Méthodes Formelles Approche Probabiliste

Arnaud Sangnier

IRIF - Université de Paris

Cours 6

Vérification de systèmes probabilistes)

Introduction de probabilités dans les modèles

Pourquoi?

- Algorithme 'randomisé'
- Modélisation de comportements non fiables et partiellement prédictibles
- Évaluation de performances de systèmes

Nouveaux modèles et propriétés

Modèles

- 1 Chaînes de Markov à temps discret (chaînes de Markov)
 - Tous les choix sont probabilistes
 - Système de transitions où le choix du sucesseur est une distribution probabiliste
- 2 Processus de décision markovien
 - Choix probabilistes et non déterministes
 - Choix entre plusieurs distributions probabilistes pour le sucesseur

Propriétés

- 1 qualitatives
 - Permettent de dire que des événément arrivent presque sûrement (avec probabilité 1) ou presque jamais (avec probabilité 0)
- 2 quantitatives
 - Permettent de préciser les probabilités des événéments avec des valeurs autres que 0 ou 1

Chaînes de Markov à temps discret

On les appelera chaînes de Markov (CM)

Définition

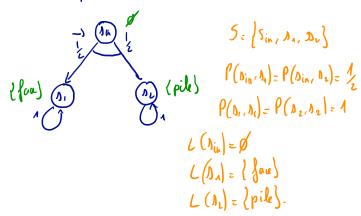
Une chaîne de Markov M est un n-uplet (S, P, s_{in}, PA, L) où :

- S est l'ensemble des états
- $P: S \times S \mapsto [0; 1]$ est la fonction de transitions probabiliste telle que $\Sigma_{s' \in S} P(s, s') = 1$ pour tout $s \in S$
- $s_{in} \in S$ est l'état initial
- PA est l'ensemble des propositions atomiques
- $L: S \mapsto 2^{PA}$ est la fonction d'étiquetage

- [0; 1] correspond aux réels compris entre 0 et 1
- La fonction P définit pour chaque état s la probabilité P(s, s') dans l'état s'
- Dans le cours, nous supposerons que S est fini et P(s, s') est rationnel.

Exemple - I

chaîne de Markor pour lancer de pièce



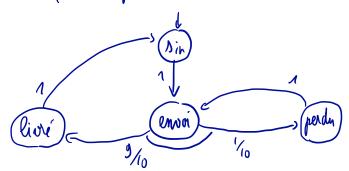
Exemple - II

chaine de Markor pour simuler un dé à 6 faces avec une pièce.

Est. ce-que l'n P(F1)=1/2? Ovi

Exemple - III

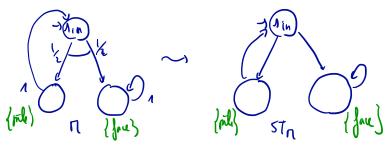
Envoi de menages en boncles. Si un message est perde, on la réenvoie. Probabilité qu'un message se perde: 1/10



Chaînes de Markov vs. Systèmes de transitions

BUT : Vérifier des propriétés sur des chaînes de Markov

• Approche naïve : On transforme une chaîne de Markov $M = (S, P, s_{in}, PA, L)$ en un système de transitions $ST_M = (S, \rightarrow, s_{in}, PA, L)$ avec $s \rightarrow s'$ ssi P(s, s') > 0



- Dans ST_M la propriété Fface n'est pas vérifiée, mais dans M la probabilité d'avoir Fface est égale à 1
- Dans M, on verra presque sûrement un jour face
- On va donc vouloir raisonner sur un espace de probabilité

Rappels mathématiques - I

Définition

Soit Ω un ensemble appelé l'univers. Une tribu sur Ω est un ensemble $\mathcal{A}\subseteq 2^\Omega$ tel que :

- $\mathbf{0} \ \mathcal{A} \neq \emptyset$
- 2 Pour tout $B \in A$, on a $\Omega \setminus B \in A$ (stable par complément)
- 3 Soit $(B_n)_{n\in\mathbb{N}}$ un famille d'éléments de \mathcal{A} , alors $\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{A}$ (stable par union dénombrable)
 - Un couple (Ω, A) où A est une tribu sur Ω est appelé un espace mesurable.

Remarque:

• Par définition $\Omega \in \mathcal{A}$ et \mathcal{A} est stable par intersection dénombrable

Rappels mathématiques - II

Définition

Soit (Ω, \mathcal{A}) un espace mesurable. Une mesure de probabilité sur (Ω, \mathcal{A}) est une fonction $\mathbb{P} : \mathcal{A} \mapsto [0; 1]$ telle que :

- \bigcirc $\mathbb{P}(\Omega) = 1$
- ② SI $(B_n)_{n\in\mathbb{M}}$ est une famille d'éléments de \mathcal{A} telle que pour tout $i,j\in\mathbb{N},\ i\neq j$ implique $B_i\cap B_j=\emptyset$ alors $\mathbb{P}(\bigcup_{n\in\mathbb{N}}B_n)=\Sigma_{n\in\mathbb{N}}\mathbb{P}(B_n)$.
 - Un espace probabiliste est un triplet (Ω, A, P) où (Ω, A) est un espace mesurable et P est une mesure de probabilité sur (Ω, A)
- Dans ce contexte, on dit que les éléments de ${\mathcal A}$ sont mesurables Quelques règles utiles :
 - Pour tout $B \in \mathcal{A}$, on a $\mathbb{P}(\Omega \setminus B) = 1 \mathbb{P}(B)$
 - Pour tout $B, B' \in \mathcal{A}$, si $B \subseteq B'$ alors $\mathbb{P}(B') = \mathbb{P}(B) + \mathbb{P}(B' \setminus B) \ge \mathbb{P}(B)$

Exemple

- Pièce pour faire pile ou face
- L'univers est Ω = {pile, face}
- On prend comme tribu $A = \{\emptyset, \{pile\}, \{face\}, \{pile, face\}, \}$
- Et comme mesure de probabilité :
 - $\mathbb{P}(\emptyset) = 0$
 - $\mathbb{P}(\{pile\}) = \frac{1}{2}$ $\mathbb{P}(\{face\}) = \frac{1}{2}$
 - ℙ({pile, face}) = 1

Quelques définitions

Soit $M = (S, P, s_{in}, PA, L)$ une chaîne de Markov.

- Un chemin fini est une séquence finie d'états $s_0s_1 \dots s_n$ telle que pour tout $i \in 0, \dots, n-1$, on a $P(s_i, s_{i+1}) > 0$
- On note ChemFin(M, s) l'ensemble des chemins finis de M commençant en s
- Un chemin infini est une séquence infinie d'états $s_0s_1s_2...$ telle que pour tout $i \in \mathbb{N}$, on a $P(s_i, s_{i+1}) > 0$
- Une **exécution** est un chemin infini $s_0 s_1 s_2 \dots$ tel que $s_0 = s_{in}$
- On note Exec(M) l'ensemble des exécutions de M

Espace probabiliste associé à une chaîne de Markov

Soit $M = (S, P, s_{in}, PA, L)$ une chaîne de Markov.

- Soit π̂ ∈ ChemFin(M, s_{in}), le cylindre associé à π̂ est défini par Cyl(π̂) = {π ∈ Exec(M) | π̂ est préfixe de π}
- On prend comme univers Exec(M) et comme tribu sur Exec(M), la plus petite tribu qui contient tous les $Cyl(\hat{\pi})$ pour tout $\hat{\pi} \in ChemFin(M, s_{in})$, on note $\mathcal{T}_{Cyl,M}$ cette tribu

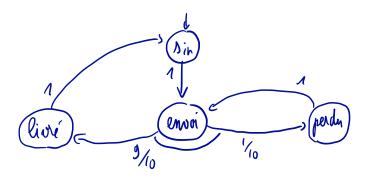
On définit ensuite $\mathbb{P}_M : \mathcal{T}_{Cyl,M} \mapsto [0;1]$ pour chaque cylindre $Cyl(s_0s_1 \dots s_n)$ (avec $s_0s_1 \dots s_n \in ChemFin(M, s_{in})$), on a :

- $\mathbb{P}_M(Cyl(s_0s_1...s_n)) = \prod_{i=0}^{n-1} P(s_i, s_{i+1})$, et,
- $\mathbb{P}_M(Cyl(s_{in})) = 1.$

Parfois, on aura besoin de changer l'état initial de M, ainsi pour $s \in S$, on note $M_s = (S, P, s, PA, L)$ et on alors :

•
$$\mathbb{P}_{M}(Cyl(s_{0}s_{1}\ldots s_{n})) = P(s_{0},s_{1})\cdot \mathbb{P}_{M_{s_{1}}}(Cyl(s_{1}\ldots s_{n}))$$

Exemple



Propriétés mesurables - I

- Étant donnée une chaîne de Markov M = (S, P, s_{in}, PA, L), on va supposer que PA = S et pour tout s ∈ S, on a L(s) = {s}. On confond les états et leurs propositions atomiques.
- On va utiliser des notations à la LTL pour caractériser des événements (ie des sous-ensembles de Exec(M)), Soit A. B ⊂ S.
 - $FB = \{s_0s_1 \ldots \in Exec(M) \mid \exists j.s_j \in B\}$ (i.e. on voit un jour un élément de B)
 - $GB = \{s_0s_1 \ldots \in Exec(M) \mid \forall j.s_j \in B\}$ (i.e. on voit toujours un élément de B)
 - GF $B = \{s_0s_1 \ldots \in Exec(M) \mid \forall i.\exists j.i \leq j \text{ and } s_j \in B\}$ (i.e. on voit infiniment souvent un élément de B)
 - FG $B = \{s_0s_1 ... \in Exec(M) \mid \exists i. \forall j. i < j \text{ implies } s_j \in B\}$ (i.e. au bout d'un moment on on voit toujours B)
 - A∪B = {s₀s₁...∈ Exec(M) | ∃j.s_j∈ B et ∀i.i < j implies s_i∈ A} (i.e. au bout d'un moment on voit B et avant on voit toujours A)

Propriétés mesurables - III

- Pour une telle formule ϕ et une exécution π , on notera $\pi \models \phi$ ssi $\pi \in \phi$
- Étant donné $s \in S$, on va s'intéresser à la probabilité suivante :

$$\mathbb{P}_{M}(s \models \phi) = \mathbb{P}_{M_{s}}(\pi \in \textit{Exec}(M_{s}) \mid \pi \models \phi)$$

 Pour que cela soit correct, il faut montrer que {π ∈ Exec(M_s) | π ⊨ φ} est mesurable !!

Propriétés mesurables - IV

Théorème

FB, GB, GFB, FGB et $A \cup B$ sont des événements mesurables pour la chaîne de Markov M.

Preuve:

- On a $GB = Exec(M) \setminus (F(S \setminus B))$ et $FGB = Exec(M) \setminus GF(S \setminus B)$
- Il nous reste à traiter FB GFB et AUB.

$$\mathbb{F}B = igcup_{\{s_0...s_n \in \mathit{ChemFin}(M,s_{in}) | s_0,...,s_{n-1} \notin \mathit{B} \; \mathsf{et} \; s_n \in \mathit{B}\}} \mathit{Cyl}(s_0...s_n)$$

 Donc FB est mesurable, le même raisonnement vaut pour A∪B et :

$$\mathbb{P}_{M}(\mathbf{F}B) = \sum_{\{s_{0}...s_{n} \in \mathit{ChemFin}(M,s_{in}) | s_{0},...,s_{n-1}
otin B} \mathbb{P}(\mathit{Cyl}(s_{0}...s_{n}))$$
 $\mathbb{GF}B = \bigcap_{n \in \mathbb{N}} \bigcup_{m \geq n} \bigcup_{\{s_{0}...s_{m} \in \mathit{ChemFin}(M,s_{in}) | s_{m} \in B\}} \mathit{Cyl}(s_{0}...s_{m})$

Donc GFB est mesurable