜏 of values of type 𝜏 is defined
inductively as follows

▶ 𝒱Node = 𝒩 , 𝒱Edge = ℰd ∪ ℰu , 𝒱Path = Paths ;
▶ 𝒱Maybe() = 𝒱𝜏 ∪ {Nothing} for a special value Nothing;
▶ 𝒱Group() is the set of all composite values of the form

list((𝑝1, 𝑣1),… , (𝑝𝑛, 𝑣𝑛))

where 𝑛 ≥ 0 and 𝑝𝑖 ∈ 𝒱Path and 𝑣𝑖 ∈ 𝒱𝜏 for all 𝑖 ∈ [1, 𝑛].
The set of all values is 𝒱 = ⋃𝜏∈Types 𝒱𝜏.

As in Chapter 3, the semantics of GPC is defined in terms of bindings
from variables to values. Recall that a binding 𝜇 is a partial function
from Vars to 𝒱, with finite domain. We write 𝜇∅ for the empty binding
; that is, a binding that binds no variables. The values bound to variables
of a well-typed pattern or query should respect its schema: a binding 𝜇
conforms to a schema 𝜎 if dom(𝜇) = dom(𝜎) and 𝜇(𝑥) ∈ 𝒱𝜎(𝑥) for
all 𝑥 ∈ dom(𝜇).

We say that two bindings 𝜇 and 𝜇′ unify if 𝜇(𝑥) = 𝜇′(𝑥) for all 𝑥 ∈
dom(𝜇) ∩ dom(𝜇′). In that case, we define their unification 𝜇 ∪ 𝜇′ by
setting (𝜇 ∪ 𝜇′)(𝑥) = 𝜇(𝑥) if 𝑥 ∈ dom(𝜇) and (𝜇 ∪ 𝜇′)(𝑥) = 𝜇′(𝑥)
otherwise, for all 𝑥 ∈ dom(𝜇) ∪ dom(𝜇′). If 𝑆 is a family of bindings
that pairwise unify, then their unification is associative, and we write
it as ⋃𝑆 = ⋃𝜇∈𝑆 𝜇.

The semantics of a well-typed GPC expression 𝜉 on a property graph
𝐺 is a pair (sch(𝜉), J𝜉K𝐺), where sch(𝜉) is the schema of 𝜉 (see Sec-
tion 4.2), and J𝜉K𝐺 is the set of answers to 𝜉 on 𝐺.

An answer to 𝜉 on 𝐺 is a pair (̄𝑝, 𝜇), where ̄𝑝 is a tuple of paths in 𝐺,
and 𝜇 is a binding that conforms to sch(𝜉). If 𝜉 is a pattern, ̄𝑝 consists
of a single path 𝑝, in which case we simply write 𝑝 instead of (𝑝). If 𝜉
is a query, ̄𝑝 contains one path for each joined pattern.

By Remark 4.2.6, sch(𝜉) can be computed compositionally indepen-
dently of J𝜉K𝐺. In what follows, we shall define J𝜉K𝐺 using sch(𝜉) and
J𝜉′K𝐺 for direct subexpressions 𝜉′ of 𝜉. Hence, the semantics of expres-
sions (patterns and queries), i.e., the function 𝜉 ↦ (sch(𝜉), J𝜉K𝐺), is
compositional.

For the remainder of this section, we consider a fixed property graph
𝐺 = ⟨𝑁, 𝐸d, 𝐸u, 𝜆, endpoints, src, tgt, 𝛿⟩.

Semantics of atomic patterns

For the sake of brevity, here we write atomic patterns as if all compo-
nents were present, but still allow the possibility that some of themmay
be absent. Hence, (𝑥 ∶ ℓ) subsumes the cases (𝑥), (∶ ℓ), and ().

J(𝑥 ∶ ℓ)K𝐺 = { (path(𝑛), 𝜇) | 𝑛 ∈ 𝑁, ℓ ∈ 𝜆(𝑛) if ℓ is present}

4.3 Semantics 79

where 𝜇 = {𝑥 ↦ 𝑛} if 𝑥 is present, and 𝜇 = 𝜇∅ otherwise.

r
𝑥∶ℓ−−→

z

𝐺
= {(path(𝑢1, 𝑒, 𝑢2), 𝜇

′) |
𝑒 ∈ 𝐸𝑑,
𝑢1 = src(𝑒), 𝑢2 = tgt(𝑒),
ℓ ∈ 𝜆(𝑒) if ℓ is present

}

r
𝑥∶ℓ←−−

z

𝐺
= {(path(𝑢2, 𝑒, 𝑢1), 𝜇

′) |
𝑒 ∈ 𝐸𝑑,
𝑢1 = src(𝑒), 𝑢2 = tgt(𝑒),
ℓ ∈ 𝜆(𝑒) if ℓ is present

}

r
𝑥∶ℓ−−−

z

𝐺
= {(path(𝑢1, 𝑒, 𝑢2), 𝜇

′) |
𝑒 ∈ 𝐸𝑢,
endpoints(𝑒) = {𝑢1, 𝑢2},
ℓ ∈ 𝜆(𝑒) if ℓ is present

}

where 𝜇′ = {𝑥 ↦ 𝑒} if 𝑥 is present, and 𝜇′ = 𝜇∅ otherwise. Observe
that the pattern 𝑥∶ℓ−−− returns both path(𝑢1, 𝑒, 𝑢2) and path(𝑢2, 𝑒, 𝑢1) if
endpoints(𝑒) = {𝑢1, 𝑢2} with 𝑢1 ≠ 𝑢2, but only one of them if 𝑢1 = 𝑢2
since both paths are the same.

Semantics of concatenation

q
𝜓1 𝜓2

y
𝐺 = {(𝑝1 ⋅ 𝑝2, 𝜇1 ∪ 𝜇2) |

(𝑝𝑖, 𝜇𝑖) ∈
q
𝜓𝑖

y
𝐺 for 𝑖 = 1, 2,

𝑝1 and 𝑝2 concatenate,
𝜇1 and 𝜇2 unify

}

The typing system ensures that all variables shared by 𝜓1 and 𝜓2 are
singleton variables (otherwise 𝜓1𝜓2 would not be well-typed). In other
words, implicit joins over group and optional variables are disallowed
(path variables do not occur in patterns at all).

Semantics of union
q
𝜓1 + 𝜓2

y
𝐺 = { (𝑝, 𝜇 ∪ 𝜇′) | (𝑝, 𝜇) ∈

q
𝜓1

y
𝐺 ∪

q
𝜓2

y
𝐺 }

where 𝜇′ maps every variable in dom(sch(𝜓1+𝜓2))∖dom(𝜇) toNothing.
Note that here we rely on sch(𝜓1 + 𝜓2).

Semantics of conditioned patterns
r
𝜓⟨𝜃⟩

z

𝐺
= { (𝑝, 𝜇) ∈ J𝜓K𝐺 | 𝜇 ⊨ 𝜃}

where 𝜇 ⊨ 𝜃 is defined inductively as follows:

▶ 𝜇 ⊨ (𝑥.𝑎 = 𝑐) iff 𝛿(𝜇(𝑥), 𝑎) is defined and equal to 𝑐;
▶ 𝜇 ⊨ (𝑥.𝑎 = 𝑦.𝑏) iff 𝛿(𝜇(𝑥), 𝑎) is defined, 𝛿(𝜇(𝑦), 𝑏) is defined

and 𝛿(𝜇(𝑥), 𝑎) = 𝛿(𝜇(𝑦), 𝑏);
▶ 𝜇 ⊨ (𝜃1 ∧ 𝜃2) iff 𝜇 ⊨ 𝜃1 and 𝜇 ⊨ 𝜃2;
▶ 𝜇 ⊨ (𝜃1 ∨ 𝜃2) iff 𝜇 ⊨ 𝜃1 or 𝜇 ⊨ 𝜃2;
▶ 𝜇 ⊨ (¬𝜃) iff 𝜇 ⊭ 𝜃.

Semantics of repeated patterns

J𝜓𝑛..𝑚 K𝐺 =
𝑚

⋃
𝑖=𝑛

J𝜓K𝑖𝐺

80 4 The Graph Pattern Calculus

Above, for a pattern 𝜓 and a natural number 𝑛 ≥ 0, we use J𝜓K𝑛𝐺 to
denote the 𝑛-th power of J𝜓K𝐺, defined as follows. We let

J𝜓K0𝐺 = { (path(𝑢), 𝜇) | 𝑢 is a node in 𝐺}

where 𝜇 is the binding that maps each variable in dom(sch(𝜓)) to list(),
the empty composite value. For 𝑛 > 0, we let

J𝜓K𝑛𝐺 = {(𝑝, 𝜇) |
(𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛) ∈ J𝜓K𝐺
𝑝 = 𝑝1 ⋅ … ⋅ 𝑝𝑛
𝜇 = collect((𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛))

}

where collect[(𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛)] is a binding defined, and discussed,
below. In the case that 𝜓 does not have any variables, collect simply re-
turns a function with empty domain. If 𝜓 does contain variables, then
each such variable is mapped to a list. (As such, nesting of patterns of
the form 𝜓𝑛..𝑚 leads to nesting of lists.)

There are several ways to define collect and obtain a sound seman-
tics. In all cases, collect takes as input any number of path/binding
pairs (𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛), such that 𝑛 > 0 and 𝑝1,… , 𝑝𝑛 concatenate
to a path 𝑝 = 𝑝1 ⋯𝑝𝑛. Furthermore, by our inductive definition of the
semantics, it will always be the case that 𝜇1,… , 𝜇𝑛 all have the same
domain, that we denote by 𝐷. Then, collect((𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛)) is
a binding that maps every 𝑥 ∈ 𝐷 to a list((𝑝′

1, 𝑣1),… , (𝑝′
ℓ, 𝑣ℓ)) where

each 𝑝′
𝑖 is a portion of thematched path (they collectively satisfy 𝑝′

1 ⋯𝑝′
ℓ

= 𝑝1 ⋯𝑝𝑛) and 𝑣𝑖 is the value associated to 𝑥 for that portion.

If all 𝑝𝑖’s have a positive length (i.e., have at least one edge), collect is
simply defined as follows.

∀𝑥 ∈ 𝐷 collect((𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛))(𝑥) =
list((𝑝1, 𝜇1(𝑥)),… , (𝑝𝑛, 𝜇𝑛(𝑥))) (4.3)

Although collect is still well defined by (4.3) if some of the 𝑝𝑖’s have
length 0, the above definition may lead to infinite query results. To
avoid this, we outline three different approaches.

Approach 1: Syntactic restrictions We add a syntactic restriction
that prevents the case from ever appearing: pattern 𝜓𝑛..𝑚 is forbidden
if pattern 𝜓 may match an edgeless path. The latter is defined induc-
tively: every edge pattern is allowed; if 𝜓 is allowed then so are 𝜓⟨𝜃⟩,
𝜓𝑛..𝑚, 𝜓𝜓′ and 𝜓′𝜓 for every condition 𝜃, 𝑛 > 0, and pattern 𝜓′; if 𝜓1
and 𝜓2 are allowed then so is 𝜓1 + 𝜓2. This is the solution adopted by
the GQL standard: the minimum path length of 𝜓must be positive. The
drawback of this solution is that it rules out syntactically some patterns
for which (4.3) would result in a well-defined finite semantics.

Approach 2: Run-time restriction As an alternative, the precondi-
tion for collect well-definedness can be checked at run-time, i.e., it is
only defined if all 𝑝𝑖’s have a positive length. While not imposing any
additional restrictions, this approach has a drawback that 𝜓 may have
some result while 𝜓1..1 has none, for some pattern 𝜓.

Approach 3: Grouping edgeless paths To overcome problems with
the first two approaches, we propose amore general semantics of collect

4.3 Semantics 81

𝑝1 𝑝2 𝑝6 𝑝8

𝑝3 = 𝑝4 = 𝑝5 𝑝7 𝑝9 = 𝑝10

𝑝 =

𝑝′
1 𝑝′

2 𝑝′
4 𝑝′

6

𝑝′
3 𝑝′

5 𝑝′
7

𝑝 = Figure 4.3: Refactorization of a path
𝑝 = 𝑝1𝑝2 ⋯𝑝10 as 𝑝 = 𝑝′

1𝑝
′
2 ⋯𝑝′

7 by
grouping consecutive edgeless factors

that groups together consecutive edgeless paths from 𝑝1,⋯ , 𝑝𝑛. If no
such paths exist, either due to syntactic restriction or ruling them out
at run-time, the result of this approach coincides with (4.3); thus this
approach subsumes the other two.

We define 𝑝′
1,⋯ , 𝑝′

ℓ as a coarser factorization of 𝑝1 ⋯𝑝𝑛: each 𝑝′
𝑖 is

the concatenation of successive (𝑝𝑗)’s, in which consecutive edgeless
paths are grouped together, as shown in Figure 4.3. Formally, the 𝑝′

𝑖s
are defined as the unique path sequence such that there exists 𝑖1 <
𝑖2 < ⋯ < 𝑖ℓ+1 (delineating the boundaries of 𝑝′

1,⋯ , 𝑝′
ℓ) with 𝑖1 = 1,

𝑖ℓ+1 = 𝑛 + 1 and satisfying the following.

∀𝑘 ∈ {1,… , ℓ} 𝑝′
𝑘 = 𝑝𝑖𝑘

⋯𝑝𝑖𝑘+1−1

∀𝑘 ∈ {1,… , ℓ − 1} len(𝑝𝑖𝑘
) ≠ 0 ∨ len(𝑝𝑖𝑘+1

) ≠ 0

∀𝑘 ∈ {1,… , ℓ} {
either 𝑖𝑘+1 = 𝑖𝑘 + 1 and len(𝑝𝑖𝑘

) ≠ 0
or ∀𝑖 , 𝑖𝑘 ≤ 𝑖 < 𝑖𝑘+1, len(𝑝𝑖) = 0

The binding collect((𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛)) is defined only if

∀𝑘 ∈ {1,… , ℓ} 𝜇𝑖𝑘
,… , 𝜇(𝑖𝑘+1−1) pairwise unify

Then their unification is denoted by 𝜇′
𝑘 and collect is defined by

∀𝑥 ∈ 𝐷 collect((𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛))(𝑥) =
list((𝑝′

1, 𝜇
′
1(𝑥)),⋯ , (𝑝′

ℓ, 𝜇
′
ℓ(𝑥)))

Remark 4.3.2

For the purpose of collect, one could use a weaker definition for
unification that would allow 𝜇 and 𝜇′ to unify if, or every 𝑥 ∈
dom(𝜇) ∩ dom(𝜇′), any of the following holds: 𝜇(𝑥) = Nothing,
𝜇′(𝑥) = Nothing or 𝜇(𝑥) = 𝜇′(𝑥). This would allow even more
combinations than the definition above.

Semantics of queries

Jtrail 𝜓K𝐺 = {(𝑝, 𝜇) ∈ J𝜓K𝐺 | no edge occurs more than
once in 𝑝 }

Jsimple 𝜓K𝐺 = {(𝑝, 𝜇) ∈ J𝜓K𝐺 | no node occurs more than
once in 𝑝 }

Jshortest 𝜉K𝐺 =

{(𝑝, 𝜇) ∈ J𝜉K𝐺 | len(𝑝) = min{ len(𝑝′) |
(𝑝′, 𝜇′) ∈ J𝜉K𝐺
src(𝑝′) = src(𝑝)
tgt(𝑝′) = tgt(𝑝)

}}

82 4 The Graph Pattern Calculus

where 𝜉 is 𝜓, trail 𝜓 or simple 𝜓, for some pattern 𝜓. We then define:

J𝑥 = 𝜌𝜓K𝐺 = {(𝑝, 𝜇 ∪ {𝑥 ↦ 𝑝}) ∣ (𝑝, 𝜇) ∈ J𝜌 𝜓K𝐺}
q
𝑄1, 𝑄2

y
𝐺 = {(̄𝑝1 × ̄𝑝2, 𝜇1 ∪ 𝜇2) |

(̄𝑝𝑖, 𝜇𝑖) ∈
q
𝑄𝑖

y
𝐺 for 𝑖 = 1, 2

𝜇1 and 𝜇2 unify }

Here, ̄𝑝1 = (𝑝1
1 , 𝑝

2
1 ,… , 𝑝𝑘

1) and ̄𝑝2 = (𝑝1
2 , 𝑝

2
2 ,… , 𝑝𝑙

2) are tuples of paths,
and ̄𝑝1 × ̄𝑝2 stands for (𝑝1

1 , 𝑝
2
1 ,… , 𝑝𝑘

1, 𝑝
1
2 , 𝑝

2
2 ,… , 𝑝𝑙

2). Note that ̄𝑝𝑖 is
a single path when 𝑄𝑖 does not contain the join operator. Moreover,
like for concatenation, the typing system guarantees that 𝑄1 and 𝑄2
are only joined over singleton variables, but not over path, group, or
conditional variables.

In the results below we assume the third approach to the definition of
collect as subsuming the other two. One may verify, by routine inspec-
tion, that the semantics is consistent with the typing system.

Proposition 4.3.3

For every well-typed expression 𝜉 and every (̄𝑝, 𝜇) in J𝜉K𝐺, all paths
in ̄𝑝 belong to Paths(𝐺) and 𝜇 conforms to sch(𝜉).

Even though the set Paths(𝐺) may be infinite, syntactic restrictions en-
sure finiteness of output.

Theorem 4.3.4

J𝑄K𝐺 is finite for each query 𝑄 and graph 𝐺.

Proof. Wewill treat only the case when𝑄 is 𝜌𝜓; other cases follow from
this case or are straightforward.

Let us first show that the set 𝑃 = {𝑝 | ∃𝜇 (𝑝, 𝜇) ∈ J𝑄K𝐺 } is finite. If 𝜌
is one of trail, simple, shortest trail or shortest simple, the claim holds
since there are finitely many trails and simple paths in a graph. The last
case, that is 𝜌 = shortest, follows from the fact that for all nodes 𝑠 and
𝑡 the set

𝑃(𝑠,𝑡) = {𝑝 ∈ 𝑃 | 𝑝 starts in 𝑠 and ends in 𝑡 }

is finite. Indeed, all paths in 𝑃(𝑠,𝑡) have the same length, and there are
finitely many paths of a given length in a graph.

To finish this proof, we now show the following lemma stating that for
each path 𝑝 ∈ 𝑃, there are finitely many 𝜇 such that (𝑝, 𝜇) ∈ J𝑄K𝐺.

Lemma 4.3.5

Let 𝐺 be a graph, 𝜓 be a well-typed pattern. For every path 𝑝 of 𝐺,
there are finitely many 𝜇 such that (𝑝, 𝜇) ∈ J𝜓K𝐺.

By induction over the structure of 𝜓. The lemma is obviously true for
all base cases, and all inductive cases are easy except for a repeated
pattern of the form 𝜓ℎ..∞, for some ℎ.

q
𝜓ℎ..∞ y

𝐺 =
∞

⋃
𝑖=ℎ

J𝜓K𝑖𝐺 .

4.4 Expressivity and Complexity 83

[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[29]: Mendelzon et al. (1995), “Find-
ing Regular Simple Paths in Graph
Databases”
[100]: Calvanese et al. (2000), “Con-
tainment of Conjunctive Regular Path
Queries with Inverse”
[8]: Consens et al. (1990), “GraphLog:
a Visual Formalism for Real Life Recur-
sion”
[100]: Calvanese et al. (2000), “Con-
tainment of Conjunctive Regular Path
Queries with Inverse”
[8]: Consens et al. (1990), “GraphLog:
a Visual Formalism for Real Life Recur-
sion”
[14]: Barceló et al. (2012), “Relative Ex-
pressiveness of Nested Regular Expres-
sions”
[57]: Reutter et al. (2017), “Regular
Queries on Graph Databases”

The proof amounts to showing that there exists a bound 𝐵 such that

∀𝑛 > 𝐵, ∀𝜇, (𝑝, 𝜇) ∈ J𝜓K𝑛𝐺 (𝑝, 𝜇) ∈ J𝜓K𝑛−1
𝐺 . (4.4)

We fix 𝐵 = (𝐿 + 1)(𝑀 + 1) where 𝐿 = len(𝑝) and
𝑀 = max{ card{ 𝜇 | (path(𝑢), 𝜇) ∈ J𝜓K𝐺 } | 𝑢 is a node in 𝑝}. Note that
𝑀 is well defined since by IH, { 𝜇 | (path(𝑢), 𝜇) ∈ J𝜓K𝐺 } is finite for
every node 𝑢.

Let 𝑛 and 𝜇 be as in (4.4). Since (𝑝, 𝜇) ∈ J𝜓K𝑛𝐺, there are paths
𝑝1,… , 𝑝𝑛 and bindings 𝜇1,… , 𝜇𝑛 such that 𝑝 = 𝑝1𝑝2 ⋯𝑝𝑛 and
𝜇 = collect((𝑝1, 𝜇1),… , (𝑝𝑘, 𝜇𝑛)).

We let ℓ and the sequences (𝑖𝑘)1≤𝑘<ℓ and (𝜇′
𝑘)1≤𝑘<ℓ be defined as on

page 81. Note that ℓ is at most 2𝐿 + 1; that the number of paths 𝜓′
𝑘

such that len(𝜓′
𝑘) = 0 is at most 𝐿+1; and that the number of paths 𝜓′

𝑘
such that len(𝜓′

𝑘) ≠ 0 is at most 𝐿, in which case (𝑖𝑘+1 − 𝑖𝑘) = 1. Since
𝑛 > (𝐿 + 1)(𝑀 + 1), it follows that

∑
𝑘

1≤𝑘<ℓ
len(𝑝′𝑘)=0

(𝑖𝑘+1 − 𝑖𝑘) = 𝑛 − ∑
𝑘

1≤𝑘<ℓ
len(𝑝′𝑘)≠0

(𝑖𝑘+1 − 𝑖𝑘) > (𝐿 + 1)(𝑀 + 1) − 𝐿

> (𝐿 + 1)𝑀 + 1

hence there exists 𝑘 such that len(𝑝′
𝑘) = 0 and (𝑖𝑘+1 − 𝑖𝑘) > 𝑀. From

the definition of 𝑀, it holds 𝑀 ≥ card{𝜇 | (𝑝′
𝑘, 𝜇) ∈ J𝜓K𝐺 }, hence by

the pigeon-hole principle, there are 𝑖, 𝑗 such that 𝑖𝑘 ≤ 𝑖 < 𝑗 < 𝑖𝑘+1
and 𝜇𝑖 = 𝜇𝑗. It follows that

⋃
𝑥

𝑖𝑘≤𝑥<𝑖𝑘+1

𝜇𝑥 = ⋃
𝑥

𝑖𝑘≤𝑥<𝑖𝑘+1
𝑥≠𝑗

𝜇𝑥 .

Note that the left part above is the definition of 𝜇′
𝑘, hence (𝑝, 𝜇) ∈

J𝜓K𝑛−1
𝐺 as

collect((𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛)) = collect((𝑝1, 𝜇1),… , (𝑝𝑗−1, 𝜇𝑗−1),

(𝑝𝑗+1, 𝜇𝑗+1),… , (𝑝𝑛, 𝜇𝑛))

4.4 Expressivity and Complexity
Expressive power. First, we look at the expressive power of GPC. For
this, wewill compare GPCwithmain graph query languages considered
in the research literature. Specifically, we compare GPC with regular
path queries (RPQs) [6, 29], and their two-way extension, 2RPQs [100],
C2RPQs, which close 2RPQs under conjunctions [8, 100], and their
unions, UC2RPQs [8]. An interesting class is also that of nested regular
expressions (NREs) [14], where along a path conforming to a regular
language, we can test if there is an outgoing path conforming to another
regular expression, as in PDL, or XPath. Finally, we consider the class
of regular queries (RQs) [57], which subsumes all the aforementioned
classes as explained in Chapter 2.

In order to compare with the aforementioned languages, we consider a
simple extension of GPC with projection and union, reflecting the fact
that the pattern matching mechanism we formalize will be a sublan-
guage of a fully-fledged query language like GQL or SQL/PGQ. A GPC+

84 4 The Graph Pattern Calculus

query is a set of rules

Ans(̄𝑥) :–𝑄1; Ans(̄𝑥) :–𝑄2; … Ans(̄𝑥) :–𝑄𝑘

where 𝑄𝑖 is a GPC query such that ̄𝑥 ⊆ var(𝑄𝑖) for all 𝑖. The semantics
of such a on graph 𝐺 is

q
𝑄1

y�̄�
𝐺 ∪

q
𝑄2

y�̄�
𝐺 ∪⋯∪

q
𝑄𝑘

y�̄�
𝐺

where
q
𝑄𝑖

y�̄�
𝐺 = {𝜇(̄𝑥) ∣ ∃𝑝 (𝑝, 𝜇) ∈

q
𝑄𝑖

y
𝐺} for all 𝑖. Notice that in our

definition we allow unions only at the top level in order to combine
results of queries whose arity is higher than binary. Binary unions are
already covered at the level of GPC patterns, and can be arbitrarily
nested inside iterations.

Theorem 4.4.1

GPC+ can express all of the following:
▶ Unions of Conjunctive Two-way Regular Path Queries

(UC2RPQs);
▶ Nested Regular Expressions (NREs);
▶ Regular Queries.

Proof. For 2RPQs, note that these are explicitly present in the syntax
of GPC patterns, and projecting on the endpoints gives us an equiva-
lent expression. C2RPQs and their unions are then handled by the con-
junction of GPC queries, and unions in GPC+, respectively. The case
of NREs is a bit more interesting, and it contains the blueprint for reg-
ular queries. To illustrate the main ideas, consider the nested regular
expression (𝑎[𝑏+]𝑐)+, which looks for paths of the form (𝑎𝑐)𝑛, where
after traversing an 𝑎, we also check the existence of a nonempty path
labelled with 𝑏s. An equivalent GPC+ query is Ans(𝑥, 𝑦) :–𝑄 where 𝑄
is the GPC query

shortest (𝑥)[∶𝑎−→ (𝑧) ∶𝑏−→1..∞ () ←−1..∞ (𝑧) ∶𝑐−→]1..∞ (𝑦) .

Basically, we introduce a fresh variable 𝑧 which binds to the node from
which we need to find a nonempty 𝑏-labelled path to an anonymous
node, and then we return to the same node, thus allowing us to en-
code an answer inside of a single path. Since we only care about the
endpoints in all of these query classes, the restrictor shortest is enough.
This idea is then applied inductively in order to capture regular queries.

Because regular queries work in a simpler graph model in which there
are no properties and undirected edges, we will need neither condi-
tioned patterns nor undirected edge patterns. In fact, that data model
also does not include node labels, but it is straightforward to include
them, which we do.

Consider a Datalog program defining a regular query. We first rewrite
the program in such a way that that all user predicates except for the
answer predicate Ans are binary and are defined with rules whose bod-
ies are connected. Towards this goal, we first eliminate all occurrences
of user defined predicates in non transitive atoms, by substituting their
definitions exhaustively. User predicates not used in the body of any rule
should be also exhaustively removed. Now, each remaining non-answer
user predicate is only used in transitive atoms and it remains to elim-

4.4 Expressivity and Complexity 85

inate rules whose bodies are disconnected. Consider such a predicate
that has among its defining rules a disconnected rule

𝑃(𝑥1, 𝑥2) :–𝑃1(𝑦1, 𝑧1), 𝑃2(𝑦2, 𝑧2),… , 𝑃𝑘(𝑦𝑘, 𝑧𝑘)

where 𝑦1,…𝑦𝑘 and 𝑧1,…𝑧𝑘 are variables from the set {𝑥1,… , 𝑥𝑚} for
some 𝑚 ≥ 2. Note that components that are disconnected from both
𝑥1 and 𝑥2 are essentially global Boolean side conditions: if we want to
use the rule, we must check that they can be matched somewhere, but
if we use the rule multiple times, there is no need to check it again. We
shall now consider two cases, depending on whether 𝑥1 and 𝑥2 are in
the same component or not.

Suppose first that 𝑥1 and 𝑥2 are in different connected components of
the body of the rule above. Let us remove this rule from the program
(keeping the other rules for 𝑃) and add a new rule

�̇�(𝑥1, 𝑥2) :–𝑃1(𝑦1, 𝑧1), 𝑃2(𝑦2, 𝑧2),… , 𝑃𝑘(𝑦𝑘, 𝑧𝑘)

where �̇� is a fresh predicate.

If we now replace each occurrence of 𝑃+(𝑥, 𝑦) with

𝑃+(𝑥, 𝑥′), �̇�(𝑥′, 𝑦′), 𝑃+(𝑦′, 𝑦) or �̇�(𝑥, 𝑦′), 𝑃+(𝑦′, 𝑦) or
𝑃+(𝑥, 𝑥′), �̇�(𝑥′, 𝑦) or �̇�(𝑥, 𝑦) or 𝑃+(𝑥, 𝑦)

and then eliminate �̇� by substituting its definition, we obtain an equiv-
alent program. The reason why it is equivalent is that when traversing
the graph with 𝑃, there is no need to use the disconnected rule more
than once. Indeed, whenever we have a sequence of nodes 𝑢1, 𝑢2,… , 𝑢𝑡
such that 𝑃(𝑢𝑖, 𝑢𝑖+1) holds for all 𝑖 < 𝑡 under the original definition of
𝑃, we also have that 𝑃(𝑢𝑖, 𝑢𝑖+1) or �̇�(𝑢𝑖, 𝑢𝑖+1) for all 𝑖 < 𝑡 under the
new definition of 𝑃. If the latter holds for more than one value of 𝑖,
let 𝑖min be the minimal and 𝑖max the maximal of those values. We have
𝑖min < 𝑖max. It follows that �̇�(𝑢𝑖min

, 𝑢𝑖max+1
) holds and we can remove

𝑢𝑖min+1
,… , 𝑢𝑖max

from the sequence. Traverses that use the disconnected
rule at most once are captured by the modified program.

The remaining possibility is that 𝑥1 and 𝑥2 are in the same connected
component of the body of the rule above. This time we also eliminate
the disconnected rule from the definition of 𝑃 (keeping the other rules
for 𝑃), but additionally we define two new predicates, �̇� and ̈𝑃. The
definition of �̇� is obtained from the original definition of 𝑃 by taking all
rules for 𝑃 but replacing 𝑃 in the head with �̇�, except for the rule with
disconnected components, in which we remove all connected compo-
nents that contain neither 𝑥1 nor 𝑥2; these components are collected in
a single rule defining a fresh predicate ̈𝑃(𝑧, 𝑧) where 𝑧 is an arbitrary
variable used in any of these components. Now, each transitive atom
𝑃+(𝑥, 𝑦) can be replaced with 𝑃+(𝑥, 𝑦) or �̇�+(𝑥, 𝑦), ̈𝑃(𝑧, 𝑧) where 𝑧 is
a fresh variable, and ̈𝑃 can be eliminated by substituting its definition.
The purpose of 𝑃+(𝑥, 𝑦) is to maintain all derivations of 𝑃 that don’t
use the disconnected rule that we eliminated. The replacement with
�̇�+(𝑥, 𝑦), ̈𝑃(𝑧, 𝑧) is correct because when traversing the graph with 𝑃
it is enough to match the disconnected components of the considered
rule once, as this match can be reused whenever the rule is applied. In-
deed, consider a sequence of nodes 𝑢1, 𝑢2,… , 𝑢𝑡 such that �̇�(𝑢𝑖, 𝑢𝑖+1)
for all 𝑖 < 𝑡 and ̈𝑃(𝑢) for some node 𝑢. If the modified rule is never
used, we have 𝑃(𝑢𝑖, 𝑢𝑖+1) for all 𝑖 < 𝑡 under the old definition of 𝑃. If

86 4 The Graph Pattern Calculus

the modified rule is used, then we can extend each match of its body
to the remaining connected components of the original rule’s body by
using the match of ̈𝑃 at node 𝑢.

This way we can eliminate all disconnected rules from the definitions
of predicates used in transitive atoms. As the only remaining user pred-
icate is the answer predicate, we are done.

For technical convenience, let us further modify the resulting program
so that for each user predicate 𝑃,

▶ either 𝑃 is defined with a single rule of the from

𝑃(𝑥, 𝑥) :–𝐴(𝑥) or 𝑃(𝑥, 𝑦) :– 𝑎(𝑥, 𝑦) or 𝑃(𝑥, 𝑦) :–𝑅+(𝑥, 𝑦)

where 𝐴 is a node label, 𝑎 an edge label, and 𝑅 a user predicate,
▶ or 𝑃 is defined by rules whose bodies are conjunctions of binary

user predicates (without transitive closure).

Note that this can be done without introducing rules with disconnected
bodies, so it does not break the first stage of the preprocessing. We are
now ready to construct an equivalent GPC+ query.

First, for each binary non-answer user predicate 𝑃 in the program, we
construct by structural induction a GPC pattern 𝜓𝑃 such that, for each
graph 𝐺, we have that 𝑃(𝑢, 𝑢′) holds in 𝐺 iff (𝑢, 𝑢′) ∈

q
(𝑥)𝜓𝑃(𝑦)

y𝑥,𝑦
𝐺

where 𝑥 and 𝑦 are fresh variables not used in 𝜓𝑃. The base cases are
predicates defined with a single rule of the form

𝑃(𝑥, 𝑥) :–𝐴(𝑥) or 𝑃 ′(𝑥, 𝑦) :– 𝑎(𝑥, 𝑦) ;

for such predicates we use

𝜓𝑃 = (∶ 𝐴) and 𝜓𝑃 ′ =
∶𝑎−→ .

For predicates defined with a single rule of the form

𝑃(𝑥, 𝑦) :–𝑅+(𝑥, 𝑦)

we take the pattern
𝜓𝑃 = (𝜓𝑅)

1..∞ .

Finally, consider a non-answer predicate 𝑃 defined with 𝑛 rules us-
ing only binary user predicates (without transitive closure). We shall
construct path patterns 𝜓𝑃,𝑖 (using fresh variables) capturing the rules
defining 𝑃 and then let

𝜓𝑃 = 𝜓𝑃,1 + 𝜓𝑃,2 +⋯+𝜓𝑃,𝑛 .

Consider the 𝑖th rule defining 𝑃, say

𝑃(𝑥1, 𝑥2) :–𝑃1(𝑦1, 𝑧1), 𝑃2(𝑦2, 𝑧2),… , 𝑃𝑘(𝑦𝑘, 𝑧𝑘)

where 𝑦1,…𝑦𝑘 and 𝑧1 …𝑧𝑘 are variables from the set {𝑥1,… , 𝑥𝑚} for
some 𝑚 ≥ 2. Let 𝜓𝑃1

,… ,𝜓𝑃𝑘
be the path patterns obtained inductively

for predicates 𝑃1,… , 𝑃𝑘, each using fresh variables. We define 𝜓𝑃,𝑖 as

4.4 Expressivity and Complexity 87

[9]: Barceló (2013), “Querying graph
databases”
[12]: Wood (2012), “Query languages
for graph databases”
[29]: Mendelzon et al. (1995), “Find-
ing Regular Simple Paths in Graph
Databases”
[84]: Martens et al. (2020), “A Tri-
chotomy for Regular Trail Queries”
[116]: Bagan et al. (2020), “A tri-
chotomy for regular simple path queries
on graphs”
[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”
[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

𝜓𝑃,𝑖 = (𝑥1) [−→ + ←−]0..∞ (𝑦1)𝜓𝑃1

(𝑧1) [−→ + ←−]0..∞ (𝑦2)𝜓𝑃2

(𝑧2) [−→ + ←−]0..∞ …
[−→ + ←−]0..∞ (𝑦𝑘)𝜓𝑃𝑘

(𝑧𝑘) [−→ + ←−]0..∞ (𝑥2) .

Because all rule bodies for non-answer predicates are connected, the
body of the analyzed rule will always be matched in a connected frag-
ment of the graph. Hence, the auxiliary patterns [−→ + ←−]0..∞ used
to move from variable to variable do not affect the semantics.

With the patterns 𝜓𝑃 at hand, we can translate the whole regular query.
The answer predicate need not be binary and the bodies of the rules
defining it need not be connected, but we are at the very top of the
Datalog program and we can simply use the join operator, followed by
projection and union. Consider a rule defining the answer predicate,

Ans(𝑥1, 𝑥2,… , 𝑥𝑙) :–𝑃1(𝑦1, 𝑧1), 𝑃2(𝑦2, 𝑧2),… , 𝑃𝑘(𝑦𝑘, 𝑧𝑘)

where 𝑦1,… , 𝑦𝑘 and 𝑧1,… , 𝑧𝑘 are variables from the set {𝑧1,… , 𝑧𝑚}
for some 𝑚 ≥ 𝑙. We replace this rule with

Ans(𝑥1, 𝑥2) :– shortest (𝑦1)𝜓𝑃1
(𝑧1),… , shortest (𝑦𝑘)𝜓𝑃𝑘

(𝑧𝑘)

where 𝜓𝑃1
,… ,𝜓𝑃𝑘

are the patterns (over fresh variables) obtained in-
ductively for predicates 𝑃1,… , 𝑃𝑘. Because we are only interested in
the existence of paths connecting 𝑦𝑖 to 𝑧𝑖, not the paths themselves, we
can safely apply the restrictor shortest. The resulting collection of rules
constitutes a GPC+ query equivalent to the regular query defined by
the considered Datalog program.

Complexity. When it comes to evaluating graph queries, one is used
to dealingwith high complexity. For instance, checkingwhether there is
a query answer with a restrictor simple or trail on top is known to be NP-
hard in data complexity (see Chapter 2 or [9, 12, 29, 84, 116]), and yet
this feature is supported both by the GQL standard [96] and by concrete
languages such as Cypher [15]. Accepting such high complexity bounds
probably stems from the fact that query answers can be large in case of
graph queries.

Indeed, there is no need to use convoluted 3-SAT reductions to have
the engine run forever; one may just enumerate all simple paths in the
graph with query: simple −→0..∞ .

In this light, we provide some insights on computing answers of GPC
queries, i.e., we study the GPC enumeration problem:

Problem: GPC Enumeration
Input: A property graph 𝐺, and a GPC query 𝑄.
Output: Enumerate all pairs (𝑝, 𝜇) ∈ J𝑄K𝐺

without repetitions.

A potential criticism we would like to address is the fact that the path 𝑝,
witnessing the output binding 𝜇, is also returned each time, which can
make query answers larger than necessary. The reason that we study
the problem like this, however, is that this is what the GQL standard

https://neo4j.com

88 4 The Graph Pattern Calculus

[9]: Barceló (2013), “Querying graph
databases”
[74]: Mendelzon et al. (1989), “Find-
ing Regular Simple Paths in Graph
Databases”
[117]: Gelade et al. (2009), “Optimiz-
ing Schema Languages for XML: Nu-
merical Constraints and Interleaving”
[118]: Losemann et al. (2013), “The
complexity of regular expressions and
property paths in SPARQL”

asks for. In our analysis, we will use Turing machines with output tape
(in order to enumerate the results), and will bound the size of work
tape the machine uses. The main result of this section is the following:

Theorem 4.4.2

The problem GPC Enumeration can be solved by a Turing machine
using exponential space (in 𝐺 and 𝑄). If we consider the query 𝑄
to be fixed, then the machine uses only polynomial space.

The basic idea is to enumerate all possible answers (𝑝, 𝜇) in increasing
length of 𝑝, and check, one by one, whether they should be output. If
we consider a single pattern with a restrictor on top, e.g., 𝑄 = 𝜌𝜓, this
approach works as described, and the size of the possible paths (and
thus also bindings 𝜇), can be bounded by a size that is exponential in
the size of𝑄 and 𝐺, and polynomial if we assume𝑄 to be fixed. For each
such answer, we can validate whether it should be output in polynomial
space. Notice that once a result is output, we can discard it, and move
to the next one. Enumeration stops once an appropriate path length
has been reached, and the next binding 𝜇 is considered. Joins can then
be evaluated by nesting this procedure.

By |𝜓|we denote the “structural” size of𝜓, that is, the number of nodes
in its parse tree plus the number of bits needed to represent numbers
𝑛 and 𝑚 in subexpressions of the form 𝜓𝑛..𝑚. For a path 𝑝, we denote
by |𝑝| the total number of node and edge ids in 𝑝. For a binding 𝜇, we
denote by |𝜇| the total length of paths occurring in 𝜇 plus the number
of occurrences of variables in 𝜇.

Lemma 4.4.3

Let 𝜌𝜓 be a pattern with a restrictor on top. For a property graph
𝐺, if (𝑝, 𝜇) ∈ J𝜌𝜓K𝐺, then
(a) len(𝑝) ≤ |𝑁|, whenever 𝜌 is simple;
(b) len(𝑝) ≤ |𝐸𝑑| + |𝐸𝑢|, whenever 𝜌 is trail;
(c) len(𝑝) ≤ (|𝑁|+|𝐸𝑑|+|𝐸𝑢|)×2|𝜓|, whenever 𝜌 is shortest.

Proof. When 𝜌 is simple, no node can be repeated, and thus |𝑝| ≤
|𝑁|. Similarly, when 𝜌 is trail, the path length is bounded by the total
number of edges in the graph; namely, |𝐸𝑑| + |𝐸𝑢|.

The case when 𝜌 is shortest can be obtained using standard automata-
theoretic techniques. The challenge is how to deal with repetitions of
the form 𝜓𝑛..𝑚, where 𝑛 and 𝑚 are binary numbers. By unraveling the
lower bounds 𝑛 into concatenations, such expressions can be turned
into expressions of size 2𝑛 that only have repetitions of the form 𝜓0..∞.
(Notice that doing so requires special care of group variables, but this
does not influence the length of 𝑝.) The bound (|𝑁| + |𝐸𝑑| + |𝐸𝑢|) ×
2|𝜓| then follows from a compilation of the expression into a finite
automaton and the fact that a shortest path in the product of this au-
tomaton with the graph is also a shortest path in the graph itself. Given
that the argument here is quite standard in the research literature (see
Chapter 2 or [9, 74, 117, 118]), we do not develop a fully formal au-
tomaton model for our queries.

4.4 Expressivity and Complexity 89

Lemma 4.4.4

Let 𝐺 be a graph and 𝜓 be a well-typed pattern. For every path 𝑝
of 𝐺, the size |𝜇| of 𝜇 such that (𝑝, 𝜇) ∈ J𝜓K𝐺 is at most |𝑝| ×
(2|𝜓|+1−2). Here, |𝑝| denotes the number of occurrences of node
and edge ids in 𝑝.

Proof. By induction over the structure of𝜓. The lemma is obviously true
for all base cases, and all inductive cases are easy except for a repeated
pattern of the form 𝜓ℎ..∞, for some ℎ, where we have that

q
𝜓ℎ..∞ y

𝐺 =
∞

⋃
𝑖=ℎ

J𝜓K𝑖𝐺 .

By definition of collect, we have that every (𝑝, 𝜇) ∈
q
𝜓ℎ..∞ y

𝐺 consists
of a list (𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛), where 𝑛 ≤ |𝑝| and 𝑝1 ⋯𝑝𝑛 = 𝑝. Fur-
thermore, we have that ∑𝑛

𝑖=1 |𝑝𝑖| ≤ 2|𝑝| − 1. If every 𝜇𝑖 has size at
most (2|𝜓|+1 −2), then we have that the size of (𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛) is
bounded by

𝑛
∑
𝑖=1

|𝑝𝑖| +
𝑛
∑
𝑖=1

|𝜇𝑖| ≤
𝑛
∑
𝑖=1

|𝑝𝑖| +
𝑛
∑
𝑖=1

|𝑝𝑖| × (2|𝜓|+1 − 2)

≤ (
𝑛
∑
𝑖=1

|𝑝𝑖|) (1 + 2|𝜓|+1 − 2)

≤ 2|𝑝| × (2|𝜓|+1 − 1)

≤ |𝑝| × (2|𝜓|+2 − 2)

≤ |𝑝| × (2|𝜓
ℎ..∞|+1 − 2)

Lemma 4.4.5

Let 𝜓 be a pattern without variables and 𝐺 a property graph. Given
a path 𝑝, we can compute the set of (𝑝′, 𝜇) ∈ J𝜓K𝐺 such that 𝑝′ is a
subpath of 𝑝 in time polynomial in the size of 𝜓, 𝐺, and 𝑝.

Proof. Let us denote by J𝜓K𝑝𝐺 the set of (𝑝′, 𝜇) ∈ J𝜓K𝐺 such that 𝑝′ is a
subpath of 𝑝. If 𝜓 does not have variables, then notice that all results
(𝑝′, 𝜇) ∈ J𝜓K𝐺 have 𝜇 = 𝜇∅. Assume that 𝑝 = path(𝑢0, 𝑒0, 𝑢1,… , 𝑒𝑛, 𝑢𝑛).
We prove by structural induction on 𝜓 that we can compute in polyno-
mial time the set Pairs(′) ∶= {(𝑖, 𝑗) ∣ (path(𝑢𝑖, 𝑒𝑖,… , 𝑢𝑗), 𝜇∅) ∈ J𝜓′K𝑝𝐺}
for all subexpressions 𝜓′ of 𝜓.

The base cases can clearly be computed in polynomial time. If 𝜓′ is
of the form 𝜓1𝜓2, then Pairs(𝜓′) is the natural join of Pairs(𝜓1) with
Pairs(𝜓2). If 𝜓′ is of the form 𝜓1 + 𝜓2, then Pairs(𝜓′) is the union
of Pairs(𝜓1) with Pairs(𝜓2). And if 𝜓′ = 𝜓𝑛..𝑚

1 , then we can compute
Pairs(𝜓1)

𝑛..𝑚 in polynomial time using iterative squaring.

90 4 The Graph Pattern Calculus

Lemma 4.4.6

Let 𝜓 be a fixed pattern and 𝐺 a property graph. Given a path 𝑝, we
can enumerate the set of (𝑝′, 𝜇) ∈ J𝜓K𝐺 such that 𝑝′ is a subpath of
𝑝 in space polynomial in the size of 𝐺 and 𝑝.

Proof sketch. Let us denote by J𝜓K𝑝𝐺 the set of (𝑝′, 𝜇) ∈ J𝜓K𝐺 such that
𝑝′ is a subpath of 𝑝. We prove the lemma by structural induction on
𝜓. If 𝜓 does not have variables, then Lemma 4.4.5 tells us that we can
compute J𝜓K𝑝𝐺 in polynomial time, even when 𝜓 is not fixed. So we
assume that 𝜓 has at least one variable.

The base cases are clear. For the inductive cases, we enumerate the
relevant results (𝑝′, 𝜇) of the subexpressions in polynomial space in-
ductively and compose them to form a result for the entire expres-
sion. For concatenation, union, and conditioned patterns, we can do
this by just following the inductive definition of

q
𝜓1𝜓2

y
𝐺,

q
𝜓1 + 𝜓2

y
𝐺,

and
r
𝜓⟨𝜃⟩

z
𝐺. It remains to discuss repeated patterns, i.e., 𝜓 = 𝜓𝑛..𝑚

1 .
Since 𝜓 is constant, it suffices to consider the case 𝜓 = 𝜓𝑛..𝑛

1 and
the case 𝜓 = 𝜓0..∞

1 . We first consider the case 𝜓𝑛..𝑛
1 . By the induc-

tion hypothesis, we can assume that we can enumerate
q
𝜓1

y𝑝
𝐺 using

polynomial space. Since 𝜓1 has at least one variable (we already dealt
with the case without variables), we need to enumerate the set (𝑝, 𝜇)
such that there exist (𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛) ∈

q
𝜓1

y𝑝
𝐺 where 𝑝 = 𝑝1 ⋯𝑝𝑛

and 𝜇 = collect[(𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛)]. Since 𝑛 is a constant, we only
need to keep constantly many (𝑝𝑖, 𝜇𝑖) in memory, so we can proceed
in polynomial space by following the definition of collect. We now con-
sider the case 𝜓 = 𝜓0..∞

1 . In this case, we again follow the definition of
collect. Even though the number 𝑛 in a sequence (𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛)
with (𝑝𝑖, 𝜇𝑖) ∈

q
𝜓𝑖

y
𝐺 and 𝑝 = 𝑝1 ⋯𝑝𝑛 can be arbitrarily large, collect

always collapses those subpaths of length zero together. As such, only
polynomially many different subpaths of 𝑝 need to be considered. For
a given (𝑝, 𝜇), we therefore systematically enumerate all sequences
(𝑝1, 𝜇1),… , (𝑝𝑛, 𝜇𝑛) with 𝑝 = 𝑝1 ⋯𝑝𝑛 and (𝑝𝑖, 𝜇𝑖) ∈

q
𝜓1

y𝑝
𝐺. Since by

Lemma 4.4.4, the total size of the bindings 𝜇𝑖 is also polynomial in |𝑝|
if 𝜓 is fixed, we can enumerate everything using polynomial space.

We are now ready to prove Theorem 4.4.2.

Proof. We first consider data complexity; namely, we assume 𝑄 to be
fixed. First we consider the query𝑄 = 𝜌𝜓, which is a single patternwith
a restrictor on top. The Turingmachine in this case operates by trying to
enumerate all possible paths 𝑝 and bindings 𝜇 such that (𝑝, 𝜇) ∈ J𝑄K𝐺.
W.l.o.g., we can assume an order on node and edge ids.

Assume first that the query does not use the restrictor shortest, but is of
the form 𝜌𝜓, with 𝜌 either simple or trail. The machine starts enumerat-
ing all possible paths 𝑝 one by one in radix order, that is, in increasing
length, and then by the ordering we assume on node and edge ids. By
Lemma 4.4.3, we know that we only need to consider paths of polyno-
mial length. For each such path, we enumerate all possible 𝜇 that bind
variables of 𝜓 to elements in 𝑝 one by one, which can be done in poly-
nomial space in the size of 𝐺 and 𝑝 according to Lemma 4.4.6. For a
given path 𝑝, we can thus enumerate all possible answers (𝑝, 𝜇) using
polynomial space.

4.5 Looking ahead 91

Assume now that the query uses the restrictor shortest. In this case, we
have to modify our machine slightly. Notice that in this case we might
have shortest either on top of trail or simple, or just on its own. In all
of these cases we proceed in the same manner: we enumerate the re-
sults of the query below shortest, and the first time we encounter a
result, we write it down to the output tape, and store it to an addi-
tional tape that this machine has access to. When another path is then
considered, in case that it could be the answer, its length is compared
to the stored path, and eliminated in case its length is longer. The path
enumeration procedure can be halted upon reaching length |𝐺|×2|𝜓|

(Lemma 4.4.3).

In a query that uses joins, the procedure can be thought as being nested
for each part of the join. Given that the query 𝑄 is fixed, the amount of
work space used by the machine remains polynomial.

Moving to combined complexity, we can observe that the space used
thus far is exponential at worst. In fact, the main complication arises
with iterations of the form 𝜓𝑛..𝑚, where 𝑛 and 𝑚 are concrete numbers,
given that their representation (e.g. in binary) is exponentially more
succinct than their magnitude, which dictates the number of graph el-
ements that might need to be bound in group variables.

Theorem 4.4.7

The problem Enumerate answers cannot be solved by a Turing
machine using polynomial amount of space (in 𝐺 and 𝑄).

Proof. Queries of the form 𝑥 = shortest () −→𝑘..𝑘
() produce 2𝑘 dif-

ferent paths on the graph 𝐺 with nodes 𝑢, 𝑣, with 𝑎-edges from 𝑢 to
𝑣 and back; and 𝑏-edges from 𝑢 to 𝑣 and back. Since 𝑘 is represented
in binary, this number of paths is Θ(22

𝑛
), where 𝑛 is the input size. A

polynomial space algorithm cannot represent the required 22
𝑛
configu-

rations required to enumerate these paths without repetitions.

4.5 Looking ahead
In this section, we discuss possible extensions of GPC that would reflect
additional features envisioned in GQL and SQL/PGQ. In doing so, we
also provide two examples of how theoretical research has directly in-
fluenced the drafts of the GQL and SQL/PGQ standards as they were
being written.

Placement of restrictors We imposed strict requirements for plac-
ing restrictors: optional shortest followed by optional trail or simple,
with at least one of the three present to ensure that the number of re-
turned paths is finite. It is natural to wonder whether restrictors could
be mixed arbitrarily, by allowing patterns 𝜌𝜓where 𝜌 is one of shortest,
trail, and simple. In fact, this was an earlier proposal in the GQL and
PGQ drafts, which was then significantly modified. To see why, consider
the following graph

92 4 The Graph Pattern Calculus

:𝐴 :𝐵 :𝐶𝑒2 ∶𝑎 𝑒3

𝑒1

(where 𝑒1, 𝑒2, and 𝑒3 are edge ids) and the pattern

trail[[shortest (∶ 𝐴) 𝑥−→0..∞
(∶ 𝐵)](∶ 𝐵)

𝑦∶𝑎
←−−∗

(∶ 𝐴)] .

Matching the subpattern outside shortest produces the binding of 𝑦 to
the edge 𝑒2. In the GQL rationale, shortest should restrict query an-
swers in the sense that, out of all the answers to the query, it chooses
the one with the shortest witness. If we follow this rationale, then, to
keep the entire match a trail, the group variable 𝑥 must be bound the
list [𝑒1, 𝑒3]. Therefore, counter-intuitively, a shortest match occurring
under the scope of trail produces a path that is not shortest between
two nodes.

As a result, GQL pattern matching now disallows arbitrary mixing of
restrictors. At the same time, it is slightly more permissive than the
version presented here: shortestmust appear at the top of a pattern, but
trail and simple can be mixed freely. Adding this feature is a possible
extension of GPC.

Aggregation As one navigates along a path in a graph, aggregation is
a natural feature for computing derived quantities, such as path length.
For instance, with (∶ 𝐴) 𝑥−→0..∞

(∶ 𝐵) looking for paths between 𝐴 and
𝐵, one could return the total length ∑𝑥.length of each matched path.
However, adding aggregation is problematic. To see why, consider the
simple aggregate ♯(𝑥) for a group variable 𝑥, which counts the number
of bindings of that variable. Now assume we extend the language with
arithmetic conditions of the form 𝑡1 = 𝑡2, where 𝑡1 and 𝑡2 are terms built
from values 𝑦.𝑘 and ♯(𝑥) by means of addition “+” and multiplication
“⋅”. These already pack huge expressive power:

Proposition 4.5.1

The data complexity of GPC with arithmetic conditions is undecid-
able.

Proof. We first show the undecidability of combined complexity and
then extend the construction to show data complexity as well. We do
it by reduction from the Diophantine equation (or Hilbert’s 10th) prob-
lem, namely whether a multivariate polynomial 𝑓(𝑥1,… , 𝑥𝑚) with in-
teger coefficients has a solution, i.e., numbers 𝑣1,… , 𝑣𝑚 ∈ ℕ so that
𝑓(𝑣1,… , 𝑣𝑚) = 0 (the problem is more commonly stated about finding
solutions in ℤ but clearly this version is undecidable as well). Specif-
ically we shall use a version where 𝑚 ≤ 58 and degrees of all the
monomials in 𝑓 are bounded by 4; this is already known to be unde-
cidable [25].

Create a graph 𝐺0 with nodes 𝑛1,⋯ , 𝑛58, an 𝐴𝑖-labeled loop on every
node 𝑛𝑖 for 𝑖 ≤ 58, and 𝐴-labeled edges from 𝑛𝑖 to 𝑛𝑖+1 for 𝑖 < 58. We
assume that 𝑛1 is labeled 𝑆 and has a value 𝛿(𝑛1, 𝑘) = 0. Consider a

4.5 Looking ahead 93

pattern

𝜓0 = (𝑢 ∶ 𝑆)
𝑥1∶𝐴1−−−−→0..∞

()
∶𝐴−→ ⋯ ∶𝐴−→ ()

𝑥58∶𝐴58−−−−−→0..∞
()

This pattern navigates along the 𝐴-edges, potentially looping several
times over each 𝐴𝑖-labeled edge. Now consider 𝜓0⟨𝑓(♯(𝑥1),⋯,♯(𝑥58))=𝑢.𝑘⟩

.
Then 𝐺0 has a match for this pattern iff 𝑓 has a solution 𝑣1,… , 𝑣𝑚 ∈ ℕ.
Indeed, the match will loop 𝑣1 times over 𝑛1, then move to 𝑛2, loop 𝑣2
times, and so on.

This shows undecidability of combined complexity as the polynomial 𝑓
is part of the query. We now extend the construction to data complexity.
Let 𝛼 range over the set𝑀 of 558 bindings from {1,⋯ , 58} to {0,⋯ , 5}.
By 𝑚𝛼 we mean the monomial

𝑥𝛼(1)
1 ⋅ ⋯ ⋅ 𝑥𝛼(58)

58

and we then assume without loss of generality that

𝑓 = ∑
𝛼∈𝑀

𝑐𝛼 ⋅ 𝑚𝛼

where 𝑐𝛼 ∈ ℤ. Note that the degree of some of the monomials may
be higher than 4 but then the problem of the existence of integer so-
lutions of 𝑓 is still undecidable, and furthermore the number of mono-
mials is fixed. Also notice that since each degree is bounded by 4, ev-
ery monomial can be constructed as an arithmetic expression, e.g., we
could write 𝑢 ⋅ 𝑢 ⋅ 𝑤 ⋅ 𝑤 ⋅ 𝑤 ⋅ 𝑤 instead of 𝑢2𝑤4.

We next extend𝐺0 to𝐺 as follows.We enumerate the set𝑀 as𝛼1,⋯ , 𝛼|𝑀|
and in 𝐺0 continue the chain of 𝐴-labeled edges for another 𝑀 nodes
which will all have a property coeff holding values 𝑐𝛼1

,⋯ , 𝑐𝛼|𝑀|
. In ad-

dition, these nodes will have loops, labeled 𝐵1,⋯ , 𝐵|𝑀|.

Then, starting with 𝜓0 we proceed to define 𝜓𝑖 for 1 ≤ 𝑖 ≤ 𝑀 induc-
tively as follows:

𝜓𝑖 = [𝜓𝑖−1
∶𝐴−→ ()

𝑦𝑖∶𝐵𝑖−−−→0..∞
()]⟨♯(𝑦𝑖)=𝑦𝑖.coeff⋅𝑚1(♯(𝑥1),⋯,♯(𝑥58))⟩

The effect of matching such a pattern is that the number of times ♯(𝑦𝑖)
the 𝐵𝑖-labeled loop is traversed equals the value of 𝑐𝛼𝑖

⋅ 𝑚𝛼𝑖
over the

values ♯(𝑥1),⋯ , ♯(𝑥58). Indeed, as mentioned earlier, monomials 𝑚𝛼
are proper arithmetic terms.

Let 𝜓 = 𝜓|𝑀|. Then
𝜓⟨♯(𝑦1)+⋯+♯(𝑦|𝑀|)=𝑢.𝑘⟩

matches iff 𝑓(♯(𝑥1),⋯ , ♯(𝑥58)) = 0. Since now the pattern is fixed (all
the information about 𝑓 is encoded in 𝐺), the data complexity is proved
to be undecidable.

In view of this, the current approach of GQL is to only allow aggregates
in the outputs of queries (no operations on them are permitted). But
it is a general open direction to understand how to tame and use the
power of aggregates in a graph language.

94 4 The Graph Pattern Calculus

[119]: Console et al. (2020), “Cop-
ing with Incomplete Data: Recent Ad-
vances”

[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”

Bag semantics Relational calculus is interpreted under set semantics,
but SQL uses bag semantics, and so does GQL. In the basic version of
GPC we opted for set semantics, following the relational calculus prece-
dent, but it is necessary to study bag semantics as an extension of GPC.

Nulls and bound conditional variables We have left out the treat-
ment of nulls, assuming that conditions involving non-applicable nulls
— i.e., values 𝛿(𝑥, 𝑘)where the property 𝑘 is not defined for 𝑥— evalu-
ate to false. Following SQL (and the current GQL proposals) they would
instead evaluate to unknown, leading to many known issues [119]. In
addition, one could expand the language with a predicate that checks
whether a conditional variable is bound, as done, in fact, in GQL.

Scoping of variables Consider the pattern (𝑥) −→ [(𝑦) −→ (𝑧)]⟨𝜃⟩,
where 𝜃 is 𝑥.𝑘 = 𝑦.𝑘+𝑧.𝑘; note, in particular, the non-local occurrence
of 𝑥.𝑘 in the condition. Should this be allowed? At first it seems innocent
(we bind 𝑥 before evaluating the rest of the pattern), but in a pattern
like (𝑥) −→ [(𝑦) −→ (𝑧)]⟨𝑥.𝑘+𝑢.𝑘=𝑦.𝑘+𝑧.𝑘⟩ −→ (𝑢) we need to evaluate the
edge from 𝑦 to 𝑧 first. Moreover, if we have repetitions, the evaluation
procedure becomes much less clear. Despite this, GQL plans to offer
such kind of features.

Label expressions GQLwill offer complex label expressions [96], and
these too can be added to the calculus as an extension.

Enhancing conditions We assumed that data values come from one
countable infinite set of constants, very much in line with the standard
presentations of first-order logic. In reality, of course, data values are
typed, and such typing must be taken into account (at the very least, for
the study of aggregation, to distinguish numerical properties). Further-
more, one could permit explicit equalities between singleton variables
in conditions (currently, such variables implicitly join when they are
repeated in a pattern).

References 95

References
[6] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query Language Supporting

Recursion”. In: Proceedings of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987. Ed. by
Umeshwar Dayal and Irving L. Traiger. ACM Press, 1987, pp. 323–330. doi: 10.1145/38713.38749.

[8] Mariano P. Consens and Alberto O. Mendelzon. “GraphLog: a Visual Formalism for Real Life Recur-
sion”. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS). ACM Press, 1990, pp. 404–416. doi: 10.1145/298514.298591.

[9] Pablo Barceló. “Querying graph databases”. In: Principles of Database Systems (PODS). 2013, pp. 175–
188.

[11] Pablo Barceló et al. “Expressive languages for path queries over graph-structured data”. In: ACM
Trans. Database Syst. 37.4 (2012), 31:1–31:46.

[12] Peter T. Wood. “Query languages for graph databases”. In: SIGMOD Record 41.1 (2012), pp. 50–60.
[14] Pablo Barceló, Jorge Pérez, and Juan L. Reutter. “Relative Expressiveness of Nested Regular Expres-

sions”. In: Proceedings of the 6th Alberto Mendelzon International Workshop on Foundations of Data
Management, Ouro Preto, Brazil, June 27-30, 2012. 2012, pp. 180–195.

[15] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings
of the 2018 International Conference on Management of Data. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[18] Renzo Angles et al. “G-CORE: A Core for Future Graph Query Languages”. In: SIGMOD. 2018,
pp. 1421–1432.

[25] James Jones. “Undecidable diophantine equations”. In: Bulletin of the AmericanMathematical Society
3.2 (1980), pp. 859–862.

[29] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:
SIAM J. Comput. 24.6 (1995), pp. 1235–1258.

[57] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. “Regular Queries on Graph Databases”. In:
Theory Comput. Syst. 61.1 (2017), pp. 31–83. doi: 10.1007/s00224-016-9676-2.

[60] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. “Querying Graphs with Data”. In: Journal of the
ACM 63.2 (2016), 14:1–14:53.

[74] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:
Proceedings of the Fifteenth International Conference on Very Large Data Bases, August 22-25, 1989,
Amsterdam, The Netherlands. 1989, pp. 185–193.

[84] Wim Martens, Matthias Niewerth, and Tina Trautner. “A Trichotomy for Regular Trail Queries”. In:
International Symposium on Theoretical Aspects of Computer Science, (STACS). 2020, 7:1–7:16.

[96] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: SIGMOD. ACM, 2022, pp. 1–
12.

[100] Diego Calvanese et al. “Containment of Conjunctive Regular Path Queries with Inverse”. In: KR
2000, Principles of Knowledge Representation and Reasoning Proceedings of the Seventh International
Conference, Breckenridge, Colorado, USA, April 11-15, 2000. 2000, pp. 176–185.

[114] Renzo Angles et al. “Foundations of Modern Query Languages for Graph Databases”. In: ACM
Comput. Surv. 50.5 (2017), 68:1–68:40.

[115] Mikolaj Bojanczyk et al. “Two-variable logic on data trees and XML reasoning”. In: PODS. ACM,
2006, pp. 10–19. doi: 10.1145/1142351.1142354.

[116] Guillaume Bagan, Angela Bonifati, and Benoı̂t Groz. “A trichotomy for regular simple path queries
on graphs”. In: J. Comput. Syst. Sci. 108 (2020), pp. 29–48.

[117] Wouter Gelade, WimMartens, and Frank Neven. “Optimizing Schema Languages for XML: Numer-
ical Constraints and Interleaving”. In: SIAM J. Comput. 38.5 (2009), pp. 2021–2043.

[118] Katja Losemann and Wim Martens. “The complexity of regular expressions and property paths in
SPARQL”. In: ACM Trans. Database Syst. 38.4 (2013), 24:1–24:39.

[119] Marco Console et al. “Coping with Incomplete Data: Recent Advances”. In: PODS. ACM, 2020,
pp. 33–47. doi: 10.1145/3375395.3387970.

https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/1142351.1142354
https://doi.org/10.1145/3375395.3387970

[19]: Arenas et al. (2022), Database
Theory

[21]: Libkin (2004), Elements of Finite
Model Theory

[120]: Atserias et al. (2013), “Size
Bounds and Query Plans for Relational
Joins”
[121]: Ngo et al. (2018), “Worst-case
Optimal Join Algorithms”
[122]: Marx (2006), “Navigation in
XML Trees”
[123]: Martens et al. (2006), “Ex-
pressiveness and complexity of XML
Schema”
[124]: Pérez et al. (2006), “Semantics
and Complexity of SPARQL”
[76]: Arenas et al. (2012), “Counting
beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of
the standard”
[77]: Losemann et al. (2013), “The
complexity of regular expressions and
property paths in SPARQL”
[6]: Cruz et al. (1987), “A Graphical
Query Language Supporting Recursion”
[8]: Consens et al. (1990), “GraphLog:
a Visual Formalism for Real Life Recur-
sion”
[100]: Calvanese et al. (2000), “Con-
tainment of Conjunctive Regular Path
Queries with Inverse”
[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”
[60]: Libkin et al. (2016), “Querying
Graphs with Data”
[9]: Barceló (2013), “Querying graph
databases”
[114]: Angles et al. (2017), “Founda-
tions of Modern Query Languages for
Graph Databases”

5
Putting together Pattern
Matching and Relational
Algebra

This chapter is joint workwith A. Gheebrant, L. Libkin and L. Peterfreund
and was submitted under the title ”Limitations of Modern Graph Query
Languages” at PODS 2025.

Database theory thrives when it comes up with mathematically concise
abstractions of real life artifacts that can be analyzed, with the results
then used in a feedback loop to influence those artifacts. A canonical
example of this is the study of database query languages: we often take
first-order logic (FO) and relational algebra (RA) as very rough abstrac-
tions of SQL. While real-life SQL goes way beyond these abstractions,
its core features are indeed based on FO and RA. The latter have very
concise mathematical definitions and are thus amenable to deep math-
ematical analysis. A typical example of such an analysis is inexpressibil-
ity of counting properties and recursion [19]; as a result, these were
added to SQL and many other database languages.

This productive approach has manifested itself in a multitude of sce-
narios. We know, for example, that no amount of counting power lets
one express recursion, nor does recursion help with counting, hence
both are necessary as separate additions to SQL [21]. This general phi-
losophy helped us discover important results in database theory with
direct practical applications. For example, in query evaluation, abstract-
ing join evaluation as the existence of homomorphisms led to bounds
on join sizes [120] and worst-case optimal join algorithms [121]. In
other data models, abstracting path languages for XML as temporal
logics [122] and their transformation and schema languages as tree
transducers and automata [123] had a direct impact on various W3C
standards, while an abstraction of SPARQL via RA operations producing
a set of mappings [124] led to interesting discoveries about the design
of SPARQL [76, 77].

This brings us to the question: do we have a similarly clean mathe-
matical model for graph databases? While some mathematical abstrac-
tions of these languages exist, namely the ones presented in Chapters 3
and 4, they are not yet at the same level as FO and RA, in terms of
their simplicity and utility in formally proving results about GQL and
SQL/PGQ. The main goal of this Chapter is therefore to provide very
concise abstractions capturing main features of these newly standard-
ized languages, and use them to analyze limitations of their expressive
power. As is traditional in database theory, such an analysis is done to
understand what is missing in their original design, in order to influ-
ence future enhancements of the languages.

Regarding the status of research and practice in graph languages, it
appears that on the theory side we have a good abstraction. They are
based on the the ubiquitous regular path queries (RPQs) [6] and their
many derivatives such as CRPQs [8], their extensions with union and
inverse [100], extended CRPQs [11], RPQs with data comparisons [60]
and many others; see Chapter 2 and surveys [9, 114]. These however
make an omission too big to be considered realistic models. The stan-
dard industry model is that of labeled property graphs while RPQs and
related formalisms operate on labeled graphs, essentially omitting data
stored in them. This is not a small omission (for databases, after all),
and while some languages considered support for data and were even

97

Owns

o2

name: Porthos
city: Versailles

Person

p2

Account

a2

type: savings

Owns

o3

name: Aramis
city: Paris

Person

p3

Account

a3

type: checking

Owns

o1

name: Athos
city: Paris

Person

p1

Account

a1

type: savings

Friends

since:01/01/1605
f1

Friends

since:02/02/1605
f2

Friends

since:03/03/1605
f3

Transfer

t1
amount: 20000

Transfer

t2
amount: 15000

Figure 5.1: A labeled property graph

[97]: (2023), GQL Influence Graph

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”

called academic influences on GQL development [97], they influenced
the design, rather than reflected it.

In industry, the first modern declarative graph language for property
graphs is Cypher [15]. Its workhorse is pattern matching which turns
a graph into a table; the remaining operations manipulate that table.
With several other languages designed along the same lines, a stan-
dardization was proposed, resulting in SQL/PGQ and GQL standards.
These share pattern matching [96], but then there is a major diversion.

▶ In SQL/PGQ, a graph is a view defined on a relational database.
The result of pattern matching is simply a table in the FROM clause
of a SQL query that may use other relations in the database.

▶ GQL on the other hand is oblivious to how a graph is stored, and
the table resulting from pattern matching is manipulated by a
sequence of operators that modify it, in an imperative style that
is referred to as linear composition.

We illustrate GQL and SQL/PGQ capabilities using the graph from Fig-
ure 5.1 and a money-laundering query asking to Find a pair of friends
in the same city who transfer money to each other via a common friend
who lives elsewhere.

In GQL, it will be expressed as the following query :

MATCH (x)-[:Friends]->(y)-[:Friends]->(z)-[:Friends]->(x),

(x)-[:Owns]->(acc_x), (y)-[:Owns]->(acc_y),

(z)-[:Owns]->(acc_z),

(acc_x)-[t1:Transfer]->(acc_z)-[t2:Transfer]->(acc_y)

FILTER (y.city) <> (x.city) AND (x.city=z.city)

AND (t2.amount < t1.amount)

RETURN x.name AS name1, y.name AS name2

In SQL/PGQ, graphs are a view of a tabular schema. The one from Fig-
ure 5.1 can be represented by the following set of tables:
Acc(a_id,type) for accounts, Transfer(t_id,a_from,a_to,amount)
for transfers, Person(p_id,name,city) for people, Owns(a_id,p_id)
for ownership, and Friend(p_id1,p_id2,since) for friendships. The
property graph view is then defined by a CREATE statement, part of
which is shown below:

https://neo4j.com

98 5 Putting together Pattern Matching and Relational Algebra

[60]: Libkin et al. (2016), “Querying
Graphs with Data”
[125]: Abriola et al. (2018), “Bisimula-
tions on Data Graphs”
[126]: Sharma et al. (2021), “Practical
and comprehensive formalisms for mod-
elling contemporary graph query lan-
guages”
[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”
[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”
[102]: Francis et al. (2023), “GPC: A
Pattern Calculus for Property Graphs”
[127]: Francis et al. (2023), “A Re-
searcher’s Digest of GQL”

CREATE PROPERTY GRAPH Interpol1625 (

VERTEX TABLES

Acc KEY (a_id) LABEL Account PROPERTIES (type)

....

EDGE TABLES

Transfer KEY (t_id)

SOURCE KEY (a_from) REFERENCES Acc

DESTINATION KEY (a_to) REFERENCES Acc

LABEL Transfer PROPERTIES (amount)

....)

This view defines nodes (vertices) and edges of graphs, specifies end-
points of edges, and defines their labels and properties. We can then
query it, using pattern matching to create a subquery:
SELECT T.name_x AS name1, T.name_y AS name2

FROM Interpol1625 GRAPH_TABLE (

MATCH (x)-[:Friends]->(y)-[:Friends]->(z)-[:Friends]->(x),

(x)-[:Owns]->(acc_x), (y)-[:Owns]->(acc_y),

(z)-[:Owns]->(acc_z),

(acc_x)-[t1:Transfer]->(acc_z)-[t2:Transfer]->(acc_y)

COLUMNS x.city AS city_x, y.city AS city_y, z.city AS city_z,

x.name AS name_x, y.name AS name_y,

t1.amount AS amount1, t2.amount AS amount2) AS T

WHERE T.city_x=T.city_y AND T.city_x <> T.city_z

AND T.amount1 > T.amount2

Note that in GQL, a sequence of operators can continue after the RETURN
return clause. For example, if we want to find large transfers between
the two potential offenders we could simply continue the query with
extra clauses:

MATCH (u WHERE u.name=name1) -[t:Transfer]->(v WHERE v.name=v2)

FILTER t.amount > 100000

RETURN t.amount AS big_amount

This is what is referred to as linear composition: we can simply add
clauses to the already existing query which apply new operations to
the result of already processed clauses.

In SQL/PGQ, such an operation is also possible, though perhaps a bit
more cumbersome as we would need to put the above PGQ query as
a subquery in FROM and create another subquery for the second match,
then join them on name1 and name2.

Related work
While industry is dominated by property graphs (Neo4j, Oracle, Ama-
zon, TigerGraph, etc), much of academic literature still works with the
model of labeled graphs and query languages based on RPQs, with
some exceptions [60, 125, 126]. These however appeared before the
new standards became available, and their analyses of expressiveness
and language features do not apply to GQL and SQL/PGQ. The first
commercial language for property graphs was Cypher, and it was fully
formalized in [15]. As GQL and SQL/PGQ were being developed, a
few academic papers appeared: [96] gave an overview of their pattern
matching facilities, which was then further analyzed in [102] (and pre-
sented in Chapter 4). In [127] (and Chapter 3), a digest of GQL suitable
for the research community was presented. While a huge improvement
compared to the actual standard from the point of view of clarity, the
presentation of [127] replaced 500 pages of the text of the Standard

https://neo4j.com
https://www.oracle.com/database/integrated-graph-database/
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://www.tigergraph.com
https://neo4j.com

5.1 Linear Composition Relational Algebra 99

[128]: PRQL (2024), Pipelined Rela-
tional Query Language

(notoriously hard to read) by a one-page long definition of the syntax,
followed by a four-page long definition of the semantics. It achieved a
two orders of magnitude reduction in the size of the definition of the
language, but 5 pages is still way too long for “Definition 1”.

Another element that is missing in the literature is a proper investiga-
tion of linear composition. Initially introduced in Cypher, it was then
adopted in a purely relational language PRQL [128] (positioned as a
“pipelined” alternative to SQL), and also embraced by GQL.

Contributions
In this Chapter, we first formalize linear-composition relational algebra
LCRA (which is a key ingredient of modern graph languages), show that
it is equivalent to the usual relational algebra, and explain its origins
in graph and relational querying.

We then define a very concise graph pattern calculus that has most of
the essential features of GQL and SQL/PGQ pattern matching, and in-
troduce two languages, Core GQL and Core PGQ, capturing the essence
of the new standards. The former is captured by LCRA over relations
resulting from pattern matching, and the latter by relational algebra
over the same relations.

With these mathematical models, we analyze the expressiveness of the
languages. We start with the pattern language and show that it cannot
express, in a natural way, a very common query that tests if values of
particular property in edges increase along a path. We also show that
the pattern language is not powerful enough to capture ”global” con-
ditions (e.g., all property values on a path are different). We conclude
this analysis by formalizing patterns from the original formulation of
Cypher, and proving that they fall short of RPQs (a “folklore” result
that has never been formally proved due to the lack of a formal model).

We then look at the entire GQL and SQL/PGQ, and show that they fail
to capture Datalog queries of NLOGSPACE data complexity. Such a cap-
ture would be expected from a language that defines reachability and
has full power of first-order logic on top of it, and yet the combination
of patterns with querying their outputs renders it impossible.

In our inexpressibility results, we identify key shortcomings of the new
query languages for graph databases that prevent us from expressing
the desired properties. These concern joins of patterns and composi-
tionality of queries, and could serve as a starting point for enhancing
expressiveness in versions 2 of GQL and SQL/PGQ, expected to appear
in about 5 years from now.

5.1 Linear Composition Relational Algebra
In this section we formalize the notion of linear composition that under-
lies Cypher and GQL, and is present independently of them in purely
relational languages such as PRQL. We start with the definition of lin-
ear composition relational algebra, prove its equivalence with classical
RA, and discuss the origins of this approach to query language design.

As in Chapter 2, we assume the named perspective for Relational Al-
gebra, and take relation names from the infinite countable set Rel and

https://neo4j.com
https://prql-lang.org
https://neo4j.com
https://neo4j.com
https://prql-lang.org

100 5 Putting together Pattern Matching and Relational Algebra

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”
[127]: Francis et al. (2023), “A Re-
searcher’s Digest of GQL”

attribute names from the infinite countable set Attr.

Let 𝜇 be a tuple and𝐴𝐴𝐴 ⊆ dom(𝜇). We use 𝜇 � 𝐴𝐴𝐴 to denote the restriction
of 𝜇 to𝐴𝐴𝐴, that is, the mapping 𝜇′ with dom(𝜇′) = 𝐴𝐴𝐴 and 𝜇′(𝐴) ∶∶= 𝜇(𝐴)
for every attribute 𝐴 ∈ 𝐴𝐴𝐴. Let 𝜇1, 𝜇2 be tuples. We say that 𝜇1 and 𝜇2
are compatible, denoted by 𝜇1 ∼ 𝜇2, if 𝜇1(𝐴) = 𝜇2(𝐴) for every 𝐴 ∈
dom(𝜇1)∩dom(𝜇2). For such compatible tuples we define 𝜇1⋈𝜇2 as the
mapping 𝜇 with dom(𝜇) ∶∶= dom(𝜇1)∪dom(𝜇2), and 𝜇(𝐴) ∶∶= 𝜇1(𝐴)
if 𝐴 ∈ dom(𝜇1) and 𝜇(𝐴) ∶∶= 𝜇2(𝐴) otherwise. If 𝐴 ∈ dom(𝜇) then we
define 𝜌𝐴→𝐵(𝜇) as the mapping 𝜇′ with dom(𝜇′) = (dom(𝜇)∖{𝐴})∪{𝐵}
where 𝜇′(𝐵) ∶∶= 𝜇(𝐴) and 𝜇′(𝐴 ′) = 𝜇(𝐴 ′) for every other 𝐴 ′ ∈ dom(𝜇′).

5.1.1 Linear Composition Relational Algebra (LCRA)
Linear Composition Relational Algebra (LCRA) underlies the sequential
(linear) application of relational operators as seen in Cypher, GQL, and
also PRQL. Its expressions over a schema S, denoted by LCRA(S), are
defined as follows:

Linear Clause: L ∶∶= 𝑆 ∣ 𝜋𝐴𝐴𝐴 ∣ 𝜎𝜃 ∣ 𝜌𝐴→𝐴 ′ ∣ LL ∣ {Q}
Query: Q ∶∶= L ∣ Q ∩Q ∣ Q ∪Q ∣ Q∖Q

where 𝑆 ranges over S, while 𝐴𝐴𝐴 ⊆ Attr, and 𝐴,𝐴 ′ ∈ Attr, and 𝜃 is
defined as for RA. Unlike for RA, for LCRA the output schema can be
determined only dynamically.

The semantics J K𝒟 of LCRA clauses L and queries Q is a mapping
from relations into relations. Such relations are known in the context
of graph languages Cypher and GQL as driving tables. It is defined as
follows:

J𝑆K𝒟 (R) ∶∶= R ⋈ 𝒟(𝑆)
q
𝜋𝐴𝐴𝐴

y
𝒟 (R) ∶∶= {𝜇�𝐴𝐴𝐴∩attr(R) ∣ 𝜇 ∈ R}

q
𝜎𝜃

y
𝒟 (R) ∶∶= {𝜇 ∣ 𝜇 ∈ R, 𝜇 ⊧ 𝜃}

q
𝜌𝐴→𝐴 ′

y
𝒟 (R) ∶∶= {𝜌𝐴→𝐴 ′(𝜇) ∣ 𝜇 ∈ R, 𝐴 ′ ∉ dom(𝜇)}

q
L1L2

y
𝒟 (R) ∶∶=

q
L2

y
𝒟 (

q
L1

y
𝒟 (R))

J{Q}K𝒟 (R) ∶∶= R ⋈ JQK𝒟 (R)
q
Q1 op Q2

y
𝒟 (R) ∶∶=

q
Q1

y
𝒟 (R) op

q
Q2

y
𝒟 (R), for op ∈ {∪,∩,−}

Attributes of results of linear clauses and queries are defined (also dy-
namically) then as follows:

attr(J𝑆K𝒟 (R)) ∶∶= attr(𝑆) ∪ attr(𝑅)
attr(

q
𝜋A

y
𝒟 (R)) ∶∶= A ∩ attr(R)

attr(
q
𝜎𝜃

y
𝒟 (R)) ∶∶= attr(R)

attr(
q
𝜌𝐴→𝐴 ′

y
𝒟 (R)) ∶∶= attr(R) ∖ {𝐴 ′} ∪ {𝐴}

attr(J{Q}K𝒟 (R)) ∶∶= attr(JQK𝒟 (R)) ∪ attr(R)
attr(

q
Q1 ∘Q2

y
𝒟 (R)) ∶∶= attr(

q
Q1

y
𝒟 (R))

Query output on a database is defined as JQK𝒟 (𝐼∅) where I∅ is a sin-
gleton relation containing the empty tuple 𝜇∅ where dom(𝜇∅) ∶∶= ∅,
cf. [15, 127]. Thus, when we simply write JQK𝒟, we mean that the se-

https://neo4j.com
https://prql-lang.org
https://neo4j.com

5.1 Linear Composition Relational Algebra 101

mantic function is applied to the fixed database 𝐼∅.

For example, consider a schema with attr(𝑆) = attr(𝑇) = {𝐴2} and
attr(𝑃) = {𝐴1, 𝐴2} and a query

Q ∶∶= 𝑃 𝜋𝐴1
𝑆 𝜎𝐴2=1

{𝑆 − 𝑇} .

An LCRA query is read left-to-right. We start with the driving table
R0 ∶∶= 𝐼∅. Every clause will modify it resulting in a new value of R.
After processing the clause 𝑃, it becomes R1 ∶∶= R0 ⋈ 𝑃 = 𝑃. The
next clause is 𝜋𝐴1

so this is applied to R1 resulting in R2 ∶∶= 𝜋𝐴1
(𝑃).

The next clause is 𝑆 so the new value of the driving table R3 becomes
the old value R2 joined with 𝑆, i.e., R3 ∶∶= 𝜋𝐴1

(𝑃) × 𝑆 (as their at-
tributes are disjoint). After processing the clause 𝜎𝐴2=1

, we arrive at
R4 ∶∶= 𝜎𝐴2=1

(R3) = 𝜎𝐴2=1
(𝜋𝐴1

(𝑃) × 𝑆) with attributes 𝐴1, 𝐴2. Next,
starting with this value of the driving table, rather than 𝐼∅, we evalu-
ate the query 𝑆 − 𝑇. This results in R′ ∶∶= R4 ⋈ 𝑆 − R4 ⋈ 𝑇. This
relation has attributes 𝐴1, 𝐴2 and hence the result of the entire query
is R4 ⋈ R′ = R4 ∩R′ (since the attributes of R′ and R4 are the same).

5.1.2 Expressivity results
We say that two queries Q1,Q2 (possibly from different languages) are
equivalent if for every database𝒟 it holds that

q
Q1

y
𝒟 =

q
Q2

y
𝒟. A query

language 𝐿1 is subsumed by 𝐿2 if for each query Q1 in 𝐿1 there is an
equivalent query Q2 in 𝐿2. If there is also a query Q2 ∈ 𝐿2 for which
there is no equivalent query Q1 ∈ 𝐿1 then 𝐿1 is said to be strictly less
expressive than 𝐿2. Finally 𝐿1 and 𝐿2 are equivalent if 𝐿1 is subsumed
by 𝐿2 and 𝐿2 is subsumed by 𝐿1.

Theorem 5.1.1

For every schema S, languages RA(S) and LCRA(S) are equivalent.

Proof. We first prove that RA(S) is subsumed by LCRA(S). Let 𝑄 be a
query in RA(S). We show that there exists an equivalent query 𝑄LCRA

in LCRA(S), i.e. such that for every database 𝒟 over S it holds that
J𝑄K𝒟 =

q
𝑄𝐿

y
𝒟 by induction on the structure of 𝑄.

▶ (base case) If 𝑄 = 𝑅 then 𝑄𝐿 = 𝑆 where 𝑆 = {𝑅}
▶ If 𝑄 = 𝜓 ̄𝐴(𝑄

′) and 𝑄 ′
𝐿 is the LCRA query equivalent to 𝑄 ′ then

𝑄𝐿 = 𝑄 ′
𝐿 𝜋 ̄𝐴

▶ If 𝑄 = 𝜎𝜃(𝑄
′) and 𝑄 ′

𝐿 is the LCRA query equivalent to 𝑄 ′ then
𝑄𝐿 = 𝑄 ′

𝐿 𝜎𝜃
▶ If 𝑄 = 𝜌 ̄𝐴→ ̄𝐵(𝑄

′) and and 𝑄 ′
𝐿 is the LCRA query equivalent to 𝑄 ′

then 𝑄𝐿 = 𝑄 ′
𝐿 𝜌 ̄𝐴→ ̄𝐵

For the three following cases, 𝑄 ′ (resp. 𝑄″) is systematically trans-
lated as {𝑄 ′

𝐿} (resp. {𝑄″
𝐿})

▶ If 𝑄 = 𝑄 ′ ∪𝑄″ and 𝑄 ′
𝐿 (resp. 𝑄

″
𝐿) is the LCRA query equivalent to

𝑄 ′ (resp. 𝑄″) then 𝑄𝐿 = {𝑄 ′
𝐿} ∪ {𝑄″

𝐿}
▶ If 𝑄 = 𝑄 ′ ∖𝑄″ and 𝑄 ′

𝐿 (resp. 𝑄
″
𝐿) is the LCRA query equivalent to

𝑄 ′ (resp. 𝑄″) then 𝑄𝐿 = {𝑄 ′
𝐿} ∖ {𝑄″

𝐿}
▶ If 𝑄 = 𝑄 ′ ⋈ 𝑄″ and 𝑄 ′

𝐿 (resp. 𝑄″
𝐿) is the LCRA query equivalent

to 𝑄 ′ (resp. 𝑄″) then 𝑄𝐿 = {𝑄 ′
𝐿}{𝑄

″
𝐿}

We now prove that LCRA(S) is subsumed by RA(S). Let 𝑄 be a query in
LCRA(S). We show that there exists a query 𝑄𝑅𝐴 ∈ RA(S) such that for

102 5 Putting together Pattern Matching and Relational Algebra

every database 𝒟 over S it holds that J𝑄K𝒟 =
q
𝑄𝑅𝐴y

𝒟 by induction on
the structure of 𝑄.

We start with the linear clauses. Since their structure is not tree-shaped,
but indeed linear, the query must be parsed from left to right, while
the equivalent RA query will be built bottom-up. Let 𝐶 = 𝑐0,… , 𝑐𝑛 be
a linear clause in LCRA(S). We build the induction on the number of
clauses of 𝐶.

▶ (base case) If 𝑛 = 1 and 𝐶 is an instance of the 𝑆 rule, i.e. 𝐶 = 𝑅
for some 𝑅 then the RA query equivalent to 𝐶 is 𝑅

▶ (base case) If 𝑛 = 1 and 𝐶 is one of 𝜋 ̄𝐴, 𝜎𝜃 or 𝜌 ̄𝐴→ ̄𝐵 then tthe RA
query equivalent to 𝐶 is 𝐼∅ (the empty tuple relation)

▶ (base case) If 𝑛 = 1 and is 𝐶 is an instance of the {𝑄} rule, then
the RA query equivalent to 𝐶 is the one equivalent to 𝑄 (see in-
duction for queries below)
For the inductive cases, let 𝐶𝑅𝐴

𝑖 be the RA query such thatq
𝑐0,… , 𝑐𝑖

y
=

q
𝐶𝑅𝐴
𝑖

y

▶ If 𝑛 > 1 and 𝑐𝑖+1 is an instance of the 𝑆 rule, i.e. 𝑐𝑖+1 = 𝑅, then
𝐶𝑅𝐴
𝑖+1 = 𝐶𝑅𝐴

𝑖 ⋈ 𝑅
▶ If 𝑛 > 1 and 𝑐𝑖+1 = 𝜋 ̄𝐴, then 𝐶𝑅𝐴

𝑖+1 = 𝜋 ̄𝐴(𝐶
𝑅𝐴
𝑖)

▶ If 𝑛 > 1 and 𝑐𝑖+1 = 𝜎𝜃, then 𝐶𝑅𝐴
𝑖+1 = 𝜎𝜃(𝐶

𝑅𝐴
𝑖)

▶ If 𝑛 > 1 and 𝑐𝑖+1 = 𝜌 ̄𝐴→ ̄𝐵, then 𝐶𝑅𝐴
𝑖+1 = 𝜌 ̄𝐴→ ̄𝐵(𝐶

𝑅𝐴
𝑖)

▶ If 𝑛 > 1, 𝑐𝑖+1 = {𝑄} and 𝐶𝑅𝐴
𝑄 is the RA query equivalent to 𝑄,

then 𝐶𝑖+1 = 𝐶𝑅𝐴
𝑖 ⋈ 𝐶𝑅𝐴

𝑄

We now treat the queries. Let 𝑄 be an LCRA query. We build the induc-
tion on the structure of 𝑄.

▶ (base case) If 𝑄 = 𝐿 then the RA query equivalent to 𝑄 is the one
equivalent to 𝐿 (see above for induction on linear clauses).

▶ If 𝑄 = 𝑄1 ∩ 𝑄2 and 𝑄𝑅𝐴
1 (resp. 𝑄𝑅𝐴

2) is the RA query equivalent
to 𝑄1 (resp. 𝑄2) then the RA query equivalent to 𝑄 is 𝑄𝑅𝐴

1 ∩ 𝑄𝑅𝐴
2

▶ If 𝑄 = 𝑄1 ∪ 𝑄2 and 𝑄𝑅𝐴
1 (resp. 𝑄𝑅𝐴

2) is the RA query equivalent
to 𝑄1 (resp. 𝑄2) then the RA query equivalent to 𝑄 is 𝑄𝑅𝐴

1 ∪ 𝑄𝑅𝐴
2

▶ If 𝑄 = 𝑄1 ∖ 𝑄2 and 𝑄𝑅𝐴
1 (resp. 𝑄𝑅𝐴

2) is the RA query equivalent
to 𝑄1 (resp. 𝑄2) then the RA query equivalent to 𝑄 is 𝑄𝑅𝐴

1 ∖𝑄𝑅𝐴
2

Thus, LCRA proposed as the relational processing engine of graph lan-
guages like Cypher and GQL is the good old RA in a slight disguise.

Notice that the definition of linear clauses and queries of LCRA are
mutually recursive as we can feed any query Q back into clauses via {Q}
(this corresponds to the CALL feature of Cypher and GQL). If this option
is removed, and linear clauses are not dependent on queries, we get a
simplified language sLCRA (simple LCRA). Specifically, in this language
linear clauses are given by the grammar L ∶∶= 𝑆 ∣ 𝜋A ∣ 𝜎𝜃 ∣ 𝜌𝐴→𝐴 ′ ∣ LL.
To see why the {Q} was necessary in the definition of LCRA, we prove

Proposition 5.1.2

sLCRA is strictly less expressive than LCRA (and thus RA).

Proof. At first, observe that simple linear clauses (without {Q}) can
only express conjunctive queries, as their semantics applies operations

https://neo4j.com
https://neo4j.com

5.2 GQL and SQL/PGQ: theoretical abstractions 103

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

[128]: PRQL (2024), Pipelined Rela-
tional Query Language

[129]: Wickham et al. (2023), dplyr: A
Grammar of Data Manipulation

⋈,𝜋, 𝜎 and renaming to base relations. Hence, queries of sLCRA are
Boolean combinations of conjunctive queries, known as BCCQs. While it
appears to be folklore that BCCQs are strictly contained in first-order
logic, we were unable to find the simple proof explicitly stated in the
literature, hence we offer one here.

Consider a vocabulary of a single unary predicate 𝑈 and databases 𝒟1
and 𝒟2 such that 𝒟1(𝑈) = {𝑎1} and 𝒟2(𝑈) = {𝑎1, 𝑎2} for two different
constants 𝑎1 and 𝑎2. Since 𝒟1 and 𝒟2 are homomorphically equivalent,
they agree on all conjunctive queries, and therefore on all BCCQs, but
they do not agree on first-order (and hence RA) query that checks if
relation 𝑈 has exactly one element.

5.1.3 The origins of linear composition
Linear composition appeared prominently in the design of Cypher [15]
as a way to bypass the lack of a compositional language for graphs.
Specifically, patternmatching (as we shall see shortly) transforms graphs
into relational tables, and other Cypher operations modify these tables.
If we have two such read-only queries𝐺 → R1 and𝐺 → R2 from graphs
to relations, it is not clear how to compose them. To achieve composi-
tion, Cypher read-only queries are of the form Q ∶ 𝐺 ×R → R′ (and its
read/write queries are of the form Q ∶ 𝐺×R → 𝐺 ′×R′). Thus, the com-
position of two queries Q1,Q2 ∶ 𝐺 ×R → R′ is their linear composition
Q1 Q2 which on a graph 𝐺 and table R returns Q2(𝐺,Q1(𝐺,R)).

Independently, the same approach was adopted by a relational lan-
guage PRQL [128], where P stands for “pipelined” but the design phi-
losophy is identical. For example one could write
FROM R FILTER A=1 JOIN:INNER S FILTER B=2 SELECT C, D

with each clause applied to the output of the previous clause. The above
query is the same as relational algebra query𝜋𝐶,𝐷(𝜎𝐵=2(𝜎𝐴=1(𝑅)⨝𝑆)).

While PRQL design is relations-to-relations, themotivation for pipelined
or linear composition comes from creating a database analog of dplyr

[129], a data manipulation library in R, that can be translated to SQL.
While dplyr’s operations are very much relational in spirit, it is inte-
grated into a procedural language, and hence the imperative style of
programming was inherited by PRQL.

5.2 GQL and SQL/PGQ: theoretical
abstractions

Equipped with the formal definition of linear composition relational
algebra LCRA, we can now provide simple theoretical abstractions Core
GQL of GQL and Core PGQ of SQL/PGQ. In a nutshell:

▶ They both share the same pattern matching language that turns
graphs into relations;

▶ Core PGQ corresponds to using RA on top of these relations, while
▶ Core GQL is obtained by using LCRA instead.

Of course it should be kept in mind that these abstractions capture the
essence of SQL/PGQ and GQL in the same way as relational algebra and
first-order logic capture the essence of SQL: they define a theoretical

https://neo4j.com
https://neo4j.com
https://neo4j.com
https://prql-lang.org
https://prql-lang.org
https://prql-lang.org

104 5 Putting together Pattern Matching and Relational Algebra

core that is easy to study, but real languages, be it 500 pages of the
GQL standards or thousands of pages of the SQL standard, have many
more features.

Throughout the rest of this Chapter, we use the standard definition of
property graphs, as presented in Chapter 2, with one simplification: we
consider only directed edges and denote the set of such edges by E.

5.2.1 Pattern Matching: Turning Graphs into Relations
Pattern matching is the key component of graph query languages. We
define the pattern matching language of Core GQL and Core PGQ as
follows:

𝜓 ∶∶= (𝑥) ∣ 𝑥→ ∣ 𝑥← ∣ 𝜓1 𝜓2 ∣ 𝜓𝑛..𝑚 ∣ 𝜓⟨𝜃⟩ ∣ 𝜓1 + 𝜓2

where

▶ 𝑥 ∈ Vars
▶ 0 ≤ 𝑛 ≤ 𝑚 ≤ ∞
▶ variables in node and edge patterns (𝑥), 𝑥→, and 𝑥← are optional,
▶ conditions are given by 𝜃 ∶∶= 𝑥.𝑘 = 𝑥′.𝑘 ′ ∣ 𝑥.𝑘 < 𝑥′.𝑘 ′ ∣ ℓ(𝑥) ∣

𝜃 ∨ 𝜃 ∣ 𝜃 ∧ 𝜃 ∣ ¬𝜃 where 𝑥, 𝑥′ ∈ Vars and 𝑘, 𝑘 ′ ∈ 𝒦;
▶ 𝜓1 +𝜓2 is only defined when the schemas sch (𝜓1) and sch (𝜓2)

are equal.

The schemas of patterns are defined by:

▶ sch((𝑥)) = sch(𝑥→) = sch(𝑥←) ∶∶= {𝑥};
▶ sch (𝜓1 + 𝜓2) ∶∶= sch (𝜓1)
▶ sch (𝜓1 𝜓2) ∶∶= sch (𝜓1) ∪ sch (𝜓2)
▶ sch (𝜓𝑛..𝑚) ∶∶= ∅
▶ sch (𝜓⟨𝜃⟩) ∶∶= sch (𝜓)

Finally, we specify outputs of patterns, i.e., variables and properties of
graph elements that form the table returned by a pattern. Let Ω be a
(possibly empty) tuple whose elements are either variables 𝑥 or terms
𝑥.𝑘. Then a pattern with output is an expression 𝜋Ω such that every
variable present in Ω is in sch (𝜓).

Semantics To define the semantics, we set Values as the union of
Const ∪ 𝒩 ∪ E. The semantics of path patterns 𝜓, with respect to a
graph 𝐺, is a set of pairs (𝑝, 𝜇) where 𝑝 is a path and 𝜇 is a mapping
sch (𝜓) → Values. Recall that we write 𝜇∅ for the unique empty map-
ping with dom(𝜇) = ∅.

For the semantics of path patterns with output 𝜓Ω we define the projec-
tion ∶ Ω → Values of 𝜇 on Ω as :

𝜇Ω(𝜔) ∶∶= {
𝜇(𝑥) if 𝜔 = 𝑥 ∈ Vars
𝛿(𝜇(𝑥), 𝑘) if 𝜔 = 𝑥.𝑘 .

Full definitions are presented in Figure 5.2. For node and edge patterns
with no variables, the mapping part of the semantics changes to 𝜇∅.
The definition of ⊧ is standard: 𝜇 ⊧ 𝑥.𝑘 = 𝑥′.𝑘 ′ if both 𝛿(𝜇(𝑥), 𝑘) and
𝛿(𝜇(𝑥′), 𝑘 ′) are defined and equal (likewise for <), and 𝜇 ⊧ ℓ(𝑥) if
ℓ ∈ lab(𝜇(𝑥)), then extended to Boolean connectives ∧,∨,¬.

5.2 GQL and SQL/PGQ: theoretical abstractions 105

[96]: Deutsch et al. (2022), “Graph Pat-
tern Matching in GQL and SQL/PGQ”
[102]: Francis et al. (2023), “GPC: A
Pattern Calculus for Property Graphs”
[127]: Francis et al. (2023), “A Re-
searcher’s Digest of GQL”

For the reader familiar with Cypher and/or GQL, we explain how our
formalization compares with these languages’ patterns.

▶ (𝑥) is a node pattern that binds the variable 𝑥 to a node;
▶

𝑥→ and 𝑥← are forward edge and backward edge patterns, also bind
𝑥 to the matched edge;

▶ 𝜓1 𝜓2 is the concatenation of patterns,
▶ 𝜓𝑛..𝑚 is the repetition of 𝜓 between 𝑛 and 𝑚 times (with a possi-

bility of 𝑚 = ∞)
▶ 𝜓⟨𝜃⟩ corresponds to WHERE in patterns, conditions involve (in)equal-

ities between property values and their Boolean combinations;
▶ 𝜓1 + 𝜓2 is the union of patterns;
▶ 𝜓Ω corresponds to the output forming clauses RETURN of Cypher

and GQL and COLUMNS of SQL/PGQ, with Ω listing the attributes
of returned relations.

Compared to GQL patterns as described in [96, 102, 127] and Chap-
ters 3 and 4, we make some simplifications. First, the mapping part of
any repeated pattern 𝜓𝑛..𝑚 is empty. This is because in GQL repeated
patterns return lists of bindings of variables, resulting in relations that
violate the first normal form (1NF), which states that all relation ele-
ments must be atomic values. We believe that for the simple formaliza-
tion in the spirit of relational algebra we ought to stay with 1NF rela-
tions, adding further complications (nesting, bags, etc) further down
the road.

Second, we do not impose any conditions on paths that can be matched.
In GQL and PGQ they can be simple paths (no repeated nodes), or trails
(no repeated edges), or shortest paths. In GQL as well as in Cypher,
paths themselves may be returned, and such restrictions ensure finite-
ness of output. Since we can only return graph nodes or edges, or their
properties, we never have the problem of infinite outputs, and thus we
chose not to overcomplicate the definition of core languages by deviat-
ing from flat tables as outputs.

J(𝑥)K𝐺 ∶∶= {(path(𝑛), {𝑥 ↦ 𝑛}) ∣ 𝑛 ∈ 𝒩}
r

𝑥→
z

𝐺
∶∶= {(path(𝑛1, 𝑒, 𝑛2), {𝑥 ↦ 𝑒}) | 𝑒 ∈ E, src(𝑒) = 𝑛1, tgt(𝑒) = 𝑛2}

r
𝑥←

z

𝐺
∶∶= {(path(𝑛2, 𝑒, 𝑛1), {𝑥 ↦ 𝑒}) | 𝑒 ∈ E, src(𝑒) = 𝑛1, tgt(𝑒) = 𝑛2}

q
𝜓1 + 𝜓2

y
𝐺 ∶∶=

q
𝜓1

y
𝐺 ∪

q
𝜓2

y
𝐺

q
𝜓1 𝜓2

y
𝐺 ∶∶= {(𝑝1 ⋅ 𝑝2, 𝜇1⋈𝜇2) | (𝑝1, 𝜇1) ∈

q
𝜓1

y
𝐺 , (𝑝2, 𝜇2) ∈

q
𝜓2

y
𝐺 , 𝜇1∼𝜇2, 𝑝1‖𝑝2}

J𝜓⟨𝜃⟩K𝐺 ∶∶= {(𝑝, 𝜇) ∈ J𝜋K𝐺 ∣ 𝜇 ⊧ 𝜃}

J𝜓𝑛..𝑚K𝐺 ∶∶=
𝑚

⋃
𝑖=𝑛

J𝜓K𝑖𝐺 where

J𝜓K0𝐺 ∶∶= {(path(𝑛), 𝜇∅) | 𝑛 ∈ 𝒩}

J𝜓K𝑛𝐺 ∶∶= {(𝑝1 ⋯𝑝𝑛, 𝜇∅) | ∃𝜇1,… , 𝜇𝑛 ∶ (𝑝𝑖, 𝜇𝑖) ∈ J𝜓K𝐺 and 𝑝𝑖‖𝑝𝑖+1 for all 𝑖 < 𝑛} , 𝑛 > 0
q
𝜓Ω

y
𝐺 ∶∶= {𝜇Ω ∣ ∃𝑝 ∶ (𝑝, 𝜇) ∈ J𝜓K𝐺}

Figure 5.2: Semantics of patterns and patterns with output

https://neo4j.com
https://neo4j.com
https://neo4j.com

106 5 Putting together Pattern Matching and Relational Algebra

Third, in disjunctions 𝜓1 + 𝜓2 we require that the schemas of 𝜓1 and
𝜓2 be the same. Otherwise, the output of the disjunction would be the
outer union of the outputs of 𝜓1 and 𝜓2, and thus populated with nulls
for variables that do not belong to both schemas. Again, we believe that
nulls is not the feature that needs to be present in the first formalization
in the spirit of RA.

In whatmight look like a simplification compared to GQL and SQL/PGQ,
we do not have explicit joins of patterns, i.e., 𝜓1, 𝜓2 which result in
the semantics being tuples of paths and an associated binding, i.e.,q
𝜓1, 𝜓2

y
𝐺 = {((𝑝1, 𝑝2), 𝜇1⋈𝜇2) ∣ (𝑝𝑖, 𝜇𝑖) ∈

q
𝜓𝑖

y
𝐺 , 𝑖 = 1, 2}. Joins will

however be definable with RA operations since we allow joins over ta-
bles

q
𝜓Ω

y
𝐺, in particular when Ω contains all the variables in sch (𝜓).

5.2.2 GQL Vs. PGQ

Syntax

Assume that for each variable 𝑥 ∈ Vars and each key 𝑘 ∈ 𝒦, both
𝑥 and 𝑥.𝑘 belong to the set of attributes 𝒜. For each pattern 𝜓 and
each output specification Ω, we introduce a relation symbol R, whose
set of attributes are the elements of Ω. Let Pat contain all such relation
symbols. Then:

▶ Core PGQ is defined as RA(Pat)
▶ Core GQL is defined as LCRA(Pat)

Semantics

We can assume without loss of generality that Values ⊆ Const. This
ensures that results of pattern matching are relations of Pat:

Proposition 5.2.1

For every path pattern with output 𝜓Ω and every graph database
𝐺, the set

q
𝜓Ω

y
𝐺 is an instance of relation 𝑅𝜓,Ω from Pat.

With this, the semantics of Core GQL and PGQ is a straightforward
extension of the semantics of RA and LCRA as we only need to define
the semantics of base relations by

r
𝑅𝜓,Ω

z

𝐺
∶∶=

q
𝜓Ω

y
𝐺

and then use the semantic rules for patterns from Fig. 5.2 and for RA,
from Chapter 2, and LCRA from Section 5.1.

As an immediate consequence of Theorem 5.1.1 we have:

Corollary 5.2.2

The languages Core PGQ and Core GQL have the same expressive
power.

5.3 Case study 1: Expressiveness of Pattern Matching 107

5.2.3 Example
We use a simplified query based on the medieval money laundering
query on page 97. It looks for someone who has two friends in a city dif-
ferent from theirs, and outputs the person’s name and account (Porthos
and a2 in our example):

MATCH (x)-[:Friends]->(y)-[:Friends]->(z), (y)-[:Owns]->(acc_y)

FILTER (y.city) <> (x.city) AND (x.city=z.city)

RETURN y.name AS name, acc_y AS acc

The equivalent Core GQL formula is

𝑅𝜓1,Ω1
𝑅𝜓2,Ω2

𝜎𝑦.city≠𝑥.city∧𝑥.city=𝑧.city 𝜋𝑦.name,acc_𝑦 𝜌𝑦.name→name 𝜌𝑎𝑐𝑐_𝑦→acc

where

𝜓1 ∶∶= ((𝑥)
𝑒1→ (𝑦) (𝑦)

𝑒2→ (𝑧))⟨Friends(𝑒1) ∧ Friends(𝑒2)⟩
𝜓2 ∶∶= ((𝑦)

𝑒3→ (acc_𝑦))⟨Owns(𝑒3)⟩
Ω1 ∶∶= (𝑥, 𝑦, 𝑧, 𝑥.city, 𝑦.city, 𝑧.city)
Ω2 ∶∶= (𝑦, acc_𝑦) .

5.3 Case study 1: Expressiveness of Pattern
Matching

In this section we concentrate on the expressiveness of pattern match-
ing, specifically negative results, that certain patterns cannot be ex-
pressed in a natural way in the pattern language of SQL/PGQ and GQL.
To analyze the expressiveness of patterns, there is a natural way of
defining queries given by them, in the spirit of RPQs which define pairs
of nodes connected by a path. Take any pattern 𝜓 and turn it into a
pattern with output

((𝑥𝑠) 𝜓 (𝑥𝑡))𝑥𝑠,𝑥𝑡 (5.1)

that will output pairs of source and target nodes 𝑥𝑠 and 𝑥𝑡 connected
by a path satisfying 𝜓. If we are given a query that maps a property
graph 𝐺 (possibly from a class of graphs𝒞) to a pair of nodes, we say it
is expressible by a pattern 𝜓 if its output is given by pattern with output
on every graph (from 𝒞).

To see what types of patterns are beyond GQL and PGQ capabilities,
notice the idea of their design: we first test local properties (e.g., the
existence of edges between certain nodes) and then, if necessary, repeat
those patterns to test for reachability and similar properties. It thus
appears intuitive that testing a condition on a path as a whole will be
out of reach. Our sample query for this will be checking if all nodes
on a path have different values of some given property (e.g., “find a
path of transfers between two accounts where all transfer amounts are
different”).

What is more interesting however, as it reveals deficiencies of the de-
sign of GQL and PGQ patterns, is that testing for local conditions under
repetition is highly sensitive to whether we specify conditions on nodes
or edges. For example:

▶ we can check, by a very simple pattern, if there is a path of trans-
fers between two accounts where balances in intermediary ac-
counts (values held in nodes) increase, but

108 5 Putting together Pattern Matching and Relational Algebra

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

▶ we cannot check, by natural patterns, if there is a path of transfers
between two accounts where amounts of transfers (values held
in edges) increase.

Of course what it means to be natural in this context will be precisely
defined. This is a type of inexpressibility result that points to a defi-
ciency in language design that ought to be fixed.

We now start with these results, before looking at conditions on paths
as a whole. We conclude this section by adjusting our definition of pat-
terns to model Cypher patterns as they originally appeared [15] and
confirm a previously unproven folklore result that Cypher patterns can-
not express all RPQs.

5.3.1 Repeated local conditions
To capture the queries we just outlined, we define two queries on any
property graph 𝐺:

▶ QN
< returns endpoints of a path along which the value of property

𝑘 of nodes increases. Specifically, it returns pairs (𝑢0, 𝑢𝑛) of nodes
such that there is path path(𝑢0, 𝑒1, 𝑢1,… , 𝑒𝑛, 𝑢𝑛) so that 𝑢0.𝑘 <
𝑢1.𝑘 < ⋯ < 𝑢𝑛.𝑘

▶ QE
< returns endpoints of a path along which the value of property

𝑘 of edges increases. Specifically, it returns pairs (𝑛1, 𝑛𝑚) of nodes
such that there is path path(𝑢0, 𝑒1, 𝑢1,… , 𝑒𝑛, 𝑢𝑚) so that 𝑒1.𝑘 <
𝑒2.𝑘 < ⋯ < 𝑒𝑚.𝑘

It is a simple observation that 𝑄N
< is expressible by the Core PGQ and

GQL pattern
((𝑥) → (𝑦)⟨𝑥.𝑘 < 𝑦.𝑘⟩)0..∞ .

However, the same approach does not work for edges. If we (erroneously)
try to express 𝑄E

< by

(() 𝑥→ ()
𝑦
→ ()⟨𝑥.𝑘 < 𝑦.𝑘⟩)

0..∞

it fails, as on the input () 3→ () 4→ () 1→ () 2→ () (where the numbers
on the edges are values of property 𝑘) it returns the start and the end
node of the path, even though values in edges do not increase. This is
explained by the semantics of path concatenation, as two paths concate-
nate if the last node of the first path is the same as the first node of the
second path, and therefore conditions on edges in two concatenated or
repeated paths are completely “local” to those paths.

In some cases, where graphs are of special shape, we can obtain the
desired patterns by using “tricks” a normal query language user would
be unhappy to resort to. Specifically, consider graphs whose underlying
graph structures are just paths. That is, we look at annotated paths,
which are of the form

𝑣0 … 𝑣𝑛
𝑒0 𝑒𝑛−1

where 𝑣0,… , 𝑣𝑛 are distinct nodes, 𝑒0,… , 𝑒𝑛−1 are distinct edges (for
𝑛 > 0), and each edge 𝑒𝑖 has the property 𝑒𝑖.𝑘 defined. Then define the
pattern

𝜓E
< ∶∶= (𝑥𝑠) (((𝑢)

𝑥→ (𝑧)
𝑦
→ (𝑣) 𝑤← (𝑧))⟨𝑥.𝑘 < 𝑦.𝑘⟩)

0..∞
(𝑥𝑡)

5.3 Case study 1: Expressiveness of Pattern Matching 109

[130]: Hell et al. (2004),Graphs and ho-
momorphisms

Proposition 5.3.1

The pattern with output (𝜓E
<){𝑥𝑠,𝑥𝑡} expresses 𝑄E

< on annotated
paths.

Intuitively, the forward edge
𝑦
→ serves as a look-ahead that enables

checking whether the condition holds, and the backward edge 𝑤← en-
ables us to continue constructing the path in the next iteration from the
correct position (𝑧).

This way of expressing queries is very unnatural however. It assumes a
restriction on a graph that is a directed path with forward edges only,
but then the pattern uses backward edges, as if we traversed an oriented
path (in which edges can go in either direction [130]). This of course
is used to traverse the same forward edge back and forth.

The question is: can 𝑄E
< be expressed in a natural way? We formalize

being natural by means of one-way path patterns 𝜌 defined by a restric-
tion of the grammar:

𝜓 ∶∶= (𝑥) ∣ 𝑥→ ∣ 𝜓 + 𝜓 ∣ 𝜓𝑛..𝑚 ∣ 𝜓⟨𝜃⟩ ∣ 𝜓1 𝜓2

where 𝜓1 𝜓2 is defined only when sch (𝜓1) ∩ sch (𝜓2) = ∅ and 𝑥 is
optional. The omission of backward edges 𝑥← in one-way patterns is
quite intuitive. The reason for the restriction on variable sharing in con-
catenated patterns is that backward edges can be simulated by simply
repeating variables, as we have done above in 𝜓E

<.

If there is a natural way of writing the 𝑄E
< query in PGQ and GQL, one

would expect it to be done without backward edges. However, this is
not the case.

Theorem 5.3.2

No one-way path pattern query expresses 𝑄E
<.

To give the idea behind the proof, assume by contradiction that one
can express 𝑄E

< by a pattern 𝜋. Since, by definition, there are infinitely
many annotated paths that conform to 𝑄E

<, the pattern 𝜋 must contain
an unbounded repetition. However, since the semantics disregards vari-
ables that occur under unbounded repetition, transferring information
from one iteration to the other is restricted. This enables us to repeat
parts of the annotated path while maintaining the same semantics, and
in particular, conforming to 𝜋. Nevertheless, due to the definition of 𝑄E

<,
repeating non-empty parts of the annotated path breaks the condition
which leads to the desired contradiction.

To prove the above formally, we start by defining the language of pat-
terns on annotated paths and showing that the words that belong to
such a language must conform to specific shapes, in particular when
the pattern contains an unbounded repetition.

For an annotated path 𝑝, we define wp as the sequence 𝑒0.𝑘⋯𝑒𝑛−1.𝑘.

110 5 Putting together Pattern Matching and Relational Algebra

Lemma 5.3.3

For every one-way path pattern 𝜓 and annotated paths 𝑝, 𝑝′ with
𝑤𝑝′ = 𝑤𝑝, if (𝑝, 𝜇) ∈ J𝜓K𝑝 then there is 𝜇′ such that (𝑝′, 𝜇′) ∈ J𝜓K𝑝′ .

Proof. Assume that (𝑝, 𝜇) ∈ J𝜓K𝑝. Let us denote 𝑝 by

𝑣0 … 𝑣𝑛
𝑒0 𝑒𝑛−1

and 𝑝′ by

𝑣′0 … 𝑣′𝑛
𝑒′0 𝑒′𝑛−1

(Note that they have the same length since 𝑤𝑝 = 𝑤𝑝′ .) We denote by
𝑓 the mapping defined by 𝑓(𝑣𝑖) ∶∶= 𝑣′𝑖 for 0 ≤ 𝑖 ≤ 𝑛, and 𝑓(𝑒𝑖) = 𝑒′𝑖
for 0 ≤ 𝑖 ≤ 𝑛 − 1. We then define 𝜇′ by setting dom(𝜇′) = dom(𝜇)
and 𝜇′(𝑥) ∶∶= 𝑓(𝜇(𝑥)). It can be shown by induction on 𝜓 that if
(𝑝, 𝜇) ∈ J𝜓K𝑝 then (𝑝′, 𝜇′) ∈ J𝜓K𝑝′ .

For two annotated paths 𝑝 ∶∶=
𝑣0 … 𝑣𝑛

𝑒0 𝑒𝑛−1

and 𝑝′ ∶∶=
𝑣′0 … 𝑣′𝑛′

𝑒′0 𝑒′𝑛′−1

we use p′ ⊑ p to denote that
𝑝′ is contained within 𝑝. Formally, 𝑝′ ⊑ 𝑝 if there is 𝑗 such that 𝑣′0 =
𝑣𝑗,… , 𝑣′𝑛′ = 𝑣𝑗+𝑛′ , and 𝑒′0 = 𝑒𝑗,… , 𝑒′𝑛′−1 = 𝑒𝑗+𝑛′−1.

Lemma 5.3.4

For every one-way path pattern 𝜓 and annotated paths 𝑝, 𝑝′ where
𝑝′ ⊑ 𝑝,
(1) if there is 𝜇 such that (𝑝′, 𝜇) ∈ J𝜓K𝑝 then (𝑝′, 𝜇) ∈ J𝜓K𝑝′
(2) J𝜓K𝑝′ ⊆ J𝜓K𝑝

Proof. We use the same notation as above and show the claim by a
mutual induction on 𝜓. We skip the induction basis since it is trivial,
and refer to the following interesting cases in the induction step:

(1) Let 𝜓 = 𝜓1𝜓2 and assume (𝑝′, 𝜇) ∈
q
𝜓1𝜓2

y
𝑝. By definition, there

are 𝑝1, 𝑝2, 𝜇1, 𝜇2 such that (𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝, (𝑝2, 𝜇2) ∈

q
𝜓2

y
𝑝, 𝑝2

concatenates to 𝑝1, 𝜇1 ∼ 𝜇2 and 𝑝′ = 𝑝1𝑝2. Notice that 𝑝1 ⊑ 𝑝′ and
𝑝2 ⊑ 𝑝′, and hence also 𝑝1𝑝2 ⊑ 𝑝′. By applying induction hypothesis
(1), we get (𝑝1, 𝜇1) ∈

q
𝜓1

y
𝑝1
, (𝑝2, 𝜇2) ∈

q
𝜓2

y
𝑝2
. By applying induc-

tion hypothesis (2) we get (𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝1𝑝2

, (𝑝2, 𝜇2) ∈
q
𝜓2

y
𝑝1𝑝2

.
This allows us to conclude that, by definition, (𝑝1𝑝2, 𝜇1 ⋈ 𝜇2) ∈q
𝜓1𝜓2

y
𝑝1𝑝2

.

5.3 Case study 1: Expressiveness of Pattern Matching 111

(2) If 𝜓 = 𝜓1𝜓2 then

q
𝜓1𝜓2

y
𝑝′ =

⎧⎪⎪
⎨
⎪⎪
⎩

(𝑝1 𝑝2, 𝜇1 ⋈ 𝜇2)

|||

|

(𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝′ ,

(𝑝2, 𝜇2) ∈
q
𝜓2

y
𝑝′ ,

𝜇1∼𝜇2,
𝑝2 concatenates to 𝑝1

⎫⎪⎪
⎬
⎪⎪
⎭

.

By induction hypothesis (2),
q
𝜓1

y
𝑝′ ⊆

q
𝜓1

y
𝑝 and

q
𝜓2

y
𝑝′ ⊆

q
𝜓2

y
𝑝.

Thus,

q
𝜓1𝜓2

y
𝑝′ ⊆

⎧⎪⎪
⎨
⎪⎪
⎩

(𝑝1 𝑝2, 𝜇1 ⋈ 𝜇2)

|||

|

(𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝,

(𝑝2, 𝜇2) ∈
q
𝜓2

y
𝑝,

𝜇1∼𝜇2,
𝑝2 concatenates to 𝑝1

⎫⎪⎪
⎬
⎪⎪
⎭

.

By definition,
q
𝜓1𝜓2

y
𝑝′ ⊆

q
𝜓1𝜓2

y
𝑝.

Let 𝜓 be a path pattern. We define the language of 𝜓 as:

ℒ(𝜓) = {𝑤 ∣ ∀𝑝 ∶ (𝑤 = 𝑤𝑝 → ∃𝜇 ∶ (𝑝, 𝜇) ∈ J𝜓K𝑝)}

For concatenation, we have:

Lemma 5.3.5

For every one-way path patterns 𝜓1, 𝜓2, the following equivalence
holds: ℒ(𝜓1𝜓2) = ℒ(𝜓1)ℒ(𝜓2).

Proof. ⊆ direction: Assume 𝑤 ∈ ℒ(𝜓1𝜓2). By definition, for every
𝑝 such that 𝑤 = 𝑤𝑝 there is 𝜇 such that (𝑝, 𝜇) ∈

q
𝜓1𝜓2

y
𝑝. In turn,

by definition of
q
𝜓1𝜓2

y
𝑝 we can conclude that there are paths 𝑝1, 𝑝2

such that 𝑝 = 𝑝1𝑝2 and there are 𝜇1, 𝜇2 for which (𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝,

(𝑝2, 𝜇2) ∈
q
𝜓2

y
𝑝, and 𝜇1∼𝜇2. We set 𝑤1 = 𝑤𝑝1

and 𝑤2 = 𝑤𝑝2
. For 𝑝1

we already saw that there is a 𝜇1 such that (𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝. Let 𝑝

′ be
such that 𝑤1 = 𝑤𝑝1

= 𝑤𝑝′ . By Lemma 5.3.3, we can conclude that there
is 𝜇′ such that (𝑝′, 𝜇′) ∈

q
𝜓1

y
𝑝′ . Hence, by definition 𝑤1 ∈ ℒ(𝜓1). We

can show similarly that 𝑤2 ∈ ℒ(𝜓2), which completes this direction.

⊇ direction: Assume that 𝑤 ∈ ℒ(𝜓1)ℒ(𝜓2). That is, there are 𝑤1, 𝑤2
such that 𝑤 = 𝑤1𝑤2 and 𝑤1 ∈ ℒ(𝜓1), 𝑤2 ∈ ℒ(𝜓2). Let 𝑝 be a
path such that 𝑤𝑝 = 𝑤 = 𝑤1𝑤2. Let 𝑝1, 𝑝2 be its subpaths such that
𝑝 = 𝑝1𝑝2 and 𝑤𝑝1

= 𝑤1, 𝑤𝑝2
= 𝑤2. Since 𝑤𝑝1

= 𝑤1 there are 𝜇1, 𝜇2

such that (𝑝1, 𝜇1) ∈
q
𝜓1

y
𝑝1
, (𝑝2, 𝜇2) ∈

q
𝜓2

y
𝑝2
. Since 𝜓 is a one-way

path pattern, it holds that dom(𝜇1) ∩ dom(𝜇2) = ∅, and thus 𝜇1∼𝜇2.
Since 𝑝1, 𝑝2 ⊑ 𝑝, applying Lemma 5.3.4 (2) enables us to conclude that
(𝑝1, 𝜇1) ∈

q
𝜓1

y
𝑝, (𝑝2, 𝜇2) ∈

q
𝜓2

y
𝑝. By definition of

q
𝜓1𝜓2

y
𝑝, we can

conclude that (𝑝1𝑝2, 𝜇1 ⋈ 𝜇2) ∈
q
𝜓1𝜓2

y
𝑝. This suffices to conclude

that 𝑤 ∈ ℒ(𝜓1𝜓2), which completes this direction.

For repetition, we have:

112 5 Putting together Pattern Matching and Relational Algebra

Lemma 5.3.6

For every one-way path pattern 𝜓, ℒ(𝜓2) = ℒ(𝜓)ℒ(𝜓).

Proof. ⊆ direction: Assume that 𝑤 ∈ ℒ(𝜓2) and let 𝑝 be a path with
𝑤 = 𝑤𝑝. By definition

q
𝜓2y

𝑝 = {(𝑝1𝑝2, ∅) |
∃𝜇1, 𝜇2 ∶
(𝑝1, 𝜇1) ∈ J𝜓K𝑝, (𝑝2, 𝜇2) ∈ J𝜓K𝑝,
𝑝2 concatenates to 𝑝1

}

Therefore, 𝑝 = 𝑝1𝑝2 for some 𝑝1, 𝑝2 such that there are 𝜇1, 𝜇2 where
(𝑝1, 𝜇1), (𝑝2, 𝜇2) ∈ J𝜓K𝑝.
Let us denote 𝑤1 ∶∶= 𝑤𝑝1

and 𝑤2 ∶∶= 𝑤𝑝2
. It holds that 𝑤 = 𝑤1𝑤2

and it suffices to show that 𝑤1, 𝑤2 ∈ ℒ(𝜓). For 𝑝1 there is 𝜇1 such that
(𝑝1, 𝜇1) ∈ J𝜓K𝑝. Due to Lemma 5.3.4 (1), since 𝑝1 ⊑ 𝑝we can conclude
that (𝑝1, 𝜇1) ∈ J𝜓K𝑝1 . Due to Lemma 5.3.3, for every 𝑝 with 𝑤𝑝 = 𝑤1 it
holds that (𝑝, 𝜇1) ∈ J𝜓K𝑝. Hence 𝑤1 ∈ ℒ(𝜓). We show similarly that
𝑤2 ∈ ℒ(𝜓), which completes this direction.

⊇ direction: Assume that𝑤1, 𝑤2 ∈ ℒ(𝜓). Let 𝑝1, 𝑝2 be paths such that
𝑤𝑝1

= 𝑤1, 𝑤𝑝2
= 𝑤2. By definition of ℒ(𝜓), there are 𝜇1, 𝜇2 such that

(𝑝1, 𝜇1) ∈ J𝜓K𝑝1 and (𝑝2, 𝜇2) ∈ J𝜓K𝑝2 . If 𝑝2 does not concatenate to 𝑝1,
then by Lemma 5.3.3 we can change its first node id to match the last
node id of 𝑝1. Thus, we can assume that 𝑝2 concatenates to 𝑝1. Due
to Lemma 5.3.4 (2), it holds that (𝑝1, 𝜇1) ∈ J𝜓K𝑝 and (𝑝2, 𝜇2) ∈ J𝜓K𝑝
where 𝑝 = 𝑝1𝑝2. Therefore, (𝑝1𝑝2, ∅) ∈

q
𝜓2y

𝑝 by definition which
completes this direction.

We can further generalize this lemma by replacing 2 with any 𝑘 ≥ 1.

Lemma 5.3.7

For every one-way path patterns 𝜓, ℒ(𝜓𝑘) = (ℒ(𝜓))𝑘, 𝑘 ≥ 1

Proof. The claim can be shown by induction on 𝑘 by combining Lem-
mas 5.3.5 and 5.3.6.

To apply the above lemmas to our settings we first present a Normal
Form for path patterns. We say that a one-way path pattern is in +NF
if + occurs only under unbounded repetition.

Lemma 5.3.8

For every one-way path pattern 𝜓 there is a one-way path pattern
𝜓′ in +NF such that for every annotated path 𝑝, J𝜓K𝑝 = J𝜓′K𝑝.

Proof. We show that there are translation rules that preserve semantics
on annotated paths. This translation tr is described inductively.

▶ tr ((𝑥)) ∶∶= (𝑥)
▶ tr(𝑥→) ∶∶= 𝑥→

5.3 Case study 1: Expressiveness of Pattern Matching 113

▶ tr(𝑥←) ∶∶= 𝑥←
▶ tr (𝜓1 + 𝜓2) ∶∶= 𝜓1 + 𝜓2
▶ tr (𝜓1𝜓2) ∶∶= +1≤𝑖≤𝑘,1≤𝑗≤𝑚 𝜌𝑖𝜌

′
𝑗 where tr (𝜓1) ∶∶= 𝜌1 +⋯+ 𝜌𝑘

and tr (𝜓2) ∶∶= 𝜌′
1 +⋯+ 𝜌′

𝑚
▶ When𝑚 < ∞we define tr (𝜓𝑛..𝑚) ∶∶= tr(𝜓⋯𝜓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times

)+⋯+tr(𝜓⋯𝜓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚 times

)

▶ When 𝑚 = ∞ we define tr (𝜓𝑛..𝑚) ∶∶= 𝜓𝑛..𝑚

▶ tr(𝜓⟨𝜃⟩) ∶∶= tr (𝜓)⟨𝜃⟩

It can be shown that the output of tr is indeed in +NF and the equiva-
lence of the semantics of 𝜓 and tr(𝜓) can be shown by induction based
on Lemmas 5.3.7 and 5.3.5.

We are now ready to move to the main proof.

Proof of Theorem 5.3.2. Let 𝜓 be a one-way path pattern in +NF of
the form 𝜓1 + ⋯ + 𝜓𝑚. By pigeonhole principle, if ℒ(𝜓) is infinite
then there is at least one 𝜓𝑖 with infinite ℒ(𝜓𝑖). Since 𝜓 is in +NF
we can denote 𝜓𝑖 as 𝜌1𝜌

𝑛..∞𝜌2. By Lemmas 5.3.5 and 5.3.7, we know
that ℒ(𝜓𝑖) = ℒ(𝜌1)ℒ(𝜌)𝑛..∞ℒ(𝜌2). Let 𝑤 be a word in ℒ(𝜌)𝑛..∞.
As 𝑤 ∈ ℒ(𝜌)𝑛..∞, then 𝑤𝑤 ∈ ℒ(𝜌)𝑛..∞ as well, i.e. there exists a pair
(𝑝, 𝜇) ∈ J𝜓K𝑝 such that 𝑤𝑤 is a subword of 𝑤𝑝. However, as 𝑤𝑤 repeats
each value of 𝑤 twice, it cannot satisfy the condition.

5.3.2 Global conditions
Previously, we discussed repeated local conditions: intuitively, to see if
values in nodes or edges increase, we need to look at two consecutive
nodes or edges in a path, and repeat that pattern. There are, however,
conditions that cannot be checked without examining a path as a whole.
A canonical example of such a condition is whether all values of a given
property of nodes are distinct. Formally, we define this query as

▶ QN
≠ returns pairs (𝑢0, 𝑢𝑛) of nodes such that there is path

path(𝑢0, 𝑒1, 𝑢1,… , 𝑒𝑛, 𝑢𝑛) so that 𝑢𝑖.𝑘 ≠ 𝑢𝑗.𝑘 for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Similarly to what we saw in the previous section, one-way path patterns
do not have sufficient power to express such queries.

Theorem 5.3.9

No one-way path pattern expresses 𝑄N
≠ .

First, notice that if a path contains a cycle, it cannot be an answer to
𝑄N

≠ as the value in the node the path comes back to would be repeated
(at least) twice, so we can safely consider only ”path shaped” graphs
with values on the nodes. Formally, we look at node-annotated paths of
the form

𝑣0 … 𝑣𝑛
𝑒0 𝑒𝑛−1

where 𝑣0,… , 𝑣𝑛 are distinct nodes, 𝑒0,… , 𝑒𝑛−1 are distinct edges (for
𝑛 > 0) and each 𝑣𝑖 has the property 𝑣𝑖.𝑘 defined. The node-value word
of a node-annotated path is defined as 𝑤𝑁

𝑝 = 𝑣1.𝑘 ⋅ 𝑣2.𝑘⋯𝑣𝑛.𝑘.

114 5 Putting together Pattern Matching and Relational Algebra

As for the proof of Theorem 5.3.2, we define the node-value language of
a one-way path pattern 𝜓 as ℒ𝑁(𝜓) = {𝑤 ∣ ∃(𝑝, 𝜇) ∈ J𝜓K𝑝 , 𝑤

𝑁
𝑝 = 𝑤}.

Lemma 5.3.10

For every one-way infinitely-repeated path pattern𝜓𝑛..∞ , if a word
𝑤 ∈ ℒ𝑁(𝜓𝑛..∞) then the word 𝑤𝑤 also belongs to ℒ𝑁(𝜓𝑛..∞).

Proof. Let 𝑤 be a word in ℒ𝑁(𝜓𝑛..∞). By definition of ℒ𝑁, there ex-
ists a path 𝑝 = path(𝑣1, 𝑒1, 𝑣2,… 𝑒𝑘−1, 𝑣𝑘) and a mapping 𝜇 such that
(𝑝, 𝜇) ∈ J𝜓𝑛..∞K𝑝 and 𝑤𝑁

𝑝 = 𝑤. Let 𝑝′ = path(𝑣′1, 𝑒
′
1,… 𝑒′𝑘−1, 𝑣

′
𝑘) be a

copy of 𝑝 with fresh ids for all elements (nodes and edges) except for
𝑣′1 for which 𝑖𝑑(𝑣′1) = 𝑖𝑑(𝑣𝑘). By definition of path concatenation, 𝑝
and 𝑝′ concatenate and, since (𝑝, 𝜇) ∈ J𝜓𝑛..∞K𝑝, we can construct a
mapping 𝜇′ such that (𝑝′, 𝜇′) ∈ J𝜓𝑛..∞K𝑝′ as follows: 𝜇′(𝑥) = 𝑣′𝑖 when-
ever 𝜇(𝑥) = 𝑣𝑖 for all 0 ≤ 𝑖 ≤ 𝑘 and 𝜇′(𝑦) = 𝑒′𝑗 whenever 𝜇(𝑦) = 𝑒𝑗
for all 0 ≤ 𝑗 < 𝑘. As (𝑝, 𝜇) ∈ J𝜓𝑛..∞K𝑝 (resp. (𝑝′, 𝜇′) ∈ J𝜓𝑛..∞K𝑝′),
it can easily be shown by induction that (𝑝, 𝜇) ∈ J𝜓𝑛..∞K𝑝‖𝑝′ (resp.
(𝑝′, 𝜇′) ∈ J𝜓𝑛..∞K𝑝‖𝑝′) and, by definition of the semantics of repeti-
tion, we can conclude that (𝑝‖𝑝′, 𝜇∅) ∈ J𝜓𝑛..∞K𝑝‖𝑝′ and so we get that
𝑤𝑁

𝑝 ⋅ 𝑤𝑁
𝑝′ = 𝑤 ⋅ 𝑤 belongs to ℒ𝑁(𝜓𝑛..∞).

Lemma 5.3.11

For any one-way path patterns𝜓,𝜓′, 𝜓″ such thatℒ𝑁(𝜓′𝜓𝜓″) ≠ ∅
and any node-valueword𝑤, if𝑤 ∈ ℒ𝑁(𝜓) then there exists a node-
annotated path 𝑝 such that 𝑤𝑁

𝑝 ∈ ℒ𝑁(𝜓′𝜓𝜓″) and 𝑤 is a subword
of 𝑤𝑁

𝑝 .

Proof. Let 𝑤 be a word in ℒ𝑁(𝜓). By definition of ℒ𝑁, there exists a
path 𝑝 = path(𝑣1, 𝑒1,… , 𝑣𝑘) and a mapping 𝜇 such that (𝑝, 𝜇) ∈ J𝜓K𝐺
and 𝑤 = 𝑤𝑁

𝑝 for some graph 𝐺. By the semantics of concatenation
and since ℒ𝑁(𝜓1𝜓𝜓2) ≠ ∅, there are paths 𝑝′ = path(𝑣′1, 𝑒

′
1,… , 𝑣′𝑘′),

𝑝″ = path(𝑣″1, 𝑒
″
1,… , 𝑣″𝑘″), andmappings 𝜇′, 𝜇″ such that (𝑝′, 𝜇′) ∈ J𝜓′K𝐺,

(𝑝″, 𝜇″) ∈ J𝜓″K𝐺, 𝑝
′‖𝑝, 𝑝‖𝑝″ and 𝜇, 𝜇′ and 𝜇″ are compatible. By defini-

tion of path concatenation, 𝑝′‖𝑝‖𝑝″ forms a path whose node-value
word is 𝑤𝑁

𝑝′‖𝑝‖𝑝″ = 𝑣′1.𝑘⋯𝑣′𝑘′ .𝑘 ⋅𝑣2.𝑘⋯𝑣𝑘.𝑘 ⋅𝑣
″
2.𝑘 ⋅𝑣

″
𝑘″ .𝑘. Since the paths

concatenate, we know that 𝑣′𝑘′ = 𝑣1 and 𝑣″1 = 𝑣𝑘 and so 𝑤 is a sub-
word of 𝑤𝑁

𝑝′‖𝑝‖𝑝″ . Once again by definition of concatenation, we get
that (𝑝′‖𝑝‖𝑝″, 𝜇′ ⋈ 𝜇 ⋈ 𝜇″) ∈ J𝜓′𝜓𝜓″K𝐺 and so we can conclude that
𝑤𝑁

𝑝′‖𝑝‖𝑝″ ∈ ℒ𝑁(𝜓′𝜓𝜓″).

The above lemma can be easily extended to concatenations of arbitrary
size.

We can now prove Theorem 5.3.9.

Proof. Assume, by contradiction, that there is a one-way path pattern
𝜓 equivalent to 𝑄N

≠ . By lemma 5.3.8, we can assume that 𝜓 is in +NF,
and so of the shape 𝜓1 + ⋯ + 𝜓𝑚, and since the language of 𝑄N

≠ is
infinite, we can further assume that at least one of the 𝜓𝑖 is of the shape
𝜌1 …𝜌𝑛..∞

𝑗 …𝜌𝑘. Let 𝑤 be a word in ℒ𝑁(𝜌𝑛..∞
𝑗). By lemma 5.3.10, we

5.3 Case study 1: Expressiveness of Pattern Matching 115

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

have that 𝑤𝑤 also belongs to ℒ𝑁(𝜌𝑛..∞
𝑗) and, by lemma 5.3.11 we can

conclude that there exists a path 𝑝 and a mapping 𝜇 such that 𝑤𝑤 is a
subword of 𝑤𝑁

𝑝 and (𝑝, 𝜇) ∈ ℒ𝑁(𝜌1 …𝜌𝑛..∞
𝑗 …𝜌𝑘). Since all values in

𝑤𝑤 are repeated twice, 𝜓 cannot be equivalent to 𝑄N
≠ .

How do SQL/PGQ and GQL handle such patterns? To start with,
our results do not preclude a possibility of using backward edges to ex-
press such patterns on unrestricted graphs, though we conjecture that
this is impossible for 𝑄N

≠ as well as 𝑄N
< and 𝑄E

<. In GQL and PGQ paths
can be named, and included in the output. That is, we may have an
additional constructon 𝑝 ∶∶= 𝜓 that names paths matched by 𝜓 as 𝑝,
and this 𝑝 could be returned: (𝑝 ∶∶= 𝜓)𝑝 returns all paths satisfying
𝜓. This is however an advanced feature that we omitted in our core
language as it entails having non-1NF outputs as the resulting paths
are represented as lists, making the output a non-flat relation.

However, this gives a backdoor to highly inefficient expressivity of the
queries studied in this section. The key observation is that their comple-
ments are expressible. For example, the complement of 𝑄N

≠ is the query
that finds endpoints of paths on which two values of property 𝑘 are
equal. This is very easy to express by a pattern 𝜓=, and the entire query
can be formulated as the difference of (𝑝 ∶∶= ((𝑥)→(𝑧))1..∞)𝑝−(𝑝 ∶∶=
𝜓=)𝑝 which results in all the paths in a graph satisfying 𝑄N

≠ . Note that
the first subquery simply returns all paths, making it highly inefficient.

5.3.3 Cypher patterns
We can use our formalization approach to prove a result about limi-
tations of Cypher patterns; in fact those limitations specifically led to
new features present in GQL and PGQ. Note that Cypher as a query lan-
guage is constantly evolving, and in particular with the development of
the GQL standard, every new release of Cypher adopts some new GQL
features. When we speak of Cypher we mean the original language as
described in [15]. Its patterns are given by the grammar:

𝜓 ∶∶= (𝑥) ∣ (𝑥)
𝑦∶ℓ
→ (𝑧) ∣ (𝑥)

𝑦∶ℓ
← (𝑧) ∣ (𝑥) ∶ℓ∗→ (𝑧) ∣ (𝑥) ∶ℓ∗← (𝑧)

∣ 𝜓1 𝜓2 ∣ 𝜓⟨𝜃⟩ ∣ 𝜓1 + 𝜓2

with 𝑥, 𝑦, 𝑧 ∈ Vars (all optional). That is, the only repetition allowed is
the Kleene star over edges with the same label. The semantics is modi-
fied as follows:

r
(𝑥)

𝑦∶ℓ
→ (𝑧)

z

𝐺
= {(path(𝑛1, 𝑒, 𝑛2), {𝑥 ↦ 𝑛1, 𝑦 ↦ 𝑒, 𝑧 ↦ 𝑛2}) ∣

𝑒 ∈ E, src(𝑒) = 𝑛1, tgt(𝑒) = 𝑛2, lab(𝑒) = ℓ}
r
(𝑥) ∶ℓ∗→ (𝑧)

z

𝐺
= {(path(𝑛1, 𝑒1, 𝑛2,… , 𝑒𝑘−1, 𝑛𝑘), {𝑥 ↦ 𝑛1, 𝑧 ↦ 𝑛𝑘}) ∣

𝑒1,… , 𝑒𝑘−1 ∈ E, src(𝑒𝑖) = 𝑛𝑖,
tgt(𝑒𝑖) = 𝑛𝑖+1, and lab(𝑒𝑖) = ℓ for all 𝑖 < 𝑘}

and likewise for backwards arrows. The schema for a pattern will now
have two distinguished variables, its source and target variables. For
(𝑥), both source and target are 𝑥, for forward arrows in the above gram-
mar sources are 𝑥 and targets are 𝑧, and for backwards arrows it is the

https://neo4j.com
https://neo4j.com
https://neo4j.com
https://neo4j.com

116 5 Putting together Pattern Matching and Relational Algebra

1: A modification to account for miss-
ing variables is straightforward but sim-
ply increases the number of easy base
cases.

[21]: Libkin (2004), Elements of Finite
Model Theory

other way around. We then require that 𝜓1 𝜓2 be defined only when
the source variable of𝜓2 is the target variable of𝜓1; the source of𝜓1 𝜓2
is then the source of 𝜓1 and its target is the target of 𝜓2. For 𝜓1 + 𝜓2
we require that the schemas of 𝜓1 and 𝜓2 be the same, including their
source and target.

The notion of patterns with output is defined exactly as in Section 5.2.
We then define Core Cypher as LCRA(PatCypher)where PatCypher consists
of all symbols 𝑅𝜓,Ω with 𝜓 now ranging over Cypher patterns.

Theorem 5.3.12

Core Cypher patterns are strictly weaker than Core GQL patterns.
In particular they cannot express the pattern testing for an even-
length path of edges labeled ℓ.

In other words, the regular path query (ℓℓ)∗ cannot be expressed in
Cypher. This was “folklore” knowledge, hitherto unproved, in a way
similar to the folklore result that basic SQL cannot express the transi-
tive closure query (which required many years of development of finite
model theory to prove formally). It was largely due to this type of lim-
itations that GQL chose to add repetitions of arbitrary patterns rather
than just edges. With our formal treatment, we can now prove this re-
sult formally.

Proof. We first assume without loss of generality that no variable is op-
tional, i.e., every node pattern uses one variable, every edge pattern
uses three variables, and every Kleene star edge pattern uses two vari-
ables 1.

We now restrict our attention to simple graphs Gn with 𝑁 = {𝑣1,… , 𝑣𝑛}
and 𝐸 = {𝑒1,… , 𝑒𝑛−1} so that src(𝑒𝑖) = 𝑣𝑖 and tgt(𝑒𝑖) = 𝑣𝑖+1 for each
𝑖 < 𝑛 (i.e., directed paths), with each edge labelled ℓ, and no properties
existing on edges or nodes. We can therefore assume that all edge labels
used in patterns are ℓ (if not, such a pattern is not matched, and thus
the entire subpattern in which it occurred cannot be matched, up to +
in the parse tree, and thus can be removed). We can further assume
that all conditions are of the form 𝑥 = 𝑦 where 𝑥, 𝑦 are variables (any
conditions involving properties can be replaced by false). We can also
further assume that no variable is used as both a node variable and
an edge variable (as this would falsify the pattern), nor any explicit
equality between such variables is used in conditional patterns.

We represent such a graph 𝐺𝑛 as a first-order structure 𝑆𝑛 in the vocab-
ulary 𝑅, 𝑅∗ with the universe 𝑁, and relations interpreted as follows:

▶ 𝑅 = {(𝑣𝑖, 𝑣𝑖+1) ∣ 1 ≤ 𝑖 < 𝑛} is the edge relation;
▶ 𝑅∗ = {(𝑣𝑖, 𝑣𝑗) ∣ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} is the reflexive transitive closure

of 𝑅.

We next show how patterns are translated into first-order formulae over
this vocabulary. Notice that we use 𝑅 for convenience only as it is de-
finable from 𝑅∗ which is isomorphic to a linear order on {1,… , 𝑛}. We
will then easily obtain the inexpressibility results since FO cannot de-
fine even cardinality of linear orders, cf. [21].

For the translation, with each pattern 𝜓 we associate two new vari-
ables 𝑥𝑠

𝜓, 𝑥
𝑡
𝜓 (intuitively, to be witnessed by the endpoints of patterns),

5.3 Case study 1: Expressiveness of Pattern Matching 117

and with each edge variable 𝑧 used in a pattern we associte two first-
order variables 𝑧𝑠, 𝑧𝑡 to be used in FO formulas (for source and target
of edges). Then a pattern 𝜓 with node variables 𝑦1,… , 𝑦𝑚 and edge
variables 𝑧1,… , 𝑧𝑘 (recall that they are all distinct) is translated into
an FO formula

𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, 𝑦1,… , 𝑦𝑚, 𝑧

𝑠
1, 𝑧

𝑡
1,… , 𝑧𝑠𝑘, 𝑧

𝑡
𝑘) .

The condition on the translation is that for a path 𝑝 = path(𝑢0, 𝑓0,… , 𝑢𝑟)
we have

(𝑝, 𝜇) ∈ J𝜓K𝐺𝑛
⇔ 𝑆𝑛 ⊧ 𝛼𝜓(𝑢0, 𝑢𝑟, 𝜇(𝑦1),… , 𝜇(𝑦𝑚),

src(𝜇(𝑧1)), tgt(𝜇(𝑧1)),
… ,
src(𝜇(𝑧𝑘)), tgt(𝜇(𝑧𝑘))) (5.2)

Now suppose the pattern (ℓℓ)∗ is definable in Cypher over graphs 𝐺𝑛 by
a pattern 𝜓 as above. Then 𝛽(𝑥𝑠

𝜓, 𝑥
𝑡
𝜓) ∶∶= ∃𝑦1,… , 𝑦𝑚, 𝑧

𝑠
1,… , 𝑧𝑡𝑘 𝛼𝜓 is

true for 𝑣𝑖, 𝑣𝑗 iff the path between them is of even length and therefore
the sentence 𝛾 ∶∶= ∃𝑠, 𝑡 (¬∃𝑠 ′ 𝑅(𝑠 ′, 𝑠) ∧ ¬∃𝑡′ 𝑅(𝑡, 𝑡′) ∧ 𝛽(𝑠, 𝑡)) states
that the path from 𝑣1 to 𝑣𝑛 is of even length, which is impossible.

Next, to conclude the proof, we present the translation.

▶ If 𝜓 = (𝑦) then 𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, 𝑦) ∶∶= 𝑥𝑠

𝜓 = 𝑥𝑡
𝜓 ∧ 𝑥𝑡

𝜓 = 𝑦.

▶ If 𝜓 = (𝑦1)
𝑧∶ℓ→ (𝑦2) then

𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, 𝑦1, 𝑦2, 𝑧

𝑠, 𝑧𝑡) ∶∶= 𝑥𝑠
𝜓 = 𝑦1 ∧ 𝑥𝑡

𝜓 = 𝑦2 ∧ 𝑧𝑠 = 𝑦1

∧ 𝑧𝑡 = 𝑦2 ∧ 𝑅(𝑦1, 𝑦2).

▶ If 𝜓 = (𝑦1)
𝑧∶ℓ← (𝑦2) then

𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, 𝑦1, 𝑦2, 𝑧

𝑠, 𝑧𝑡) ∶∶= 𝑥𝑠
𝜓 = 𝑦2 ∧ 𝑥𝑡

𝜓 = 𝑦1 ∧ 𝑧𝑠 = 𝑦2

∧ 𝑧𝑡 = 𝑦1 ∧ 𝑅(𝑦2, 𝑦1).

▶ If 𝜓 = (𝑦1)
∶ℓ∗→ (𝑦2) then

𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, 𝑦1, 𝑦2) ∶∶= 𝑥𝑠

𝜓 = 𝑦1 ∧ 𝑥𝑡
𝜓 = 𝑦2 ∧ 𝑅∗(𝑦1, 𝑦2).

▶ if 𝜓 = (𝑦1)
∶ℓ∗← (𝑦2) then

𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, 𝑦1, 𝑦2) ∶∶= 𝑥𝑠

𝜓 = 𝑦2 ∧ 𝑥𝑡
𝜓 = 𝑦1 ∧ 𝑅∗(𝑦2, 𝑦1).

▶ If 𝜓 = 𝜓1𝜓2 with 𝜓1, 𝜓2 translated as 𝛼𝜓1
(𝑥𝑠

𝜓1
, 𝑥𝑡

𝜓1
, vars1) and

𝛼𝜓2
(𝑥𝑠

𝜓2
, 𝑥𝑡

𝜓2
, vars2) respectively (where vars𝑖 list variables in those

formulae corresponding to node and edge variables in patterns),
then 𝛼𝜓(𝑥

𝑠
𝜓, 𝑥

𝑡
𝜓, vars1, vars2) is defined as

∃𝑥𝑠
𝜓1
, 𝑥𝑡

𝜓1
, 𝑥𝑠

𝜓2
, 𝑥𝑡

𝜓2
(𝛼𝜓1

(𝑥𝑠
𝜓1
, 𝑥𝑡

𝜓1
, vars1) ∧ 𝛼𝜓2

(𝑥𝑠
𝜓2
, 𝑥𝑡

𝜓2
, vars2)

∧ 𝑥𝑠
𝜓 = 𝑥𝑠

𝜓1
∧ 𝑥𝑡

𝜓 = 𝑥𝑡
𝜓2

∧ 𝑥𝑡
𝜓1

= 𝑥𝑠
𝜓2
)

where in vars1, vars2 repeated variables are mentioned only once.
▶ If 𝜓 = 𝜓1 + 𝜓2 with 𝜓1, 𝜓2 translated as 𝛼𝜓1

(𝑥𝑠
𝜓1
, 𝑥𝑡

𝜓1
, vars) and

𝛼𝜓2
(𝑥𝑠

𝜓2
, 𝑥𝑡

𝜓2
, vars) (note that variables must be the same as the

118 5 Putting together Pattern Matching and Relational Algebra

[8]: Consens et al. (1990), “GraphLog:
a Visual Formalism for Real Life Recur-
sion”

[131]: Vardi (2016), “A Theory of Reg-
ular Queries”

[97]: (2023), GQL Influence Graph

[132]: Immerman (1999), Descriptive
complexity

schemas of 𝜓1 and 𝜓2 coincide), then

𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, vars) ∶∶= 𝛼𝜓1

(𝑥𝑠
𝜓, 𝑥

𝑡
𝜓, vars) ∨ 𝛼𝜓2

(𝑥𝑠
𝜓, 𝑥

𝑡
𝜓, vars)

▶ If 𝜓 = 𝜓1⟨𝜃⟩ then 𝛼𝜓(𝑥
𝑠
𝜓, 𝑥

𝑡
𝜓, vars) ∶∶= 𝛼𝜓1

(𝑥𝑠
𝜓, 𝑥

𝑡
𝜓, vars) ∧ 𝜃′

where 𝜃′ is obtained from 𝜃 by the following transformations:
• each condition 𝑦𝑖 = 𝑦𝑗 stays;
• each condition 𝑧𝑖 = 𝑧𝑗 is replaced by 𝑧𝑠𝑖 = 𝑧𝑠𝑗 ∧ 𝑧𝑡𝑖 = 𝑧𝑡𝑗 ;
• these are propagated through the Boolean connectives.

It is routine and straightforward to check that with these translations
(5.2) holds, thus completing the proof.

5.4 Case Study 2: Expressiveness of GQL and
SQL/PGQ

Having examined the expressiveness of patterns, we now look at the
entire query languages Core GQL and Core PGQ. Since the early days
of graph query languages, the gold standard of language expressive-
ness was the class of queries withNLOGSPACE data complexity. Indeed,
this is the complexity of the reachability problem, and already the very
early language GraphLog [8], that gave rise to the ubiquitous notion
of CRPQs, was shown to capture the transitive closure logic and thus
NLOGSPACE (over ordered graphs). The idea behind GraphLog is that
one can use CRPQs to define new relations, that can then be used in
other CRPQs, just as idb relations can be used to define new idb rela-
tions in Datalog. Other Datalog-based languages for graph databases
were developed, notably generalized regular queries [131], that ex-
tended Datalog with transitive closure restricted to binary predicates.
These guaranteed decidability of static analyses, and importantly served
as a precursor to GQL reachability patterns [97].

We thus ask ourselves whether Core GQL and Core PGQ capture all
NLOGSPACE queries on graphs. The reason to think they might is that
reachability is complete forNLOGSPACE via first-order reductions [132],
and on top of patterns in these languages we have equivalents of first-
order logic: RA and LCRA. The answer however is negative:

Theorem 5.4.1

There are Datalog-expressible queries over property graphs that
have DLOGSPACE data complexity, but are not expressible in Core
GQL nor Core PGQ.

When we speak of queries over property graphs expressible in Datalog,
we mean queries over property graphs 𝐺 = ⟨𝑁, 𝐸, lab, src, tgt, 𝛿⟩ repre-
sented as relational structures with unary relations 𝑁 and 𝐸, as well
as unary relations 𝑁ℓ and 𝐸ℓ having ids of nodes and edges labelled
ℓ, for each label ℓ present in 𝐺, as well as binary relations src and tgt
which are subsets of 𝐸×𝑁, and for each 𝑘 ∈ 𝒦 present in 𝐺, a relation
𝑃𝑘 ⊂ (𝑁 ∪ 𝐸) × Const.

Our result shows that despite having patterns that possess at least the
power of reachability and more generally RPQs, and having the power
of Relational algebra to manipulate their results, we fall short of cap-
turing even DLOGSPACE queries. It thus appears that the relational

5.4 Case Study 2: Expressiveness of GQL and SQL/PGQ 119

[133]: Ginsburg et al. (1966), “Semi-
groups, Presburger formulas, and lan-
guages.”

querying of Core GQL and PGQ is somehow lacking in power. Looking
at languages such as GraphLog, we can actually point out precisely the
missing ingredient, which is compositionality. In GraphLog, an output
of a query can be treated as a new edge and used in subsequent query-
ing. Read-only GQL and PGQ lack this ability. Specifically, if we have a
query Q, we cannot designate its projection on two columns containing
node ids as a new edge that can be used in subsequent patterns in an
LCRA expression.

To sketch the idea of the separating example, we define data-less paths
as graphs 𝐺𝑛, 𝑛 > 0, with 𝑁 = {𝑣1,… , 𝑣𝑛}, 𝐸 = {𝑒1,… , 𝑒𝑛−1} so that
𝑛 ≥ 0, and 𝑣𝑖 ≠ 𝑣𝑗 ∈ 𝒩, 𝑒𝑖 ≠ 𝑒𝑗 ∈ E for every 𝑖 ≠ 𝑗, src(𝑒𝑖) = 𝑣𝑖 and
tgt(𝑒𝑖) = 𝑣𝑖+1 for each 𝑖 ∈ [1, 𝑛], and in addition lab(𝑣1) = first and
lab(𝑣𝑛) = last . We then show that there is no Boolean Core GQL query
that returns true on 𝐺𝑛 iff 𝑛 is a power of 2.

The proof of this is based on showing that GQL queries can only de-
fine Presburger properties of lengths of data-less paths, by translating
Core GQL queries on such paths into formulae of Presburger Arithmetic
(PA). As it is known that formulas of PA define semilinear sets (see
e.g. [133]), the only definable properties of lengths are semilinear sets,
while the set {2𝑘 ∣ 𝑘 ∈ ℕ} is not semilinear. On the other hand, check-
ing whether the length of a path is a power of 2 can easily be done in
DLOGSPACE and expressed in Datalog.

Theorem 5.4.2

There is no Core GQL query Q such that for every data-less path p
the following holds: JQKp = true if and only if len(p) = 2𝑛, 𝑛 ∈ ℕ

For a data-less path p𝜖, we define the function pos that maps each node
in p𝜖 to its position (where the position of the first node in p𝜖 is 1)
and each edge in p𝜖 to the tagged position of its source node. We do
so to distinguish whether a position correspond to a node or an edge.

For example, if p𝜖 is
𝑛1 … 𝑛𝑘

𝑒1 𝑒𝑘−1

then pos(𝑛𝑗) = 𝑗 and
pos(𝑒𝑗) = 𝑗′. We treat tagged integers as integers wrt to arithmetics
and equality.

Before proving the translation from path patterns to Presburger Arith-
metics (PA), we first show that path patterns without variables can be
translated to automata.

Lemma 5.4.3

For every path pattern 𝜓 with no variables, there exists a finite
automaton 𝐴𝜓 such that

𝑜1 ⋯𝑜𝑚−1 ∈ ℒ(𝐴𝜓) iff ((𝑛1, 𝑒1,… , 𝑛𝑚−1, 𝑒𝑚−1, 𝑛𝑚),∅) ∈ J𝜓Kp𝜖

where 𝑜𝑗 ∶∶= 𝑎 if 𝑒𝑗 is a forward edge (from 𝑛𝑗−1 to 𝑛𝑗) and 𝑜𝑗 ∶∶= 𝑏
if 𝑒𝑗 is a backward edge (from 𝑛𝑗 to 𝑛𝑗−1).

Proof. We use the standard definition of finite automata as presented in
Chapter 2. We fix the input alphabet to be {𝑎, 𝑏}, and prove the claim
by induction on 𝜓’s structure.

120 5 Putting together Pattern Matching and Relational Algebra

The intuition behind the construction is that the 𝑎’s represent the for-
ward edges and the 𝑏’s the backward edges in a path that matches𝜓. As
a convention, 𝑞0 and 𝑞𝑓 denote the initial and final states, respectively.

Base cases.

▶ 𝜓 = () then 𝛿(𝑞0, 𝜖) = 𝑞𝑓.
▶ 𝜓 = () → () then 𝛿(𝑞0, 𝑎) = 𝑞𝑓.
▶ 𝜓 = () ← () then 𝛿(𝑞0, 𝑏) = 𝑞𝑓.

Induction step For 𝜓 = 𝜓1𝜓2, 𝜓 = 𝜓′∗ and 𝜓 = 𝜓1 + 𝜓2 we use
similar construction to Thompson construction by adding epsilon tran-
sitions and redefining the initial and accepting states. It is straightfor-
ward to show that this construction satisfies the connection stated in
the lemma.

Corollary 5.4.4

For every path pattern 𝜓 without variables, and every data-less
path p𝜖 the set

{pos(𝑛𝑚)−pos(𝑛1) ∣ (𝑝,∅) ∈ J𝜓Kp𝜖 , 𝑝 ∶∶= (𝑛1, 𝑒1,… , 𝑒𝑚−1, 𝑛𝑚)}

is semi-linear.

Proof. The proof follows from Lemma 5.4.3, the fact that the Parikh
image of a finite automaton is semilinear, and the closure of semilinear
sets under subtraction.

We obtain the following connection:

Lemma 5.4.5

For every data-less path p𝜖, and path pattern 𝜓 there is a PA for-
mula 𝜑𝜓(𝑥𝑠, 𝑥1,… , 𝑥𝑚, 𝑥𝑡) where sch (𝜓) ∶∶= {𝑥1,… , 𝑥𝑚} s.t.

𝜑𝜓(𝑖𝑠, 𝑖1,… , 𝑖𝑚, 𝑖𝑡) if and only if ∃𝑝 ∶ (𝑝, 𝜇) ∈ J𝜓Kp𝜖

where 𝑖𝑗 = pos(𝜇(𝑥𝑗)) for every 𝑗, and 𝑖𝑠, 𝑖𝑡 are the positions of the
first and last nodes of 𝑝 in p𝜖, respectively.

Proof. We simplify 𝜓: Since we deal with data-less paths, it is straight-
forward that any 𝜓⟨𝜃⟩ can be rewritten to 𝜓 while preserving the se-
mantics (on data-less paths). Formally, for every data-less path 𝑃 and
for every condition 𝜃, it holds that J𝜓K𝑃 =

r
𝜓⟨𝜃⟩

z
𝑃. In addition, we

can assume that every repetition 𝜓𝑛..𝑚 where 𝑚 < ∞ can be rewrit-
ten to ∪𝑚

𝑖=𝑛𝜓𝑖. This is true for any input (no need to restrict to data-less
paths) due to the semantics definition. For repetition𝜓𝑛..𝑚 with𝑚 = ∞,
we can rewrite the pattern and obtain 𝜓𝑛𝜓0..∞. Also here, equivalence
holds for any input (no need to restrict to data-less paths) due to the
semantics definition. Recall that now we focus only on path patterns in
which we disallow having variables on the edges.

5.4 Case Study 2: Expressiveness of GQL and SQL/PGQ 121

Under the above assumptions on the form of 𝜓, we define 𝜑𝜓 induc-
tively as follows:

▶ If 𝜓 ∶∶= (𝑥) then 𝜑𝜓(𝑥𝑠, 𝑥, 𝑥𝑡) ∶∶= 𝑥𝑠 = 𝑥 ∧ 𝑥 = 𝑥𝑡;
▶ If 𝜓 ∶∶= () then 𝜑𝜓(𝑥𝑠, 𝑥𝑡) ∶∶= 𝑥𝑠 = 𝑥𝑡;
▶ If 𝜓 ∶∶= (𝑥) → (𝑦) then

𝜑𝜓(𝑥𝑠, 𝑥, 𝑦, 𝑥𝑡) ∶∶= 𝑦 = 𝑥 + 1 ∧ 𝑥 = 𝑥𝑠 ∧ 𝑦 = 𝑦𝑠

▶ If 𝜓 ∶∶= (𝑥) ← (𝑦) then

𝜑𝜓(𝑥𝑠, 𝑥, 𝑦, 𝑥𝑡) ∶∶= 𝑥 = 𝑦 + 1 ∧ 𝑥 = 𝑥𝑠 ∧ 𝑦 = 𝑦𝑠

▶ If 𝜓 ∶∶= 𝑥→ then 𝜑𝜓(𝑥𝑠, 𝑥, 𝑥𝑡) ∶∶= 𝑥𝑡 = 𝑥𝑠 + 1 ∧ 𝑥 = 𝑥𝑠
▶ If 𝜓 ∶∶= → then 𝜑𝜓(𝑥𝑠, 𝑥𝑡) ∶∶= 𝑥𝑡 = 𝑥𝑠 + 1
▶ If 𝜓 ∶∶= 𝜓1𝜓2 then

𝜑𝜓(𝑥𝑠, ̄𝑧, 𝑦𝑡) ∶∶= 𝜑𝜓1
(𝑥𝑠, ̄𝑥, 𝑥𝑡) ∧ 𝜑𝜓2

(𝑦𝑠, �̄�, 𝑦𝑡) ∧ 𝑥𝑡 = 𝑦𝑠

where ̄𝑧 is the union ̄𝑥 ∪ �̄�.
▶ If 𝜓 ∶∶= 𝜓1 + 𝜓2 then

𝜑𝜓(𝑥𝑠, ̄𝑥, 𝑥𝑡) ∶∶= 𝜑𝜓1
(𝑥𝑠, ̄𝑥, 𝑥𝑡) ∨ 𝜑𝜓2

(𝑥𝑠, ̄𝑥, 𝑥𝑡)

▶ If 𝜓 ∶∶= 𝜓𝑛
1 then

𝜑𝜓(𝑥𝑠, 𝑥𝑡) =∃𝑥1, 𝑦1, ̄𝑧1 …,𝑥𝑛, 𝑦𝑛, ̄𝑧𝑛,
𝑛

⋀
𝑖=1

𝜑𝜓1
(𝑥𝑖, ̄𝑧𝑖, 𝑦𝑖)

𝑛−1

⋀
𝑖=1

𝑦𝑖 = 𝑥𝑖+1

∧ 𝑥1 = 𝑥𝑠 ∧ 𝑦𝑛 = 𝑥𝑡

▶ If 𝜓 ∶∶= 𝜓∗
1 then, due to Corollary 5.4.4, there is a PA formula

𝜓𝜓∗
1
(𝑚) for {|𝑝| ∣ (𝑝,∅) ∈

q
𝜓∗

1
y
±}. Therefore,

𝜑𝜓(𝑥𝑠, 𝑥𝑡) ∶∶= ∃𝑚 ∶ 𝑥𝑡 = 𝑥𝑠 + 𝜓𝜓∗
1
(𝑚)

Showing that the condition in the Lemma holds for 𝜑𝜓 is straightfor-
ward from the definition.

Lemma 5.4.6

For every data-less path p𝜖, and path pattern with output 𝜓Ω
with variables only on nodes, there is a PA formula 𝜑𝜓(𝑥1,… , 𝑥𝑚)
where Ω ∶∶= {𝑥1,… , 𝑥𝑚} such that

𝜑𝜓Ω
(𝑖1,… , 𝑖𝑚) if and only if 𝜇 ∈ J𝜓Kp𝜖

where 𝑖𝑗 = pos(𝜇(𝑥𝑗)) for every 𝑗.

Proof. Notice that since we are dealing with data-less paths as input, all
elements in Ω are variables. Hence, the proof is implied directly from
Lemma 5.4.5. In particular, by existentially quantifying over variables
that are omitted in Ω. For example,

if𝜑𝜓(𝑥𝑠, ̄𝑥, �̄�, 𝑥𝑡) then𝜑𝜓 ̄𝑦
(�̄�) = ∃𝑥𝑠, ̄𝑥, 𝑥𝑡 ∶ 𝜑𝜓(𝑥𝑠, ̄𝑥, �̄�, 𝑥𝑡)

if𝜑𝜓(𝑥𝑠, ̄𝑥, ̄𝑧, �̄�, 𝑥𝑡) then𝜑𝜓 ̄𝑦 ̄𝑥
(�̄�, ̄𝑥) = ∃𝑥𝑠, ̄𝑧, 𝑥𝑡 ∶ 𝜑𝜓(𝑥𝑠, ̄𝑥, ̄𝑧, �̄�, 𝑥𝑡)

122 5 Putting together Pattern Matching and Relational Algebra

Lemma 5.4.7

For every data-less path p𝜖, and Core GQL query Q, there is a PA
formula 𝜑Q(𝑥1,… , 𝑥𝑚) such that attr(Q) = {𝑥1,… , 𝑥𝑚} and

𝜑Q(𝑖1,… , 𝑖𝑚) if and only if 𝜇 ∈ JQKp𝜖

where 𝑖𝑗 = pos(𝜇(𝑥𝑗)) for every 𝑗.

Proof. The proof is by induction on the structure of Q. The base case
of path pattern with output is covered by the previous lemma. For the
induction step, we distinguish between the form of Q.

▶ If Q ∶∶= 𝜓A(Q
′) then 𝜑Q(̄𝑧) ∶∶= ∃�̄� 𝜑Q′(𝑥1,… , 𝑥𝑚) where

�̄� = A∖ {𝑥1,… , 𝑥𝑚} and ̄𝑧 = A ∩ {𝑥1,… , 𝑥𝑚}.
▶ If Q ∶∶= 𝜎𝜃(Q

′) then 𝜑Q(̄𝑥) ∶∶= 𝜑Q′(̄𝑥). Notice that the correct-
ness here follows from the fact the input is a data-less path.

▶ If Q ∶∶= 𝜌𝐴→𝐴 ′(Q′) then 𝜑Q(̄𝑥, 𝐴, �̄�) ∶∶= 𝜑Q′(̄𝑥, 𝐴 ′, �̄�).
▶ If Q ∶∶= Q1 × Q2 then 𝜑Q(̄𝑥) ∶∶= 𝜑Q1

(̄𝑧) ∧ 𝜑Q2
(�̄�) with ̄𝑥 the

union of ̄𝑧 and �̄�.
▶ If Q ∶∶= Q1 ∪Q2 then 𝜑Q(̄𝑥) ∶∶= 𝜑Q1

(̄𝑥) ∨ 𝜑Q2
(̄𝑥).

▶ If Q ∶∶= Q1 ∩Q2 then 𝜑Q(̄𝑥) ∶∶= 𝜑Q1
(̄𝑥) ∧ 𝜑Q2

(̄𝑥).
▶ If Q ∶∶= Q1 ∖Q2 then 𝜑Q(̄𝑥) ∶∶= 𝜑Q1

(̄𝑥) ∧ ¬𝜑Q2
(̄𝑥).

Showing that the condition holds follows from the definition.

We can now prove Theorem 5.4.2.

Proof. Let us assume by contradiction that there is a Boolean GQL query
Q for which JQKp𝜖 ≠ ∅ if and only if len(p𝜖) = 2𝑛, 𝑛 ∈ ℕ.

Let us define a new query Q′ that binds 𝑥 to the last node of a data-less
path. We setQ′ ∶∶= 𝜓1∖𝜓2 where𝜓1 ∶∶= () →∗ (𝑥) and𝜓2 ∶∶= () →∗

(𝑥) → (). It holds that JQ′Kp𝜖 ∶∶= {𝜇 ∣ dom(𝜇) = {𝑥}, 𝜇(𝑥) = 𝑛𝑘}
where 𝑛𝑘 is the last node in p𝜖. Now let us consider Q × Q′. It can
be easily shown that

q
𝜓𝑥(Q×Q′)

y
p𝜖

≠ ∅ iff JQKp𝜖 ≠ ∅. By previous
lemma,

q
𝜓𝑥(Q×Q′)

y
p𝜖

is expressible by a PA formula. Nevertheless,
by our assumption,

q
𝜓𝑥(Q×Q′)

y
p𝜖

is exactly the set {2𝑛 ∣ 𝑛 ∈ ℕ}
which leads to the desired contradiction.

5.4.1 Datalog on Graphs
We use the standard definition of Datalog, as introduced in Chapter 2.

As before, we view property graphs 𝐺 ∶∶= ⟨𝑁, 𝐸, lab, src, tgt, 𝛿⟩ as re-
lational structures 𝒟𝐺 over the schema consisting of relation symbols
𝑁,𝐸, lab, src, tgt, 𝛿 with the straightforward interpretation.

Example 5.4.8

The Datalog program defined by the rules:

eqLen(𝑥, 𝑦, 𝑧,𝑤) ← 𝐸(𝑥, 𝑦), 𝐸(𝑧,𝑤)
eqLen(𝑥, 𝑦, 𝑧,𝑤) ← eqLen(𝑥, 𝑦′, 𝑧, 𝑤′), 𝐸(𝑦′, 𝑦), 𝐸(𝑤′𝑤)

5.5 Conclusions and future work 123

extracts from a bounded data-less path a mapping 𝜇 of 𝑥, 𝑦, 𝑧,𝑤
such that the number of edges between 𝜇(𝑥) and 𝜇(𝑦) equals to
that between 𝜇(𝑧) and 𝜇(𝑤).

Example 5.4.9

The Datalog program given by the rules

len2𝑛(𝑥, 𝑦) ← 𝐸(𝑥, 𝑧), 𝐸(𝑧, 𝑦)
len2𝑛(𝑥, 𝑦) ← len2𝑛(𝑥, 𝑧), len2𝑛(𝑤, 𝑦), eqLen(𝑥, 𝑧,𝑤, 𝑦)

Ans() ← len2𝑛(𝑥, 𝑦), lab(𝑥, first), lab(𝑦, last)

outputs true if and only if the length of the input bounded data-less
path is 2𝑛 for some 𝑛 ∈ ℕ.

Using a straightforward induction, we can show that:

Lemma 5.4.10

For every Datalog program 𝑃 and data-less paths 𝑝, 𝑝’, if 𝑝 ∼ 𝑝′

then J𝑃K𝒟𝑝′
= J𝑃K𝒟𝑝

.

We denote𝒟𝑝 by the𝒟𝑛 where 𝑛 is the length of 𝑝. We can view Boolean
Datalog programs as queries on the quotient space 𝑃/ ∼ and define

len(𝑃) ∶∶= {𝑛 ∣ J𝑃K𝒟𝑛
= true}.

We can conclude:

Corollary 5.4.11

Datalog over property graphs is strictly more expressive than GQL.
There is a Datalog over property graphs program such that for every
data-less path p the following holds:

JQKp = true if and only if len(p) = 2𝑛, 𝑛 ∈ ℕ

The proof of Theorem 5.4.1 then follows directly from Theorem 5.4.2
and Corollary 5.4.11.

5.5 Conclusions and future work
We had a dual goal: to formalize recently standardized graph query
languages in a simple way that makes them amenable to a theoretical
investigation, and to analyze their expressive power, trying to identify
notable holes in the language design. Towards the first goal, we also for-
malized a pipelined, or linear, presentation of Relational Algebra, hav-
ing a distinctly different flavor, preferred in languages such as Cypher
and GQL. With respect to the expressive power, we classify our results
into three groups, and discuss their implications on the design of graph
languages.

https://neo4j.com

124 5 Putting together Pattern Matching and Relational Algebra

[21]: Libkin (2004), Elements of Finite
Model Theory
[132]: Immerman (1999), Descriptive
complexity

▶ First, we have shown that some very natural patterns cannot be
expressed in a reasonable way in the pattern language of GQL and
PGQ. Specifically, analyzing data in nodes is easy while analyzing
data in edges is not. The current way in which GQL and PGQ deal
with this involves highly inefficient queries to express simple pat-
terns. The problem is recognized by language designers who seek
new solutions for the second version of the standard. Our formal
proof pinpoints exactly the main deficiency: limited capabilities
of joining patterns under repetitions.

▶ Second, we looked at the language as a whole, and noticed that
even though it expresses an NLOGSPACE-complete problem (un-
der first-order reductions) and possesses the full power of FO, it
fails to express all NLOGSPACE (and even DLOGSPACE) prop-
erties. The reason behind this discrepancy is poor compositional
capabilities of GQL and PGQ that stem directly from their syntac-
tic design.

▶ Third, we proved a folklore result that Cypher patterns fall short
of RPQs. This was widely believed, to the point of GQL and PGQ
expanding Cypher patterns to capture all RPQs. A formal proof of
this result is akin to a formal proof of inexpressibility of transitive
closure in SQL (cf. [21, 132]) motivating the addition of recursive
queries to the standard.

Our immediate challenge in the future is to plug these gaps in expres-
sive power, by addressing the underlying issues in the language design.
This will be much easier to do initially on our simple formalizations of
the languages, rather than on their full descriptions that run hundreds
of pages.

Our next challenge is to expand our formalization to include other as-
pects of the language, and study their properties. These aspects include
bag semantics, aggregation, different path modes, and forming outputs
more complex than 1NF relations.

References 125

References
[6] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query Language Supporting

Recursion”. In: Proceedings of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987. Ed. by
Umeshwar Dayal and Irving L. Traiger. ACM Press, 1987, pp. 323–330. doi: 10.1145/38713.38749.

[8] Mariano P. Consens and Alberto O. Mendelzon. “GraphLog: a Visual Formalism for Real Life Recur-
sion”. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS). ACM Press, 1990, pp. 404–416. doi: 10.1145/298514.298591.

[9] Pablo Barceló. “Querying graph databases”. In: Principles of Database Systems (PODS). 2013, pp. 175–
188.

[11] Pablo Barceló et al. “Expressive languages for path queries over graph-structured data”. In: ACM
Trans. Database Syst. 37.4 (2012), 31:1–31:46.

[15] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings
of the 2018 International Conference on Management of Data. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[19] Marcelo Arenas et al. Database Theory. Open source at https : / / github . com / pdm - book /
community, 2022.

[21] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004.

[60] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. “Querying Graphs with Data”. In: Journal of the
ACM 63.2 (2016), 14:1–14:53.

[76] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. “Counting beyond a Yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard”. In: World Wide Web (WWW). 2012,
pp. 629–638.

[77] Katja Losemann and Wim Martens. “The complexity of regular expressions and property paths in
SPARQL”. In: ACM Trans. Database Syst. 38.4 (2013), p. 24.

[96] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: SIGMOD. ACM, 2022, pp. 1–
12.

[97] GQL Influence Graph. https://www.gqlstandards.org/existing-languages. Accessed: 2023-
01-17. 2023.

[100] Diego Calvanese et al. “Containment of Conjunctive Regular Path Queries with Inverse”. In: KR
2000, Principles of Knowledge Representation and Reasoning Proceedings of the Seventh International
Conference, Breckenridge, Colorado, USA, April 11-15, 2000. 2000, pp. 176–185.

[102] Nadime Francis et al. “GPC: A Pattern Calculus for Property Graphs”. In: Proceedings of the 42nd
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle, WA,
USA, June 18-23, 2023. Ed. by Floris Geerts, Hung Q. Ngo, and Stavros Sintos. ACM, 2023, pp. 241–
250. doi: 10.1145/3584372.3588662.

[114] Renzo Angles et al. “Foundations of Modern Query Languages for Graph Databases”. In: ACM
Comput. Surv. 50.5 (2017), 68:1–68:40.

[120] Albert Atserias, Martin Grohe, and Dániel Marx. “Size Bounds and Query Plans for Relational
Joins”. In: SIAM J. Comput. 42.4 (2013), pp. 1737–1767. doi: 10.1137/110859440.

[121] Hung Q. Ngo et al. “Worst-case Optimal Join Algorithms”. In: J. ACM 65.3 (2018), 16:1–16:40.
doi: 10.1145/3180143.

[122] Maarten Marx. “Navigation in XML Trees”. In: Bull. EATCS 88 (2006), pp. 126–140.
[123] WimMartens et al. “Expressiveness and complexity of XML Schema”. In: ACM Trans. Database Syst.

31.3 (2006), pp. 770–813. doi: 10.1145/1166074.1166076.
[124] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Complexity of SPARQL”. In:

The Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC 2006, Athens,
GA, USA, November 5-9, 2006, Proceedings. Ed. by Isabel F. Cruz et al. Vol. 4273. Lecture Notes in
Computer Science. Springer, 2006, pp. 30–43. doi: 10.1007/11926078_3.

[125] Sergio Abriola et al. “Bisimulations on Data Graphs”. In: J. Artif. Intell. Res. 61 (2018), pp. 171–
213. doi: 10.1613/JAIR.5637.

[126] Chandan Sharma, Roopak Sinha, and Kenneth Johnson. “Practical and comprehensive formalisms
for modelling contemporary graph query languages”. In: Inf. Syst. 102 (2021), p. 101816. doi:
10.1016/J.IS.2021.101816.

https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/3183713.3190657
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://www.gqlstandards.org/existing-languages
https://doi.org/10.1145/3584372.3588662
https://doi.org/10.1137/110859440
https://doi.org/10.1145/3180143
https://doi.org/10.1145/1166074.1166076
https://doi.org/10.1007/11926078_3
https://doi.org/10.1613/JAIR.5637
https://doi.org/10.1016/J.IS.2021.101816

126

[127] Nadime Francis et al. “A Researcher’s Digest of GQL”. In: 26th International Conference on Database
Theory, ICDT 2023, March 28-31, 2023, Ioannina, Greece. Ed. by Floris Geerts and Brecht Vande-
voort. Vol. 255. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 1:1–1:22. doi:
10.4230/LIPICS.ICDT.2023.1.

[128] PRQL. Pipelined Relational Query Language. 2024. url: https://prql-lang.org.
[129] Hadley Wickham et al. dplyr: A Grammar of Data Manipulation. 2023. url: https://dplyr.

tidyverse.org.
[130] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford University Press, 2004.
[131] Moshe Y. Vardi. “A Theory of Regular Queries”. In: Proceedings of the 35th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. ACM, 2016, pp. 1–9. doi: 10.1145/2902251.2902305.

[132] Neil Immerman. Descriptive complexity. Springer, 1999.
[133] Seymour Ginsburg and Edwin H. Spanier. “Semigroups, Presburger formulas, and languages.” In:

Pacific Journal of Mathematics 16 (1966), pp. 285–296.

https://doi.org/10.4230/LIPICS.ICDT.2023.1
https://prql-lang.org
https://dplyr.tidyverse.org
https://dplyr.tidyverse.org
https://doi.org/10.1145/2902251.2902305

1: This feature was made available in
Cypher pattern matching in Neo4j ver-
sion 5.9

[19]: Arenas et al. (2022), Database
Theory

[134]: Garey et al. (1979), Computers
and Intractability: A Guide to the Theory
of NP-Completeness

Lists and Graphs languages 6
This chapter is joint work with Amélie Gheerbrant and Leonid Libkin.

In the last three chapters, we focused on the core of GQL and SQL/PGQ,
or more generally of pattern matching. But practical languages are, of
course, much richer. One functionality included in virtually all (graph)
query languages is aggregation. In fact, even GQL includes a minimal
set of list functions in its first version.

Lists were first added in Cypher to circumvent its inability to express
all RPQs: as shown in Theorem 5.3.12, applying repetition onto labels
instead of general patterns means the resulting language is not closed
under repetition and cannot express queries as simple as (𝑎𝑎)∗1. For
the same reason, Cypher pattern matching is not powerful enough to
express extensions of RPQs such as UC2RPQs and ECRPQs.

Another Cypher restriction is that variables are not allowed in a re-
peated pattern and so cannot be referred to in conditions. Because of
this, queries like finding a path along which all node values are equal
are not expressible.

There is a common theme among these queries. Imagine that for a given
path p = 𝑥1 𝑒1 𝑥2 …𝑒𝑛−1 𝑥𝑛, we have collected two lists:

▶ nodes(p) = [𝑥1,… , 𝑥𝑛] of all nodes of p, and
▶ relationships(p) = [𝑒1,… , 𝑒𝑛−1] of all edges of p,

both in the order in which they appear in p. Then the queries such as
the ones above are easy: to check that p conforms to (𝑎𝑎)∗ we need to
check that every label is 𝑎 (by -[:a*]->) and that -[:a*]-> is odd (or
length(relationships(p)) is even). To check that the node values
are the same, we need to verify that the values of all nodes in nodes(p)

are equal to the value of its first element.

Combining list functions and pattern matching brings the expressive
power of Cypher to the level of RPQs and can also be used to emulate
UC2RPQs, RDPQs and ECRPQs.

But lists and their functions are powerful tools. Already in the relational
context, adding polynomial time predicates, functions and aggregates,
brings the combined complexity of query evaluation from PSPACE to
EXPSPACE and its data complexity from AC0 to PTime [19]. This phe-
nomenon also occurs in the graph context. For example, one can check
for the existence of a Hamiltonian path in the graph, a known NP prob-
lem [134], by simply verifying that there exists a path p for which
relationships(p) is equal to the list of all edges of the graph.

One might however object that the complexity of query evaluation for
Cypher pattern matching is already NP-hard because of its use of trail
semantics for paths. Despite this theoretical intractability, Neo4j tends
to work quite well in practice, so the natural question is: does the the-
oretical intractability caused by lists have a significant negative impact
on actual performance?

We show experimentally that the addition of lists does cause an impor-
tant decrease in performance. Pure pattern matching Cypher queries
do reasonably well even if they are theoretically NP-hard. For example,

https://neo4j.com
https://neo4j.com
https://neo4j.com
https://neo4j.com
https://neo4j.com

128 6 Lists and Graphs languages

[84]: Martens et al. (2020), “A Tri-
chotomy for Regular Trail Queries”

[135]: Libkin et al. (1997), “On the
Power of Aggregation in Relational
Query Languages”

matching a trail path whose labels form a word in 𝐴∗𝐵𝐴∗ is known to
be NP-hard [84] and yet the engine performs well on this query. On
the other hand, queries such as those listed above, perform very poorly.
We tested them on random graphs, and for edge probability > 0.2,
they time out already on graphs with fewer than 10 nodes! While this
may sound dramatic, recall that the number of simple paths in a graph
grows exponentially with the number of nodes, reaching in the worst
case (𝑁 − 2)!. Query plans that use lists, especially for filtering out
matched paths, are bound therefore to generate a huge number of pos-
sible paths.

There are still questions remaining. In NP-hard queries such as Hamil-
tonian path we rely heavily on the default trail semantics of Cypher.
Could it still be that the trail semantics is somehow the main culprit,
when used together with list processing? We eliminate this hypothesis
by forcing the shortest path semantics, which is an option in Cypher.
We do this with the subset sum query, and see that even without trails,
the results are similar: queries time out on very small graphs. In fact
the size of graphs on which we see timeouts is so small that we could
only reasonably do experiments on synthetic data, as real data with
such super small graphs is hardly in existence.

Our last technical question is whether SQL, especially with recursive
CTEs, would perform better than a native graph database such as Neo4j
on these problematic queries. Recursive queries give SQL enough power
to express them. Our first observation is that SQL handles the theoreti-
cally NP-hard query of matching 𝐴∗𝐵𝐴∗ paths about as well as Cypher
does, just marginally worse. On queries such as Hamiltonian path and
subset sum, SQL performs slightly better than Cypher, but still cannot
handle even modest sized graphs.

These performance results are the consequences of putting list opera-
tions in a graph query language rather than a particular implementa-
tion of it. Indeed, in the absence of useful optimizations that can be
applied, they force the engine to build a very large number of paths,
rendering queries completely impractical. In the context of very active
work on GQL 2.0 as well as the new version of SQL/PGQ, this leads to
the question of how list operations should be managed. With the next
version of the standards expected to be released in about five years,
what lessons can be learned from the point of view of language design?
It turns out that we can summarize rather simply (before dedicating
the last section of the chapter to it) what is wrong with using lists in a
graph query language:

▶ It is ok to use lists to post-process results of pattern matching;
▶ It is not, however, advisable, to use expressions with list opera-

tions to filter the set of selected paths.

These recommendations have the advantage of being easily adopted by
query languages, by imposing syntactic restrictions on where and how
list operations can occur.

Related work

Relational algebra with aggregation was studied by L. Libkin and L.
Wong in [135] where it was shown that this extension is not powerful
enough to encode arbitrary transitive closure and recursion. As transi-
tive closure is a basic component of graph languages, this result cannot
be applied to our context.

6.1 Cypher Pattern Matching 129

[136]: Hutton (1999), “A tutorial on the
universality and expressiveness of fold”

[15]: Francis et al. (2018), “Cypher: An
Evolving Query Language for Property
Graphs”

The generic list operator foldwas studied in the programming languages
community and found to be able to encode all primitive recursive func-
tions in the general case, and Ackermann’s function in higher-order
languages [136]. While also not directly applicable to Cypher pattern
matching, as its does not include functions (in the sense of a named
piece of code that can be referenced later), these results give an idea
of how dangerous the fold operator can be.

Contributions

We give a brief overview of themain operations of Cypher in Section 6.1.
Then in Section 6.2 we show some shortcomings of Cypher, which mo-
tivated the introduction of lists. In Section 6.3 we show how lists help
express many useful queries, particularly RPQs and their extensions.
Section 6.4 demonstrates that the same list facilities lead to problems,
namely expressing computationally intractable queries. In Section 6.5
we provide an experimental evaluation of such highly intractable queries,
and show that it is list operations, rather than the trail semantics, that
are responsible for the poor performance. In Section 6.6 we compare a
native graph implementation with SQL. Finally, in Section 6.7 we dis-
cuss what it means for language design, especially for future enhance-
ments to GQL. Supplementary material (full code and results) can be
found here.

6.1 Cypher Pattern Matching
The main selling points of Neo4j are its native graph storage, which
allows for optimized traversal of nodes and edges, and its associated
declarative query language Cypher [15], which shares a lot of features
with SQL and was the main inspiration behind GQL. This familiar look
and feel makes it easy to learn for most users. As a matter of fact, since
2015 and the launch of the openCypher project, Cypher has been imple-
mented by a number of different vendors such as Amazon, Memgraph
and Tigergraph.

Just like GQL and SQL/PGQ, Neo4j uses the property graph model. Fig-
ure 6.1 represents a property graph with five nodes, four of them la-
beled Person and having attribute name and one labeled Club with
an attribute type equal to Cycling and an attribute name equal to
Springfield Cycle Gang. The graph also contains six edges, all ori-
ented, four with label Friend and two with label Member. Each node
and edge also carries a unique identifier (n1, e1, and so on).

Like in GQL, queries in Cypher are composed in a linear way. They take
as input a graph and usually end with a RETURN statement, outputting
a table.

An example is the following query, which returns the names of friends
of Milhouse who have at least one but no more than three other friends
who belong to a cycling club :

MATCH (p1:Person)-[:Friend]-(p2:Person),

(p2)-[:Friend]-(p3:Person),

(p3)-[:Member]->(c:Club)

WHERE p1.name="Milhouse" AND c.type="Cycling"

WITH p2, COUNT(DISTINCT p3) AS fof

WHERE fof <= 3 AND fof >= 1

RETURN p2.name

https://anonymous.4open.science/r/neo4j_performance_test-CD09/README.md
https://neo4j.com
https://neo4j.com
https://neo4j.com
https://aws.amazon.com/neptune/
https://memgraph.com
https://www.tigergraph.com
https://neo4j.com
https://neo4j.com

130 6 Lists and Graphs languages

Figure 6.1: A cycling property graph

name: Springfield
 Cycle Gang

type: Cycling

Club

n5

name: Nelson

Person

n4

Member

e5

name: Lisa

Person

n1

name: Bart

Person

n2

name: Milhouse

Person

n3

Member

e6

Friend

e2

Friend

e3

Friend

e4

Friend

e1

The core of the Cypher language is its pattern matching mechanism.
Basic building blocks are patterns, which have a user friendly “ASCII art”
flavor, as witnessed by the three patterns in the MATCH clause above. The
first and second connect three nodes labeled Person using two Friend
edges. They are joined together via the variable p2. The third pattern,
starting on line 3, is joined to the second one via the third Person

node using the variable p3 and connects it to a node labeled Club via
a Member edge. Variables p1,p2,p3 and c are used to bind matches in
the working table. Values are first filtered by the WHERE clause (checking
p1’s name and c’s type), resulting in the following working table.

p1 p2 p3 c

n3 n2 n4 n5

n3 n1 n4 n5

The subsequent WITH clausemodifies the table, by retaining onlymatches
for p2, and computing, for each of the values p2, the number of distinct
values of p3 that occur with it in the tuple (and binding it to attribute
fof). This results in the modified working table shown below.

p2 fof

n2 1

n1 1

Finally, the RETURN clause acts similarly to SQL’s SELECT, forming the
output; in our example the value of the attribute name of the node
matched to p2 will be output, which corresponds to Bart and Lisa for
the graph in Figure 6.1.

Notice that the orientation of both Friend edge patterns is not specified
in the query and so the path can traverse them in any direction, thus
creating a first solution traversing the nodes corresponding to Milhouse
then Bart then Nelson, and a second solution going from Milhouse to
Lisa to Nelson. As p3 is Nelson in both cases, the value of fof stays 1.

An important aspect of Cypher pattern matching is the enforced trail
semantics, meaning each edge can be traversed at most once per path.
Thanks to this rule, finiteness of matches is always guaranteed. For
example if the condition on p1were to be changed to p1.name='Lisa',
there would be no valid answer as the only Person at distance 2 from
Lisa who is also a Member of a cycling club is Lisa herself and such
a path would necessarily use the same edge (between either Lisa and

6.2 Adding Lists 131

[137]: Francis et al. (2018), “Cypher:
An Evolving Query Language for Prop-
erty Graphs”
[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”
[60]: Libkin et al. (2016), “Querying
Graphs with Data”

[137]: Francis et al. (2018), “Cypher:
An Evolving Query Language for Prop-
erty Graphs”

Milhouse or Lisa and Nelson) twice, even if in opposite directions.

It is a crucial feature of any reasonable graph query language to allow
the retrieving of paths of arbitrary length (which falls short of the ex-
pressive power of usual conjunctive queries). Cypher enables this via a
restricted form of Kleene star. This is implemented by the use of vari-
able length edge patterns inside patterns, indicating that some possibly
unbounded number of edges should be traversed. The most basic form
of such patterns is ()-[*]-(), which can be matched to any path (once
again with no repeated edges). Minimal and maximal length of paths
to be matched can be set, as well as admissible labels for edges, as in
()-[:l1|l2*2..3]-(), where matches will be restricted to paths of
length 2 to 3 where edges are only labelled with l1 or l2. However, it
is not possible to directly label the path with a regular expression.

This sets Cypher apart from regular path queries, but also from GQL
(which can express full RPQs, as shown in Chapter 4). As a downside,
there is no commercial implementation of GQL yet, and thus we focus
our analysis on Cypher.

6.2 Adding Lists

6.2.1 Cypher limitations
As seen in Chapter 5, Cypher has a number of limitations that lead to
the need for amore expressive language. Some of these limitations have
been fixed in GQL and SQL/PGQ but others remain.

To start with, Cypher as originally designed could not express all RPQs.
Recall that an RPQ is given by a regular expression 𝑒 over the alpha-
bet of edge labels. Such a query returns pairs of nodes connected by a
path of edges whose labels, when read along the path, form a word in
the language of 𝑒. Cypher can express RPQs such as 𝑎∗ directly by (x)-
[:a*]->(y); it can also express some more complex expressions such
as 𝑎∗𝑏∗ by combining patterns such as (x)-[:a*]->()-[:b*]->(y).
However the main limitation of Cypher patterns is that the Kleene star
∗ can only be applied to (disjunctions of) edge labels, and not to more
complex regular expressions. This renders even simple regular expres-
sions such as (𝑎𝑎)∗ inexpressible with Cypher’s basic pattern matching
mechanism. We note that this limitation led to more expressive GQL
pattern matching capabilities, that have been adopted by Cypher pat-
tern matching in Neo4j starting with version 5.9.

Similarly, more complex path queries are not definable with Cypher’s
basic pattern matching. These include (a) CRPQs [137], or joins of
RPQs, (b) ECRPQ [11], which allow path comparisons with regular
predicates (such as: lengths of paths 𝑝1 and 𝑝2 are the same, or the
label of 𝑝1 is a prefix of the label of 𝑝2, etc), (c) various extensions of
CRPQs with handling data, such as checking for equality of property
values in nodes or edges of matched paths [60].

There are other rather natural conditions on paths that cannot be ex-
pressed, neither in the original Cypher nor in GQL and SQL/PGQ. Recall
that a path in a property graph is an alternating sequence of nodes and
edges that starts and ends in a node [137]. That is, such a path is a
sequence 𝑝 = 𝑛1 𝑒1 𝑛2 𝑒2 …𝑒𝑚−1 𝑛𝑚 where each 𝑛𝑖 is a node and 𝑒𝑗 is
an edge connecting 𝑛𝑗 and 𝑛𝑗+1 (meaning it either goes from 𝑛𝑗 to 𝑛𝑗+1
or from 𝑛𝑗+1 to 𝑛𝑗 or is an undirected edge between them). Assume

https://neo4j.com

132 6 Lists and Graphs languages

now that each node has a property 𝑘 and each edge has a property 𝑠.
Consider the following properties of path 𝑝:

1. Values in nodes increase: 𝑛1.𝑘 < 𝑛2.𝑘 < …𝑛𝑚.𝑘;
2. Values in edges increase: 𝑒1.𝑠 < 𝑒2.𝑠 < …𝑒𝑚−1.𝑠;
3. Values in all nodes are different: 𝑛𝑖.𝑘 ≠ 𝑛𝑗.𝑘 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚;
4. Values in all edges are different: 𝑒𝑖.𝑠 ≠ 𝑒𝑗.𝑠 for 1 ≤ 𝑖 < 𝑗 < 𝑚;
5. Values in all nodes/edges are similar: |𝑛𝑖.𝑘 − 𝑛𝑗.𝑘| < 𝑡 for

1 ≤ 𝑖 < 𝑗 ≤ 𝑚 and some threshold 𝑡, and likewise for edges.

Of these, only the first one can be expressed by a simple pattern (avail-
able in GQL and the latest version of Cypher):

MATCH (x) ((n1)->(n2) WHERE n1.k<n2.k)+ (y)

RETURN x, y

Others cannot be expressed in patternmatching only (as shown in Chap-
ter 5).

While these fairly simple properties are not expressible by patterns
alone, there is a seemingly natural way to add them to the language.
This was followed by Cypher that introduced the following capabilities.
Given a path p = 𝑛1 𝑒1 𝑛2 …𝑒𝑚−1 𝑛𝑚, one can define two lists:

▶ nodes(p) = [𝑛1,… , 𝑛𝑚] of all nodes of p, and
▶ relationships(p) = [𝑒1,… , 𝑒𝑛−1] of all edges of p,

both in the order in which they appear in p.

Then the above queries are easywith some standard list functions. Check-
ing that p conforms to (𝑎𝑎)∗ we need to check that every label is 𝑎
(using for example -[:a*]->) and that size(nodes(p)) is odd (or
size(relationships(p)) is even). For other conditions, we apply the
standard reduce (or fold) function on lists that accumulates a value
as it iterates over list elements:

reduce[𝜄, 𝑓]([𝑎1,… , 𝑎𝑛] = 𝑓(…𝑓(𝑓(𝜄, 𝑎1), 𝑎2),… , 𝑎𝑛)

For example, to check whether a non-negative list [𝑎1,… , 𝑎𝑛] is in
the increasing order, we use 𝜄 = (0, true) and 𝑓((𝑎, truth_value), 𝑏) =
(𝑏, truth_value ∧ (𝑎.𝑘 < 𝑏.𝑘))

6.2.2 Cypher support for lists
We now briefly outline the operators provided in Cypher for list manip-
ulation.

Creating lists There are several ways to generate a list. We already
saw two, namely nodes(p) and relationships(p) for creating lists
of nodes and edges of a path p. Entries of such lists are node and edge
ids, and thus their labels and properties can be retrieved too. The list of
property names of an element x (node or edge) can be obtained with
keys(x), the list of labels of a node n with labels(n).

There are ways to create lists independently of graph elements: the
function range(i, j [, step]) returns the list containing all elements
between i and j, where the difference between two consecutive ele-
ments is given by the value of the expression step. Also an arbitrary
set s can be turned into a list by collect(s).

6.3 Expressing RPQs and beyond 133

6.2.3 Operations on lists

Alongside list creation functions, Cypher offers many ways of manipu-
lating lists. Among the basic list operations are:

▶ L1 + L2 is the concatenation of L1 and L2;
▶ e IN L checks if element e belongs to the list L;
▶ L[n] returns the element at position n in L.

The workhorse of list processing is the reduce() function (sometimes
called fold in the context of functional programming). In its most gen-
eral form it is given as

reduce(acc = init, x::L | f(x, acc))

where L is a list, init is the initial configuration for the accumulator
variable acc and f(x,acc) is a function that is applied to a list element
x and the accumulator value acc to produce a new accumulator value.
That is

reduce(acc=init, [] | f) = init

reduce(acc=init, x::L | f) = f(x, reduce(acc=init, L | f))

There are important special cases of reduce that have their own syn-
tactic construct due to their frequent use. These are

▶ all(L, p) returns true if all elements of L satisfy the predicate
p (in this case init=true and f is conjunction);

▶ none(L, p) checks if no element of L satisfies p; this is all ap-
plied to the negation of p;

▶ any(L, p) returns true if some element of L satisfies p (here
init=false and f is disjunction);

▶ size(L) outputs the size of L; here init=0 and f increments acc
by 1.

Finally, a list can be turned into a table by UNWIND L; it creates a row
for each element of L.

Of course Cypher provides many other functions such as head, tail,
reverse, isEmpty, and others, but the above will suffice for our exam-
ples.

In what follows we shall consider two variants of using lists in Cypher:

1. Using the full power of reduce;
2. Without the general reduce but with derived functions all, none,

any, and size. Despite the simplicity of this fragment, we shall
see that many queries can be written in it, and it comes loaded
with issues.

6.3 Expressing RPQs and beyond

We now show how adding lists to the language lets us express what was
previously inexpressible in Cypher, namely RPQs and several of their
extensions, as well as checking conditions on paths mentioned in the
previous section.

134 6 Lists and Graphs languages

Aggregation

The most obvious use of lists is not a limitation of pattern matching
per se, but a very common and natural extension: aggregation. Just as
in the relational context, aggregation operations can be separated into
two categories, vertical and horizontal.

In vertical aggregation, the resulting value is computed over the dif-
ferent matches of the pattern (i.e. a column of the driving table). For
example, the query below computes the average length of all road edges
in the graph by calculating the average value of the length attribute of
all the edges that match r.

MATCH ()-[r :Road]->()

RETURN avg(r.length) AS avg_length

In horizontal aggregation, the resulting value is computed over the dif-
ferent values of each match of the pattern (i.e. the rows of the driving
table), such as a property along the path. For example, the query below
computes the cost of the different routes from Springfield to Shelbyville,
taking into account the cost of gas and the tolls. The total length of the
route is calculated as the sum of the elements of the lengths list, ob-
tained from (r in relationships(p) | r.length) which contains
the length values of all the traversed edges. The cost of gas is then
the total length multiplied by the cost of gas per km. The total sum of
the tolls is obtained in the same way as the total length except for the
attribute toll.

MATCH p=({name: Springfield}}-[*]->({name: Shelbyville})

WITH (r IN relationships(p) | r.length) AS lengths,

(r IN relationships(p) | r.toll) AS tolls

RETURN reduce(sum=0, l IN lengths | sum+l)*1.8 +

reduce(sum=0, t IN tolls | sum+t) AS cost

RPQs and CRPQs

Recall that an RPQ is given by a regular expression 𝑒 over edge labels,
and returns pairs of nodes connected by a path whose label forms a
word in the language denoted by 𝑒.

Using the well known equivalence between regular languages and DFAs
(as explained in Chapter 2), it is clearly enough to write a query that
will simulate the run of the underlying automaton of any RPQ over the
word composed of the edge-labels of the path.

We illustrate this by an example of a query inexpressible in earlier ver-
sions of Cypher, given by the regular expressions (𝑎𝑏)∗; the construc-
tion will make it clear that it can be extended to an arbitrary DFA.

𝑞0start 𝑞1

𝑞𝑠

𝑎

𝑏 𝑎

𝑏

𝑎, 𝑏

6.3 Expressing RPQs and beyond 135

The automaton capturing (𝑎𝑏)∗ (represented above) is given by 𝒜𝑄 =
({𝑞0, 𝑞1, 𝑞𝑠}, {𝑎, 𝑏}, 𝛿, {𝑞0}, {𝑞0})where 𝛿 contains the following transi-
tions: (𝑞0, 𝑎, 𝑞1), (𝑞1, 𝑏, 𝑞0), (𝑞0, 𝑏, 𝑞𝑠), (𝑞1, 𝑎, 𝑞𝑠), (𝑞𝑠, 𝑎, 𝑞𝑠), (𝑞𝑠, 𝑏, 𝑞𝑠).
Notice that the second (resp. third) transition moves from 𝑞0 (resp. 𝑞1)
to the sink state 𝑞𝑠. This is necessary, as our translation requires that
the automaton be complete, i.e. there must exist a transition for every
input symbol from every state. As any automaton can be completed, by
adding missing transitions to a sink state, this is not a restriction.

To emulate𝒜 as a Cypher query, we start bymatching an arbitrary path
𝑝 and then creating its list of edge labels (which we call types_p):

MATCH p = (x)-[*]-(y)

WITH [r in relationships(p) | type(r)] as types_p, p

We then emulate the run of 𝒜 over types_p using reduce(). The cur-
rent state is stored in the accumulator variable state and the transition
function is written out explicitly as a list of CASE statements (one for
each state) each containing a sub-list of CASE statements (one for each
transition from that state) that returns the next state.

WITH reduce (state = 'q0', label in types_p |

CASE state

WHEN 'q0' THEN

CASE label

WHEN 'a' THEN 'q1'

ELSE 'qs'

END

WHEN 'q1' THEN

CASE label

WHEN 'b' THEN 'q0'

ELSE 'qs'

END

WHEN 'qs' THEN 'qs'

END

) AS final_state, p

Finally, we check that the value final_state returned by the reduce
function, belongs to our set of final states 𝐹 = {𝑞0} and return p.

WHERE final_state in ['q0']

RETURN p

This approach can clearly be generalized to any finite automaton, by
writing out explicitly the whole transition function 𝛿 as a series of CASE
statements in the reduce function.

The same approach works for CRPQs (introduced in Chapter 2). Again,
we convert each 𝑒𝑖 into a DFA𝒜𝑖 and follow the approach above, instead
matching 𝑘 paths:

MATCH p0 = (x0)-[*]-(y0), ..., (pk) = (xk)-[*]->(yk)

WITH [r in relationships(p0) | type(r)] AS types_p0, p0

....

WITH [r in relationships(pk) | type(r)] AS types_pk, pk,

followed by 𝑘 reduce statements simulating the 𝑘 automata, and then
checking that all of them are in their respective final states, just as we
did above for a single RPQ.

Notice that the implicit join on variables of the same name is preserved

136 6 Lists and Graphs languages

[11]: Barceló et al. (2012), “Expressive
languages for path queries over graph-
structured data”

in the translation. Finally this query concludes with a RETURN statement
projecting out variables corresponding to ̄𝑧.

6.3.1 Extended CRPQs
Using the same ideas, this translation can be adapted to Extended CR-
PQs (ECRPQs, as defined in [11] and Chapter 2), which, as the name
implies, extend CRPQs in two ways: they add the ability to talk about
whole paths instead of just their endpoints, and they can express con-
ditions on multiple paths in relation to one another.

The translation to Cypher of CRPQs can be adapted to ECRPQs by cre-
ating an additional structure that contains the list of edge-labels of all
paths at any given point. This can be achieved by first matching𝑚 paths
mentioned in the query, extracting their labels into𝑚 lists as before and
then building a fresh list path_labels, of length equal to the longest
path, such that path_label(𝑖) contains the labels of all edges at posi-
tion 𝑖 in the matched paths (or a special symbol if such an edge does
not exist). The transition function translation then follows the same
structure as for CRPQs, that is, we write a CASE statement for each
combination of automaton state and permutation of letters from the
edge label alphabet.

As an example, assume we have an array of path labels as defined above.
Then the condition checking that a path is the prefix of another can be
encoded as follows.

reduce(state="q0", labels IN path_labels |

CASE state

WHEN "q0" THEN

CASE WHEN labels[0]=labels[1] OR labels[0]="-"

THEN "q0"

ELSE "qs"

END

WHEN "qs" THEN "qs"

END

) AS final_state

WHERE final_state = "q0"

The automaton this reduce() simulates has two states: 𝑞0, the initial
and only final state, and 𝑞𝑠, the sink state. As long as the label of the
second path, stored in labels[1], is equal to that of the first, stored in
labels[0], or the first path has ended, the automaton stays in 𝑞0. If
at any point this is not true, the automaton switches to 𝑞𝑠 and remains
stuck there until the end. If the state reached at the end of the compu-
tation is 𝑞0 then the path whose labels are stored first in path_labels

is a prefix of the one whose labels are stored second.

Queries comparing values in nodes and edges To illustrate how
value-based queries inexpressible in pattern matching can be expressed
using lists, we given as an example the query ”values in all edges from
Start to End are different”.

MATCH p=(:Start)-[*]->(:End)

WITH [r IN relationships(p) | r.val] AS values, p

WITH reduce(res=[true,[]], val IN values |

CASE res[0]

6.4 The Pitfalls of Lists 137

[138]: Grumbach et al. (1996), “To-
wards Tractable Algebras for Bags”
[139]: Libkin et al. (1997), “Query Lan-
guages for Bags and Aggregate Func-
tions”

WHEN true THEN

CASE WHEN val IN res[1] THEN [false,[]]

ELSE [true, res[1]+val]

END

ELSE res

END

) AS result,p

WHERE result[0]=true

RETURN p

As before, the query iterates over the edges of the potential path, this
time storing the values (obtained via the list comprehension expres-
sion [r in relationships(p) | r.val]) instead of the label. The
reduce function checks the condition by storing all values encountered
thus far in the second element of the accumulator. If the next value is
already present in the list, the first element of the accumulator is set to
false and will stay false until the end of the computation, otherwise
the second element remains true and the new value is added to the
list. Notice that the accumulator of this reduce function is a complex
object: it is a list of size 2, whose first element is a boolean and whose
second element is a list of values of arbitrary (albeit all the same) type.

6.4 The Pitfalls of Lists
We have shown in section 6.3, that the reduce() function is a powerful
tool as it gives a way to express conditions that go beyond regular ex-
pressions on any structure. In this section, we show how this expressive
power can lead to intractable queries.

To start with, the high expressive power of reduce in the context of a
query language is not surprising as such. Even for bags, that drop the
order from lists, adding reduce and nesting allows queries whose com-
plexity is a fixed-height tower of exponentials (e.g., 𝑘 − EXPTIME com-
plexity for any fixed 𝑘) and the class of encoded numerical functions is
Kalmar-elementary [138, 139]. The latter optimistic name dates back
to the early days of recursion theory where it meant ”less than primitive
recursive”; in reality it captures definitions given by second-, third, …,
𝑘-order logic, and is thus completely impractical.

To see where this extremely high complexity comes from, and cru-
cially how to exclude an easy way of writing effectively non-computable
queries, we note that Cypher imposes no restrictions on either the ac-
cumulator value, or the combining function. Hence a query computing
the powerset of a set, such as the one below, which uses a list of lists
as the accumulator and a second reduce as the combining function, is
allowed.

WITH reduce(res=[[]], i in range(n,m) |

reduce(subres=[], j in res |

subres+[j+[i]]+[j]

)

) AS powerset

RETURN powerset

The input in this example is a range of numbers (but could be any list).
It uses two nested reduce functions. The outer loop iterates over a
given set 𝑆 and returns a set of subsets containing elements of 𝑆. The

138 6 Lists and Graphs languages

Figure 6.2: Subset sum as a graph prob-
lem, in bold a solution for 𝑇 = 1

{−18, −35, 37, −1, 54}
⇓

:Start :End
−18

0

−35

0

37

0

−1

0

54

0

[134]: Garey et al. (1979), Computers
and Intractability: A Guide to the Theory
of NP-Completeness
2: assuming a binary encoding for the
integers. If a unary encoding is used in-
stead, the problem can be solved in log-
arithmic space [140]

inner loop iterates over the current subsets and executes two opera-
tions: (1) it adds the current element to each subset, and (2) it creates
a new subset that contains only the current element.

As the main property of powersets is their exponential size, the above
query generates exponentially many results (in the size of the list) and
is therefore unreasonably slow for any list containingmore than a dozen
elements.

To try to curb this behaviour, we consider two restrictions on reduce().

Restriction 1: no composite type accumulators Since the power set
query relies on accumulating lists in lists, the first restriction that we
consider is to disallow composite type accumulators (such as lists and
maps). However, even under such a restriction it is easy to write in-
tractable queries, in fact even avoiding the default trail semantics of
Cypher and using a common shortest path semantics.

The problem we consider is subset sum: given a (multi)set 𝑆 and a
target-sum 𝑇, is there a subset 𝑆′ of 𝑆 such that ∑𝑠∈𝑆′ = 𝑇, in other
words such that the sum of all elements of 𝑆′ is equal to the target-sum
𝑇? This problem is known to be NP-hard [134] 2.

The query computing the subset sum problem shows that this restric-
tion is not sufficient.

Given a set 𝑆, we model it as a graph for the subset sum problem in
the following way:

Assume some enumeration 𝑠1,… , 𝑠𝑘 of elements of 𝑆. The graph has
nodes 𝑛0, 𝑛1,… , 𝑛𝑘, with 𝑛0 having label Start and 𝑛𝑘 having label End.
All edges have the same label Edge and one property value. We have two
edges from 𝑛𝑖−1 to 𝑛𝑖, for 0 < 𝑖 ≤ 𝑘, one with value = 0 and the other
with value = 𝑠𝑖. See figure 6.2 for an illustration.

It is clear that all shortest paths from 𝑛0 to 𝑛𝑘 have the same length,
there are 2𝑘 of them, and along each path one chooses an edge from
𝑛𝑖−1 to 𝑛𝑖 that either has value 0, thereby skipping 𝑠𝑖 from the sum,
or value 𝑠𝑖, thereby adding it. Using flat lists that only have edges from
the path following by summing up their elements we encode the subset
sum problem by the following query.

MATCH p = allShortestPaths((:Start)-[:Edge*]->(:End))

WITH [r IN relationships(p) | r.value] AS values, p

WHERE reduce(sum = 0, v IN values | sum+v) = $T

RETURN p

For the above shaped graphs, this query solves the subset sum problem
by finding a path along this graph such that the sum of the edge values
is equal to $𝑇.

6.4 The Pitfalls of Lists 139

[141]: Karp (1972), “Reducibility
Among Combinatorial Problems”

[142]: Mairson (1989), “Deciding ML
typability is complete for deterministic
exponential time”

Therefore, restricting reduce() accumulators to primitive types only is
not sufficient. We thus look at much more drastic restriction of reduce
but even with that, we can still encode computationally intractable
problems.

Restriction 2: the only permitted instances of reduce are all and
size In other words, only the four simplest incarnations of reduce
from Section 6.4 are allowed. Notice that none and any are expressible
with all using negation. This may seem to be a draconian restriction,
eliminating much of the power of reduce, and yet the resulting lan-
guage retains enough power to express intractable problems. Indeed,
we now show how to express the Hamiltonian path problem, using
boolean-only reduce.

The Hamiltonian path problem is defined as follows: Given a graph 𝐺,
is there a path 𝑝 in 𝐺 such that 𝑝 visits each node of 𝐺 exactly once?
This problem is also known to be NP-complete [141]. This problem is
solved by the following query.

MATCH (n)

WITH collect(n.name) AS allNodes

MATCH path=(:Start)-[*]-()

WITH path, allNodes,

[y IN nodes(path) | y.name] AS nodesInPath

WHERE all(node IN allNodes WHERE node IN nodesInPath)

AND size(allNodes)=size(nodesInPath)

RETURN path LIMIT 1

The first two lines of the query collect all node ids into the list allNodes.
Then the query matches any (trail) path and collects its node ids into
the list nodesInPath. To check that each node is traversed at least once,
we use the all() function, a specialization of reduce() which checks
that the argument predicate holds for all elements of the argument list
(notice that this is a boolean check). We apply all() on allNodes to
check that each of its elements appears in nodesInPath. To check that
each node is traversed at most once we compare the size of allNodes
with nodesInPath, and require them to be equal.

Clearly, restricting reduce() to only its simplest special cases is not a
good solution either.

Thus, evenwith severe restrictions on reduce, one can encode intractable
problems in Cypher. There is a worrying element here from the lan-
guage design point of view: it is how easy it was to write these queries.
It is true that full SQL is Turing complete and one can write a Turing
machine simulator in it, but this is hardly a natural query. The queries
we have shown in this section are simple and natural and one can thus
assume that a moderately advanced programmer will be able to handle
them.

The question this leads to is the following: will this theoretical complex-
ity show up in practice? After all, there aremanyNP-hard problems that
are routinely solved even in the database context, not least the problem
of finding trail paths. This is an NP-hard problem and it has not stopped
Cypher from being the (so far) dominant graph query language, despite
trails being its default path semantics. There are multiple other exam-
ples of this kind, like exponential-time-hard typechecking problems in
some widely used programming languages [142] that nonetheless only

140 6 Lists and Graphs languages

3: To avoid memory pollution between
rounds, the Neo4j server was manually
restarted between each increase of 𝑝.

4: The first iteration gives Neo4j a
chance to generate the appropriate in-
dices.

manifests itself in artificial examples and does not affect everyday pro-
gramming practice.

Perhaps then theoretically intractable queries will be handled by the
query engine with ease? We next do an experimental study to show
that to the contrary, such queries are completely impossible, even on
tiny graphs.

6.5 Experimental results
As explained at the end of the last section, NP-hardness is usually bad
news but there are exceptions when the cases showing hardness do
not realistically occur. Thus, to see whether the results of the previous
section indeed spell bad news for list processing in graph queries, we
evaluate such queries experimentally, with the result fully expected by
the reader who has glanced at the title of the section.

To tests the actual performance of hard queries, we ran a set of tests
using Neo4j, the most widely used graph database engine. We started
our experiments with randomized data, and discovered that the perfor-
mance was so poor (only very small graphs with fewer than 30 nodes
could be handled before timeout) that there was simply no real data of
such tiny size we could realistically extend the experiments to. The test-
ing program is written in Go and communicates with Neo4j (v5.18.1)
via the Neo4j Go driver. All tests were executed on a machine with
the following configuration: 16 Intel i7-10700 @ 2.90GHz CPUs, 16GB
RAM, Ubuntu 22.04.3 LTS.

The tests proceed as follows :

1. For each 𝑝 between 0.1 and 1.0 3 and each 𝑛 between minNodes

and maxNodes, do the following 5 times:
2. Generate a random graph with 𝑛 nodes, with the property name

ranging from 1 to 𝑛, in which any two nodes are connected with
probability 𝑝 by an edge labelled Edge.

3. Do the following 5 times and log the execution time of the last 4
iterations 4:

4. Generate the specified query with random start and end points
5. Ask the DBMS to run the query on the generated graph. If the

query has not returned after 5 minutes, declare it timed-out.

To start, Figure 6.3 presents a sample of runtimes of the Hamiltonian
path query written in Cypher. We present it here for small edge prob-
abilities 𝑝 = 0.1, 0.2, 0.3 and one high probability 𝑝 = 0.8. As 𝑝
increases, the graph becomes closer to a complete graph with the num-
ber of paths growing as the factorial function, resulting in a quickly
degrading performance.

The figure shows both the median execution time (blue line, scale on
the left) and percentage of timeouts (bars; scale on the right). If some
runs time out, we take the median only over those that do not (explain-
ing nonmonotone behavior in some cases where we see both timeouts
and successful executions). The timeout was set at 3 ⋅ 105ms.

According to these tests, for 65.26% of the configurations all iterations
time out. When nodes have a probability of being connected of more
than 0.7, the engine cannot handle more than 4 nodes! For sparse
graphs the situation is not much better with the engine failing on 10

https://neo4j.com
https://neo4j.com
https://neo4j.com
https://neo4j.com
https://neo4j.com

6.5 Experimental results 141

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 3 1 1 2 2 1 1 1 3 72 583 51 33 2839

11226
187

30342

(a) Median execution time and number of timeouts for 𝑝 = 0.1

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 2 1 2 2 3 22 31 848

263151

1167

(b) Median execution time and number of timeouts for 𝑝 = 0.2

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 3 2 2 9 9 56

102733

(c) Median execution time and number of timeouts for 𝑝 = 0.3

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 4 714

(d) Median execution time and number of timeouts for 𝑝 = 0.8

Figure 6.3: Results of the performance tests on Neo4j for the Hamiltonian path problem

142 6 Lists and Graphs languages

[137]: Francis et al. (2018), “Cypher:
An Evolving Query Language for Prop-
erty Graphs”
[84]: Martens et al. (2020), “A Tri-
chotomy for Regular Trail Queries”

[143]: Bonifati et al. (2017), “An An-
alytical Study of Large SPARQL Query
Logs”

nodes for 𝑝 = 0.3 and 8 nodes for 𝑝 = 0.4. The biggest graph for which
Neo4j can find a solution for the Hamiltonian path problem contains
just 19 nodes. For the configurations for which Neo4j does manage to
find a solution, the running time is surprisingly slow: for a graph of 6
nodes and probability 0.6, the median time before a solution is found
is a bit more than 3min.

Of course there could be another potential culprit, namely trail seman-
tics, which is the default semantics of Cypher: only paths with no re-
peated edges are returned. In fact this makes Cypher pattern matching
NP-complete in general [137] though it is not the case for all queries.
Indeed [84] identified the class Ttract of tractable queries for the Reg-
ular Trail Query problem. Any query that belongs to Ttract is either
NLOGSPACE-complete or in AC0, and any query that does not belong
to Ttract is NP-complete. In fact relatively few real-life regular patterns
fall outside the class Ttract which explains the good behavior of the trail
semantics in practice [143]. A rare pattern that does occur in practice
and that has theoretical NP-complete bound is of the form 𝐴∗𝐵𝐴∗, i.e.,
a path of edges labeled by 𝐴 with the exception of a single edge labeled
𝐵 that occurs anywhere on the path. The existence of such a path is of
course easily checked in Cypher:

MATCH p = ()-[:A*]->()-[:B]->()-[:A*]->()

RETURN p LIMIT 1

Thus, as the first test to see whether the culprit of the bad behavior of
the Hamiltonian path query is lists of trails, we test the performance
of the above query. These performance results are visualized in figure
6.4, with the blue line. The highest median execution time is only 2ms
(as opposed to 3 ⋅ 105ms for timeouts for Hamiltonian path). Even
with three observed timeouts for the high probability 𝑝 = 0.8 (among
a total of 100 tests), the enormous gap between the results for two
theoretically NP-complete queries, one using lists and trails and the
other using trails alone, clearly point to lists as the reason.

To further confirm that lists rather than trails are the real cause of ex-
tremely poor behavior we test the subset sum query from Section 6.4.
Recall that this query also encodes an NP-complete problem, but does
so with shortest paths rather than trails, and of course finding shortest
paths is tractable.

The results of the performance tests of the subset sum query are shown
in figure 6.5. Recall that in our encoding of this problem as a line graph
with parallel edges, the graph is fixed (there is no random generation),
so we only report the number of nodes on the x axis. On the y axis, as
before, we show the median running time with timeout set at 3⋅105ms,
and on the right the bars indicate the percentage of timeouts. This time
we do 20 iterations for each length. Although the performance is very
good for very small graphs, staying under 2000ms for up to 20 nodes,
the exponential nature of the problem becomes very quickly apparent,
eventually reaching the 100% five-minute time out on 27 nodes.

Since for this query the only source of complexity is the use of lists to
encode subset sum, together with other results of this section it clearly
points to complete inability of the state-of-the-art graph database en-
gine to handle anything other than the tiniest of inputs.

https://neo4j.com
https://neo4j.com

6.5 Experimental results 143

median execution time in ms
percentage of timeouts

Neo4j Postgres

Postgres

Neo4j
nodes

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7

6

7 7

(a) Median execution time and number of timeouts for 𝑝 = 0.1

median execution time in ms
percentage of timeouts

Neo4j Postgres

Postgres

Neo4j
nodes

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6

6.5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(b) Median execution time and number of timeouts for 𝑝 = 0.2

median execution time in ms
percentage of timeouts

Neo4j Postgres

Postgres

Neo4j
nodes

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(c) Median execution time and number of timeouts for 𝑝 = 0.3

median execution time in ms
percentage of timeouts

Neo4j Postgres

Postgres

Neo4j
nodes

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

1.5

1 1 1 1 1

0.5

0 0 0 0 0 0 0 0 0 0 0

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(d) Median execution time and number of timeouts for 𝑝 = 0.8

Figure 6.4: Results of the performance tests on Neo4j and Postgres for 𝐴∗𝐵𝐴∗

144 6 Lists and Graphs languages

median execution time in ms percentage of timeouts

nodes
0

30,000

60,000

90,000

120,000

150,000

180,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 2 1 1 1.5 2 1.5 2 3 3 6 13 26 49.598.5211.5417 8331783.53979.5

8450.5

18714.5

38755.5

80134

161830

(a) Neo4j

median execution time in ms percentage of timeouts

nodes
0

30,000

60,000

90,000

120,000

150,000

180,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0 0 0 0 0 0 0 0 0 2 2 11 12 27 55 121 256 214

347
1299

2328
4623

10001
9784

53550

(b) Postgres

Figure 6.5: Results of the performance tests on Neo4j and Postgres for the subset sum problem

[144]: Najork et al. (2012), “Of ham-
mers and nails: an empirical compari-
son of three paradigms for processing
large graphs”
[145]: Fan et al. (2015), “The Case
Against Specialized Graph Analytics En-
gines”
[146]: Pacaci et al. (2017), “Do We
Need Specialized Graph Databases?:
Benchmarking Real-Time Social Net-
working Applications”
[147]: Angles et al. (2013), “Bench-
marking database systems for social net-
work applications”
[148]: Kotiranta et al. (2022), “Per-
formance of Graph and Relational
Databases in Complex Queries”
[149]: Robinson et al. (2013), Graph
databases
5: Indeed, this is folklore knowledge
that SQL with recursive CTEs is Turing
complete, as shown for example here
using a Turing machine simulation.

6.6 Can SQL help?
A case for the use of relational database engines over specialized graph
engines has been made in the context of analytic and concurrent trans-
actional workloads [144–146]. On the other hand, the idea that graph
databases outperform relational databases for navigational queries is
widespread, even though reservations have been expressed in the case
of complex queries [147, 148]. Following pointers, as described in [149],
can indeed be done in constant time, thereby avoiding costly joins,
which suggests an advantage for native graph structures.

Since no crystal clear picture emerges from existing studies as to the
advantages of a relational representation or a native graph engine, we
look at the problematic queries from the previous sections and see how
an SQL DBMS would handle them. Notice that all queries from the pre-
vious sections can be expressed in SQL with recursive common table
expressions5.

There are multiple ways to encode property graphs in relational struc-
tures. We settle here for simple encodings which minimize the number
of joins and facilitate writing queries. In the case of the 𝐴∗𝐵𝐴∗ query,
which is intended to show how well the trail semantics is enforced, we
encode edge labeling as ternary relations with attributes for source, tar-
get and label, thus also implicitly encoding edges. We use PostgreSQL
and its built-in array type in order to store paths. The recursive part of
the query constructs every 𝐴-labeled trail of length 𝑘 as an array of the

https://wiki.postgresql.org/wiki/Turing_Machine_(with_recursive)

6.6 Can SQL help? 145

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7 8 8 8 8 8 8 8 8 8 9 9 11 8 9 10 16 12 10

(a) Median execution time and number of timeouts for 𝑝 = 0.1

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 8 8 8 8 8 8 8 8 9 9 9 21 12 17 217 326 491
9103

(b) Median execution time and number of timeouts for 𝑝 = 0.2

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 8 8 8 8 8 8 9 12 11 34 46 414 1971

22365

40623 43828

(c) Median execution time and number of timeouts for 𝑝 = 0.3

median execution time in ms percentage of timeouts

nodes
0

50,000

100,000

150,000

200,000

250,000

300,000

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 9 8 8 11 14 64 417 4104

29317

88838

(d) Median execution time and number of timeouts for 𝑝 = 0.8

Figure 6.6: Results of the performance tests on Postgres for the Hamiltonian path problem

146 6 Lists and Graphs languages

form [𝑠0.𝑡0,… , 𝑠𝑘.𝑡𝑘], where identifiers 𝑠𝑖 and 𝑡𝑖 of the source and the
target from each edge in the path are just concatenated using the dot
as a separator. The trail condition is then enforced in the WHERE clause
by filtering out already visited edges. The query is shown below:

WITH RECURSIVE a_kleene_star AS (

SELECT s, t, 0 AS depth, array[s,t] AS path,

array[s||'.'|| t] AS edges FROM A

UNION

SELECT A.s, A.t, a_kleene_star.depth+1,

a_kleene_star.path||A.t,

a_kleene_star.edges ||

concat(A.s||'.',A.t)

FROM A , a_kleene_star

WHERE A.s=a_kleene_star.t AND

NOT concat(A.s||'.',A.t)=ANY(a_kleene_star.edges)

)

SELECT A1.s, A2.t

FROM a_kleene_star A1, a_kleene_star A2, B

WHERE A1.t=B.s AND B.t=A2.s LIMIT 1;

PostgreSQL performance on this query, on data generated as for the
Cypher query (modulo the representation of data as relations) is shown
in Figure 6.4 as the green line. We see that the performance is com-
pletely adequate even if marginally worse than in the case of Neo4j
(which is expected as this is literally the problem graph databases are
designed to solve).

We next move to the Hamiltonian path query. Since it only concerns
the underlying graph structure (no reference to properties), we use an
even simpler encoding of the graph as a binary relation G with two
attributes src and tgt ranging over node identifiers of sources and
targets. Candidate Hamiltonian paths are constructed iteratively by
initially storing the source and target of each edge in a different array.
Whenever another edge can be reached from the edge previously stored
in the array, the target of that new edge is added to the array, but only
if it was not already in it. At the end of the iteration it only remains
to check whether one of those arrays is of the same size as the graph.
If so then it contains a Hamiltonian path for the graph. The query is
shown below:

WITH RECURSIVE paths(startP, endP, path)

AS (SELECT src AS startP,

tgt AS endP,

ARRAY[src,tgt] as path

FROM G

UNION

SELECT startP, tgt, array_append(path,tgt)

FROM G, paths

WHERE src=endP AND tgt <> ALL(path))

SELECT * FROM paths

WHERE ARRAY_LENGTH(path,1) =

(SELECT COUNT(DISTINCT src) FROM G)

LIMIT 1;

Performance results are shown in Figure 6.6.While for low probabilities
and small values of 𝑛 both Cypher and SQL perform well (with SQL
being marginally slower), SQL’s coverage is better when it comes to
timeouts on a higher number of nodes (e.g., 100% timeout on 19 nodes
for 𝑝 = 0.3 as opposed to 10 for Cypher). Regardless, just like Cypher,
SQL can only handle tiny graphs here, and for any reasonable size graph

https://neo4j.com

6.7 Conclusion 147

performance would not be adequate independently of the choice of SQL
or Cypher to encode the problem.

We next look at the subset sum query. Here we encode the graph as
a ternary relation G storing the source, target and weight of each edge.
Candidate paths are iteratively constructed as array structures. For each
edge in the graph, an array containing its source identifier, weight and
target identifier is first initialized. Variables for the first node in the
path, the last node and the total weight of the path are also initialized.
When another edge can be reached from the edge previously stored
in the array, the target of that new edge is added to the array at each
iterative stage. As we only run this query on graphs with no cycles (as
shown in Figure 6.2), the computation terminates and only gives rise
to trails. Finally, the last SELECT clause returns among candidate paths
those which satisfy the desired condition. The query is shown below.

WITH RECURSIVE paths(p_src, p_tgt, path, total_weight)

AS (SELECT src AS p_src, tgt As p_tgt,

ARRAY[src,weight,tgt] AS path,

weight AS total_weight

FROM G

WHERE src = 0

UNION

SELECT p_src, tgt,

array_append(array_append(path,weight),tgt),

total_weight+weight AS total_weight

FROM G, paths

WHERE src=p_tgt)

SELECT * FROM paths

WHERE total_weight=0 AND p_src=0 AND target=T;

Performance results for this query are shown in the right graph in Fig-
ure 6.5. In this case Cypher and SQL behave very similarly, with the
exponential growth starting a bit earlier for Cypher, but then 100% of
timeouts is reached on graphs of the same size.

In conclusion, a SQL DBMS does not in general outperform a native
graph database on the problematic queries we explored in the previous
sections. In fact the results are roughly comparable.

There is one striking difference however. Queries such as subset sum
and Hamiltonian path that used lists explicitly are very easy to write
in Cypher. In fact the queries look so deceptively simple that one can
expect a reasonably proficient programmer to write themwith ease, but
then there is no chance they will performwell. In SQL on the other hand
these queries are much harder to write, and their general shape may
serve as an indication that their performance will not be adequate. Thus
again the explicit use of list operations in Cypher queries as its specific
design feature can easily lead to significantly degraded performance.

6.7 Conclusion
While performance figures in Section 6.5 may suggest that list pro-
cessing can ruin everything, it is nonetheless a very convenient device
that oftentimes can and will be used without causing significant prob-
lems. The main culprit behind the poor performance is not a particular
database engine but rather the design of the language that makes it pos-
sible to write offending queries with ease.

148 6 Lists and Graphs languages

[150]: Gasarch (2021), “Hilbert’s Tenth
Problem for Fixed d and n”

Before outlining a possible remedy, we note that a careless approach to
the design of language features and their semantics can lead to even
worse circumstances. Consider the following example inspired by Chap-
ter 4. The database is a very simple graph: it has a loop on a node with
label lab1, and an isolated node with label lab2 and three properties
a,b,c with integer values. Next consider the following query.

MATCH p=allShortestPaths((:lab1)-[*]->()), (y:lab2)

WITH reduce(s=0,

v IN [r IN relationships(p) | r.v] | s+v) AS x,

y.a AS a, y.b AS b, y.c AS c

WHERE a*x*x+b*x+c=0

RETURN p LIMIT 1

There are two ways of providing a semantics to this query, depending
on the point at which the filter in WHERE is applied:

▶ Assume it is a post-filter, i.e., it is applied after shortest. Then a
single shortest path of length 1 is computed, and the condition
simply checks if 𝑎 + 𝑏 + 𝑐 = 0.

▶ Assume however that it is a pre-filter, i.e., shortest applies to paths
that satisfy the condition. Then the condition checks whether the
quadratic equation 𝑎𝑥2+𝑏𝑥+𝑐 = 0 has a positive integer solution.

The latter means that using reduce in pre-filters one can check condi-
tions that are at best done by specialized solvers but in general might
even be undecidable. Indeed, if instead of checking the existence of an
integer solution to a univariate quadratic polynomial we asked for an
integer solution to a multivariate polynomial of degree 4 with a fixed
number of variables, this would be an undecidable problem [150], yet
encodable with pre-filters.

If we look at all our examples that led to high complexity of queries,
they used post-filers with conditions involving outputs of reduce. The
above example shows that a simple looking language design decision
– using pre-filters instead of post-filters – can make the problem much
worse and even lead to undecidability of query evaluation. The question
therefore is: what are the lessons for query language design for graph
databases?

The first lesson is that conditions based on reduce should be disallowed
in WHERE. In fact it is easy to trace subexpressions used in WHERE, and if
any of them used reduce in its syntax tree, such an expression should
result in a compilation error.

As indicated in Section 6.3, there are multiple examples showing the
usefulness of reduce. In particular, doing a computation on lists and
then returning results rather than using them for filtering is both useful
and harmless complexity-wise. Thus, the second lesson is that using
reduce is fine in RETURN, WITH and similar statements in other lan-
guages (as long as there is no violation of lesson one).

This leaves us with an interesting case of using reduce to simulate the
power of various automata. Our lesson three is that for such problems,
query languages should provide facilities that are not based on reduce.
This has already been done for RPQs, with GQL and SQL/PGQ provid-
ing facilities for expressing them. For more complex path queries, such
as RPQs with data or extended CRPQs, so far GQL provides ad hoc fa-
cilities. However it is already recognized that the language falls short of
some desired expressiveness, and work is under way to enhance GQL’s

6.7 Conclusion 149

capabilities ahead of the next release. Our results inform this effort,
by explaining what can or cannot (and more importantly should and
should not) be done with list facilities that are currently in existence.

150

References
[11] Pablo Barceló et al. “Expressive languages for path queries over graph-structured data”. In: ACM

Trans. Database Syst. 37.4 (2012), 31:1–31:46.
[15] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings

of the 2018 International Conference on Management of Data. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[19] Marcelo Arenas et al. Database Theory. Open source at https : / / github . com / pdm - book /
community, 2022.

[60] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. “Querying Graphs with Data”. In: Journal of the
ACM 63.2 (2016), 14:1–14:53.

[84] Wim Martens, Matthias Niewerth, and Tina Trautner. “A Trichotomy for Regular Trail Queries”. In:
International Symposium on Theoretical Aspects of Computer Science, (STACS). 2020, 7:1–7:16.

[134] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. USA: W. H. Freeman & Co., 1979.

[135] Leonid Libkin and Limsoon Wong. “On the Power of Aggregation in Relational Query Languages”.
In: Database Programming Languages, 6th International Workshop, DBPL-6, Estes Park, Colorado,
USA, August 18-20, 1997, Proceedings. Ed. by Sophie Cluet and Richard Hull. Vol. 1369. Lecture
Notes in Computer Science. Springer, 1997, pp. 260–280. doi: 10.1007/3-540-64823-2_15.

[136] GrahamHutton. “A tutorial on the universality and expressiveness of fold”. In: Journal of Functional
Programming 9.4 (1999), pp. 355–372.

[137] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein.
ACM, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[138] Stéphane Grumbach and Tova Milo. “Towards Tractable Algebras for Bags”. In: J. Comput. Syst.
Sci. 52.3 (1996), pp. 570–588. doi: 10.1006/JCSS.1996.0042.

[139] Leonid Libkin and Limsoon Wong. “Query Languages for Bags and Aggregate Functions”. In: J.
Comput. Syst. Sci. 55.2 (1997), pp. 241–272. doi: 10.1006/JCSS.1997.1523.

[140] Daniel M. Kane. Unary Subset-Sum is in Logspace. 2017.
[141] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings of a symposium

on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, USA. Ed. by Raymond E. Miller and James W. Thatcher.
The IBM Research Symposia Series. Plenum Press, New York, 1972, pp. 85–103. doi: 10.1007/978-
1-4684-2001-2_9.

[142] Harry G. Mairson. “Deciding ML typability is complete for deterministic exponential time”. In:
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’90. San Francisco, California, USA: Association for Computing Machinery, 1989, pp. 382–
401. doi: 10.1145/96709.96748.

[143] Angela Bonifati, Wim Martens, and Thomas Timm. “An Analytical Study of Large SPARQL Query
Logs”. In: Proc. VLDB Endow. 11.2 (2017), pp. 149–161. doi: 10.14778/3149193.3149196.

[144] Marc Najork et al. “Of hammers and nails: an empirical comparison of three paradigms for pro-
cessing large graphs”. In: Proceedings of the Fifth International Conference on Web Search and Web
Data Mining, WSDM 2012, Seattle, WA, USA, February 8-12, 2012. Ed. by Eytan Adar et al. ACM,
2012, pp. 103–112.

[145] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. “The Case Against Specialized Graph
Analytics Engines”. In: Seventh Biennial Conference on Innovative Data Systems Research, CIDR 2015,
Asilomar, CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

[146] Anil Pacaci et al. “Do We Need Specialized Graph Databases?: Benchmarking Real-Time Social Net-
working Applications”. In: Proceedings of the Fifth InternationalWorkshop on Graph Data-management
Experiences & Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, May 14 - 19, 2017. Ed. by
Peter A. Boncz and Josep Lluís Larriba-Pey. ACM, 2017, 12:1–12:7.

[147] Renzo Angles et al. “Benchmarking database systems for social network applications”. In: First
International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, co-
located with SIGMOD/PODS 2013, New York, NY, USA, June 24, 2013. Ed. by Peter A. Boncz and
Thomas Neumann. CWI/ACM, 2013, p. 15.

https://doi.org/10.1145/3183713.3190657
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://doi.org/10.1007/3-540-64823-2_15
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1006/JCSS.1996.0042
https://doi.org/10.1006/JCSS.1997.1523
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/96709.96748
https://doi.org/10.14778/3149193.3149196

References 151

[148] Petri Kotiranta, Marko Junkkari, and Jyrki Nummenmaa. “Performance of Graph and Relational
Databases in Complex Queries”. In: Applied Sciences 12.13 (2022).

[149] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. O’Reilly Media, 2013.
[150] William Gasarch. “Hilbert’s Tenth Problem for Fixed d and n”. In: Bull. EATCS 133 (2021).

7 Conclusion

Themain theoretical goal of this thesis was to create a theoretical model
for the new standard graph query languages GQL and SQL/PGQ. We
started, in Chapter 3, by identifying the main features of the pattern
matching mechanisms shared by both languages. We explained and de-
fined these features, trying to stay as close as possible to the definitions
given by the standards. While the resulting model is a useful tool to
understand the ideas behind GQL and SQL/PGQ, it is not yet suitable
for formal study.

The next step, presented in Chapter 4, was to refine the definition of
pattern matching down to its core components and present it in a
style closer to usual theoretical query languages. This allowed us to
prove two basic properties, namely the complexity of query enumera-
tion (PSPACE in data and EXPSPACE in combined) and that the previ-
ously studied languages of UC2RPQs, Nested Regular Expressions, Reg-
ular Queries and the like are all expressible within this core of pattern
matching.

Now equipped with a better understanding of pattern matching, in
Chapter 5 we extended the model to not only encompass the full lan-
guages of GQL and SQL/PGQ, but also highlight the difference in their
style of computation and bring to light their strong link with relational
languages. As a result of this new approach, we were also able to show
that the design of GQL and SQL/PGQ is lacking, as some simple queries
either cannot be expressed in the languages at all, or only through in-
elegant and twisted means.

To finish, in Chapter 6 we looked at the impact of adding list opera-
tions to pattern matching. As expected, we showed that even the most
basic aggregation functions come at an unreasonably high cost to both
expressive power and practical performance. This observation is yet an-
other argument to justify the need to enhance the pattern matching of
GQL and SQL/PGQ as this would remove this need for list operations,
at least for some valuable queries.

Thanks to the tools developed in these chapters, we have been able to
pin-point some deficiencies in the design of GQL and SQL/PGQ. The
high complexity of query enumeration shows that even just the core of
these languages contains intractable queries which can make a system
crash or timeout. The inability to express some simple queries and the
discrepancies in the treatment of nodes and edges are proof that an
important piece is missing, and Neo4j’s attempt to fill that gap with list
operations only results in more intractability.

In comparison, the data complexity of the core of SQL (i.e. Relational
Algebra) is only AC0 for query evaluation and its expressive power is
sufficient for all first-order queries, making the language appropriate
and efficient for relational databases. One possible explanation for this
disparity between SQL and GQL is their inverted development strate-
gies. When the GQL and SQL/PGQ working groups were created, the
existing theoretical models were too far removed from the practical
graph languages and so could not have an influence on the decisions
made by the committees.

https://neo4j.com

153

The models presented in this thesis provide a basis for developing new
theoretical languages with enhanced expressive power and reasonable
complexity, that will hopefully lead to better graph query languages.

Index

Arbitrary Path, 40, 41, 43
attribute, 5–9, 51, 66, 100, 101, 105, 106, 129,

130, 134

Boolean Combinations of Conjunctive Queries,
6, 103

combined complexity, 15, 26, 29–32, 34, 35, 39,
40, 42, 91–93, 127, 152

complexity class, 6, 11, 13, 14, 26, 27, 29–32,
34, 35, 39–44, 67, 72, 87–93, 99, 118,
119, 124, 127, 128, 137–140, 142,
152, 153

AC0, 6, 11, 15, 127, 152
Completeness, 11, 14, 26, 29–31, 34, 35,

39, 40, 42–44
Polynomial Delay, 11, 16, 27, 41–43

Conjunctive Query, 6, 14–16, 29, 31, 67, 102,
103, 131

Conjunctive Regular Path Query, 6, 23, 28–31,
34, 35, 40, 67, 71, 96, 118, 131, 135,
136

Evaluation, 29, 31
Conjunctive Two Way Regular Path Queries, 6,

23, 30–32, 40, 52, 53, 83, 84, 96
Evaluation, 31

constant, 5, 6, 8–10, 18, 55, 57, 73, 77, 104,
106

Core Cypher, 108, 115–117, 124
Core GQL, 99, 103, 104, 106–109, 115, 118,

119, 123, 124
Semantics, 106

Core Pattern Matching, 103–122, 124, 127
Annotated paths, 108–110, 112
One-way path pattern, 108–114
Semantics, 104–106, 109–114, 118,

120–122, 124
Core PGQ, 99, 103, 104, 106–109, 118, 124

Semantics, 106
Core queries, 99, 107–109, 113, 115, 118, 119,

122, 124, 127
Cypher, 127–140, 142, 146, 147
Cypher Lists, 127–129, 132–140, 142, 147–149,

152
Cypher reduce, 133, 135, 137–139

data complexity, 15, 26, 29–31, 34, 35, 39, 40,
42, 43, 88, 90, 92, 93, 99, 118, 127,
152

Data Graph, 36, 39, 71
Data Path, 36–38
Data-less Path, 119–123

Datalog, 10, 11, 23, 33, 34, 67, 84–87, 99, 118,
119, 122, 123

EDB, 10
IDB, 10, 118
Semantics, 10, 123

Deterministic Finite Automaton, 6, 23–27, 32,
34–37, 39, 41, 68, 88, 96, 119, 120,
134–136, 148

final state, 24, 27
initial state, 24, 27
state, 24, 27, 39
transition, 24, 27, 39

expressive power, 11–13, 15, 32, 35, 36, 67,
152, 153

Extended Conjunctive RPQs, 6, 23, 34, 35, 40,
71, 96, 127, 131, 136, 148

Evaluation, 35
Extended Graph Pattern Calculus, 6, 83, 84, 86,

87
Semantics, 84, 87

First Order Logic, 6, 8, 10–15, 23, 36, 67, 71,
94, 96, 99, 103, 116–118, 124

GQL, 7, 49–59, 61–68, 71, 72, 80, 83, 87,
91–94, 96–106, 115, 116, 118, 119,
123, 124, 127–132, 134, 148, 152

Bindings, 54, 57–66, 68, 72, 105, 106
Condition, 53, 55, 58, 60, 61, 64, 65
Graph pattern, 52–56, 60, 61, 63, 65
Label expressions, 65
Lists, 57, 59, 61, 73, 74, 80, 105
Path binding, 64
Path patterns, 50–61, 63–68, 71, 72, 105,

106, 130
Query, 53, 55, 58, 60–66, 97, 98, 106

Graph Database, 8, 16, 19, 23, 26, 29–31, 33,
36, 40, 49, 50, 57, 66, 68, 71, 72, 96,
99, 106, 118, 128, 140, 142, 144,
146–148

Graph models, 16, 72, 96, 98
Graph Pattern Calculus, 6, 72–79, 82–84, 88, 91,

92, 94
Concatenation, 73, 76, 77, 79, 82, 90
Condition, 73–76, 79, 80, 84, 90, 94
Descriptor, 73–80, 85–90, 92
Edge patterns, 72–76, 78, 80, 84, 94
Enumeration, 87, 88
Expression, 74–78, 81, 82
Join, 73, 77, 78, 82, 88, 91
Node patterns, 72–76, 78

INDEX 155

Optional Pattern, 74
Pattern, 73–76, 78–80, 82, 83, 86, 88–94
Query, 74, 76–78, 82, 84, 87, 88, 90–93
Repetition, 73, 74, 76, 79, 80, 82, 83, 89,

90, 94
Restrictors, 73–76, 81, 84, 87, 88, 90–92
Schema, 77–80, 82
Semantics, 73, 74, 76–84, 86–90, 92–94
Type System, 75–79, 82, 89
Union, 73, 74, 76, 77, 79, 90
Values, 77, 78, 80

Graph Reachability, 12, 13, 99, 107, 118

Homomorphism Semantics, 40

inear Composition Relational Algebra, 100–102
Semantics, 100–102, 106, 122

Linear Composition Relational Algebra, 6,
97–103, 106, 116, 118, 119, 129

Nested Regular Expressions, 6, 23, 31–33, 40,
83, 84, 152

Evaluation, 32

Pattern matching, 23, 28, 33, 39, 40, 50, 54,
63–67, 71, 72, 83, 92, 97–99, 103,
104, 115, 124, 127, 128, 131, 132,
134, 136, 142, 152

Plus Normal Form, 6, 112–114
Property Graph, 12, 16–19, 21–23, 26, 27, 29,

30, 32, 33, 35–44, 49–64, 66–68,
71–74, 77–79, 82, 84–92, 96–98,
103–105, 107–109, 113–119, 122,
123, 127–132, 134, 138–140, 142,
144, 146–148

directed edge, 17–19, 26, 30, 57, 58, 60,
61, 72, 78, 88, 104

edge, 16–23, 25, 27, 30, 32, 33, 36, 41–43,
50, 52–54, 56, 58–61, 64, 65, 71–74,
76, 79–81, 86, 88–93, 98, 99, 104,
105, 107–109, 113–116, 118–120,
123, 124, 127–132, 134–138, 140,
142, 144, 146, 147, 152

label, 16–18, 22, 25–27, 33, 34, 36, 42, 50,
53, 55, 58, 61, 64, 65, 71–73, 84, 86,
92, 93, 98, 115, 116, 118, 119,
127–132, 134–138, 140, 142, 144, 148

node, 16–19, 22, 23, 25–27, 29–37, 40–44,
50–54, 57–61, 63–66, 68, 71–74, 76,
78, 80–86, 88–93, 98, 104, 105, 107,
108, 112–114, 116, 118–122, 124,
127–132, 134, 138–140, 142,
146–148, 152

path, 19, 23, 25, 26, 28, 30–38, 40–43,
52–54, 56–61, 63–66, 68, 72–74, 76,
78–84, 87–92, 99, 104–117, 119, 120,
127, 128, 130–132, 134–140, 142,
144, 146–148

properties, 17, 18, 21, 23, 35, 36, 38, 39,
50, 54, 55, 60, 72–74, 76, 77, 84,
92–94, 98, 99, 104–108, 113, 115,
116, 124, 127, 132, 134, 137, 138,
140, 146, 148

undirected edge, 17–19, 57, 58, 60, 61, 72,
78, 84, 88, 131

Query, 7–17, 21–23, 28–33, 35, 39–41, 43, 44,
50–52, 57, 58, 67, 68, 80, 84, 87,
97–99, 101, 103, 107–109, 113, 118,
123, 127, 128, 133, 139, 144, 146, 152

query, 12, 32, 152
Query Containment, 16, 28, 30, 31, 67
query enumeration, 15, 16, 27, 41–43, 152
query evaluation, 14–16, 26, 29–33, 35, 39–44,

66, 67, 127, 148, 152
Query language, 7, 8, 10–15, 23, 31, 34, 38, 49,

50, 67, 68, 71, 72, 83, 96, 98, 99,
101–104, 108, 115, 118, 119,
127–129, 137, 139, 148, 152

RDF, 7, 17, 20–22, 31, 40
Reification, 21, 22

Register Automaton, 35–39
Regular Data Path Queries, 6, 23, 35, 37, 39, 40,

67, 96, 127, 148
Regular Expression, 6, 23–28, 30, 31, 34, 35, 38,

39, 43, 44, 53, 65, 72, 131, 134, 137
Regular Expression with Memory, 6, 35, 38, 39
Regular Path Query, 6, 23, 25–28, 30–33, 35,

37, 39–43, 50, 53, 71, 83, 96, 98, 99,
107, 108, 116, 118, 124, 127, 129,
131, 133–135, 148

Enumeration, 27
Evaluation, 26–28, 30, 32, 42, 43

Regular Queries, 23, 33, 40, 50, 71, 83, 84, 86,
87, 118, 152

Regular Queries with Memory, 6, 38–40
Evaluation, 39

Regular Query, 33
Evaluation, 33, 34

Regular Relation, 23, 34, 35
relation, 5–11, 13, 19, 33, 34, 37, 51, 52, 68,

97, 99–101, 103–106, 115, 116, 118,
122, 129, 133, 146

Relational Algebra, 6, 8–12, 14–16, 23, 33, 39,
52, 54, 56–58, 61, 63, 67, 68, 71, 74,
89, 96, 98–103, 105, 106, 118, 123,
128, 135, 144, 152

Evaluation, 14, 15
Semantics, 9, 101, 102, 106

relational database, 5–10, 14–16, 19, 23, 29, 49,
51, 67, 68, 97, 99–103, 144, 148, 152

relational model, 5, 13, 17, 67, 71, 118, 122,
127, 144

156 INDEX

schema, 5–9, 11, 49, 56, 61, 68, 97, 100, 101,
122

semantics, 8, 9, 26, 29–32, 35, 38, 56–58, 60,
62, 64–66, 68, 72, 80, 106, 109, 112

Shortest path, 40–43, 72, 73, 82, 88, 105, 128,
138, 142, 148

Enumeration, 41
Evaluation, 41

Simple Linear Composition Relational Algebra,
6, 102, 103

Simple path, 40–44, 72, 73, 82, 87, 105, 128
Evaluation, 42

SQL/PGQ, 7, 49, 50, 67, 71, 72, 83, 91, 96–99,
103, 105, 106, 115, 119, 124,
127–129, 131, 148, 152

Trail, 40–43, 53, 72, 73, 75, 82, 92, 105,
127–130, 138, 139, 142, 144, 146, 147

Evaluation, 43, 142
tuple, 6, 7, 9, 10, 14, 15, 22, 26, 27, 34, 57, 78,

82, 100, 104, 106, 130
Two Way Regular Path Queries, 6, 23, 30, 40,

71, 83, 84
Evaluation, 30

Unions of Conjunctive Regular Paths Queries, 6,
23, 28–31, 40, 71

Evaluation, 29–31
Unions of Conjunctive Two Way Regular Path

Queries, 6, 23, 31–33, 40, 83, 84, 127,
152

Evaluation, 31, 32

variable, 5, 8, 10, 13–15, 28, 29, 34, 36, 44, 55,
57–61, 63–65, 67, 73, 78, 104–106,
109, 116, 117, 119–121, 127

Bibliography

[1] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Commun. ACM 13.6
(1970), pp. 377–387. doi: 10.1145/362384.362685.

[2] D. C. Tsichritzis and F. H. Lochovsky. “Hierarchical Data-Base Management: A Survey”. In: ACM
Comput. Surv. 8.1 (1976), pp. 105–123. doi: 10.1145/356662.356667.

[3] Robert W. Taylor and Randall L. Frank. “CODASYL Data-Base Management Systems”. In: ACM Com-
put. Surv. 8.1 (1976), pp. 67–103. doi: 10.1145/356662.356666.

[4] Renzo Angles and Claudio Gutierrez. “Survey of graph database models”. In: ACM Comput. Surv.
40.1 (2008), 1:1–1:39. doi: 10.1145/1322432.1322433.

[5] https://db-engines.com. https://db-engines.com/en/ranking/graph+dbms.
[6] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query Language Supporting

Recursion”. In: Proceedings of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987. Ed. by
Umeshwar Dayal and Irving L. Traiger. ACM Press, 1987, pp. 323–330. doi: 10.1145/38713.38749.

[7] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “G+: Recursive Queries Without Recur-
sion”. In: Expert Database Systems, Proceedings from the Second International Conference, Vienna,
Virginia, USA, April 25-27, 1988. Ed. by Larry Kerschberg. Benjamin/Cummings, 1988, pp. 645–
666.

[8] Mariano P. Consens and Alberto O. Mendelzon. “GraphLog: a Visual Formalism for Real Life Recur-
sion”. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS). ACM Press, 1990, pp. 404–416. doi: 10.1145/298514.298591.

[9] Pablo Barceló. “Querying graph databases”. In: Principles of Database Systems (PODS). 2013, pp. 175–
188.

[10] Leonid Libkin, Wim Martens, and Domagoj Vrgoc. “Querying Graphs with Data”. In: J. ACM 63.2
(2016), 14:1–14:53. doi: 10.1145/2850413.

[11] Pablo Barceló et al. “Expressive languages for path queries over graph-structured data”. In: ACM
Trans. Database Syst. 37.4 (2012), 31:1–31:46.

[12] Peter T. Wood. “Query languages for graph databases”. In: SIGMOD Record 41.1 (2012), pp. 50–60.
[13] Diego Figueira. “Containment of UC2RPQ: The Hard and Easy Cases”. In: 23rd International Confer-

ence on Database Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark. Ed. by Carsten
Lutz and Jean Christoph Jung. Vol. 155. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 9:1–9:18. doi: 10.4230/LIPICS.ICDT.2020.9.

[14] Pablo Barceló, Jorge Pérez, and Juan L. Reutter. “Relative Expressiveness of Nested Regular Expres-
sions”. In: Proceedings of the 6th Alberto Mendelzon International Workshop on Foundations of Data
Management, Ouro Preto, Brazil, June 27-30, 2012. 2012, pp. 180–195.

[15] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings
of the 2018 International Conference on Management of Data. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[16] Property Graph Query Language. PGQL 1.4 Specification. 2021. url: https://pgql-lang.org/
spec/1.4/.

[17] Alin Deutsch et al. “Aggregation Support for Modern Graph Analytics in TigerGraph”. In: Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online con-
ference [Portland, OR, USA], June 14-19, 2020. ACM, 2020, pp. 377–392. doi: 10.1145/3318464.
3386144.

[18] Renzo Angles et al. “G-CORE: A Core for Future Graph Query Languages”. In: SIGMOD. 2018,
pp. 1421–1432.

[19] Marcelo Arenas et al. Database Theory. Open source at https : / / github . com / pdm - book /
community, 2022.

[20] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.
[21] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS

Series. Springer, 2004.
[22] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/356662.356667
https://doi.org/10.1145/356662.356666
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/2850413
https://doi.org/10.4230/LIPICS.ICDT.2020.9
https://doi.org/10.1145/3183713.3190657
https://pgql-lang.org/spec/1.4/
https://pgql-lang.org/spec/1.4/
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://github.com/pdm-book/community
https://github.com/pdm-book/community

158 Bibliography

[23] Michael Sipser. “Introduction to the Theory of Computation”. In: SIGACT News 27.1 (1996), pp. 27–
29. doi: 10.1145/230514.571645.

[24] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007.

[25] James Jones. “Undecidable diophantine equations”. In: Bulletin of the AmericanMathematical Society
3.2 (1980), pp. 859–862.

[26] Ashok K. Chandra and Philip M. Merlin. “Optimal Implementation of Conjunctive Queries in Re-
lational Data Bases”. In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA. Ed. by John E. Hopcroft, Emily P. Friedman, and Michael A.
Harrison. ACM, 1977, pp. 77–90. doi: 10.1145/800105.803397.

[27] Manuel Lima. The book of trees : visualizing branches of knowledge. New York : Princeton Architec-
tural Press, 2014.

[28] openCypher. Cypher Query Language Reference, Version 9. 2017. url: https : / / github . com /
opencypher/openCypher/blob/master/docs/openCypher9.pdf.

[29] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:
SIAM J. Comput. 24.6 (1995), pp. 1235–1258.

[30] Béla Bollobás. Modern Graph Theory. Vol. 184. Springer Science & Business Media, 2013.
[31] Olaf Hartig et al. RDF 1.2 Concepts and Abstract Syntax. Mar. 2024. url: https://www.w3.org/

TR/2024/WD-rdf12-concepts-20240307/.
[32] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. June 2014. url: https://www.w3.org/TR/

2014/NOTE-rdf11-primer-20140624/.
[33] Claudio Gutierrez, Carlos A. Hurtado, and Alberto O. Mendelzon. “Foundations of Semantic Web

Databases”. In: Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 14-16, 2004, Paris, France. Ed. by Catriel Beeri and Alin Deutsch.
ACM, 2004, pp. 95–106. doi: 10.1145/1055558.1055573.

[34] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 Turtle. Feb. 2014. url: https://www.w3.org/
TR/2014/REC-turtle-20140225/.

[35] Dominik Tomaszuk and David Hyland-Wood. “RDF 1.1: Knowledge Representation and Data Inte-
gration Language for the Web”. In: Symmetry 12.1 (2020), p. 84. doi: 10.3390/SYM12010084.

[36] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. “Reifying RDF: What Works Well With
Wikidata?” In: SSWS@ISWC. 2015.

[37] Olaf Hartig. “RDF* and SPARQL*: An Alternative Approach to Annotate Statements in RDF”. In:
Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017.
Ed. by Nadeschda Nikitina et al. Vol. 1963. CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[38] Renzo Angles et al. PG-Schema: Schemas for Property Graphs. 2022.
[39] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “RDF and Property Graphs Interoperability:

Status and Issues”. In: Proceedings of the 13th Alberto Mendelzon International Workshop on Founda-
tions of Data Management, Asunción, Paraguay, June 3-7, 2019. Ed. by Aidan Hogan and Tova Milo.
Vol. 2369. CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[40] Serge Abiteboul and Victor Vianu. “Regular Path Queries with Constraints”. In: Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 12-14,
1997, Tucson, Arizona, USA. Ed. by Alberto O. Mendelzon and Z. Meral Özsoyoglu. ACM Press, 1997,
pp. 122–133. doi: 10.1145/263661.263676.

[41] Erkki Mäkinen. “On Lexicographic Enumeration of Regular and Context-Free Languages”. In: Acta
Cybern. 13.1 (1997), pp. 55–61.

[42] Margareta Ackerman and Jeffrey O. Shallit. “Efficient enumeration of words in regular languages”.
In: Theor. Comput. Sci. 410.37 (2009), pp. 3461–3470. doi: 10.1016/J.TCS.2009.03.018.

[43] Wim Martens and Tina Trautner. “Evaluation and Enumeration Problems for Regular Path Queries”.
In: International Conference on Database Theory (ICDT). Vol. 98. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018, 19:1–19:21.

[44] Katrin Casel and Markus L. Schmid. “Fine-Grained Complexity of Regular Path Queries”. In: Log.
Methods Comput. Sci. 19.4 (2023). doi: 10.46298/LMCS-19(4:15)2023.

[45] Dario Colazzo and Carlo Sartiani. “Typing regular path query languages for data graphs”. In: Pro-
ceedings of the 15th Symposium on Database Programming Languages, Pittsburgh, PA, USA, October
25-30, 2015. Ed. by James Cheney and Thomas Neumann. ACM, 2015, pp. 69–78. doi: 10.1145/
2815072.2815082.

https://doi.org/10.1145/230514.571645
https://doi.org/10.1145/800105.803397
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240307/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240307/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://doi.org/10.1145/1055558.1055573
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://doi.org/10.3390/SYM12010084
https://doi.org/10.1145/263661.263676
https://doi.org/10.1016/J.TCS.2009.03.018
https://doi.org/10.46298/LMCS-19(4:15)2023
https://doi.org/10.1145/2815072.2815082
https://doi.org/10.1145/2815072.2815082

Bibliography 159

[46] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. “Regular Path Query Evaluation on Streaming
Graphs”. In: Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020. Ed. by David Maier et al.
ACM, 2020, pp. 1415–1430. doi: 10.1145/3318464.3389733.

[47] Diego Calvanese et al. “Reasoning on regular path queries”. In: SIGMOD Rec. 32.4 (2003), pp. 83–
92. doi: 10.1145/959060.959076.

[48] Diego Calvanese et al. “Answering Regular Path Queries Using Views”. In: Proceedings of the 16th
International Conference on Data Engineering, San Diego, California, USA, February 28 - March 3,
2000. Ed. by David B. Lomet and Gerhard Weikum. IEEE Computer Society, 2000, pp. 389–398.
doi: 10.1109/ICDE.2000.839439.

[49] Miguel Romero, Pablo Barceló, and Moshe Y. Vardi. “The homomorphism problem for regular graph
patterns”. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1–12. doi: 10.1109/LICS.2017.
8005106.

[50] Diego Figueira and Rémi Morvan. “Approximation and Semantic Tree-Width of Conjunctive Regular
Path Queries”. In: 26th International Conference on Database Theory, ICDT 2023, March 28-31, 2023,
Ioannina, Greece. Ed. by Floris Geerts and Brecht Vandevoort. Vol. 255. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023, 15:1–15:19. doi: 10.4230/LIPICS.ICDT.2023.15.

[51] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. “Semantic Acyclicity on Graph Databases”. In:
SIAM J. Comput. 45.4 (2016), pp. 1339–1376. doi: 10.1137/15M1034714.

[52] Pablo Barceló, Diego Figueira, and Miguel Romero. “Boundedness of Conjunctive Regular Path
Queries”. In: 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece. Ed. by Christel Baier et al. Vol. 132. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 104:1–104:15. doi: 10.4230/LIPICS.ICALP.2019.104.

[53] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. “An Extension of SPARQL for RDFS”. In: Seman-
tic Web, Ontologies and Databases, VLDB Workshop, SWDB-ODBIS 2007, Vienna, Austria, September
24, 2007, Revised Selected Papers. Ed. by Vassilis Christophides, Martine Collard, and Claudio Gutier-
rez. Vol. 5005. Lecture Notes in Computer Science. Springer, 2007, pp. 1–20. doi: 10.1007/978-
3-540-70960-2_1.

[54] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “nSPARQL: A navigational language for RDF”.
In: J. Web Semant. 8.4 (2010), pp. 255–270. doi: 10.1016/J.WEBSEM.2010.01.002.

[55] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. “How to Best Nest Regular Path Queries”.
In: Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria,
July 17-20, 2014. Ed. by Meghyn Bienvenu et al. Vol. 1193. CEUR Workshop Proceedings. CEUR-
WS.org, 2014, pp. 404–415.

[56] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. “Reasonable Highly Expressive Query Lan-
guages - IJCAI-15 Distinguished Paper (Honorary Mention)”. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge. AAAI Press, 2015, pp. 2826–2832.

[57] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. “Regular Queries on Graph Databases”. In:
Theory Comput. Syst. 61.1 (2017), pp. 31–83. doi: 10.1007/s00224-016-9676-2.

[58] Diego Figueira and Varun Ramanathan. “When is the Evaluation of Extended CRPQ Tractable?” In:
PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 203–212. doi: 10.1145/3517804.
3524167.

[59] Pablo Barceló, Diego Figueira, and Leonid Libkin. “Graph Logics with Rational Relations”. In: Log.
Methods Comput. Sci. 9.3 (2013). doi: 10.2168/LMCS-9(3:1)2013.

[60] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. “Querying Graphs with Data”. In: Journal of the
ACM 63.2 (2016), 14:1–14:53.

[61] Domagoj Vrgoc. “Querying graphs with data”. PhD thesis. University of Edinburgh, UK, 2014.
[62] Michael Kaminski and Nissim Francez. “Finite-Memory Automata”. In: Theor. Comput. Sci. 134.2

(1994), pp. 329–363. doi: 10.1016/0304-3975(94)90242-9.
[63] Mikolaj Bojanczyk. “Automata for Data Words and Data Trees”. In: Proceedings of the 21st Interna-

tional Conference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh,
Scottland, UK. Ed. by Christopher Lynch. Vol. 6. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010, pp. 1–4. doi: 10.4230/LIPICS.RTA.2010.1.

https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1145/959060.959076
https://doi.org/10.1109/ICDE.2000.839439
https://doi.org/10.1109/LICS.2017.8005106
https://doi.org/10.1109/LICS.2017.8005106
https://doi.org/10.4230/LIPICS.ICDT.2023.15
https://doi.org/10.1137/15M1034714
https://doi.org/10.4230/LIPICS.ICALP.2019.104
https://doi.org/10.1007/978-3-540-70960-2_1
https://doi.org/10.1007/978-3-540-70960-2_1
https://doi.org/10.1016/J.WEBSEM.2010.01.002
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/3517804.3524167
https://doi.org/10.1145/3517804.3524167
https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPICS.RTA.2010.1

160 Bibliography

[64] Patricia Bouyer, Antoine Petit, and Denis Thérien. “An algebraic approach to data languages and
timed languages”. In: Inf. Comput. 182.2 (2003), pp. 137–162. doi: 10.1016/S0890-5401(03)
00038-5.

[65] Mikolaj Bojanczyk et al. “Two-variable logic on data words”. In: ACM Trans. Comput. Log. 12.4
(2011), 27:1–27:26. doi: 10.1145/1970398.1970403.

[66] Diego Figueira, Artur Jez, and AnthonyW. Lin. “Data Path Queries over EmbeddedGraphDatabases”.
In: PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 189–201. doi: 10.1145/3517804.
3524159.

[67] Leonid Libkin, WimMartens, and Domagoj Vrgoc. “Querying graph databases with XPath”. In: Joint
2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013. Ed. by Wang-
Chiew Tan et al. ACM, 2013, pp. 129–140. doi: 10.1145/2448496.2448513.

[68] Serge Abiteboul and Victor Vianu. “Regular Path Queries with Constraints”. In: J. Comput. Syst. Sci.
58.3 (1999), pp. 428–452. doi: 10.1006/JCSS.1999.1627.

[69] Marcelo Arenas et al. “Temporal Regular Path Queries”. In: 38th IEEE International Conference on
Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 2022, pp. 2412–2425.
doi: 10.1109/ICDE53745.2022.00226.

[70] Gösta Grahne, Alex Thomo, andWilliamW.Wadge. “Preferentially Annotated Regular Path Queries”.
In: Database Theory - ICDT 2007, 11th International Conference, Barcelona, Spain, January 10-12,
2007, Proceedings. Ed. by Thomas Schwentick and Dan Suciu. Vol. 4353. Lecture Notes in Computer
Science. Springer, 2007, pp. 314–328. doi: 10.1007/11965893_22.

[71] Domagoj Vrgoč. Evaluating regular path queries under the all-shortest paths semantics. 2022.
[72] Jorge A. Baier et al. “Evaluating Navigational RDF Queries over the Web”. In: HT. ACM, 2017,

pp. 165–174. doi: 10.1145/3078714.3078731.
[73] Valeria Fionda, Giuseppe Pirrò, and Claudio Gutierrez. “NautiLOD: A Formal Language for the Web

of Data Graph”. In: ACM Trans. Web 9.1 (2015), 5:1–5:43. doi: 10.1145/2697393.
[74] Alberto O. Mendelzon and Peter T. Wood. “Finding Regular Simple Paths in Graph Databases”. In:

Proceedings of the Fifteenth International Conference on Very Large Data Bases, August 22-25, 1989,
Amsterdam, The Netherlands. 1989, pp. 185–193.

[75] Guillaume Bagan, Angela Bonifati, and Benoı̂t Groz. “A trichotomy for regular simple path queries
on graphs”. In: Symposium on Principles of Database Systems (PODS). Ed. by Richard Hull andWenfei
Fan. ACM, 2013, pp. 261–272.

[76] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. “Counting beyond a Yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard”. In: World Wide Web (WWW). 2012,
pp. 629–638.

[77] Katja Losemann and Wim Martens. “The complexity of regular expressions and property paths in
SPARQL”. In: ACM Trans. Database Syst. 38.4 (2013), p. 24.

[78] Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. “Formal Language Constrained Path
Problems”. In: Algorithm Theory - SWAT ’98, 6th Scandinavian Workshop on Algorithm Theory, Stock-
holm, Sweden, July, 8-10, 1998, Proceedings. Ed. by Stefan Arnborg and Lars Ivansson. Vol. 1432.
Lecture Notes in Computer Science. Springer, 1998, pp. 234–245. doi: 10.1007/BFB0054371.

[79] Andrea S. LaPaugh and Christos H. Papadimitriou. “The even-path problem for graphs and digraphs”.
In: Networks 14.4 (1984), pp. 507–513. doi: 10.1002/NET.3230140403.

[80] Neil Robertson and Paul D. Seymour. “Graph Minors .XIII. The Disjoint Paths Problem”. In: J. Comb.
Theory, Ser. B 63.1 (1995), pp. 65–110. doi: 10.1006/JCTB.1995.1006.

[81] Zhivko Prodanov Nedev and Peter T. Wood. “A Polynomial-Time Algorithm for Finding Regular
Simple Paths in Outerplanar Graphs”. In: J. Algorithms 35.2 (2000), pp. 235–259. doi: 10.1006/
JAGM.1999.1072.

[82] Wim Martens and Tina Trautner. “Bridging Theory and Practice with Query Log Analysis”. In: SIG-
MOD Rec. 48.1 (2019), pp. 6–13. doi: 10.1145/3371316.3371319.

[83] Wim Martens and Tina Trautner. “Dichotomies for Evaluating Simple Regular Path Queries”. In:
ACM Trans. Database Syst. 44.4 (2019), 16:1–16:46. doi: 10.1145/3331446.

[84] Wim Martens, Matthias Niewerth, and Tina Trautner. “A Trichotomy for Regular Trail Queries”. In:
International Symposium on Theoretical Aspects of Computer Science, (STACS). 2020, 7:1–7:16.

[85] Wim Martens et al. Representing Paths in Graph Database Pattern Matching. 2022.
[86] Wim Martens and Tina Popp. “The Complexity of Regular Trail and Simple Path Queries on Undi-

rected Graphs”. In: PODS ’22: International Conference on Management of Data, Philadelphia, PA,

https://doi.org/10.1016/S0890-5401(03)00038-5
https://doi.org/10.1016/S0890-5401(03)00038-5
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/3517804.3524159
https://doi.org/10.1145/3517804.3524159
https://doi.org/10.1145/2448496.2448513
https://doi.org/10.1006/JCSS.1999.1627
https://doi.org/10.1109/ICDE53745.2022.00226
https://doi.org/10.1007/11965893_22
https://doi.org/10.1145/3078714.3078731
https://doi.org/10.1145/2697393
https://doi.org/10.1007/BFB0054371
https://doi.org/10.1002/NET.3230140403
https://doi.org/10.1006/JCTB.1995.1006
https://doi.org/10.1006/JAGM.1999.1072
https://doi.org/10.1006/JAGM.1999.1072
https://doi.org/10.1145/3371316.3371319
https://doi.org/10.1145/3331446

Bibliography 161

USA, June 12 - 17, 2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 165–174. doi:
10.1145/3517804.3524149.

[87] Tina Popp. “Evaluation and Enumeration of Regular Simple Path and Trail Queries”. PhD thesis.
University of Bayreuth, Germany, 2022.

[88] Claire David, Nadime Francis, and Victor Marsault. “Run-Based Semantics for RPQs”. In: Proceedings
of the 20th International Conference on Principles of Knowledge Representation and Reasoning, KR
2023, Rhodes, Greece, September 2-8, 2023. Ed. by Pierre Marquis, Tran Cao Son, and Gabriele
Kern-Isberner. 2023, pp. 178–187. doi: 10.24963/KR.2023/18.

[89] Diego Figueira and Miguel Romero. “Conjunctive Regular Path Queries under Injective Semantics”.
In: Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2023, Seattle, WA, USA, June 18-23, 2023. Ed. by Floris Geerts, Hung Q. Ngo, and Stavros
Sintos. ACM, 2023, pp. 231–240. doi: 10.1145/3584372.3588664.

[90] Oskar van Rest et al. “PGQL: a property graph query language”. In: Proceedings of the Fourth Inter-
national Workshop on Graph Data Management Experiences and Systems. 2016, pp. 1–6.

[91] Marko A. Rodriguez. “The Gremlin graph traversal machine and language”. In: DBPL. ACM, 2015,
pp. 1–10.

[92] Wikipedia contributors. GQL Graph Query Language. 2020. url: https://en.wikipedia.org/
wiki/GQL_Graph_Query_Language.

[93] Shumo Chu et al. “HoTTSQL: proving query rewrites with univalent SQL semantics”. In: PLDI. ACM,
2017, pp. 510–524. doi: 10.1145/3062341.3062348.

[94] Paolo Guagliardo and Leonid Libkin. “A Formal Semantics of SQL Queries, Its Validation, and Appli-
cations”. In: Proc. VLDB Endow. 11.1 (2017), pp. 27–39. doi: 10.14778/3151113.3151116.

[95] Véronique Benzaken and Evelyne Contejean. “A Coq mechanised formal semantics for realistic SQL
queries: formally reconciling SQL and bag relational algebra”. In: CPP. ACM, 2019, pp. 249–261.
doi: 10.1145/3293880.3294107.

[96] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: SIGMOD. ACM, 2022, pp. 1–
12.

[97] GQL Influence Graph. https://www.gqlstandards.org/existing-languages. Accessed: 2023-
01-17. 2023.

[98] Mary F. Fernandez et al. “A Query Language for a Web-Site Management System”. In: SIGMOD Rec.
26.3 (1997), pp. 4–11. doi: 10.1145/262762.262763.

[99] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. “Querying the World Wide Web”. In:
Proceedings of the Fourth International Conference on Parallel and Distributed Information Systems,
December 18-20, 1996, Miami Beach, Florida, USA. IEEE Computer Society, 1996, pp. 80–91. doi:
10.1109/PDIS.1996.568671.

[100] Diego Calvanese et al. “Containment of Conjunctive Regular Path Queries with Inverse”. In: KR
2000, Principles of Knowledge Representation and Reasoning Proceedings of the Seventh International
Conference, Breckenridge, Colorado, USA, April 11-15, 2000. 2000, pp. 176–185.

[101] Nadime Francis et al. Formal Semantics of the Language Cypher. 2018.
[102] Nadime Francis et al. “GPC: A Pattern Calculus for Property Graphs”. In: Proceedings of the 42nd

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle, WA,
USA, June 18-23, 2023. Ed. by Floris Geerts, Hung Q. Ngo, and Stavros Sintos. ACM, 2023, pp. 241–
250. doi: 10.1145/3584372.3588662.

[103] Alastair Green et al. “Updating Graph Databases with Cypher”. In: Proc. VLDB Endow. 12.12 (2019),
pp. 2242–2253.

[104] Diego Calvanese et al. “Reasoning on regular path queries”. In: SIGMOD Record 32.4 (2003),
pp. 83–92.

[105] Diego Figueira et al. “Containment of Simple Conjunctive Regular Path Queries”. In: International
Conference on Principles of Knowledge Representation and Reasoning (KR). 2020, pp. 371–380.

[106] Egor V. Kostylev, Juan L. Reutter, and Domagoj Vrgoc. “Containment of queries for graphs with
data”. In: J. Comput. Syst. Sci. 92 (2018), pp. 65–91. doi: 10.1016/j.jcss.2017.09.005.

[107] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. “Query Planning for Evaluating SPARQL Property
Paths”. In: SIGMOD Conference. ACM, 2016, pp. 1875–1889. doi: 10.1145/2882903.2882944.

[108] Andrey Gubichev, Srikanta J. Bedathur, and Stephan Seufert. “Sparqling Kleene: Fast property
paths in RDF-3X”. In: GRADES. CWI/ACM, 2013. doi: 10.1145/2484425.2484443.

[109] Dung T. Nguyen et al. “Join Processing for Graph Patterns: An Old Dog with New Tricks”. In:
GRADES. ACM, 2015, 2:1–2:8. doi: 10.1145/2764947.2764948.

https://doi.org/10.1145/3517804.3524149
https://doi.org/10.24963/KR.2023/18
https://doi.org/10.1145/3584372.3588664
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/3293880.3294107
https://www.gqlstandards.org/existing-languages
https://doi.org/10.1145/262762.262763
https://doi.org/10.1109/PDIS.1996.568671
https://doi.org/10.1145/3584372.3588662
https://doi.org/10.1016/j.jcss.2017.09.005
https://doi.org/10.1145/2882903.2882944
https://doi.org/10.1145/2484425.2484443
https://doi.org/10.1145/2764947.2764948

162 Bibliography

[110] Aidan Hogan et al. “A Worst-Case Optimal Join Algorithm for SPARQL”. In: ISWC (1). Vol. 11778.
Lecture Notes in Computer Science. Springer, 2019, pp. 258–275. doi: 10.1007/978-3-030-
30793-6_15.

[111] Renzo Angles et al. “PG-Keys: Keys for Property Graphs”. In: SIGMOD ’21: International Conference
on Management of Data. ACM, 2021, pp. 2423–2436.

[112] A. Gupta and I.S. Mumick. Materialized Views: Techniques, Implementations, and Applications. MIT
Press, 1999.

[113] Denilson Barbosa et al. “Efficient Incremental Validation of XML Documents”. In: ICDE. IEEE Com-
puter Society, 2004, pp. 671–682. doi: 10.1109/ICDE.2004.1320036.

[114] Renzo Angles et al. “Foundations of Modern Query Languages for Graph Databases”. In: ACM
Comput. Surv. 50.5 (2017), 68:1–68:40.

[115] Mikolaj Bojanczyk et al. “Two-variable logic on data trees and XML reasoning”. In: PODS. ACM,
2006, pp. 10–19. doi: 10.1145/1142351.1142354.

[116] Guillaume Bagan, Angela Bonifati, and Benoı̂t Groz. “A trichotomy for regular simple path queries
on graphs”. In: J. Comput. Syst. Sci. 108 (2020), pp. 29–48.

[117] Wouter Gelade, WimMartens, and Frank Neven. “Optimizing Schema Languages for XML: Numer-
ical Constraints and Interleaving”. In: SIAM J. Comput. 38.5 (2009), pp. 2021–2043.

[118] Katja Losemann and Wim Martens. “The complexity of regular expressions and property paths in
SPARQL”. In: ACM Trans. Database Syst. 38.4 (2013), 24:1–24:39.

[119] Marco Console et al. “Coping with Incomplete Data: Recent Advances”. In: PODS. ACM, 2020,
pp. 33–47. doi: 10.1145/3375395.3387970.

[120] Albert Atserias, Martin Grohe, and Dániel Marx. “Size Bounds and Query Plans for Relational
Joins”. In: SIAM J. Comput. 42.4 (2013), pp. 1737–1767. doi: 10.1137/110859440.

[121] Hung Q. Ngo et al. “Worst-case Optimal Join Algorithms”. In: J. ACM 65.3 (2018), 16:1–16:40.
doi: 10.1145/3180143.

[122] Maarten Marx. “Navigation in XML Trees”. In: Bull. EATCS 88 (2006), pp. 126–140.
[123] WimMartens et al. “Expressiveness and complexity of XML Schema”. In: ACM Trans. Database Syst.

31.3 (2006), pp. 770–813. doi: 10.1145/1166074.1166076.
[124] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Complexity of SPARQL”. In:

The Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC 2006, Athens,
GA, USA, November 5-9, 2006, Proceedings. Ed. by Isabel F. Cruz et al. Vol. 4273. Lecture Notes in
Computer Science. Springer, 2006, pp. 30–43. doi: 10.1007/11926078_3.

[125] Sergio Abriola et al. “Bisimulations on Data Graphs”. In: J. Artif. Intell. Res. 61 (2018), pp. 171–
213. doi: 10.1613/JAIR.5637.

[126] Chandan Sharma, Roopak Sinha, and Kenneth Johnson. “Practical and comprehensive formalisms
for modelling contemporary graph query languages”. In: Inf. Syst. 102 (2021), p. 101816. doi:
10.1016/J.IS.2021.101816.

[127] Nadime Francis et al. “A Researcher’s Digest of GQL”. In: 26th International Conference on Database
Theory, ICDT 2023, March 28-31, 2023, Ioannina, Greece. Ed. by Floris Geerts and Brecht Vande-
voort. Vol. 255. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 1:1–1:22. doi:
10.4230/LIPICS.ICDT.2023.1.

[128] PRQL. Pipelined Relational Query Language. 2024. url: https://prql-lang.org.
[129] Hadley Wickham et al. dplyr: A Grammar of Data Manipulation. 2023. url: https://dplyr.

tidyverse.org.
[130] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford University Press, 2004.
[131] Moshe Y. Vardi. “A Theory of Regular Queries”. In: Proceedings of the 35th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. ACM, 2016, pp. 1–9. doi: 10.1145/2902251.2902305.

[132] Neil Immerman. Descriptive complexity. Springer, 1999.
[133] Seymour Ginsburg and Edwin H. Spanier. “Semigroups, Presburger formulas, and languages.” In:

Pacific Journal of Mathematics 16 (1966), pp. 285–296.
[134] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. USA: W. H. Freeman & Co., 1979.
[135] Leonid Libkin and Limsoon Wong. “On the Power of Aggregation in Relational Query Languages”.

In: Database Programming Languages, 6th International Workshop, DBPL-6, Estes Park, Colorado,
USA, August 18-20, 1997, Proceedings. Ed. by Sophie Cluet and Richard Hull. Vol. 1369. Lecture
Notes in Computer Science. Springer, 1997, pp. 260–280. doi: 10.1007/3-540-64823-2_15.

https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1109/ICDE.2004.1320036
https://doi.org/10.1145/1142351.1142354
https://doi.org/10.1145/3375395.3387970
https://doi.org/10.1137/110859440
https://doi.org/10.1145/3180143
https://doi.org/10.1145/1166074.1166076
https://doi.org/10.1007/11926078_3
https://doi.org/10.1613/JAIR.5637
https://doi.org/10.1016/J.IS.2021.101816
https://doi.org/10.4230/LIPICS.ICDT.2023.1
https://prql-lang.org
https://dplyr.tidyverse.org
https://dplyr.tidyverse.org
https://doi.org/10.1145/2902251.2902305
https://doi.org/10.1007/3-540-64823-2_15

Bibliography 163

[136] GrahamHutton. “A tutorial on the universality and expressiveness of fold”. In: Journal of Functional
Programming 9.4 (1999), pp. 355–372.

[137] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein.
ACM, 2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[138] Stéphane Grumbach and Tova Milo. “Towards Tractable Algebras for Bags”. In: J. Comput. Syst.
Sci. 52.3 (1996), pp. 570–588. doi: 10.1006/JCSS.1996.0042.

[139] Leonid Libkin and Limsoon Wong. “Query Languages for Bags and Aggregate Functions”. In: J.
Comput. Syst. Sci. 55.2 (1997), pp. 241–272. doi: 10.1006/JCSS.1997.1523.

[140] Daniel M. Kane. Unary Subset-Sum is in Logspace. 2017.
[141] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings of a symposium

on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, USA. Ed. by Raymond E. Miller and James W. Thatcher.
The IBM Research Symposia Series. Plenum Press, New York, 1972, pp. 85–103. doi: 10.1007/978-
1-4684-2001-2_9.

[142] Harry G. Mairson. “Deciding ML typability is complete for deterministic exponential time”. In:
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’90. San Francisco, California, USA: Association for Computing Machinery, 1989, pp. 382–
401. doi: 10.1145/96709.96748.

[143] Angela Bonifati, Wim Martens, and Thomas Timm. “An Analytical Study of Large SPARQL Query
Logs”. In: Proc. VLDB Endow. 11.2 (2017), pp. 149–161. doi: 10.14778/3149193.3149196.

[144] Marc Najork et al. “Of hammers and nails: an empirical comparison of three paradigms for pro-
cessing large graphs”. In: Proceedings of the Fifth International Conference on Web Search and Web
Data Mining, WSDM 2012, Seattle, WA, USA, February 8-12, 2012. Ed. by Eytan Adar et al. ACM,
2012, pp. 103–112.

[145] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. “The Case Against Specialized Graph
Analytics Engines”. In: Seventh Biennial Conference on Innovative Data Systems Research, CIDR 2015,
Asilomar, CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

[146] Anil Pacaci et al. “Do We Need Specialized Graph Databases?: Benchmarking Real-Time Social Net-
working Applications”. In: Proceedings of the Fifth InternationalWorkshop on Graph Data-management
Experiences & Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, May 14 - 19, 2017. Ed. by
Peter A. Boncz and Josep Lluís Larriba-Pey. ACM, 2017, 12:1–12:7.

[147] Renzo Angles et al. “Benchmarking database systems for social network applications”. In: First
International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, co-
located with SIGMOD/PODS 2013, New York, NY, USA, June 24, 2013. Ed. by Peter A. Boncz and
Thomas Neumann. CWI/ACM, 2013, p. 15.

[148] Petri Kotiranta, Marko Junkkari, and Jyrki Nummenmaa. “Performance of Graph and Relational
Databases in Complex Queries”. In: Applied Sciences 12.13 (2022).

[149] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. O’Reilly Media, 2013.
[150] William Gasarch. “Hilbert’s Tenth Problem for Fixed d and n”. In: Bull. EATCS 133 (2021).

https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1006/JCSS.1996.0042
https://doi.org/10.1006/JCSS.1997.1523
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/96709.96748
https://doi.org/10.14778/3149193.3149196

	Contents
	Introduction
	Background and Preliminaries
	Storing data

	Storing data
	The relational model
	Querying Relational Data
	Comparing Query Languages

	Comparing Query Languages
	graph databaseGraph databases

	graph databaseGraph databases
	Property Graphs
	Short digression: The Resource Description Framework (RDF)
	Querying property graphs

	Querying property graphs
	Path semantics

	Path semantics
	What is GQL?
	GQL by Example

	GQL by Example
	Syntax of GQL

	Syntax of GQL
	Semantics

	Semantics
	Preliminaries
	Semantics of Path Patterns
	Semantics of Graph Patterns
	Semantics of Conditions and Expressions
	Semantics of Queries
	A Few Known Discrepancies with the GQL Standard

	A Few Known Discrepancies with the GQL Standard
	User-Friendly Syntactic Restrictions
	Query Evaluation
	Missing Features
	What the Future Holds

	What the Future Holds
	The Graph Pattern Calculus
	Pattern calculus

	Pattern calculus
	Type System

	Type System
	Semantics

	Semantics
	Expressivity and Complexity

	Expressivity and Complexity
	Looking ahead

	Looking ahead
	Putting together Pattern Matching and Relational Algebra
	Linear Composition Relational Algebra

	Linear Composition Relational Algebra
	Linear Composition Relational Algebra (LCRA)
	Expressivity results
	The origins of linear composition
	GQL and SQL/PGQ: theoretical abstractions

	GQL and SQL/PGQ: theoretical abstractions
	Pattern Matching: Turning Graphs into Relations
	GQL Vs. PGQ
	Example
	Case study 1: Expressiveness of Pattern Matching

	Case study 1: Expressiveness of Pattern Matching
	Repeated local conditions
	Global conditions
	Cypher patterns
	Case Study 2: Expressiveness of GQL and SQL/PGQ

	Case Study 2: Expressiveness of GQL and SQL/PGQ
	Datalog on Graphs
	Conclusions and future work

	Conclusions and future work
	Lists and Graphs languages
	Cypher Pattern Matching

	Cypher Pattern Matching
	Adding Lists

	Adding Lists
	Cypher limitations
	Cypher support for lists
	Operations on lists
	Expressing RPQs and beyond

	Expressing RPQs and beyond
	Extended CRPQs
	The Pitfalls of Lists

	The Pitfalls of Lists
	Experimental results

	Experimental results
	Can SQL help?

	Can SQL help?
	Conclusion

	Conclusion
	Conclusion

