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Abstract. The study of relationships between structure and dynamics
of asynchronous Boolean networks has recently led to the introduction of
hereditarily bijective maps and even or odd self-dual networks. We show
here that these two notions can be simply characterized geometrically:
through orthogonality between certain affine subspaces. We also use this
characterization to provide a construction of the class of hereditarily
bijective maps, and to study its stability properties.

1 Introduction

Boolean networks represent the dynamic interaction of components which can
take two values, 0 and 1. Introduced by von Neumann [17], they have been
extensively used to model various biological networks, especially genetic reg-
ulatory networks, since the early works of S. Kauffman and R. Thomas [5, 6,
13]. They are a discrete alternative to differential equations models, in which
sufficently precise quantitative data often lack to accurately define the parame-
ters. Regulatory interactions also exhibit strong thresholds effects (sigmoids), so
that differential models are often conveniently approximated by piecewise linear
equations [12], or one step further discretized into Boolean (or more generally
multivalued) networks. See [2, 1] for recent surveys.

An increasingly active field of research is the study of asynchronous Boolean
networks [15]. An asynchronous Boolean network with n components may be
presented by its phase space, which is a partial orientation of the lattice {0, 1}n,
i.e., a directed graph whose vertex set is {0, 1}n and whose edges only relate
vertices which are 1-distant from each other for the Hamming distance. Asyn-
chronous networks are thus nondeterministic dynamical systems, in which the
value of at most one component may be updated at a time.

Although other update schemes of Boolean networks are studied as models of
biological networks (in particular random [5] and synchronous networks [6, 3], as
well as comparisons between update schemes [4]), asynchrony provides a simple
mathematical framework in which all possible trajectories are considered. In the
context of genetic networks, one may observe that trajectories of piecewise linear
models almost surely (in the sense of measure theory) cross only one threshold



hyperplane at a time, so that only the value of the corresponding component is
updated in the discretized Boolean network, which thus follows the asynchronous
update scheme.

The asymptotic dynamical properties of asynchronous Boolean networks (na-
ture and number of attractors, e.g., existence and unicity of fixed points or
attractive cycles) depend on their structure (the directed graph of interactions
between components), but precise relationships between dynamics and structure
are very difficult to characterize in general. In [14, 16], R. Thomas conjectures
rules relating positive or negative cycles in the interaction graphs to non-unicity
of fixed points (related to cellular differentiation) or sustained oscillations (re-
lated to homeostasis). It is possible to give a precise mathematical status to
these rules in the framework of asynchronous networks, by identifying sustained
oscillations with cyclic attractors and by defining local interaction graphs in a
way similar to Jacobian matrices (Section 2 recalls the useful definitions). In this
framework, while the positive rule is well understood [7], the rule relating (local)
negative cycles to the existence of a cyclic attractor is unproved in general. In
[9], the special case of and-or nets is partly solved, and in [10] the special case
of antipodal attractive cycles for and-or nets is fully proved.

In the course of better understanding these relationships, two opposite no-
tions have been independently introduced recently: even or odd self-dual net-
works in [8], and hereditarily bijective maps in [10]. They seem particularly rel-
evant to the study of asynchronous Boolean networks which have a non trivial
dynamics: indeed, the dynamics of a hereditarily bijective map is weakly termi-
nating to a unique fixed point, hence particularly “simple”, while even or odd
self-dual subnetworks are necessary for the emergence of a “complex” dynamical
behaviour.

In this article, we develop the theory of these classes of networks. We show
that hereditary bijectivity, and hence even or odd self-duality, can be simply
characterized geometrically: through orthogonality between certain affine sub-
spaces (Section 4). We use this characterization to provide a construction of the
class of hereditarily bijective maps (Section 5), and to study its stability prop-
erties, in particular to prove that it is stable under inverse. We also study the
relationship between the invertibility of a Boolean map and of its Jacobian ma-
trices: we show that if a map from {0, 1}n to itself has all its Jacobian matrices
hereditarily invertible, then it is hereditarily bijective (while the same statement
without heredity is known to be false).

2 Asynchronous Boolean networks

We need some preliminary definitions and notations. B denotes the set {0, 1}.
Boolean sum (+) and product (·) equip B with the structure of the field F2.

Let {e1, . . . , en} be the canonical basis of the vector space B
n, and for each

I ⊆ {1, . . . , n}, eI =
∑

i∈I ei. For x, y ∈ B
n, v(x, y) denotes the subset I ⊆

{1, . . . , n} such that x+ y = eI , and the Hamming distance d(x, y) is defined as
the cardinality of v(x, y).



f1(x) = (x2 + 1)x3

f2(x) = (x3 + 1)x1

f3(x) = (x1 + 1)x2

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

Fig. 1. A Boolean map f : B3
→ B

3 and the asynchronous dynamics Γ (f) associated
to it. For instance, the point x = (1, 0, 0) in Γ (f) has two outgoing edges to x+ e1 =
(0, 0, 0) and x+ e2 = (1, 1, 0) because f(x) = (0, 1, 0) = x+ e1 + e2.

Asynchronous Boolean networks can be equivalently presented in terms of
directed graphs or in terms of Boolean maps. An asynchronous Boolean network
can be defined:

1. either as a directed graph whose vertex set is B
n and whose edges only

relate vertices which are 1-distant from each other (for any edge from x to
y, d(x, y) = 1);

2. or as a map from B
n to B

n.

The two presentations indeed carry the same information (see Figure 1):

1. To a directed graph γ as above, we may associate a map Φ(γ) : Bn → B
n by

Φ(γ)(x) = x + eI , where {(x, x+ ei), i ∈ I} is the set of edges going from x
in γ.

2. Conversely, given a map f : Bn → B
n we may define a directed graph Γ (f)

with vertex set Bn and an edge from x to y when for some i, y = x+ ei and
fi(x) 6= xi. Here, fi is defined by fi(x) = f(x)i. In that case, d(x, y) = 1,
and clearly, Γ and Φ are inverses of each other.

We call Γ (f) the asynchronous dynamics associated to f . As we shall consider
asynchronous Boolean networks as dynamical systems, the coordinates i such
that fi(x) 6= xi may naturally be considered as the degrees of freedom of x.

2.1 Dynamical properties

We shall be interested in the following asymptotic dynamical properties of asyn-
chronous Boolean networks.

Let f : Bn → B
n. A trajectory is a path in Γ (f), and an attractor a terminal

strongly connected component of Γ (f). An attractor which is not a singleton
(i.e., which does not consist in a fixed point) is called a cyclic attractor. Attractive
cycles, i.e., cyclic trajectories θ such that for each point x ∈ θ, d(x, f(x)) = 1, are
examples of cyclic attractors. Observe that attractive cycles are deterministic,
since any point in θ has a unique degree of freedom.



Recall that f is weakly terminating when for any x ∈ B
n, some trajectory

leaving x leads to a fixed point. Therefore, f has a cyclic attractor if and only
if it is not weakly terminating. A stronger form of weak termination may be
defined as follows. Given f : Bn → B

n, a path from x ∈ B
n to y ∈ B

n in Γ (f)
is called a direct trajectory when its length is minimal, i.e., equals d(x, y). And
Γ (f) is said to be directly terminating when for any point x ∈ B

n there exists a
direct trajectory from x to some fixed point.

For instance, the network f defined in Figure 1 has a (non-attractive) cyclic
trajectory (1, 0, 0) → (1, 1, 0) → (0, 1, 0) → (0, 1, 1) → (0, 0, 1) → (1, 0, 1) →
(1, 0, 0), but it is directly terminating to a unique fixed point. We shall see in
Section 3 that this property of direct termination is actually a consequence of
the fact that f + id is hereditarily bijective (Theorem 3).

2.2 Subcubes and subnetworks

Given x ∈ B
n and I ⊆ {1, . . . , n}, the subset x[I] consists in all points y such

that yi = xi for each i /∈ I; subsets of the form x[I] are called I-subcubes, or
simply subcubes of Bn. If y = x+ eI , the subcube x[I] is also denoted by [x, y].

Subcubes of Bn are affine subspaces: indeed, the vector space 0[I] = {eJ |J ⊆
I} acts faithfully and transitively on x[I]. However, not every affine subspace is
a subcube: the subset {(0, 0), (1, 1)} is an affine subspace because (1, 1)+(1, 1) =
(0, 0), but it is clearly not a subcube.

For any subcube κ, let πκ : Bn → κ be the projection onto κ, defined as
follows: if κ = x[I],

(πκ(y))i =

{

yi if i ∈ I

xi otherwise.

Let also ικ : κ → B
n be the inclusion map. It is then immediate that πκ ◦ ικ is

the identity. For any f : Bn → B
n, let

f↾κ = πκ ◦ f ◦ ικ : κ → κ.

A subnetwork of f is a map f↾κ for some subcube κ. The asynchronous dynamics
Γ (f↾κ ) is easily shown to be the subgraph of Γ (f) induced by vertices in κ, a
characterization which may be taken as an alternative, more intuitive, definition
of subnetworks.

We shall need the following lemmas.

Lemma 1. The projection onto any I-subcube is an affine map, with associated
linear transformation the projection π0[I] from B

n onto the linear subspace 0[I].

Proof. If κ is an I-subcube, then:

πκ(x) = πκ(0) + π0[I](x). (1)

Indeed, for any i 6∈ I, (πκ(x))i = (πκ(0))i and (π0[I](x))i = 0. And for any i ∈ I,
(πκ(x))i = (π0[I](x))i = xi and (πκ(0))i = 0. ⊓⊔



Lemma 2. Let κ = x[I] and λ = y[J ] be any two subcubes of Bn. The image of
λ under πκ is the subcube πκ(y)[I ∩ J ]. In other terms, πκ(y[J ]) = πκ(y)[J ]∩ κ.

Proof. A point of λ is of the form y+ eK for some K ⊆ J . By Equation (1), for
any K ⊆ J :

πκ(y + eK) = πκ(y) + π0[I](eK) = πκ(y) + eI∩K .

When K varies among all subsets of J , I ∩K varies among all subsets of I ∩ J .
Therefore the image of λ under πκ equals πκ(y)[I ∩ J ].

Now, observe that z[I ∩ J ] = z[I]∩ z[J ] for any z. Since πκ(y)[I] = x[I] = κ,
we conclude that πκ(y)[I ∩ J ] = πκ(y)[J ] ∩ κ. ⊓⊔

Corollary 1. If x, y ∈ B
n and κ is any subcube, then πκ([x, y]) = [πκ(x), πκ(y)].

3 Hereditarily bijective maps and even or odd self-dual

networks

A map f : Bn → B
n is said to be hereditarily bijective (resp. hereditarily ufp) [10]

when for any subcube κ, f↾κ is bijective (resp. has a unique fixed point). A pair
(x, y) ∈ B

n × B
n called a mirror pair of f : Bn → B

n when (f + id)↾[x,y] (x) =
(f + id)↾[x,y] (y), i.e., when x and y have the same degrees of freedom for the
projected map f↾[x,y].

For any x ∈ B
n, the translation tx maps y ∈ B

n to x+y. The following propo-
sition establishes some immediate stability properties of the class of hereditarily
bijective maps.

Proposition 1. The class of hereditarily bijective maps is stable under:

1. composition with translations: if f : Bn → B
n is hereditarily bijective and

x, y ∈ B
n, then so is tx ◦ f ◦ ty;

2. permutation of coordinates: if f : B
n → B

n is hereditarily bijective and
σ ∈ Sn, then so is fσ = σ ◦ f ◦ σ−1, where σ acts on B

n by permuting
coordinates.

Proof. The first property follows from the fact that translations are (hereditarily)
bijective and stable under projection on subcubes. The second property follows
from the fact that fσ ↾κ= (f↾σ(κ) )

σ. ⊓⊔

We shall use the results of Section 4 to give another stability property in Corol-
lary 3. Let now id denote the identity map from B

n to itself. The following
theorem relates the above three definitions.

Theorem 1 (Ruet [10]). For any f : Bn → B
n, the following are equivalent:

1. f + id is hereditarily bijective;
2. f is hereditarily ufp;
3. f has no mirror pair.



(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

Fig. 2. A network g : B3
→ B

3 such that g + id is not (hereditarily) bijective.

A point x ∈ B
n is said to be even (resp. odd) [8] when

∑n

i=1 xi = 0 (resp. 1).
The sum here is again addition in the field F2. A map f : Bn → B

n is even (resp.
odd) when the image of f + id is the set of even (resp. odd) points of Bn. Let x
denote the antipode x+ e1 + · · ·+ en of x ∈ B

n. Now, a map f is self-dual when
for any x ∈ B

n, f(x) = f(x), i.e., (x, x) is a mirror pair.
Point 2 of the following theorem essentially asserts that if f + id is not

hereditarily bijective, not only has f a mirror pair, but it has an even or odd
self-dual subnetwork.

Theorem 2 (Richard [8]). Let f : Bn → B
n.

1. If for any i ∈ {1, . . . , n} and {1, . . . , n}\{i}-subcube κ, (f+id)↾κ is bijective,
and if f + id is not bijective, then f is even or odd, and self-dual.

2. f + id is hereditarily bijective if and only if f has no even or odd self-dual
subnetwork.

The asynchronous dynamics of hereditarily bijective maps can then be charac-
terized as follows.

Theorem 3 (Richard [8], Ruet [10]). If f + id is hereditarily bijective, then
Γ (f) has a unique attractor, this attractor is a fixed point and Γ (f) is directly
terminating (in particular, it is weakly terminating).

As we have already observed, for the network f of Figure 1, f +id is hereditarily
bijective and indeed, f is directly terminating to a unique fixed point. On the
other hand, flipping the arrow from (0, 1, 0) to (0, 0, 0) in f gives rise to the
network g of Figure 2 without fixed point: g + id is not bijective (hence not
hereditarily bijective) as it never takes value 0, and for κ = (0, 0, 0)[2, 3] =
[(0, 0, 0), (0, 1, 1)], g↾κ is an odd self-dual subnetwork.

3.1 Dynamics and structure

The above definitions are used in [8, 10] to understand the relationships between
the dynamics of an asynchronous Boolean network f and the structure of its
Jacobian matrices J(f)(x) and interaction graphs G (f)(x). Let us recall the
definitions of J(f)(x) and G (f)(x).



Given ϕ : B
n → B and i ∈ {1, . . . , n}, the discrete ith partial derivative

∂ϕ/∂xi = ∂iϕ : Bn → B maps each x ∈ B
n to

∂iϕ(x) = ϕ(x) + ϕ(x+ ei).

The + here is the addition of the field F2, therefore ∂iϕ(x) = 1 if and only if
ϕ(x) 6= ϕ(x + ei). Now, given f : Bn → B

n and x ∈ B
n, the discrete Jacobian

matrix J(f)(x) is the n × n matrix with entries J(f)(x)i,j = ∂jfi(x). And
G (f)(x), the interaction graph of f at x, is defined [11] to be the directed graph
with vertex set {1, . . . , n} and an edge from j to i when J(f)(x)i,j = 1. The
Jacobian matrix J(f)(x) is therefore simply the transpose of the adjacency
matrix of G (f)(x), and G (f)(x) is the graph underlying the signed interaction
graph defined in [7].

In [8, 10], a theorem of Shih and Dong on unicity of fixed points is improved
as follows.

Theorem 4. Let f : Bn → B
n.

1. If for any x ∈ B
n, G (f)(x) has no cycle, then f has a unique fixed point

(Shih and Dong [11]).
2. If f + id is not hereditarily bijective, then there exist two points x, y ∈ B

n

such that G (f)(x) and G (f)(y) have a cycle (Ruet [10]).
3. If f + id is not bijective, then for some k ∈ {1, . . . , n}, there exist 2k points

x ∈ B
n such that G (f)(x) has a cycle of length at most k (Richard [8]).

In [10], it is also shown that the invertibility of all Jacobian matrices J(f)(x)
does not entail invertibility of f : Bn → B

n. We prove here that the stronger
condition of hereditary invertibility does.

Definition 1 (Hereditary invertibility, nilpotence). An n×n matrix with
entries in B is said to be hereditarily invertible (resp. hereditarily nilpotent)
when all its principal minors are.

Lemma 3. Let M be an n × n matrix with entries in B. The following are
equivalent:

1. the graph associated to M has no cycle;
2. M is hereditarily nilpotent;
3. I +M is hereditarily invertible, where I denotes the identity matrix.

Proof. It is proved in [10] that (1) implies M is nilpotent, hence hereditarily
nilpotent because induced subgraphs of M have no cycle either. Therefore, (1)
implies (2). Clearly, (2) implies (3).

It remains to prove that (3) implies (1). If I +M is hereditarily invertible,
its diagonal is necessarily (1, . . . , 1). Assume for a contradiction that the graph
associated to M has a cycle: let C be a minimal cycle, i.e., one without chord,
and |C| be its vertex set. Then the principal minor (I + M)|C| is the sum
of I|C| with the matrix of a cyclic permutation: it is therefore not invertible,
contradicting the hypothesis. ⊓⊔



Theorem 5. Let f : Bn → B
n. If J(f)(x) is hereditarily invertible for each

x ∈ B
n, then f is hereditarily bijective.

Proof. By Lemma 3, the condition of the theorem implies that, for any x ∈ B
n,

I +J(f)(x) = J(f +id)(x) has no cycle. By Theorem 4, f is then hereditarily
bijective. ⊓⊔

4 Hereditary bijectivity and orthogonality

We now turn to the main topic of this paper. A symmetric and nondegenerate
bilinear form 〈·, ·〉 : Bn × B

n → B is defined on the vector space B
n = F

n
2 by

〈x, y〉 =
∑n

i=1 xiyi, with sum and product in F2. As usual, two vectors x, y are
orthogonal when 〈x, y〉 = 0, a symmetric relation denoted by x ⊥ y. Let A
and B be two affine subspaces of Bn, with underlying vector spaces V and W
respectively: A and B are said to be orthogonal (denoted by A ⊥ B) when for
any two vectors v ∈ V and w ∈ W , v ⊥ w.

We shall use orthogonality of subcubes to characterize hereditary bijectivity.

Theorem 6. For any f : Bn → B
n, f is hereditarily bijective if and only if for

any x, y ∈ B
n such that x 6= y, [x, y] 6⊥ [f(x), f(y)].

We first need the following lemmas.

Lemma 4. Two subcubes x[I], y[J ] of Bn are orthogonal if and only if I∩J = ∅.

Proof. The vector spaces underlying x[I] and y[J ] are spanned by the sets {ei|i ∈
I} and {ej|j ∈ J} respectively. Therefore x[I] and y[J ] are orthogonal if and
only if any two spanning vectors ei, ej, with (i, j) ∈ I × J , are orthogonal. As
〈ei, ej〉 = δi,j , this happens exactely when i 6= j for any (i, j) ∈ I × J , i.e.,
I ∩ J = ∅. ⊓⊔

Lemma 5. Projections onto subcubes are orthogonal projections.

Proof. By Lemma 1, it suffices to prove that the linear projection onto any linear
subspace 0[I], with I ⊆ {1, . . . , n}, is an orthogonal projection. The null space of
π0[I] is clearly the subspace 0[J ], where J = {1, . . . , n}\ I. By Lemma 4, we may
then conclude that the null space 0[J ] and the range 0[I] of π0[I] are orthogonal,
as expected. ⊓⊔

We now turn to the proof of Theorem 6.
Let us first prove that if f is hereditarily bijective, then for any x, y ∈ B

n such
that x 6= y, [x, y] 6⊥ [f(x), f(y)]. Assume for a contradiction that for some x 6= y,
[x, y] ⊥ [f(x), f(y)]. Let κ = [x, y] and λ = [f(x), f(y)], so that κ ⊥ λ. By Lemma
5, πκ maps the whole subcube λ to a single point. Hence in particular, the two
points f(x) and f(y) are mapped by πκ to the same point πκ(f(x)) = πκ(f(y)).
Therefore the two points x, y ∈ κ are mapped by f↾κ= πκ ◦ f ◦ ικ to the same
point, and f↾κ is not bijective: contradiction.



Conversely, if f is not hereditarily bijective, then f↾κ is not bijective for
some subcube κ: there exist x, y ∈ κ such that x 6= y and f↾κ (x) = f↾κ (y). In
particular, we have:

π[x,y](f(x)) = f↾[x,y] (x) = f↾[x,y] (y) = π[x,y](f(y)),

and π[x,y] maps f(x) and f(y) to the same point. By Corollary 1, π[x,y] thus maps
the subcube [f(x), f(y)] to a single point. This implies that [x, y] ⊥ [f(x), f(y)]
by Lemma 5. This completes the proof of Theorem 6, and we may summarize
the above characterizations as follows.

Corollary 2. The following are equivalent:

1. f + id is hereditarily bijective;
2. f is hereditarily ufp;
3. f has no mirror pair;
4. f has no even or odd self-dual subnetwork;
5. for any x 6= y, [x, y] 6⊥ [f(x) + x, f(y) + y].

Another consequence of Theorem 6 is the following stability property of the class
of hereditarily bijective maps.

Corollary 3. Inverses of hereditarily bijective maps are hereditarily bijective.

Proof. By Theorem 6, we have to prove that if f is hereditarily bijective, then
for any x 6= y, [x, y] 6⊥ [f−1(x), f−1(y)]. When x 6= y, f−1(x) 6= f−1(y), hence,
again by Theorem 6, [f−1(x), f−1(y)] ⊥ [f(f−1(x)), f(f−1(y))] = [x, y]. ⊓⊔

This property is especially interesting in view of the fact that hereditarily bijec-
tive maps do not form a category: f : (x1, x2) 7→ (x1, x1+x2) and g : (x1, x2) 7→
(x1 + x2, x2) are hereditarily bijective, but their composite g ◦ f : (x1, x2) 7→
(x2, x1 + x2) is not.

5 Constructions of even or odd self-dual networks and

hereditarily bijective maps

Even self-dual networks may be constructed in full generality as follows. Given
σ ∈ Sn, let f : Bn+1 → B

n+1 be the self-dual network defined on the subcube
0[{1, . . . , n}] by f(x, 0) = (σ(x), 0) if σ(x) is even, (σ(x), 1) otherwise (and self-
duality determines f(x, 1)): then f is clearly even, and any even self-dual network
can be constructed in this way. Replacing even by odd in the above definition
provides arbitrary odd self-dual networks.

Constructing all hereditarily bijective maps is less immediate. Starting from
hereditarily bijective maps σ, τ : Bn → B

n, let f : Bn+1 → B
n+1 be defined

by f(x, 0) = (σ(x), 0) and f(x, 1) = (τ(x), 1). Then f is clearly hereditarily
bijective. But in general, there exist other hereditarily bijective maps projecting
to σ and τ . Let S be a subset of Bn which is stable under the action of τ−1σ,
and let g be defined by f(x, 0) = (σ(x), 0) if x ∈ S, (σ(x), 1) otherwise, and



f(x, 1) = (τ(x), 1) if x ∈ S, (τ(x), 0) otherwise: then g is bijective because,
w.r.t. f , the roles of (x, 0) and (y, 1) are permuted exactly when σ(x) = τ(y),
i.e., y = τ−1σ(x). For it to be hereditarily bijective (and not merely bijective),
one needs to take S stable under the actions of (τ↾κ )

−1σ↾κ for any subcube κ.
These stable sets S may further be characterized as follows, through the

orthogonality relation defined in Section 4. Consider the binary relation x ⌣ y
on B

n defined by [x, y] ⊥ [σ(x), τ(y)]: by Lemma 4, if x+y = eI and σ(x)+τ(y) =
eJ , x ⌣ y is equivalently defined by I ∩ J = ∅. This relation generates an
equivalence relation, whose equivalence classes are the required sets.
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