1 Proposition. Γ is a bijection between maps from \mathbb{F}_2^n to \mathbb{F}_2^n and partial orientations of the hypercube \mathbb{F}_2^n.

Map $f \mapsto$ orientation: edge $x \to x + e_i$ when $f_i(x) \neq x_i$. Orientation $\Gamma \mapsto$ map $f(x) = x + e_I$, where $(x \to x + e_i)_{i \in I} =$ edges leaving x.

2 Remark. Variant of Leibniz rule: $\partial_i(\varphi \psi) + \partial_i \varphi \partial_i \psi = \varphi \partial_i \psi + \psi \partial_i \varphi$.

$$
\partial_i(\varphi \psi)(x) + \partial_i \varphi(x) \partial_i \psi(x) = \varphi(x) \psi(x) + \varphi(x + e^i) \psi(x + e^i)
+ (\varphi(x) + \varphi(x + e^i)) \psi(x) + \psi(x + e^i)
= \varphi(x) \psi(x + e^i) + \psi(x) \varphi(x + e^i)
\varphi(x) \partial_i \psi(x) + \psi(x) \partial_i \varphi(x) = \varphi(x) (\psi(x) + \psi(x + e^i)) + \psi(x) (\varphi(x) + \varphi(x + e^i))
= \varphi(x) \psi(x + e^i) + \psi(x) \varphi(x + e^i).
$$

3 Lemma. If f has ≥ 2 attractors, then for some subcube κ, $f|\kappa$ has ≥ 2 fixed points.

Let A and B be any two attractors of $\Gamma(f)$ and $(a,b) \in A \times B$ be any pair such that $d(a,b)$ is minimal: then a and b are fixed points of $f|_{[a,b]}$.

4 Proposition (Naldi, Remy, Thieffry, Chaouiya). Assume $\mathcal{G}(f)$ has no loop on n. Fixed points are preserved by reduction and expansion: x is a fixed point of f' if and only if x' is a fixed point of f. Attractive cycles are preserved by reduction: π maps attractive cycles of f to attractive cycles of f'.

For any $x \in \mathbb{F}_2^{n-1}$, let $x^* = (x, f_n(x, -)) \in \mathbb{F}_2^n$. Then

$$f(x^*) = (f'(x), f_n(x, -)),$$

because $f_n(x^*) = f_n(x, f_n(x, -)) = f_n(x, -)$. Moreover, $\pi(x^*) = x$, where $\pi : \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}$ is the projection. Now, $f'(x) = x$ if and only if $f_i(x, f_n(x, -)) = f_i(x) = x_i$ for all $i < n$, if and only if $f_i(x^*) = x_i^*$ for all $i < n$, if and only if $f(x^*) = x^*$, since $f_n(x^*) = f_n(x, -) = x_n^*$.

If \(\theta = (\ldots, y, y + e^i, \ldots) \) is an attractive cycle of \(f \), \(f(y) = y + e^i \). If \(i = n \), \(\pi(y) = \pi(y + e^i) \). Otherwise, since \(\theta \) is attractive, \(f_n(y) = y_n \) and \(\pi(y)^* = y \). Hence, letting \(x = \pi(y) \), we have
\[
f'((\pi(y)) = f'(x) = \pi(f(x^*)) = \pi(f(y)) = \pi(y + e^i) = \pi(y) + e^i.
\]
Therefore \(\pi(\theta) \) is an attractive cycle of \(\Gamma(f') \), and for every \(x \in \pi(\theta) \), \(x^* \in \theta \).

5 **Theorem** (Remy, Mossé, Chaouiya, Thieffry). If \(\mathcal{G}(f)(x) \) is independent of \(x \) and consists in a Hamiltonian positive (resp. negative) cycle, then \(f \) has 2 fixed points and no cyclic attractor (resp. \(f \) has no fixed point, and a unique attractor which is an attractive cycle).

If \(\mathcal{G}(f)(x) = \mathcal{G}(f) \) is a Hamiltonian positive cycle, we may assume w.l.o.g. that \(\mathcal{G}(f) = (1, 2, \ldots, n, 1) \). The sign of the edge from \(i \) to \(i + 1 \mod n \) is \((-1)^{\epsilon_i} \) with \(\epsilon_i \in \{0, 1\} \), so that \(f_{k+1}(x) = x_k + \epsilon_k \), where indices are taken modulo \(n \). Since \(\sum_{i=1}^n \epsilon_i = 0 \), the point \(a \) defined by
\[
a_k = \sum_{i=1}^{k-1} \epsilon_i \quad \text{for} \quad k = 1, \ldots, n,
\]
and its antipode \(\overline{a} \) are fixed points of \(f \). Let \(K(x) \) be the set of \(k \) such that \(x_k + x_{k+1} \neq \epsilon_k \). Then \(a + x = e^{K(x)} \) and \(d(x, a) \) is the cardinality of \(K \). If \(x \) is different from \(a \) and \(\overline{a} \), \(K(x) \neq \emptyset \) and \(K(x) \neq \{1, \ldots, n\} \): for any \(k \in K \), \(f_{k+1}(x) = x_k + \epsilon_k \neq x_{k+1} \), \(\Gamma(f) \) has an edge from \(x \) to \(x + e^k \), and \(K(x + e^k) \) has cardinality smaller than that of \(K(x) \). Hence \(\Gamma(f) \) has a trajectory from \(x \) to \(a \), and in particular, \(\Gamma(f) \) has no cyclic attractor.

If \(\mathcal{G}(f)(x) = \mathcal{G}(f) \) is a Hamiltonian negative cycle, with the same notations, we have \(\sum_{i=1}^n \epsilon_i = 1 \). Thus:
\[
1 = \sum_{i=1}^n f_{i+1}(x) + x_i = \sum_{i=1}^n f_i(x) + x_i,
\]
so that \(f \) has no fixed point. The desired attractive cycle is
\[
\theta = (a, a + e^1, a + e^1 + e^2, \ldots, \overline{a}, \overline{a} + e^1, \overline{a} + e^1 + e^2, \ldots, a).
\]
If \(x = a + e^1 \notin \theta \), then for any \(i \in I \) such that \(i - 1 \notin I \), where indices are taken modulo \(n \), we have \(f_i(x) \neq x_i \) and \(\Gamma(f) \) has a trajectory from \(x \) to \(x + e^i \). Therefore \(\Gamma(f) \) has a trajectory from \(x \) to some \(a + e^1 + \cdots + e^k \in \theta \), with \(\{1, \ldots, k\} \subseteq I \).

6 **Lemma.** 1. An orbit of Boolean networks contains a network with no fixed point if and only if it contains a network with \(\geq 2 \) fixed points.

2. The set of networks such that each subnetwork \(f\mid_k \) has a unique fixed point is closed under translation.

1. It suffices to observe that if \(f \) has no fixed point, \(f + \text{id} \) is a non bijective map from a finite set to itself, hence it is not injective: therefore, for some \(z \), there exist distinct points \(x, y \) such that \((f + \text{id})(x) = (f + \text{id})(y) = z \), and \(f + z \) has two fixed points. On the other hand, if \(f \) has two fixed points, \(f + \text{id} \) is not bijective, hence not surjective and does not take some value \(z \): then \(f + z \) has no fixed point.
2. Let \(F_n \) be the set of maps \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n \) such that for each subcube \(\kappa \), \(f|_\kappa \) has a unique fixed point. Since the group of translations is generated by translations by basis vectors \(e_i \), it suffices to prove, by induction on \(n \), that for any \(f \in F_n \) and \(i \in \{1, \ldots, n\} \), \(f + e_i \in F_n \).

- For \(n = 1 \), the maps with a unique fixed point are the constant maps, and constant maps are closed under translation.

- If \(n > 1 \), let \(f \in F_n \), \(i \in \{1, \ldots, n\} \) and \(g = f + e_i \). Let \(\kappa_0 \) and \(\kappa_1 \) be the \((n-1) \)-dimensional subcubes defined respectively by \(x_i = 0 \) and \(x_i = 1 \). By induction hypothesis, \(g|_{\kappa_0} \) has a unique fixed point \(x \) and \(g|_{\kappa_1} \) has a unique fixed point \(y \). On the other hand, since \(\mathbb{F}_2^n = \kappa_0 \cup \kappa_1 \), \(f \) has a unique fixed point, which needs to be either \(x \) or \(y \), say it is \(x \). Then \(f(y) = y + e_i \) and \(g(y) = y \). Moreover, \(f(x) = x \), hence \(g(x) \neq x \), and we may conclude that \(y \) is the unique fixed point of \(g \), hence that \(g \in F_n \).

7 Proposition. \(f \) is hereditarily ufp if and only if \(f + \text{id} \) is hereditarily bijective.

If for each subcube \(\kappa \), \((f + \text{id})|_\kappa \) is bijective, then \((f + \text{id})|_\kappa\) takes exactly once the value 0, and clearly, all the \((f + \text{id})|_\kappa\) have a unique fixed point.

On the other hand, in order to prove that for any \(n \geq 1 \) and any \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n \), if \(f \) is hereditarily ufp, then \(f + \text{id} \) is hereditarily bijective, it suffices to prove that for any \(n \) and \(f \), if \(f|_\kappa \) has a unique fixed point for each subcube \(\kappa \), then \(f + \text{id} \) is bijective: this is because the hypothesis is closed under restriction. Assume this is wrong, so that there exists some \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n \) such that \(f + \text{id} \) is not bijective while \(f|_\kappa \) has a unique fixed point for each subcube \(\kappa \). Since \(f + \text{id} \) is not bijective, the preimage \((f + \text{id})^{-1}(z)\) of some \(z \) is not a singleton, hence \((f + z + \text{id})^{-1}(0)\) is not a singleton and \(f + z \) does not have a unique fixed point. But by Lemma 6, this contradicts the hypothesis on \(f \), because \(f \) and \(f + z \) are in the same orbit under translation.

8 Corollary. If \(f + \text{id} \) is hereditarily bijective, then \(\Gamma(f) \) is collapsing.

Under the hypothesis of the corollary, by Proposition 7, for each subcube \(\kappa \), \(f|_\kappa \) has a unique fixed point. Lemma 3 then ensures that this fixed point is the only attractor of \(\Gamma(f) \). Let now \(x \) be the unique fixed point of \(f \) and let \(Y \) be the set of points \(y \in \mathbb{F}_2^n \) such that \(\Gamma(f) \) has no direct trajectory from \(y \) to \(x \). Assume for a contradiction that \(\Gamma(f) \) is not directly terminating. This implies \(Y \neq \emptyset \) and we may choose \(y \in Y \) such that \(d(x, y) \) is minimal: then \(x \) and \(y \) are fixed points for \(f|_{[x, y]} \), and since \(y \neq x \), it follows from Lemma that \((f + \text{id})|_{[x, y]}\) is not bijective.

9 Theorem (R.). If \(f + \text{id} \) is not bijective, then there exist two different points \(x, y \in \mathbb{F}_2^n \) such that \(\mathcal{G}(f)(x) \) and \(\mathcal{G}(f)(y) \) have a cycle.

To prove this theorem, first observe that as a non bijective map from a finite set to itself, \(f + \text{id} \) is not injective: some point \(z \in \mathbb{F}_2^n \) has a preimage of cardinality at least 2 under \(f + \text{id} \). Consider the partially ordered set \(E_z \) of subcubes \(\kappa \), ordered by inclusion, such that \(\pi_\kappa(z) \) has a preimage of cardinality at least 2 under \((f + \text{id})|_\kappa\). By hypothesis, \(E_z \neq \emptyset \). Let \(\kappa \) be a minimal subcube of \(E_z \), and let \(x, y \in \kappa \) be distinct points mapped by \((f + \text{id})|_\kappa\) to \(z|_\kappa \). Since \(\kappa \) is minimal in \(E_z \), \(x \) and \(y \) are antipodes in \(\kappa \), i.e., \(\kappa = [x, y] \). Recall that \(v(x, y) \) denotes the subset \(I \subseteq \{1, \ldots, n\} \) such that \(x + y = e_I \).
• If \(v(x, y) \) is a singleton \(\{i\} \), then \(y = x + e_i \) and \((f + \text{id})_i(x) = (f + \text{id})_i(y) \), as a consequence \(\partial_i f_i(x) = f_i(x) + f_i(x + e_i) = \partial_i f_i(x + e_i) = 1 \), hence \(\mathcal{G}(f)(x) \) and \(\mathcal{G}(f)(y) \) have an edge from \(i \) to itself.

• If on the other hand \(d(x, y) > 2 \), for any \(i \in v(x, y) \), let \(\lambda_i \) be the subcube \([x + e_i, y] \), which is smaller than \(\kappa \); then \((f + \text{id})|_{\lambda_i} (x + e_i) \neq \pi_{\lambda_i}(z) \), since otherwise \(\lambda_i \) would have two different points \(x + e_i \) and \(y \) mapped by \((f + \text{id})|_{\lambda_i} \) to \(\pi_{\lambda_i}(z) \), and \(\lambda_i \) would belong to \(E_x \), contradicting minimality. Therefore, for any \(i \in v(x, y) \), \((f + \text{id})|_{\lambda_i} (x + e_i) \neq (f + \text{id})|_{\lambda_i} (x) \), hence there exists \(j \in v(x, y) \), such that \(j \neq i \) and \(\partial_i f_j(x) = f_j(x) + f_j(x + e_i) = 1 \), and \(\mathcal{G}(f)(x) \) has an edge from \(i \) to \(j \). As a consequence, \(\mathcal{G}(f)(x) \) has an infinite path, hence a cycle, and by symmetry, so has \(\mathcal{G}(f)(y) \).

10 Lemma. If \(C \) is a cycle of \(\mathcal{G}(f)(x) \) with vertex set \(I \), then \(C \) is positive (resp. negative) when \(x \) has an even (resp. odd) out-degree in \(\Gamma(f) \), i.e., when \(\sum_{i \in I} (x_i + f_i(x)) = 0 \) (resp. 1). In particular, if \(x \) is a fixed point of \(f \) and \(C \) is any cycle in \(\mathcal{G}(f)(x) \), then \(C \) is positive.

The first assertion follows from the fact that \(C = k_1 \rightarrow \cdots \rightarrow k_p \rightarrow k_1 = k_{p+1} \) is positive if and only if

\[
\sum_{i=1}^{p} (x_{k_i} + f_{k_{i+1}}(x)) = 0 = \sum_{i=1}^{p} x_{k_i} + \sum_{i=1}^{p} f_{k_i}(x) = \sum_{i=1}^{p} (x_{k_i} + f_{k_i}(x)).
\]

11 Theorem (Remy-R.-Thieffry, Comet-Richard). If \(\mathcal{G}(f) \) has no local positive cycle, then \(f \) has a unique attractor.

Assume \(f \) has several attractors. Then by Lemma 3, some projection \(f|_{\kappa} \) has two fixed points. Hence \(f|_{\kappa} + \text{id} \) is not bijective, and by Theorem 9 applied to \(f|_{\kappa} \), there exist two points \(x, y \) such that \(\mathcal{G}(f|_{\kappa})(x) \) and \(\mathcal{G}(f|_{\kappa})(y) \) have cycles. These cycles are also cycles of \(\mathcal{G}(f)(x) \) and \(\mathcal{G}(f)(y) \), and are positive by Lemma 10.

12 Theorem (Remy-R.-Thieffry). If \(\Gamma(f) \) has an attractive cycle, then \(\mathcal{G}(f) \) has a negative cycle.

Attractive cycle \((x^1, x^2, \ldots, x^p, x^1) \). Sequence \((k_1, \ldots, k_p) \) defined by \(e^{k_i} = x^i + x^{i+1} \). Subsequence \((k_\ell, \ldots, k_m) \) maximal without repetition. Then \(k_{m+1} = k_\ell \) and \(\mathcal{G}(f)(x) \) has an edge from \(k_i \) to \(k_{i+1} \) for \(i = \ell, \ldots, m \). Hence \(\mathcal{G}(f) \) has a cycle \((k_\ell, \ldots, k_m, k_\ell) \). Negative sign because

\[
\sum_{i=\ell}^{m} x^i_{k_i} + f_{k_{i+1}}(x^i) = \sum_{i=\ell}^{m} x^i_{k_i} + x^{i+1}_{k_{i+1}} = x^\ell_{k_\ell} + x^{m+1}_{k_{m+1}} = x^\ell_{k_\ell} + x^m_{k_{m+1}} = 1,
\]

since \(k_{\ell+1}, \ldots, k_m \neq k_\ell \).

13 Lemma. Let \(p \geq 1 \) and \((x^0, \ldots, x^p) \) be a trajectory of \(\Gamma(f) \). If \(f(x^0) = x^0 + e^i \) and \(f_j(x^p) \neq x^j_p \), then \(\mathcal{G}(f) \) has a path from \(i \) to \(j \) whose sign is positive if and only if \(x^i_i = x^j_j \).
Induction on p. If $p = 1$, since $f(x^0) = x^0 + e^i$, $\mathcal{G}(f)$ has an edge from i to j, with positive sign if and only if $x^0_i = x^1_j$.

Let $p > 1$ and q be minimal s.t. $q \geq 1$ and

$$f_j(x^q) = f_j(x^{q+1}) = \cdots = f_j(x^p) \neq x^p_j.$$

For some k, $x^{q-1} + x^q = e^k$, and $\mathcal{G}(f)(x^{q-1})$ has an edge from k to j. Its sign is positive if and only if $x^q_k = f_j(x^{q-1}) = x^p_j$.

If $q = 1$, $k = i$ because $f(x^0) = x^0 + e^i$, and $\mathcal{G}(f)$ has an edge from i to j, with positive sign if and only if $x_i^0 = x_j^1$. If $q > 1$, induction with (x^0, \ldots, x^{q-1}) gives a path from i to k whose sign is positive if and only if $x_i^0 = x_k^{q-1}$, whence a path from i to j through k, whose sign is positive if and only if $x_i^0 = x_j^p$.

14 Theorem (Richard). If $\Gamma(f)$ has a cyclic attractor, then $\mathcal{G}(f)$ has a negative cycle.

Let κ be a minimal subcube s.t. $\Gamma(f|_{\kappa})$ has a cyclic attractor; κ is an I-subcube. Let θ be a cyclic attractor, $i \in I$, and κ_0, κ_1 be the two subcubes of κ defined by $x_i = 0, x_i = 1$. By minimality, κ_1 has some point $z \in \theta$, and $\Gamma(f|_{\kappa_1})$ has a trajectory from z to some fixed point x^0 of $f|_{\kappa_1}$. Since $x^0 \in \theta$, $f(x^0) = x^0 + e^i$. Applying Lemma 13 to a trajectory from x^0 to any $y \in \kappa_0$ s.t. $f_i(y) \neq y_i$ gives a path from i to i in $\mathcal{G}(f)$, whose sign is negative because $x_i^0 = 1 \neq 0 = y_i$. To conclude, it remains to note that such a path contains a negative cycle.

15 Theorem (Richard). If f is non-expansive and has no fixed point, then $\mathcal{G}(f)$ has a local negative cycle.

Being non-expansive is a local property: f is non-expansive iff for all x, $\mathcal{G}(f)(x)$ has out-degree ≤ 1. Indeed, if f is non-expansive, $f(x) + f(x + e^j) = 0$ or e^j for some j. Conversely, if $\mathcal{G}(f)(x)$ has out-degree ≤ 1, for any direct path $(x = z_0, \ldots, z_{d(x,y)} = y)$ from x to y:

$$d(f(x), f(y)) \leq \sum_{i=1}^{d(x,y)} d(f(z_{i-1}), f(z_i)) \leq \sum_{i=1}^{d(x,y)} 1 = d(x,y).$$

Being non-expansive is a hereditary property: if f is non-expansive, so is any subnetwork. This follows immediately from locality.

Let κ be a minimal subcube such that $f|_{\kappa}$ has no fixed point. Then $g = f|_{\kappa}$ is non-expansive, and if κ is an I-subcube, for each $i \in I$, each of the two subcubes κ_0, κ_1 of κ defined by $x_i = 0, x_i = 1$ has a point $x^0 \in \kappa_0, x^1 \in \kappa_1$ which is fixed respectively by $g|_{\kappa_0}, g|_{\kappa_1}$. Thus $x_i^0 \neq x_i^1$ and $g(x^0) + x^0 = e^i = g(x^1) + x^1$. We call a pair (x^0, x^1) with these two properties a mirror pair of g.

We now show, by induction on the dimension, that the existence of a mirror pair in a non-expansive network suffices to entail a local negative cycle. In a 1-dimensional network, the result is obvious. Let f be an n-dimensional network with a mirror pair. If $d(a,b) < n$ for some mirror pair (a,b), the strict subnetwork $f|_{[a,b]}$ is non-expansive and has the same mirror pair, hence a local negative cycle. So we may assume that any
mirror pair \((a,b)\) is antipodal, i.e. satisfies \(d(a,b) = n\). We may also assume w.l.o.g. that \(f(a) + a = e^i = f(b) + b\), with \(a_0 = 0, b_1 = 1\).

First, we observe that \(f\) has no fixed point. Otherwise, a fixed point \(c\) would satisfy either \(c_1 = 0\) or \(c_1 = 1\). In the first case, \(d(f(c), f(a)) = d(c, a + e^i) = d(c, a) + 1\), and in the second case, \(d(f(c), f(b)) = d(c, b + e^i) = d(c, b) + 1\). Anyway, we get a contradiction.

Let \(a^i = a, a^{i+1} = a + e^i\). Since \(f\) is non-expansive, \(d(f(a^i), f(a^{i+1})) = 1\) and \(f(a^{i+1})\) is not a fixed point, hence \(f(a^{i+2}) = f(a^i) + e^{k_2} = a^2 + e^{k_2}\) for some \(k_2\). This gives rise to sequences

\[
a^1 = a, a^2, a^3, \ldots, a^n \text{ and } k_1 = 1, k_2, k_3, \ldots, k_n
\]

such that \(f(a^i) = a^i + e^{k_i}\) for all \(i\). If for some \(i \neq j, k_i = k_j\), then \((a^i, a^j)\) is a mirror pair such that \(d(a^i, a^j) < n\), contradiction. Thus \(k_1 = 1, k_2, \ldots, k_n\) are all different and \(f(a^n) = b\). Antipodality entails a similar sequence \(a^{n+1} = b, a^{n+2}, \ldots, a^{2n}\) starting from \(b\), with the same sequence \(k_1 = 1, \ldots, k_n\), so that \(f\) has an antipodal attractive cycle

\[
(a^1 = a, a^2, \ldots, a^n, a^{n+1} = b, a^{n+2}, \ldots, a^{2n}, a).
\]

We may assume, up to a permutation of variables, that \(k_i = i\) for all \(i\). Now, for any \(1 \leq i \leq 2n\), \(G(f)(a^i)\) and \(G(f)(a^{i+1})\) have an edge from \(i\) to \(i + 1 \mod n\). Let us prove that, for all \(1 \leq i < p \leq n\), if \(G(f)(a^p)\) has an edge from \(i\) to \(i + 1\), so has \(G(f)(a^{p+1})\). There are two cases.

1. For \(p = i + 1\), we note that

\[
d(a^{i+1}, f(a^i + e^{i+1})) = d(f(a^i), f(a^i + e^{i+1})) \leq d(a^i, a^i + e^{i+1}) = 1.
\]

If \(f_{i+1}(a^i + e^{i+1}) \neq a^i_{i+1}\), then \(f(a^i + e^{i+1}) = a^{i+2} = a^i + e^{i+1}\) and \((a^i + e^{i+1}, a^{i+n \mod 2n})\) is a mirror pair contradicting antipodality. Therefore, \(f_{i+1}(a^i + e^{i+1}) = a^i_{i+1}\) and \(f_{i+1}(a^{i+2}) = a^{i+2}_{i+1} \neq a^i_{i+1}\), so that \(G(f)(a^{i+2})\) has an edge from \(i\) to \(i + 1\).

2. For \(p \geq i + 2\), we have

\[
d(a^{p+1}, f(a^p + e^{i})) = d(f(a^p), f(a^p + e^{i})) \leq d(a^p, a^p + e^{i}) = 1.
\]

Since \(G(f)(a^p)\) has an edge from \(i\) to \(i + 1\) and \(i \neq p, p + 1\), we have \(f_{i+1}(a^p + e^{i}) \neq a^p_{i+1}\), therefore \(f(a^p + e^{i}) = a^{p+1} + e^{i+1}\). On the other hand:

\[
d(f(a^{p+1} + e^{i}), a^{p+1} + e^{i+1}) = d(f(a^{p+1} + e^{i}), f(a^p + e^{i}))
\]

\[
\leq d(a^{p+1} + e^{i}, a^p + e^{i})
\]

\[
= 1.
\]

If \(f_{i+1}(a^{p+1} + e^{i}) = (a^{p+1} + e^{i})_{i+1} = a^{p+1}_{i+1}\), necessarily \(f(a^{p+1} + e^{i}) = a^{p+1}\) and \((a^{p+1} + e^{i}, a^{p+1+n \mod 2n})\) is a mirror pair contradicting antipodality. Therefore \(f_{i+1}(a^{p+1} + e^{i}) \neq a^{p+1}_{i+1} = f_{i+1}(a^p)\) and \(G(f)(a^{p+1})\) has an edge from \(i\) to \(i + 1\).

We conclude that \(G(f)(a^{p+1}) = G(f)(b)\) has a Hamiltonian cycle, which has to be negative because \(f(b) + b = e^i\).

16 Proposition (Richard, R.). For an and-net \(f\), a cycle \(C\) of \(G(f)\) is local if and only if it has no delocalizing triple.
It is sufficient to show that, given an edge \((w, s, v)\) of \(\mathcal{G}(f)\) and \(x \in \mathbb{F}_2^6\), \((w, s, v)\) is an edge of \(\mathcal{G}(f)(x)\) if and only if \(f_v\) has no positive input \(u \neq w\) such that \(x_u = 0\), and no negative input \(u \neq w\) such that \(x_u = 1\).

1. On one hand, if \((w, s, v)\) is an edge of \(\mathcal{G}(f)(x)\), then \(f_v(x) \neq f_v(x + e^w)\), so either
 \[f_v(x) = 1 \] or
 \[f_v(x + e^w) = 1, \]
 and we deduce that \(x_u = (x + e^w)_u = 1\) for every positive input \(u \neq w\) of \(f_v\), and \(x_u = (x + e^w)_u = 0\) for every negative input \(u \neq w\) of \(f_v\).

2. On the other hand, if \(f_v\) has no positive input \(u \neq w\) such that \(x_u = 0\), and no negative input \(u \neq w\) such that \(x_u = 1\), then \(f_v(x) \neq f_v(x + e^w)\) and we deduce that \((w, s, v)\) is an edge of \(\mathcal{G}(f)(x)\).

17 Theorem (R.). If \(f\) is an and-net and has an antipodal attractive cycle, then \(\mathcal{G}(f)\) has a local negative cycle.

We show that an and-net \(f\) has an antipodal attractive cycle if and only if \(\mathcal{G}(f)\) is a (chordless) Hamiltonian negative cycle. The if part is trivial.

Conversely, if an and-net \(f\) has an antipodal attractive cycle \(\theta\), we may assume that \(\theta\) is \((0, \ldots, e^{1 \cdots n-1}, 0, \ldots, e^{1 \cdots n-1}, 0)\) up to translation and a permutation of coordinates, so that \(\mathcal{G}(f)\) has a negative cycle \(C = (1, 2, \ldots, n, 1)\). If \(C\) has a negative chord \((i, j)\), then \(f_j(x) = 0\) as soon as \(x_i = 1\).

- Now, if \(j \leq i\), then \(e^1_{j \cdots j} = 1\). Since \(e^1_{i \cdots j} = 1\) as well, by the above remark, \(f_j(e^1_{i \cdots j}) = 0\), hence \(i + 1\) and \(j\) are degrees of freedom of \(e^1_{i \cdots j}\). Since \((i, j)\) is a chord, \(j \neq i + 1 \mod n\), and \(e^1_{i \cdots j}\) has at least two degrees of freedom.

- Otherwise \(i \leq j - 1\), so \(e^1_{i \cdots j - 1} = 1\), and \(f_j(e^1_{i \cdots j - 1}) = 0\) by the above remark. Since \(e^1_{i \cdots j - 1} = 0\) too, \(j\) is not a degree of freedom of \(e^1_{i \cdots j - 1}\).

In both cases, we have a contradiction with the hypothesis that \(\theta\) is an attractive cycle, and a similar argument applies for a positive chord at \(e^1_{i \cdots j-1}\).

18 Theorem (Richard, R.).

1. If \(f\) is an and-net and every negative cycle of \(\mathcal{G}(f)\) has an internal delocalizing triple, then \(f\) has \(\geq 1\) fixed point.

2. If every odd cycle of a directed graph \(G\) has an internal killing triple, then \(G\) has \(\geq 1\) kernel.

3. The constructions of \(f^*\) and \(G^+\) relate fixed points to kernels, positive and negative cycles to even and odd cycles, and (good) delocalizing triples to killing triples.

19 Proposition. Let \(f\) be the negative and-net associated to the directed graph \(G\). The fixed points of \(f\) are in bijection with the kernels of \(G^\text{op}\).

Let \(K : \mathbb{F}_2^a \to \mathcal{P}([1, \ldots, n])\) be the bijection defined by mapping any point \(x \in \mathbb{F}_2^a\) to the set \(K(x)\) of \(i\) such that \(x_i = 1\). We prove that \(x\) is a fixed point of \(f\) if and only if \(K(x)\) is a kernel of \(G^\text{op}\).
1. Let x be a fixed point of f. If (j, i) is an edge of G^{op} and $i \in K(x)$, then i is a negative input of j and $x_i = 1$, so $x_j = f_j(x) = 0$, hence $j \notin K(x)$. Therefore $K(x)$ is an independent set of vertices in G^{op}. Moreover, if $j \notin K(x)$, then $0 = x_j = f_j(x)$ and f_j has at least one negative input i such that $x_i = 1$. Therefore (j, i) is an edge of G^{op} and $i \in K(x)$. We conclude that $K(x)$ is an absorbent set of G^{op}, hence a kernel.

2. Assume on the other hand that $K(x)$ is a kernel of G^{op}, and let j be any vertex. If $j \in K(x)$, then any vertex i dominated by j in G^{op} is not in $K(x)$. In other words, f_j has no input i in $K(x)$, and we deduce that $f_j(x) = 1 = x_j$. On the other hand, if $j \notin K(x)$, then j dominates some vertex $i \in K(x)$ in G^{op}. Hence f_j has an input i such that $x_i = 1$, and we deduce that $f_j(x) = 0 = x_j$. Therefore x is a fixed point of f.

20 Theorem (Remy-R.-Thieffry, Comet-Richard). If γ is a discrete network such that $\mathcal{G}(\gamma)$ has no local positive cycle, then γ has ≤ 1 fixed point.

Assume that γ has two fixed points, and let κ be a minimal subspace such that $\gamma|_{\kappa}$ has two fixed points. Then $\kappa = [x, y]$ for two fixed points x, y of $\gamma|_{\kappa}$. Let y' be the unique point of κ satisfying $|x_i - y'_i| = 1$ for all i such that $x_i \neq y'_i$, and β be the increasing bijection $[x, y'] \to \mathbb{F}_2^d$. We show, by induction on the diameter k of κ, that $\mathcal{G}(\gamma)(x, y')$ has a positive cycle.

If $k = 1$, then $y = y' = x + e^i$ or $x - e^i$ for some i, and $\mathcal{G}(\gamma)(x, y')$ has a positive loop on i.

If $k > 1$, let f be the map associated to the Boolean network $\beta(\gamma|_{[x, y']})$. Let $i \in I$ and x' be the unique point of κ such that $d(x, x') = 1$ and $x_i \neq x'_i$. By minimality, y is the unique fixed point of the subnetwork $\gamma|_{[x', y]}$. If $\gamma|_{[x', y]}$ has an edge leaving x' in the direction i, then $\gamma|_{[x', x]}$ has two fixed points, in contradiction with minimality. Therefore, there exists $j \neq i$ such that $f_j(\beta(x) + e^i) = f_j(\beta(x') \neq f_j(\beta(x))$, and $\mathcal{G}(f)(\beta(x))$ has an edge from i to j. Since this holds for any $i \in I$, $\mathcal{G}(f)(\beta(x))$ has a cycle, which is positive because $\beta(x)$ is a fixed point of f.

21 Theorem (Richard). If γ is a discrete network such that $\mathcal{G}(\gamma)$ has no local cycle, then γ has a unique fixed point.

Assume that γ has no fixed point, and let $\kappa = \prod_{i \in I} \{m_i, \ldots, M_i\}$ be a minimal subspace such that $\gamma|_{\kappa}$ has no fixed point. Let $i \in I$. There exist $a, b \in \kappa$ such that $a_i = m_i, b_i = M_i$ and the only edges of $\mu = \gamma|_{\kappa}$ leaving a or b are in direction i. Define the discrete network $N_i(\mu)$ to be the same as μ, except for edges in direction i: if $d(x, y) = 1$ and $x_i \neq y_i$, $N_i(\mu)$ has an edge from x to y when μ has not. Then for any x, y, the local graphs $\mathcal{G}(N_i(\mu))(x, y)$ and $\mathcal{G}(\mu)(x, y)$ have the same edges (maybe with different signs). Since a, b are two fixed points of $N_i(\mu)$, $\mathcal{G}(N_i(\mu))$ has a local (positive) cycle, and $\mathcal{G}(\mu)$ has a local cycle.
2 Exercises

1. Compute the Jacobian matrix $J(f)(x)$ of
 \[
 f(x) = \begin{pmatrix}
 (x_3 \lor x_4) - x_2 \\
 x_3 \land x_4 \\
 x_4 - x_1 \land x_2 \\
 x_1 x_2 - x_3
 \end{pmatrix},
 \]
 and the subnetworks $f|_{\kappa_0}, f|_{\kappa_1}$, where κ_0, κ_1 are the two $\{1, 2, 3\}$-subcubes defined by $x_4 = 0, x_4 = 1$. Compute the reduced network f' of f on 4.

2. Show that the following local inverse theorem holds: if $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $x \in \mathbb{F}_2^n$ are such that $J(f)(x)$ is invertible, then the restriction of f to the unit ball $B(x, 1)$, defined by $d(x, y) \leq 1$, is injective.

3. Show that arbitrary cyclic attractors are generally not preserved by reduction.

4. Prove the theorems of Robert and Bahi-Michel: if $\mathcal{G}(f)$ has no cycle, then f has a unique fixed point and the iteration of f terminates in $\leq n$ steps, and $\Gamma(f)$ is collapsing.

5. Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a Boolean network. Show that if $x \in \mathbb{F}_2^n$ has odd out-degree in $\Gamma(f)$ and the Jacobian matrix $J(f)(x)$ is invertible, then $\mathcal{G}(f)(x)$ has a negative cycle.

6. Show that if $f + \text{id}$ is bijective, then $\mathcal{G}(f)$ has a local positive loop (cycle of length 1) if and only if it has a local negative loop.

7. Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be defined by
 \[
 f(x) = \begin{pmatrix}
 x_4(x_2 + 1)(x_3 + 1) \\
 x_1(x_3 + 1)(x_4 + 1) \\
 x_2(x_4 + 1)(x_1 + 1) \\
 x_3(x_1 + 1)(x_2 + 1)
 \end{pmatrix}.
 \]
 Show that f is hereditarily ufp, but that $\mathcal{G}(f)$ has a unique local cycle, which is positive. It is therefore not true that if a Boolean network f is hereditarily ufp, then $\mathcal{G}(f)$ has a local positive cycle if and only if it has a local negative cycle.

8. Is the set of Boolean networks which have a unique fixed point closed under translation? Give either a proof or a counterexample.

9. Show that a Boolean network f may be directly terminating but not hereditarily ufp. Show that the fact $f + \text{id}$ is bijective does not suffice to conclude that $\Gamma(f)$ is weakly terminating.

10. Show that a Boolean network may be hereditarily ufp and have a local cycle.
11. A pair \((x, y) \in \mathbb{F}_2^n \times \mathbb{F}_2^n\) is called a mirror pair of \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n\) when \((f + \text{id})|_{[x, y]}(x) = (f + \text{id})|_{[x, y]}(y)\), i.e., when \(x\) and \(y\) have the same degrees of freedom for the map \(f|_{[x, y]}\). Prove that \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n\) is hereditarily ufp if and only if \(f\) has no mirror pair.

12. A point \(x \in \mathbb{F}_2^n\) is said to be even (resp. odd) when \(\sum_{i=1}^n x_i = 0\) (resp. 1). The sum here is again addition in the field \(\mathbb{F}_2\). A network \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n\) is even (resp. odd) when the image \(\text{Im}(f + \text{id})\) of \(f + \text{id}\) is the set of even (resp. odd) points of \(\mathbb{F}_2^n\). Letting \(\overline{x}\) denote the antipode \(x + e_1 + \cdots + e_n\) of \(x \in \mathbb{F}_2^n\), a network \(f\) is said to be a mirror network when for any \(x \in \mathbb{F}_2^n\), \(f(x) = f(\overline{x})\), i.e. \((x, \overline{x})\) is a mirror pair.

(a) Let \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n\) be a Boolean network. Assume that for any \(i \in \{1, \ldots, n\}\) and \(\{1, \ldots, n\} \setminus \{i\}\)-subcube \(\kappa\), \((f + \text{id})|_{\kappa}\) is bijective, and that \(f + \text{id}\) is not bijective. Let \(F = f + \text{id}\). Show that for any \(a \in \mathbb{F}_2^n\) and \(i \in \{1, \ldots, n\}\), \(F^{-1}(\{a, a + e_i\})\) has cardinality 2.

(b) Prove that, under the same assumptions, \(f\) is an even or odd mirror network.

(c) Show that \(f + \text{id}\) is hereditarily bijective if and only if \(f\) has no even or odd mirror subnetwork.

13. Show that if the graph associated to a square matrix \(M\) with entries in \(\mathbb{F}_2\) has no cycle, then \(M\) is nilpotent. Show that the converse is wrong.

14. An \(n \times n\) matrix \(M = (M_{i,j})_{i,j \in \{1, \ldots, n\}}\) with entries in \(\mathbb{F}_2\) is said to be hereditarily invertible (resp. hereditarily nilpotent) when so are all square submatrices \(M_I = (M_{i,j})_{i,j \in I}\), for \(I \subseteq \{1, \ldots, n\}\). Show that the following are equivalent:

(a) the graph whose adjacency matrix is \(M\) has no cycle;

(b) \(M\) is hereditarily nilpotent;

(c) \(\mathcal{I} + M\) is hereditarily invertible, where \(\mathcal{I}\) denotes the identity matrix.

Prove that if \(f : \mathbb{F}_2^n \to \mathbb{F}_2^n\) is such that \(\mathcal{I}(f)(x)\) is hereditarily invertible for each \(x \in \mathbb{F}_2^n\), then \(f\) is hereditarily bijective.

15. Given a permutation \(\sigma \in \mathcal{S}_{2^n}\), let \(F : \mathbb{F}_2^{n+1} \to \mathbb{F}_2^{n+1}\) be the map defined on the subcube \(0 \{1, \ldots, n\}\) by:

\[
F(x, 0) = \begin{cases}
(\sigma(x), 0) & \text{if } \sigma(x) \text{ is even,} \\
(\sigma(x), 1) & \text{otherwise,}
\end{cases}
\]

and by \(F(x, 1) = F(\overline{x}, 0)\). Show that \(f = F + \text{id}\) is an even mirror network, and that any even mirror network can be constructed as above.

16. Let \(f\) be a non-expansive Boolean network. Show that if \(f\) has a cyclic attractor, then \(\mathcal{D}(f)\) has a local negative cycle. (Hint: take a minimal subcube such that the assumption holds.)