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A B S T R A C T

Model-checking is a verification technique which is in the past has been successfully applied
to verify automatically the behavior of finite state systems. This approach consists in
modelling a computing system by a mathematical model, in translating its specification into
a logical formalism and then in proposing algorithms to check whether a model satisfies
a logical formula. When the considered models have an infinite number of states, this
method can easily lead to undecidable model-checking problems and one has hence to find
the right trade-off between the expressiveness of models and specification languages and
the feasibility of the verification. In this thesis, I present my contributions to the field of
verification of infinite states systems where I have considered two main families of models.
The first one are counter systems which can be seen as programs manipulating variables
(called counters) taking their value in the natural. The second one are parameterised
networks which can be seen as an abstraction of distributed networks where the number of
participating entities is not fixed a priori and is unbounded. For these different models, I
study exhaustively when the automatic verification is feasible and in the positive cases I try
to design model-checking algorithms with optimal complexity bounds.

R É S U M É

Le model-checking est une technique de vérification qui, par le passé, a été utilisée avec
succès pour vérifier de façon automatique le comportement de systèmes à états finis. Cette
approche consiste à modéliser un système informatique par un modèle mathématique,
à traduire sa spécification dans un formalisme logique et ensuite à proposer des algo-
rithmes pour s’assurer qu’un modèle satisfait une formule logique. Lorsque les modèles
considérés ont un nombre infini d’états, cette méthode mène souvent à des problèmes de
model-checking indécidables et pour cette raison, il faut trouver le bon compromis entre
l’expressivité des modèles et des langages de spécification et la faisabilité de la vérification.
Dans cette thèse, je présente mes contributions à la vérification de systèmes avec un nombre
infini d’états dans lesquelles je me suis penché sur deux grandes familles de modèles. La
première est celle des systèmes à compteurs qui peuvent être vus comme des programmes
manipulant des variables à valeur entière (appelées compteurs). La deuxième famille est
celle des réseaux paramétrés qui sont des abstractions de réseaux distribués dans lesquels le
nombre de participants n’est pas fixé et est non borné. Pour ces différents modèles, j’étudie
de façon exhaustive quand la vérification automatique est possible et dans les cas positifs
j’essaie de concevoir des algorithmes de model-checking avec des bornes de complexité
optimales.





F O R E W O R D

This document sums up some of the results I have obtained together with other researchers
since I have defended my PhD in november 2008. My main goal when writing it was to
provide an uniform formal framework to present my research, to give intuitions on the way
I obtained some of the key results and to relate my works with the results close to what
I have done. As a matter of fact, I did not write any formal proof in this document and
I invite the reader to seek for the corresponding paper if he desires to read the technical
developments of a result.

This thesis is divided into two main parts, each being composed of some chapters. At the
beginning of each chapter, I recall in an informal way the main contributions it presents
and to ease the reading, the main results I have obtained are all located in a (red) frame.
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1
I N T R O D U C T I O N

1.1 context

1.1.1 On the verification of computing systems

Nowadays, computing systems are part of our everyday life and occur in most of the aspects
of our society. We use them at a personal level, for instance through the different applications
present in our smartphones or thanks to the different websites we consult on the Internet,
but they play as well a crucial and central role in the industrial world, where they are used
to control and monitor vehicles or complex machines, to perform measures allowing to
understand better our world, to assist men in tasks needing an extreme precision. In the
last thirty years, there have indeed been a blowup in the use of such systems, one of the
goal being to improve our life and our society but as well to acquire more knowledge.

Since we rely a lot on them, it is hence extremely important to develop strong theoretical
foundations in computer science to fully understand what can be or cannot be achieved
with such systems and as well to improve them, as it is fundamental to ensure that they
behave correctly, i.e. they are performing the tasks for what they have been designed for.
Indeed, since these systems have been conceived by men, they can suffer from design or
programming errors, commonly called as bugs. In some cases these bugs do not yield
to big problems, for instance a bug in the graphical representation of messages in our
phone, in other cases they can lead to terrible issues, as for instance a problem in a software
responsible for automatically driving a car. In fact according to the application, the effort
put in the verification of a system can be very different, as an example systems developed
to monitor and control aircrafts while flying are designed following very strict rules which
allow to ensure their correct behaviour with a very low rate of error (due most of the time
to mechanical failures, one tries to avoid thanks to replication) but games or applications
executing on our phones do not need to follow such a process and in fact we can often
witness some errors in such applications.

The reason why all applications are not verified with the same meticulousness is that in
order to offer some strong guarantees, this methodology has a cost. First, often restrictions
need to be imposed in the design of the system to ensure the feasibility of the verification,
for instance for many softwares used in critical systems, dynamic memory allocation is
forbidden. Second, because of the complexity of the systems, the verification might take
some times or even not terminate, due to the blowup in all the possible scenarios to explore.
Indeed, to be certain that no bug may appear, it is necessary to take into account all the
possible cases that will occur while the system will be used, in case of a system interacting
with an environment this can become really tricky. Finally, one of the major issue to develop
techniques for the automatic verification of systems is that one has to face with some
undecidability results, which, to briefly sum up, tell us that it is impossible to design a
program ensuring that any program behaves correctly.

1



introduction

1.1.2 The model-checking approach

These different problems are at the heart of my field of research: the automatic verification
of complex systems, and more precisely I am focused on a specific technique of verifica-
tion, which is known as model-checking. This technique consists in taking a mathematical
model representing a system and a specification given in a logical formalism and to check
mathematically, thanks to a model-checking algorithm, whether the model satisfies the
specification. The development of this technique and its application to the verification of
concrete systems correspond to a major progress in the field of theoretical computer science
which has been acknowledged in 2007 by a Türing award given to Edmund M. Clarke,
E. Allen Emerson and Joseph Sifakis for having make grow this approach. One of the
major problem with the model-checking technique is to find the good trade-off between
expressivity of the models and the specification languages and the feasibility and complex-
ity of the model-checking. Assume for instance that the considered model are the Türing
machines, then one knows that there does not exist any algorithm which takes as input
any machine and tells whether it halts or not, this problem is indeed undecidable, however
it is possible to check whether it halts after at most ten steps, but this latter property is
less interesting. It is hence capital to understand what can or cannot be achieved with the
model-checking approach, this means study different models and classes of specification
languages and determine where lies the frontier between decidability and undecidability for
the model-checking problem as well as establish its complexity in the case it is decidable.

Note that pursuing an exhaustive study on the model-checking problem is extremely
important from a scientific point of view as it allows to improve the knowledge we have on
what can or cannot be achieved with computer systems, but it leads as well to more practical
developments. As a matter of fact, when the model-checking problem is undecidable, one
technique consists in establishing decidable results for more abstract models that over
approximate the behaviour of a system and which can guarantee the absence of bugs, but if
a bug is detected, it does not mean that the system under study has one, it could be caused
by the over approximation. Finally, the study of models allows as well to understand better
the expressive power of some formalisms, and this information can be used at a design level
to establish what are the better formal paradigms to rely on to build a system.

1.1.3 From simple models to models with an infinite state space

One of the simplest model considered in the model-checking approach are Kripke structures,
they can be seen as finite state machines where each state (or configuration) is labelled by a
set of atomic propositions characterising its properties. For this model, different specification
languages have been developed, which allow to describe the evolution of the system during
time. Some of them, called linear time specifications, are used to provide allowed sequences
of states, aka as executions. They can be given either under the form of an automaton
recognising such good sequences or a more user friendly logic based formalism as the
Linear time Temporal Logic (LTL) . Other languages allow instead to speak about the
possibility of the system to go either in a certain state or in another one, they are known
as branching time specifications. They provide some sets of trees describing the allowed
evolution of the system. Here again there exists some automaton based formalism as tree
automata or some logical formalisms like the Computation Tree Logic (CTL). For both these
families of formalisms, the model-checking problem, which asks whether the behaviour of a

2



1.1 context

Kripke structure belongs to the set of allowed behaviour given by an automaton or a logical
formula, has been intensively studied in the end of the last century and its complexity is
well known (see for instance [BK08] for a detailed study).

In order to model more complex systems, one can extend Kripke structures by equipping
them with some storage mechanisms. Most of the time these storage systems allow to
represent a specific aspect of a system being modelled and have an unbounded capacity.
Note that even when these storage mechanisms are bounded, and hence the model under
study remains with a finite set of configurations, syntactic use of such mechanisms can be
relevant as the description of the model is often more succinct. For instance if a program
performs a loop increasing at each turn an integer variable bounded by 210, the program can
be described thanks to a few lines, whereas its behaviour is exponentially bigger. The storage
mechanisms are added to Kripke structures by allowing the transitions of the structure to
test and update the mechanisms while going from a control state to another one.

For example in [AD94], Alur and Dill have proposed to add clocks to finite state systems
in order to model systems whose behaviour depends on the evolving of time. These clocks
are variables taking their value into the positive reals and all evolving at the same rate. The
transitions of the systems can reset some clocks, test their values and compare them one to
another. This gives raise to the model of Timed Automata which have been then intensively
studied both from the theoretical and practical point of views. The underlined semantics is
given by a Kripke structure (or equivalently a transition system) with an infinite number
of states, each state containing a control state of the timed automaton and a real value
for each clock. Another class of systems which has been intensively studied in the field
of verification are pushdown systems (see for instance [BEM97]). In that case, a stack is
added to the finite state machine and the transitions can either push or pop symbols from a
finite stack alphabet. This model is well suited to represent the behavior of programs with
recursive calls, indeed the stack of the system can model the stack of the programs where
the different return points of functions calls are stored. Pushdown systems have then been
extended for instance by considering more than one stack to model concurrent programs
with recursive calls as it is done in [Ati10]. Here again the underlying transition system
associated to a pushdown system has an infinite number of configurations since there is
no limit on the content of the stack. Another extension that has been considered consists
in adding a FIFO queue instead of a stack as a storage mechanism, the transitions being
able to put or to get elements from the queue as it is done in [BZ83]. This feature allows to
model distributed systems communicating thanks to message passing. Another extensions
that have been intensively studied are counter systems (see for instance [CJ98]), in that case
the system manipulates variables taking their value in the naturals and it can test them or
update their value. Here again such systems give rise to infinite behaviours if one does not
put any bound on the counter values.

Furthermore other research works have considered ways to mix these storage mechanisms,
or to assume that the data that can be stored belong not anymore to a finite domain but
to an infinite one, it has been as well proposed to assume that the transitions relation of
the systems is not non-deterministic but probabilistic or both of them. Indeed the field of
possibilities to extend the simple model of Kripke structures is wide and the goals, when
one studies the verification of systems, are both to understand which extensions make sense
for practical uses and as well to understand where lies the frontier between expressivity of
the models and feasibility (in the sense of decidability and complexity) of the verification. As

3
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a matter of fact, a good candidate to model computing systems would be Türing machines,
but it is well-known that in that case even a simple verification problem such as the halting
problem is undecidable. Furthermore from this undecidability result, other undecidability
results can be deduced as for instance for pushdown systems equipped with two stacks
or for counter systems manipulating two counters that can be incremented, decremented
and whose value can compared with 0 [Min67]. For other extensions, many verification
problems are decidable as it is the case for timed automata, but it is as well important to
understand the cost in terms of complexity of these problems and what are the features
that make a problem complex to solve. For instance, in timed automata, if the considered
automaton has a single clock then the reachability of a control state is NLOGspace-complete
[LNS04] and this problem becomes Pspace-complete as soon as the number of allowed
clocks is bigger than two [AD94; FJ15].

My main research works have hence consisted in studying systems with an infinite
state space and in establishing what are the characteristics of these models that render the
automatic verification process feasible. I have focused my attention on two main families of
models, the first one is the family of counter systems for which in their full generality model-
checking problems are often undecidable and the second one is the family of parameterised
networks where we consider networks of entities all executing the same protocol given by a
finite state machine and where I looked at different means of communication.

1.1.4 Infinite state systems studied in this thesis

1.1.4.1 Counter systems

Counter systems are finite state automata equipped with program variables (counters)
interpreted over non-negative integers. Each transition of the automaton can then test or
update the different counter values and according to the allowed operations, different
families of systems can be obtained. For example, one can authorise only simple decrements
or increments of the counter values, or suppose that the updates can be performed with
more complex functions or even that the change of the counter values follows a relation. The
granularity of the considered operations depends on the system and on the specification one
wishes to analyse; in some cases, a strong non-determinism is needed due to the uncertainty
one has on the system, in other cases, one could desire to model the low-level operations
which compose a complex update in a non atomic fashion. As we have already mentioned,
in their full generality, these systems are Türing-complete models of computation, often
used to describe the behaviour of complex real-life systems, such as embedded/control
hardware and/or software systems. For instance, they can be used to represent the behaviour
of programs working over integer variables (the other operation of the programs being
abstracted). They can encode too executions of distributed networks thanks to a counting
abstraction (which consists in forgetting the identities of the entities in the networks and
only remember their number) [GS92]. In [FLS07; Bou+11], it has been shown that they allow
to verify programs working over simple linked lists which manipulate dynamically the
memory heap. Petri nets [Pet62] which are a model of practical use well adapted for the
design of concurrent processes, can be encoded into Vector Addition System with States.
Their verification is as well related with some other problems in formal methods as for
instance the satisfiability of the first oder logic over data words with two variables which
can be reduced to a reachability question over counter systems [Boj+11].

4



1.1 context

Because many verification problems of rather complex systems can be reduced to decision
problems for counter systems, it is important to understand the difficulties faced by potential
verification algorithms designed to work for this latter model. Due to their succinctness and
expressive power, most decision problems, such as reachability, termination and temporal
logic model-checking, are undecidable for counter systems, even when the operations on the
counters are restricted to increment, decrement and zero-test [Min67]. This early negative
result motivated the search for subclasses with decidable verification problems. Such classes
include:

• One Counter Systems [Göl+10],

• Vector Addition Systems with States [Lip76] where the counters can only be incre-
mented and decremented but not tested (these systems are equivalent to Petri Nets),

• Reversal-Bounded Counter Machines [Iba78], for this class a semantics restriction
is imposed which states that during an execution for each counter the number of
alternations between increasing and decreasing mode is bounded, and,

• Flat Counter Systems [CJ98; Boi99; FL02], for which each control state of the underlying
finite state automaton belongs to at most one simple cycle.

During the last years, I have studied model-checking problems for many of these subclasses
with decidable reachability problems considering different kind of specifications (going from
linear time to branching time specifications). The most important results I have obtained are
reported in the first part of this thesis.

1.1.4.2 Parameterised networks

Another family of infinite state systems I have been studying are what are called parame-
terised networks. In [GS92], German and Sistla introduced a model to represent networks
with a fix but unbounded number of entities. In this model, each participant executes
the same protocol and they communicate between each other thanks to rendez-vous (a
synchronisation mechanism allowing two entities to change their local state simultaneously).
The number of participants can then be seen as a parameter of the model and possible
verification problems ask for instance whether a property holds for all the values of this
parameter or seeks for some specific value ensuring a good behaviour. With the increasing
presence of distributed mechanisms (mutual exclusion protocols, leader election algorithms,
renaming algorithms, etc) in the core of our computing systems, there has been in the last
two decades a regain of attention in the study of such parameterised networks.

Surprisingly, the verification of these parameterised systems is sometimes easier than the
case where the number of participants is known. This can be explained by the following
reason: in the parameterised case the procedure can adapt on demand the number of
participants to build a problematic execution. It is indeed what happens with the liveness
verification of asynchronous shared-memory systems. This problem is Pspace-complete for
a finite number of processes and in NP when this number is a parameter [Dur+17]. It is
hence worth studying the complexity of the verification of such parameterised models and
many recent works have attacked these problems considering networks with different means
of communication. For instance in [EFM99; Ber+19; BBM21] the participants communicate
thanks to broadcast of messages, in [Cla+04; Ami+14] they use a token-passing mechanism ,
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in [BGS14] a message passing mechanism and in [EGM16] the communication is performed
through shared registers. The relative expressiveness of some of those models has been
studied in [ARZ15]. In the last years there are as well be a regain of attention on the
analysis of population protocols, a model originally introduced by researchers in distributed
computing [Ang+04] and which can be seen as a parameterised network with rendez-vous
communication and fairness. The novelty with this latter model lies in the properties one
wishes to ensure and this gives rise to new interesting problems to study on parameterised
networks (see for instance [Esp+17; Blo+21; Esp+21]) both from the theoretical and the
practical points of view. Finally in his survey [Esp14], Esparza shows that minor changes in
the setting of parameterised networks, such as the presence of a controller (or equivalently
a leader), might drastically change the complexity of the verification problems.

After my PhD, together with Giorgio Delzanno and Gianluigi Zavatarro, we introduced a
model of parameterised networks inspired by Ad Hoc Networks. As a matter of fact, the
two main features of this model are first that the communication should be performed by a
broadcast primitive (to mimic the radio transmission in Ad Hoc Networks) and second that
our model is equipped with a communication topology such that only the neighbours of an
emitter can receive a broadcast message. This model extends hence the model of broadcast
protocols introduced in [EFM99] by adding a communication topology. The second part of
this thesis present the main results I have obtained in this context.

1.2 contributions

1.2.1 Content of this thesis

We sum up briefly here the contents of the different chapter of this thesis.

Chapter 2 provides a description of the main mathematical notations and tools we use in
this document.

In Chapter 3 we present formally the general model of counter systems we consider in
this thesis and that we call Affine Counter Systems where the tests allowed on the counter
values are quantifier free formulas of the Presburger arithmetic and the updates are given
by affine functions. We introduce then different restrictions of this model and recall some
general results about the reachability problems of a control state and of a configuration for
the introduced restrictions.

In Chapter 4, we present the results we have obtained for the model-checking of flat Affine
Counter Systems with linear time specifications, i.e. specifications describing sets of allowed
executions. One interesting point concerning our specification languages is that they can use
as atomic propositions constraints about the values of the counters. It was known before,
see [Dem+10], that the model-checking problem for flat Affine Counter Systems with the
finite monoid property is decidable for a very large class of specifications but the precise
complexity was not known and the technique which consists in translating the model-
checking problem into the satisfiability problem for a formula of Presburger arithmetic was
far from optimal. We present here tight complexity results for the model-checking problems
of a wide range of linear time specification languages going from the linear time temporal
logic with past to the linear µ-calculus. More interestingly, we provide a general algorithmic
method that can be instantiated for each of the considered specification languages and
that could be reused in some other contexts. Many results described in this chapter were
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obtained during the PhD of Amit Kumar Dhar that I co-supervised together with Stéphane
Demri. These results have been published in the following papers: [DDS12; DDS15; DDS13;
IS16]

In Chapter 5, we present results for the model-checking of counter systems taking as
specification language the linear time temporal logic with the freeze quantifier (Freeze
LTL) [DL09]. This logic, originally developed to describe infinite data words (i.e. words
where at each position there is a letter from a finite alphabet and a datum from an infinite
alphabet) allows, when used to describe runs of counter systems, to compare the values
of the counters between different configurations. Indeed this logic is equipped with an
operator allowing to store at some point of an execution the value of a counter in a register
and to compare later on whether the stored value is equal or not with the value of another
counter. One can for instance specify properties as: there exists an execution such that after
some point, the first counter will always take different values. Such properties cannot be
express with the specification languages presented in Chapter 4. As a matter of fact, the
model-checking problem for Freeze LTL is much more complex to analyse. I have begun to
study the model-checking problem for Freeze LTL over counter systems during my PhD
thesis together with Ranko Lazic and Stéphane Demri [DLS10] focusing on One Counter
Systems and we showed that in general this problem is undecidable but that decidability
can be regained by considering restrictions on the systems (for instance assuming the
counter system is deterministic) or on the logic (with the flat fragment of Freeze LTL). We
consider in this chapter other classes of counter systems and study the decidability status
of the model-checking problem taking into account various hypothesis on the model. We
furthermore provide a tight complexity bound for what concerns the verification of one
counter systems with the flat fragment of Freeze LTL. The presented results come from the
following papers: [DS10; BQS17; BQS19].

In Chapter 6, we present the results we have obtained concerning the model-checking of
branching time temporal logics over counter systems. We first show that for flat counter
systems whose update are translations, the model-checking problem of the temporal logic
CTL∗ is interreducible to the satisfiability problem for Presburger arithmetic formulas and
hence harder than the model-checking of all the linear time specifications we have studied
in Chapter 4. In the second part, we study the model-checking of the modal µ-calculus over
Vector Addition Systems with States (VASS). It is well known that over this class of model,
most model-checking problems of linear time specifications are decidable and when one
considers branching time temporal logics, the model-checking problem becomes quickly
undecidable (even if the logics is not very expressive) (see e.g. [EN94]). This latter result has
discouraged research works in this direction. However, we succeed in defining a fragment
of the modal µ-calculus for which the model-checking problem over VASS is decidable. Our
proof technique uses a reduction to a specific kind of turn based two-player games played
on the transition system of the VASS for which we show that we can compute the winning
region for the first player. Finally, we prove that our logics can be used to solve some
qualitative problems over VASS extended with probabilities and non-determinism, hence its
expressive power is of practical use. The results obtained in this chapter are extracted from
the following papers: [DDS14; DDS18; Abd+13; Abd+16a].

In Chapter 7, we introduce our model of parameterised networks with broadcast and
communication topology that is inspired from ad hoc networks. We call in fact Ad Hoc
Networks these networks. In this chapter, we assume that the communication topology does
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not change (which means that there is no mobility in the modelled network). In our model,
we suppose that each entity in the network executes the same finite state protocol, a finite
state machine whose transitions are labelled by broadcast or reception of messages from a
finite message alphabet. Among the different verification problems we consider, a central
one is the parameterised reachability of a control state, it asks whether there exists an initial
topology (where all the entities are in the initial state of the protocol), from which one can
find an execution ending in a configuration where one of the entity ends in a specific state.
When the initial topology is given, this problem boils down to the analysis of a finite state
system, the difficulty comes here from the fact that we need to seek for the initial topology.
We show that this problem is undecidable but that decidability can be regained by imposing
some restrictions on the allowed communication topologies. In the last part of the chapter,
we propose an extension of our model with timed constraints à la timed automata and we
see in which measure we can obtain decidability of the parameterised reachability problem
in this context. These results have been presented in the following works: [DSZ10; DSZ11;
Abd+11; Abd+16b].

In Chapter 8, we study again the model of Ad Hoc Networks of the previous chapter
but with different hypothesis concerning the communication topology. We assume here
that it can change in a complete non deterministic manner at any instant, the number of
entities remaining constant. This feature models in a very abstract way the mobility in a
network. This gives rise to the model we call Reconfigurable Broadcast Network. Whereas
in Ad Hoc Networks, simple reachability questions are undecidable, it is not anymore
the case in Reconfigurable Broadcast Networks and we even show that the parameterised
reachability of a control state can be solved in polynomial time. Encouraged by this positive
result, I have studied other problems on Reconfigurable Broadcast Networks. For instance,
together with Nathalie Bertrand and her PhD student Paulin Fournier that I partially co-
supervised, we studied a local semantics for such networks where we ask that each entity
takes the same decision according to its past actions (for instance in the initial state, it is not
possible that one entity broadcasts a message m1 and another one a message m2 if they both
have not done anything before). We proved that under this restriction the parameterised
control state reachability is still decidable. We studied as well a probabilistic version of the
Reconfigurable Broadcast Networks, where the protocol executed by each entity is equipped
with some probabilistic choices and we proposed algorithmic solutions to solve qualitative
parameterised problems on this model. Finally, in the last part of the chapter, I present
an extension of Reconfigurable Broadcast Networks where the transmitted messages can
belong to an infinite alphabet to model for instance the fact that entities in the network
can send their identities to other ones. In this context, we provide a characterisation of the
decidability status of the parameterised control state reachability problem and show that the
number of data entities allowed to be exchanged in a same message is a crucial factor. The
results presented in this chapter are extracted from the following works: [DSZ10; Del+12;
BFS15; BFS14; DST13; DST16].

1.2.2 Other contributions

In this document, I have presented my research following the two main directions I have
been working on since I defended my PhD. However I have done some other works not
included in this thesis that I briefly mention here.
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Verification of Time Petri Nets. In [RS09], together with Pierre-Alain Reynier, we studied
Time Petri Nets, which are Petri Nets extended with temporal constraints. In this model,
a clock is associated to each transition which is reset when the transition becomes newly
enabled (i.e. there are enough tokens to fire the transitions) and furthermore the transitions
are labelled with timed intervals specifying when the transitions should be fire. In the
classical semantics, even simple reachability questions such as the coverability problem are
undecidable, mostly due to the fact that when a transition can be fired, it has to be either
disabled by the firing of another transition or fired (this is called the urgent semantics). We
show that when this urgency policy is relaxed, it is possible to regain decidability.

Verification of Graph Transformation Systems. In [Ber+12], we studied decidability
issues for reachability problems in graph transformation systems, a powerful infinite-state
model described by rules matching some patterns in a graph and changing it by adding or
deleting some edges and vertices. For a fixed initial graph, we looked at different types of
reachability questions: reachability of an entirely specified graph or of a graph that satisfies
a given pattern (coverability). We reformulated results obtained, e.g., for context-free graph
grammars and concurrency models, such as Petri nets, in the more general setting of graph
transformation systems and studied new results for classes of models obtained by adding
constraints on the form of reduction rules.

Verification of parameterised networks with shared memory. In [Bou+16], we studied a
family of parameterised networks where the communication takes place thanks to a shared
register in which each entity can read or write a datum from a finite given set. This model
has been studied before in [EGM16]. We looked at the almost-sure reachability problem
for this system where we assumed that the non-determinism is resolved by a stochastic
scheduler. Given a protocol, we focused on almost-sure reachability of a target state by
one of the processes. The answer to this problem naturally depends on the number N of
processes. However, we proved that our setting has a cut-off property: the answer to the
almost-sure reachability problem is constant when N is large enough; we then developed
an EXPspace algorithm deciding whether this constant answer is positive or negative.

Model-checking of counting temporal logics. Together with Peter Habermehl, I visited
twice the Institute for Software Engineering and Programming Languages of the University
of Lübeck to work on extensions of (linear time and branching time) temporal logics where
it is possible to count how often a certain properties holds. Our results are sum up in
[Dec+17] where we show that for most of the extensions the model-checking problem is
undecidable, but that decidability can be recovered by considering flat Kripke structures
where each state belongs to at most one simple loop. Most decision procedures are based
on results on (flat) counter systems.

Verification of algorithms for robots evolving on a ring. In [San+17; San+20], together
with Nathalie Sznajder and researchers in distributed computing, we studied verification
problems for autonomous swarms of mobile robots that self-organize and cooperate to solve
global objectives. In particular, we focused on a model where anonymous robots evolve on a
finite ring. A large number of algorithms have been proposed working for rings whose size is
not a priori fixed and can be hence considered as a parameter. Handmade correctness proofs
of these algorithms have been shown to be error-prone. We hence looked at the feasibility of
the automatic verification problem of such algorithms in the parameterised case. We showed
that safety and reachability problems are undecidable for robots evolving asynchronously.
On the positive side, we showed that safety properties are decidable in the synchronous case,
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as well as in the asynchronous case for a particular class of algorithms. Decision procedures
rely on an encoding into the satisfiability problem Fr Presburger arithmetics formulas that
can be verified by an SMT-solver. We proposed as well an encoding of several case studies
in order to check whether our approach is feasible in practice.

Verification of parameterised networks with rendez-vous. Together with Florian Horn,
we studied some verification problems in parameterised networks where the communication
is performed thanks to pairwise rendez-vous (an entity emits a message that is received by
another one, and an emitter can send a message only if there is a receiver). This was the
model originally considered in the seminal work on parameterised verification by German
and Sistla [GS92]. In [HS20], we looked at a new problem on this model which consists in
asking whether there exists a bound B such that in all networks with more than B entities,
there exists an execution where all entities end in a final state. We called such a bound a
cut-off. We provided decidability and complexity results for this problem under various
assumptions, such as absence/presence of a leader or symmetric/asymmetric rendez-vous.

Formal methods for the design of Distributed Algorithms. Together with Benedkit
Bollig, in the context of the project FREDDA (FoRmal mEthods for the Design of Distributed
Algorithms) financed by the french national research agency ANR, we studied different
models and specification languages for analysis of distributed algorithms. In [BRS21], we
introduced Distributed Memory Automata, a model of register automata suitable to capture
some features of distributed algorithms designed for shared memory systems. In this model,
each participant owns a local register and a shared register and has the ability to change its
local value, to write it in the global memory and to test atomically the number of occurrences
of its value in the shared memory, up to some threshold. One important fact is that the set
of values is possibly infinite. We obtained some decidability results for the control state
reachability problem in such context. In [BSS21], we decided to investigate specification
languages for distributed algorithms manipulating data (as for instance the identities of
the processes). With this in mind, we studied first-order logic over unordered structures
whose elements carry two data values from an infinite domain which can be compared
with equality. The idea behind this specification language is that each element represents a
participant of a distributed algorithm, its first data being its input value and its second data
its output value. This formalism is hence suitable to specify the input-output behaviour
of various distributed algorithms. As the logic is undecidable in general, we introduced a
family of local fragments that restrict quantification to neighbourhoods of a given reference
point and studied where lies the frontier between decidability and undecidability of the
satisfiability problem for these fragments.

1.2.3 List of publications

International Journals
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[BQS19] Benedikt Bollig, Karin Quaas and Arnaud Sangnier. The Complexity of Flat Freeze LTL.
Logical Methods in Computer Science 15(3), 2019.
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Science Logic (CSL’21) , LIPIcs 183, pages 13:1-13:16. Leibniz-Zentrum fur Informatik,
2021.

[HS20] Florian Horn and Arnaud Sangnier. Deciding the existence of cut-off in parameterized
rendez-vous networks. In Proceedings of the 31st International Conference on Concurrency
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2
M AT H E M AT I C A L T O O L S

In this chapter, we will define properly the different mathematical tools we use along the
thesis.

2.1 general notations

We denote by N, Z and R the set of natural, integer and real numbers, respectively. For
i, j ∈ Z with i ≤ j, we use [i, j] to represent the set {k ∈ Z | i ≤ k and k ≤ j}. We denote the
infinity by the symbol ∞ and we assume that i < ∞ for all i ∈ Z.

For a natural n ≥ 1 and a set of elements E, we use En to denote the set of vectors of
n-elements, also called n-dim vectors of E. For v ∈ En, the i-th elements of v is v[i] for every
i ∈ [1, n].

Given two naturals n, m ≥ 1 and a set E, the set En×m corresponds to the matrices with n
rows and m columns with values in E. For A ∈ En×m, we use A[i] to represent te i-th column
of A which belongs to Em and A[i][j] is the element of E corresponding to the the entry
of A on the i-th row and the j-th colum for each i ∈ [1, n] and each j ∈ [1, m]. We assume
that the sets En×1 and En are equal. The set En×n is the set of square matrices of dimension
n over E. We denote by In the identity matrix in Zn×n. Given two matrices A ∈ Zn×m and
B ∈ Zm×p, we denote by A · B the matrix product of A and B which belongs to Zn×p. For a
square matrix A ∈ Zn×n, we define A0 = In and Ai = Ai−1 ·A for all naturals i > 0.

An affine function f : Zn ×Zn is defined by a pair (A, b) with A ∈ Zn×n and b ∈ Zn and
is such that for all v ∈ Zn, we have f (v) = A · v + b. We identify an affine function f with
its definition (A, b) and denote by Affn the set of affine functions over Zn. A translation is
an affiche fonction f ∈ Affn such that f = (In, b). We identify a translation simply by its
vector b. We denote by Trsln the set of translations over Zn.

Except when we will specify it explicitely, we assume that the integers used in our
formalisms are encoded in binary. Hence the size of an integer a ∈ Z is size(a) =

log2(|a|) (where |a| denotes the absolute value of a), the size of a n-dim vector of integers
b ∈ Zn is size(b) = ∑n

i=1 log2(|b[i]|) and for a matrix A ∈ Zn×m, we have size(A) =

∑n
i=1 ∑m

j=1 log2(|A[i][j]|).
A probability distribution on a countable set X is a function f : X 7→ {p ∈ R | 0 ≤ 0 ≤ 1}

such that Σx∈X f (x) = 1. We use Dist(X) to denote the set of all probability distributions
on X.

For a finite set of elements E, its cardinal is card(E).

2.2 multisets

For a finite set E, the set NE represents the multisets over E. For two elements M, M′ ∈NE,
we denote by M + M′ the multiset such that (M + M′)(e) = M(e) + M′(e) for all e ∈ E.
We say that M ≤ M′ if and only if M(e) ≤ M′(e) for all e ∈ E. If M ≤ M′, then M′ −M
is the multiset such that (M′ −M)(e) = M′(e)−M(e) for all e ∈ E. The size of a multiset
M is given by size(M) = Σe∈E log2(M(e)). For e ∈ E, we use sometimes the notation e
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for the multiset M verifying M(e) = 1 and M(e′) = 0 for all e′ ∈ E \ {e} and the notation
〈〈e1, e1, e2, e3〉〉 to represent the multiset with four elements e1, e1, e2 and e3.

2.3 finite and infinite words

For a finite alphabet Σ, the set of finite words over Σ is denoted by Σ∗ and we use Σω for
the set of infinite words (or ω-words) over Σ. For a finite word w = a1 . . . ak over Σ, we
write len(w) to denote its length k. For every 0 ≤ i < len(w), the (i + 1)-th letter of the
word w is denoted by w(i), here equals to ai+1. For i, j ∈ [0, len(w)− 1] such that i ≤ j, the
subword ai+1 . . . aj+1 of w is denoted by w[i, j]. By convention, for an infinite word w ∈ Σω,
we assume that len(w) = ∞ and we adopt the same notations w(i) and w[i, j] as for finite
words.

2.4 presburger arithmetic and semi-linear sets

In order to represent finitely infinite sets of naturals, it is useful to have a logical language
with nice closure and decidability properties. Presburger arithmetic responds exactly to these
requirements and we shall recall here the definition and some properties of this language.
Presburger arithmetic corresponds to the first order logic over the structure (N, 0, 1,+,<).
In order to ease the representation, we define the syntax of Presburger formulas over a set
of variables X as follows:

φ ::= ∑
1≤i≤n

ai · xi ∼ b | ∃x.φ | ¬φ | φ ∨ φ | φ ∧ φ

where {x1, . . . , xn, x} ⊆ X, a1, . . . , an ∈ Z, b ∈N and ∼∈ {<,≤,=,>,≥}. A quantifier free
Presburger formula is obtained by removing from the syntax the existential quantification
∃x.φ. The set of free variables of a formula φ is defined in the usual way and denoted by
var(φ). We will sometimes use the notation φ(x1, . . . , xn) to specify that the free variables
of φ are included in x1, . . . , xn. When clear from the context, this set of variables might be
omitted.

For a natural n ≥ 1, a vector v ∈ Nn satisfies a Presburger formula φ(x1, . . . , xn) if and
only if the first order formula obtained by replacing each xi by v[i] is valid over the naturals
in the classical sense. If this is the case we write v |= φ(x1, . . . , xn). We use the notation
Jφ(x1, . . . , xn)K to represent the set {v ∈Nn | v |= φ(x1, . . . , xn)}.

Since we will present some complexity results, it is important to state properly what is the
size of a Presburger formula φ. For this matter, we define inductively the function size(·)
as follows: size(∑1≤i≤n ai · xi ∼ b) = n + ∑1≤i≤n log2(|ai|) + log2(b), size(∃x.φ) = 1 +

size(φ), size(¬φ) = 1+ size(φ), size(φ1 ∨ φ2) = 1+ size(φ1) + size(φ2) and size(φ1 ∧
φ2) = 1 + size(φ1) + size(φ2).

Remark. We assume that the naturals used in Presburger formulas are encoded in binary but using
an unary encoding or a binary encoding does not change the complexity of the validity problem as
explained for instance in [Haa14, p. 3]. The reason being that binary encoding can be encoding into
unary encoding using extra existentially quantified variables and multiplication by two leading to a
subquadratic blowup in the formula size .

By definition, Presburger arithmetic enjoys nice logical closure properties and furthermore
Mojżesz Presburger shows that it has a decidable satisfiability problem. The satisfiability
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problem consists in determining given a close formula φ (i.e. without free variable) whether
it is valid.

Theorem 2.1. [Pre29] The satisfiability problem for Presbruger arithmetic is decidable.

Furthermore thanks to a study of the complexity for this problem performed in [Ber77]
we know that the satisfiability problem for Presburger arithmetic is 2EXPtime-hard and in
2EXPspace, hence as well in 3EXPtime. This result is recalled as well in [Haa14], where a
detailed analysis of the complexity of the satisfiability for Presburger arithmetic according
to number of alternations of quantifiers is performed. We will need in this thesis another
complexity result for the satisfiability of quantifier free Presburger formulas. In that case
the satisfiability problem asks given a quantifier free formula φ(x1, . . . , xn) (with at least
one variable) whether ∃x1. . . . .∃xn.φ is valid. Considering quantifier free formulas allows to
lower significantly the complexity of the satisfiability problem.

Theorem 2.2. [BT76] The satisfiability problem for quantifier free Presbruger arithmetic is NP-
complete.

We say that a subset of E of Nn (for n ≥ 1) is Presburger definable if and only if there exists
a Presburger formula φE(x1, . . . , xn) such that E = JφE(x1, . . . , xn)K.We will need as well to
express when a relation over vectors of naturals is expressible in Presburger arithmetic.
Given two naturals n, m ≥ 1, we say that a relation R ⊆Nn ×Nm is Presburger definable
if and only if there exists a Presburger formula φR(x1, . . . , xn, y1, . . . , ym) such that for all
v ∈ Nn and w ∈ Nm we have (v, w) ∈ R if and only if v, w |= φR(x1, . . . , xn, y1, . . . , ym)

(where we consider the pair (v, w) as a unique vector in Nn+m such that (v, w)[i] = v[i] for
all i ∈ [1, n] and (v, w)[n + i] = w[i] for all i ∈ [1, m]).

2.5 well-quasi-orders

A quasi-order is defined by a pair (E,≤) where E is a set of elements and ≤⊆ E× E is a
reflexive and transitive relation. A quasi-order (E,≤) is a well-quasi-order (wqo) if and only
if for any infinite sequence (ei)i∈N of elements of E, there exist two indices i, j ∈ N such
that ei ≤ ej.

Assume (E,≤) is a quasi-order. A set U ⊆ E is said to be upward-closed if and only if
e ∈ U and e ≤ e′ implies e′ ∈ U. Given a subset of elements D ⊆ E, the upward closure
of D, denoted by ↑ D, is the set of elements {e ∈ E | ∃d ∈ D.d ≤ e}. Consequently, an
upward-closed set is a set U such that ↑ U = U. If (E,≤) is a wqo, then upward-closed
sets can be represented in a finite matter, thanks to a finite basis, as stated by the following
lemma.

Lemma 2.1. [Hig52] If (E,≤) is a wqo then for all upward-closed set U ⊆ E there exists a finite
subset B ⊆ E such that ↑ B = U.

From the definition of wqo, we can furthermore obtain another result concerning the
increasing sequences (with respect to inclusion) of upward-closed sets (see e.g. [FS01] for a
proof).

Lemma 2.2. Let (E,≤) be a wqo. If (Ii)i∈N is a sequence of upward-closed sets such that Ii ⊆ Ii+1

for all i ∈N, then there exists k ∈N such that Ii = Ik for all i ≥ k.
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Part I

V E R I F I C AT I O N O F C O U N T E R S Y S T E M S

In this part, I will detail the results I obtained on the verification of infinite-state
systems manipulating natural variables, also known as counter systems. Since
simple verification problems are undecidable for such systems due to the fact
that one can simulate the tape of a Turing machine with two counters [Min67],
I have studied restrictions of these models for which verification problems are
decidable. I hence present here different decidability and complexity results
for the model-checking of restrictions of counter systems considering different
families of specification languages.





3
TA X O N O M Y O F C O U N T E R S Y S T E M S

In this chapter, we introduce the model of counter systems which are basically finite state
machines equipped with a finite set of variables having natural values.

3.1 general model

A counter system has access to various natural variables, called the counters, and it can
test their value and update them. Once that said it opens a wide world of mathematical
opportunities to define such tests and updates. In the systems we consider, the tests, also
called guards, are quantifier-free Presburger formulas and the updates are affine fonctions.
We begin by providing formal definitions of these mechanisms.

Let C = {x1, x2, . . .} be a countably infinite set of counters (variables interpreted over
non-negative integers) and AT = {p1, p2, . . .} be a countably infinite set of propositional
variables (abstract properties about program points). We write Cn to denote the restriction
of C to {x1, x2, . . . , xn}. A guard g using the counters from Cn, written G(Cn), is made of
Boolean combinations of atomic guards of the form ∑n

i=1 ai · xi ∼ b where the ai’s are in Z,
b ∈N and ∼∈ {=,≤,≥,<,>}. Given a guard g ∈ G(Cn) and a vector v ∈Nn, we say that
v satisfies g, written v |= g, if the formula obtained by replacing each xi by v[i] holds. We
denote by > the guard satisfied by all vectors in Nn (it is equivalent to x1 ≥ 0).

Definition 3.1 (Affine Counter System). For a natural number n ≥ 1, an Affine Counter
System S of dimension n is a tuple (Q, Cn, ∆, l) where:

• Q is a finite set of control states,

• l : Q→ 2AT is a labeling function,

• ∆ ⊆ Q× G(Cn)× Affn ×Q is a finite set of edges labelled by guards and affine functions to
update the counter values.

For δ = (q, g, (A, b), q′) in ∆, we use the following notations: source(δ) = q, target(δ) = q′,
guard(δ) = g and update(δ) = (A, b). The size of a counter system S = (Q, Cn, ∆, l) is
equal to size(S) = ∑δ∈∆ size(δ) + ∑q∈Q card(l(q)) where size(δ) = 1 + size(guard(δ)) +
size(update(δ)). We denote by ACS the class of Affine Counter Systems.

As usual, to an Affine Counter System S = (Q, Cn, ∆, l), we associate a transition system
T(S) = (Q ×Nn,→) where Q ×Nn is the set of configurations and →⊆ (Q ×Nn) ×
∆ × (Q ×Nn) is the transition relation defined by: ((q, v), δ, (q′, v′)) ∈→ (also written

(q, v) δ−→ (q′, v′)) if and only if the conditions below are satisfied:

• q = source(δ) and q′ = target(δ),

• v |= guard(δ) and if update(δ) = (A, b) then v′ = A · v + b.

Note that in such a transition system, the counter values are non-negative. We write

(q, v) → (q′, v′) if there exists δ ∈ ∆ such that (q, v) δ−→ (q′, v′) and denote by →∗ the
reflexive and transitive closure of→.
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Given an initial configuration c0 ∈ Q×Nn, an infinite run (or execution) ρ starting from
c0 in S is an infinite path in the associated transition system T(S) denoted as:

ρ := c0
δ0−→ · · · δm−1−−→ cm

δm−→ · · ·

where ci ∈ Q×Nn and δi ∈ ∆ for all i ∈N. A finite run (or execution) is defined similarly
by considering finite paths in T(S).

1 int x = 10;

2 int y = 0;

3 int z = 0;

4 while (x > 0) {

5 y = 1;

6 while (y < 10) {

7 y = 2 * y;

8 }

9 z = z + y;

10 x=x-1;

11 }

Figure 3.1: A simple C program manipulating integer variables
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Figure 3.2: An Affine Counter System for the program of Figure 3.1

Example 3.1. In Figure 3.2, we give an example of an affine counter system (where we have omitted
the atomic propositions) and which corresponds to an encoding of the C program presented in Figure
3.1. In the system, the counter x1 encodes the variable x, x2 the variable y and x3 the variable z of the
program. The while loop of Line 6 is encoded in a single looping transition on the state q2 and the
transition that goes out of this loop together with the instructions of Line 9 and 10 are encoded as
well in a single transition from q2 to q0, Of course, we could have encoded this program differently,
for instance by performing the loop of Line 6 with two transitions, one for the test and one for the
instruction y=2*y and the way the encoding is performed strongly depends on the properties one
wishes to verify on the program under analysis. Note as well that we did not encode in the system
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the initial values of the variables as we assume that their will be provided by specifying some initial
configuration. A finite run of the system shown in Figure 3.2 is then for instance :

(q0,
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) δ0−→ (q1,
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0
0

) δ1−→ (q2,

 10
1
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) δ2−→ (q2,
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2
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4
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) δ2−→

(q2,
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8
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) δ2−→ (q2,
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16
0

) δ3−→ (q0,

 9
16
16

)
3.2 reachability problems

When one wants to verify whether the behavior of a system is correct or not, one key
problem is the so-called reachability problem which consists in asking whether a certain
state is reachable in the representation of the system. Most of the time such a state represents
an error state (or a set of error states), and if it cannot be reached it means that the system
under verification is safe. In some cases, such a reachability property can as well be used to
check other behavior of the system. For instance in a finite automaton, if an accepting state
is reachable from an initial state then the automaton recognizes a non empty language. In a
graph, the reachability problem asks given two vertices s and t whether there is a path from
s to t and it is well known that this problem is NL-complete (see for instance [Pap94]).

For the case of Affine Counter Systems, we can define two variants of this problem. The
first one asks only if a control state is reachable from a given initial configuration and is
defined formally as follows:

CS-ControlReach

Input: An Affine Counter System S = (Q, Cn, ∆, l),

an initial configuration (q0, v0) ∈ Q×Nn

and a control state q f ∈ Q;

Question: Does there exist v ∈Nn such that (q0, v0)→∗ (q f , v)?

The other reachability problem asks for the reachability of a complete configuration.

CS-Reach

Input: An Affine Counter System S = (Q, Cn, ∆, l),

an initial configuration (q0, v0) ∈ Q×Nn

and a configuration (q f , v f ) ∈ Q×Nn;

Question: Does (q0, v0)→∗ (q f , v f ) hold?

Note that for Affine Counter Systems in their full generality, there is no need to make
a distinction between CS-ControlReach and CS-Reach since CS-Reach can be reduced
to CS-ControlReach by adding a transition to a specific extra state which tests whether
the values of the n counters are equal to v f . However we shall see later in this chapter that
in some cases, as for instance when considering Vector Addition System with States, the
distinction between these two problems does make sense.
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In [Min67], Minsky introduces a specific class of programs manipulating variables over
the naturals and shows that it was possible to encode the behavior of Türing machines
in such programs. We call a deterministic Minsky machine a program which manipulates
two natural variables (or counters) x1 and x2, and which is composed of a finite set of
instructions. Each of the instruction is either of the form (1) L : xi := xi + 1; goto L′ or (2)
L : if xi = 0 then goto L′ else xi := xi− 1; goto L′′ where i ∈ {1, 2} and L, L′, L′′ are labels
preceding each instruction. Furthermore there is a special label LF from which nothing can
be done. The behavior of each instruction is then the expected one. Minsky proves that
the halting problem for deterministic Minsky machines which consists in deciding whether
the execution that starts from L0 with counters equal to 0 reaches LF is undecidable. In
our context, we see that deterministic Minsky machines can be seen as a specific case of
Affine Counter Systems and hence from Minsky’s result, one easily deduces the following
theorem.

Theorem 3.1. CS-ControlReach and CS-Reach are undecidable.

3.3 various restrictions

Even though the undecidability results stated in Theorem 3.1 leave few hopes for the
verification of counter systems, it happens that decidability can be regained by imposing
some syntactic or semantic restrictions on this model. We list here some of the restricted
classes of counter systems we will use in this work and recall how they behave with respect
to the reachability problems.

3.3.1 Kripke Structures

First, even if Kripke Structures are a model independant of counter systems, in order to
reuse the notations, we can see a Kripke Structure as an Affine Counter System without
counter.

Definition 3.2 (Kripke Structure). A Kripke Structure S n is a tuple (Q, ∆, l) where:

• Q is a finite set of control states.

• l : Q→ 2AT is a labeling function.

• ∆ ⊆ Q×Q is a finite set of edges.

Since there is no counter value, configurations of Kripke Structures will simply be the set
of control states and the transition relation→ will be equals to ∆. However we transpose
in the obvious way the notions of runs to Kripke Structures. We denote by KS the class of
Kripke Structures.

Since Kripke Structures are finite states models, they enjoy many decidable properties,
but we will see that in some specific cases it is not harder to verify some counter systems
than it is to verify Kripke Structures. Furthermore from the reachability problem in graph,
we obtain automatically the following result (see for instance [Pap94])..

Theorem 3.2. CS-Reach for Kripke Structures is NL-complete.
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3.3.2 Translating Counter Systems

Another restriction that can be made concerns the updates performed by the system. Instead
of allowing the full class of affine functions, in Translating Counter Systems we restrict
ourselves to translations. Hence an Affine Counter System S = (Q, Cn, ∆, l) of dimension
n is a Translating Counter System if and only if for all δ ∈ ∆ we have update(δ) = (In, b)
(where In is the identity matrix). In that case, when it is clear that we consider a Translating
Counter System, we assume that ∆ ⊆ Q× G(Cn)×Zn × Q and for each edge δ ∈ ∆ we
have update(δ) = b. The undecidability results of Theorem 3.1 still hold for Translating
Counter Systems as in Minsky machines, the update operation of counters, which are
simple decrement or increment, are clearly some translations. We denote by T CS the class
of Translating Counter Systems.

3.3.3 One Counter Systems

As we have seen, the undecidability result for the reachability problems in counter systems
is a consequence of the undecidability of the halting problem for Minsky machines, which
manipulate two natural variables. But if we consider systems with a single counter, such a
reduction does not hold anymore and in fact we shall see that many verification problems
become decidable under this restriction. In this work, we call a One Counter System a
Translating Counter System of dimension 1. Since these systems manipulate a single counter
we can simplify the shape of the guards and we hence assume that there all of the form
x1 ∼ b with b ∈ N and ∼∈ {=,≤,≥,<,>}. We denote by OCS the class of One Counter
Systems.

We can impose a further restriction on One Counter Systems by allowing a single form
of guards which can only test whether the counter is equal to 0 (we call such guards
zero test) or not. A One Counter System S = (Q, C1, ∆, l) is said to be simple if and only
if guard(δ) = x1 = 0 or guard(δ) = true for each edge δ ∈ ∆. Such a restriction can be
explained by different facts. First zero tests give the ability to test equality for any other
values as we explain later and if one take Translating Counter Systems with no guards
(see the next part on Vector Addition System with States), adding zero tests is what make
the verification undecidable in many cases. Second One Counter Systems can be seen as
a restriction of pushdown systems with a single stack symbol and using zero tests allow
these systems to check whether the bottom of the stack is reached. Hence zero tests are an
important feature in Counter Systems and as we explain in the following remarks, even if
any One Counter System can be simulated by a simple One Counter System, the simulation
might have a cost.

Remark. The semantics of counter systems allows to test easily whether the value of a counter is
strictly positive without using any guard. To do so one can use two consecutive transitions, one that
decrement by 1 the counter and the next one that restore the value thanks to an increment by 1. Since
the counter values are naturals, the system will go through these two transitions if and only if its
counter value is strictly positive. This is why in Simple One Counter Systems, even though there is
no guard of the form x1 > 0, those systems are able to perform such a test.

Remark. One can simulate a One Counter System with a Simple One Counter System but in some
cases this simulation might have a cost. The test of the form x1 > k can be simulated by a transition
that decrements the counter by k + 1 and a consecutive transition which restores the counter value.
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A similar trick works for test x1 ≥ k or x1 = k. However to simulate the test x1 < k, one option
is to replace it by k− 1 transitions each one testing whether the counter value is equal to i for i in
[0, k− 1], however since k is encoded in binary, this translation might lead to an explosion blowup.

One nice result about Simple One Counter Systems is that even if they are equipped with
a counting mechanisms, their reachability problems are not harder that in simple graphs
when the updates are encoded in unary. This result is obtained by proving that to reach a
control state, there is no need for the counter to take very high value.

Theorem 3.3. [LLT05; Chi+19] CS-ControlReach and CS-Reach for Simple One Counter
Systems where the initial and final configurations and the updates are encoded in unary are NL-
complete.

If we assume a binary encoding, then using the previous result would lead to a Pspace-
algorithm, however as shown in [Haa+09], it is possible to get a better complexity result.
The proof technique here is a bit difference and is based on the existence of a reachability
certificate of polynomial size that one can then guess.

Theorem 3.4. [Haa+09] CS-ControlReach and CS-Reach for Simple One Counter Systems
are NP-complete.

3.3.4 Vector Addition Systems with States and Petri nets

One other way to divert the undecidability result on Minsky machines consists in prohibiting
the system to test the values of the counters and if we consider only translations we obtain
he class of Vector Addition System with States. As a matter of fact a Translating Counter
System S = (Q, Cn, ∆, l) of dimension n is a Vector Addition System with States (VASS) if and
only if for all δ ∈ ∆ we have guard(δ) = true. As we have seen in the case of Simple One
Counter Systems, it is not really true that the system cannot test the counter value, in fact
he has only the ability to test whether some counters are greater than some constant (by
performing a decrement followed by an increment). We denote by VASS the class of VASS.
This class is furthermore very interesting because of its promiscuity with the model of Petri
nets.

Petri nets were introduced by C.A. Petri in its PhD thesis [Pet62] as a model for concurrent
systems. This model has then received a lot of attention both for practical applications and
from the community of researchers in formal model. In fact, the rules for this model are
quite simple but allow nevertheless to characterize the behavior of many concurrent systems.
From the theoretical point of view, the various algorithms designed for their analysis have
led to the development of many mathematical tools that have happened to be useful for the
verification of other classes of systems. We now present more in detail this model.

Definition 3.3 (Petri Net). A Petri Net N is a tuple (P, T, Pre, Post) where:

• P is a finite set of places,

• T is a finite set of transitions,

• Pre : T 7→NP is the precondition function,

• Post : T 7→NP is the postcondition function.
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A marking of a Petri Net is a multiset M ∈NP. A Petri Net defines a transition relation
⇒⊆NP × T ×NP such that M t

=⇒ M′ for M, M′ ∈NP and t ∈ T if and only if M ≥ Pre(t)
and M′ = M− Pre(t) + Post(t). The intuition behinds Petri Nets is that marking put tokens
in some places and each transition consumes with Pre some tokens and produces others
thanks to Post in order to create a new marking. We write M⇒ M′ if and only if there exists
t ∈ T such that M t

=⇒ M′ and denote by⇒∗ the reflexive and transitive closure of⇒. A finite

run (or execution) is then a finite sequence of the form M0
t0=⇒ M1

t1=⇒ M2
t2=⇒ . . .

tk−1
==⇒ Mk.

Infinite runs (or executions) are defined similarly.
As for counter systems, we present two classical problems on Petri Nets. The first one is

similar to CS-ControlReach, the difference being that in Petri Nets we do not have control
states, it is known as the coverability problem and it asks whether there is a reachable
marking that covers (is greater than) a given marking. It is similar to CS-ControlReach

because here as well the precise value of the reached marking does not matter.

PN-Coverability

Input: A Petri Net N = (P, T, Pre, Post),

an initial marking M0 ∈NP,

and a marking M ∈NP;

Question: Does there exist M′ ∈NP such that M0 ⇒∗ M′ and M ≤ M′?

The other problem is the version where we ask to reach the given marking, it is known as
the reachability problem for Petri Nets.

PN-Reach

Input: A Petri net N = (P, T, Pre, Post),

an initial marking M0 ∈NP,

and a marking M ∈NP;

Question: Does there exist M′ ∈NP such that M0 ⇒∗ M′ and M ≤ M′?

Example 3.2. Figure 3.3 provides an example of a Petri Net with an initial marking. As usual
we represent the places of the Petri Net by circles and the transitions by rectangle whereas the
precondition function is represented by arrows from places to transitions and the postcondition
function by arrows from transitions to places and the marking is represented by tokens in the places.
In that case the marking is the multiset 〈〈p1, q1, lock〉〉. We have then the following execution from

this marking 〈〈p1, q1, lock〉〉 t1=⇒ 〈〈p2, q1〉〉 t2=⇒ 〈〈p1, q1, lock〉〉 t3=⇒ 〈〈p1, q2〉〉. This Petri Net could
represent the execution of two processes that are initially in state p1 and q1 respectively and that
want to access a critical section protected by a lock and when a token is in the place lock it means
that the lock is free.

As mentioned previously there is a strong connection between Petri Nets and VASS. In
fact it easy to encode the behavior of a Petri Net with n places in a VASS of dimension n,
each of the counter encoding the number of tokens in the places.
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p1

t1 p2

t2

lock

q2t3

q1 t4

Figure 3.3: An example of Petri Net

Example 3.3. The VASS represented in Figure 3.4 encodes the behavior of the Petri net of Figure 3.3.
Note that when representing graphically VASS we only write the update vectors on the transitions. We
see that we have one central state and one state per transition. For each transition of the VASS, there
is one transition in charge of performing the action of the precondition and one for the postcondition.
Here the places p1,p2,lock,q1 and q2 are associated to the counters x1, x2, x3, x4 and x5 and for
instance In the VASS the transitions going in and out of qi represents the transition ti of the Petri
Net.

It is as well possible to encode a VASS of dimension n in a Petri net by creating a place
for each counter and a place for each control states. In [HP79], a better construction is
proposed where one needs only n + 3 places to encode the behavior of a VASS. Thanks to
these reductions in polynomial time from Petri Nets to VASS and vice versa, we see why
these two models are very close and can be considered as equivalent for many decision
problems.

We now state some complexity results for the analysis of VASS and Petri Nets. First, note
that from the reductions presented above the coverability problem for Petri Nets and the
control state reachability problem for VASS can be reduced in polynomial time one into the
other. It appears that these two problems are decidable and their complexity is well-known.

Theorem 3.5. [Lip76; Rac78] PN-Coverability and CS-ControlReach for VASS are EXPspace-
complete.

For what concerns the reachability problem in VASS and Petri Nets, we know that this
problem is decidable [May84; Kos82; Lam92; Ler11] but it is a tedious result to obtain. In
fact, the algorithms presented in the above mentionned papers are non-elementary and the
best know lower bounds for many years was the one for coverability, i.e. EXPspace-hard.
However, in [Cze+19b] it has been shown that this problem is effectively non elementary.

Theorem 3.6. [May84; Kos82; Lam92; Ler11; Cze+19b] PN-Reach and CS-Reach for VASS are
decidable and non-elementary.
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q0 q1

[−1, 0,−1, 0, 0]

[0, 1, 0, 0, 0]

q2

[0,−1, 0, 0, 0][1, 0, 1, 0, 0]

q3

[0, 0,−1,−1, 0]

[0, 0, 0, 0, 1]

q4

[0, 0, 0, 0,−1][0, 0, 1, 1, 0]

Figure 3.4: A VASS encoding the Petri Net of Figure 3.3

3.3.5 Flat Counter Systems

Another way to regain decidability for the verification of counter systems consists in
imposing restrictions on the underlying graph structure of the system. An Affine Counter
System is flat if every node in the underlying graph belongs to at most one simple cycle
(a cycle being simple if no edge is repeated twice in it). Hence in a flat Affine Counter
System, simple cycles can be organized as a DAG where two simple cycles are in the relation
whenever there is path between a node of the first cycle and a node of the second cycle.

q0

q1

q2

q3

q4

q5

Figure 3.5: Example of a flat system

Example 3.4. Figure 3.5 provides an example of a flat Affine Counter System where guards and
updates have been omitted. We see that each state belongs to at most one simple cycle. For instance,
q1, q2 and q4 belong to the same simple cycle.
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In [FO97], the authors show that for flat VASS the reachability relation→∗ is definable in
Presburger arithmetic and the corresponding Presburger formula can effectively be built (it
is assumed that the control states are encoded into naturals, and hence each configuration
is a vector of naturals). The idea to obtain such result is that each path in the system
can be represented by a succession of simple paths (with no repeated states) and loops
and the configurations reached by such paths can be expressed by a Presburger formula.
Since the system is flat, there is only a finite (but possibly exponential) number of such
representations. It is then possible to encode the reachability problems into Presburger
arithmetic and to obtain decidability thanks to [Pre29].

Theorem 3.7. [FO97] CS-ControlReach and CS-Reach are decidable for flat VASS.

Note that it is even proven that the reachability relation can be expressed as an existentially
quantified formula, but due to the number of paths to enumerate there can be an exponential
blowup when building the formula.

it has then been shown that this reasoning can be applied to more general classes of
counter systems. For instance in [CJ98] a similar result on the reachability relation is shown
for flat counter systems but where the transitions are labelled with relations (instead of
functions) between old value and new values of the counters. This result is quite strong but
the considered relations can express guards less expressive than in Affine (or Translating)
Counter Systems. A simpler proof of this latter result was given in [BIL09]. The result that
will interest us the most concerns a class of flat Affine Counter Systems where the updates
are restricted. In [FL02], the authors show that for flat Affine Counter Systems with the finite
monoid property the reachability relation is definable in Presburger Arithmetic. We present
now what it means for an Affince Counter System to have the finite monoid property.

For an Affine Counter System S = (Q, Cn, ∆, l) of dimension n ≥ 1, we considerMS ⊆
Zn×n to be the smallest set of matrices, closed under product, which contains the identity
matrix In and each matrix A such that update(δ) = (A, b) for some δ ∈ ∆. Clearly, MS
forms a monoid with the matrix product as binary operation and In as identity element. We
say that S has the finite monoid property if the setMS is finite. We denote by FMACS the
class of Affine Counter Systems with the finite monoid property. In [FL02], it is proved that
the reachability relation→∗ for flat Affine Counter Systems with the finite monoid property
is Presburger definable (here again it is assumed that Q ⊆N) and that the corresponding
formula can be effectively computed. This allows us to deduce the following decidability
result.

Theorem 3.8. [FL02] CS-ControlReach and CS-Reach are decidable for flat Affine Counter
Systems with the finite monoid property.

Note that if S is a Translating Counter System, thenMS = {In} and this monoid is finite.
From the previous theorem, we get automatically the next result.

Corollary 3.1. [FL02] CS-ControlReach and CS-Reach are decidable for flat Translating
Counter Systems.

Example 3.5. Figure 3.6 provides an example of a flat Affine Counter System with the finite monoid
property. From the initial state q0 with all counters equal to 0, this system begins with incrementing
x1 a certain number of times with the transition δ0 then, with δ1, it transfers the value of the counter
x1 to x3 and resets x1; the loop labelled by δ2 increments both x1 and x2 until they both reach the
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Figure 3.6: A flat Affine Counter System with the finite monoid property

value of x3 and finally the loop labelled by δ4 is used to decrement x2 and increment x1 until the
value of x1 is twice the value of x3. As a consequence, when the system reaches x3 the value of x1 is
twice the value of x3 and the value of x2 is equal to 0. Hence, any run reaching q3 visits the state q1

exactly the same number of times as the state q2.

Remark. It is true that imposing the structure of the considered counter system to be flat is a strong
restriction, however the results presented in [FL02] can be used to compute an under-approximation
of the set of executions of an Affine Counter Systems with the finite monoid property by enumerating
its flat unfolding. The method consists in deleting transitions or unfolding some loops a finite number
of times to obtain a flat subsystem of the Counter System under analysis and then compute its
reachability transition.

3.4 summary of the classes of systems

The table 3.1 recapitulate the different classes of counter systems we have presented in this
chapter.

Acronym Class Guards Updates

ACS Affine Counter Systems Full guards Affine functions

KS Kripke Structures No Guard No Update

T CS Translating Counter Systems Full Guards Translations

OCS One Counter Systems x1 ∼ b Translations

simple OCS Simple One Counter Systems true, x1 = 0 Translations

VASS Vector Addition Systems with States true Translations

Affine Counter Systems Affine functions

FMACS with the finite monoid property Full guards whose associated

monoid is finite

Table 3.1: Summary of the classes of counter systems
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4
V E R I F I C AT I O N O F L I N E A R T I M E P R O P E RT I E S

In this chapter, we present the results we have obtained concerning the model-checking
of counter systems with linear time properties. As we have seen in the previous chapter,
even if reachability is undecidable for simple classes of counter systems, decidability can
be regained by imposing some restrictions on the considered systems and many research
works have been done to obtain a precise complexity characterization of the complexity of
the reachability problems under these restrictions.

In order to specify more complex properties, one way consists in relying on specification
languages which allow to describe the evolution of the system during the time. Most of
the time such specification languages allow to express reachability properties and much
more, hence it makes sense to study the model-checking problem for complex specification
languages for the cases where at least the control state reachability problem is known to be
decidable.

The works we present here focus on linear time specifications which describe behaviors of
runs of systems. The model-checking problem asks then given a system and a specification
whether the runs of the system satisfy the specification. Previous works have studied
such a model-checking problem over different classes of counter systems. For instance, in
[Hab97] it is shown that the model-checking of linear µ-calculus and of the Linear time
Temporal Logic (LTL) over VASS is EXPspace-complete. The model-checking problem of
LTL over Simple One Counter Systems has been studied in [Göl+10] and it is proved that
it is Pspace-complete. It means that for this latter model the complexity is the same as for
Kripke structures [SC85].

We looked at the model-checking problem of linear time properties over the class of flat
counter systems. This research direction was motivated by two facts. First, in [KF11] it is
shown that the model-checking of LTL over flat Kripke structures (the paper mentions weak
structures, which is an equivalent term for flat) is in NP, hence in this case considering flat
structures simplifies the model-checking algorithm. Second in [Dem+10] it is shown that
the model-checking problem for an extension of the branching time temporal logic CTL∗
where the atomic propositions are Presburger definable sets of configurations is decidable
for flat Affine Counter Systems with the finite monoid property. Actually, they prove a more
general result by considering flat counter systems whose updates are functions and their
counting iteration over cycles in the structures is Presburger definable. However no precise
complexity bound is given and for instance for flat Translating Counting Systems, their
procedure leads to a very rough upper bound in 4EXPtime. In fact, the decision algorithm
translates the model-checking problem into a Presburger formula of exponential size. Hence
from these results, we decided to investigate the complexity of the model-checking problem
for flat counter systems in order to get precise bounds and eventually decision procedures
of practical use.

contributions . Our first works [DDS12; DDS15] on this subject considered the model-
checking of the linear time temporal logic LTL with past operators (Past LTL) over flat
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Translating Counter Systems. We considered an extension of Past LTL which allows as
well to characterize the counter values at some positions in the runs thanks to arithmetical
constraints used as atomic propositions. We showed that the model-checking problem of
this logic over Translating Counter System is NP-complete (hence it as a complexity very
close to the case of flat Kripke structures).

Afterwards in [DDS13], we have considered other formalisms specifying linear-time
properties (first order logic, linear µ-calculus, infinite automata) and our goal was to
determine the complexity of model-checking problems over flat Translating Counter Systems.
Note that first order logic is as expressive as Past LTL but much more concise whereas linear
µ-calculus is strictly more expressive than Past LTL, which motivates the choice for these
formalisms dealing with linear properties. Here again our formalisms admit arithmetical
constraints about counter values in the specification. We obtained the following results for
the model-checking over flat Transalting Counter Systems: the problem is Pspace-complete
for first order logic (this is very surprising since the model-checking of classical first-order
formulas over arbitrary Kripke structures is known to be non-elementary), the problem is
Pspace-complete for linear µ-calculus and the problem is NP-complete if the specification
is given by a Büchi automaton. Not only we obtained tight complexity bounds but we
proposed a general framework to deal with the different specification languages that could
possibly be reused. Note that thanks to this framework we could as well reprove the results
obtained for Past LTL.

Finally, in [IS16], we looked in which measure the previously developed techniques could
be adapted to the case of flat Affine Counter Systems with the finite monoid property. Most
of the techniques for the model-checking problem could be reused from the previous works
however the difficulty here was to understand better how to characterize the reachability
relations in an efficient way in order to obtain a good complexity bound. As a matter of
fact, we first provided a complexity bound for the reachability problem in such systems.
Furthermore, in order to avoid complexity in the reasonning due to the guards in the system,
we had to assume that the guards were only conjunctions of linear constraints. We showed
that for such systems the reachability problem and the model-checking of Past LTL both
belong to the second level of the polynomial hierarchy ΣP

2 whereas the model-checking of
first order logic formulas is Pspace-complete.

4.1 specification languages and model-checking problem

We introduce first a general definition of linear time specification language dedicated to
counter systems and then we present the different languages we will consider.

As for counter systems, we consider C = {x1, x2, . . .} an infinite set of counters (variables
interpreted over non-negative integers), Cn = {x1, x2, . . . , xn} its restriction to n counters and
AT = {p1, p2, . . .} a countably infinite set of propositional variables. Since our specifications
will allow to reason both on the atomic propositions labelling the states of the counter
systems under study and the counter values, we propose a general way to treat these two
notions uniformly. For this matter, we use constrained alphabets whose letters should be
understood as Boolean combinations of atomic formulas (details follow). A n-dim constrained
alphabet (shortly constrained alphabet) is a triple of the form (at, agn, Γ) where:

• at is a finite subset of AT,
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• agn is a finite subset of atomic guards from G(Cn), i.e. guards of the form ∑n
i=1 ai · xi ∼ b

where the ai’s are in Z and b in N,

• Γ is a subset of 2at∪agn .

The size of a constrained alphabet is given by size(at, agn, Γ) = card(at) + Σg∈agnsize(g) +
card(Γ). An important feature to evaluate the size of (at, agn, Γ) is to notice that at, agn and
Γ are finite sets and Γ is not necessarily equal to the power set 2at∪agn . Our specification
languages over such a constrained alphabet will then recognize infinite words in Γ∗.

A specification language L over a constrained alphabet (at, agn, Γ) is a set of specifications
A, each of it defining a set L(A) of infinite words in Γω. Hence the language associated
to a specification is a set of infinite words where at each position we find a subset of
atomic propositions and of atomic guards. Note that we explicitly introduce the notions of
specification languages and specifications for the sake of clarity in forthcoming definitions,
but they cover what is commonly accepted. We will also sometimes consider specification
languages over (unconstrained) standard finite alphabets (as usually defined).

It remains to explain how the runs of an Affine Counter System and a specification are
related. We consider an Affine Counter System S = (Q, Cn, ∆, l) and a constrained alphabet
(at, agn, Γ). Given an infinite run ρ := (q0, v0)→ (q1, v1) · · · of S (with qi ∈ Q and vi ∈Nn

for all i ∈ N) and an infinite word w = a0a1 . . . ∈ Γω, we say that ρ satisfies w, written
ρ |= w whenever for every i ≥ 0, we have:

1. p ∈ l(qi) for every p ∈ (ai ∩ at),

2. p 6∈ l(qi) for every p ∈ (at \ ai),

3. vi |= g for every g ∈ (ai ∩ agn),

4. vi 6|= g for every g ∈ (agn \ ai).

Intuitively at each position i of the run, we have that an atomic proposition in at holds
if and only if it is present in ai and that a guard in agn is satisfied by the counter values if
and only if it is present in ai. For a specification A such that L(A) ⊆ Γω, we say that a run ρ

satisfies A, denoted by ρ |= A, if and only if there exists a word w ∈ L(A) such ρ |= w.
We have now the tools to define the model-checking problem for linear-time proper-

ties over Affine Counter System which is at the heart of this chapter. This problem is
parameterised by a specification language L over a constrained alphabet (at, agn, Γ).

CS-Model-Checking(L)

Input: An Affine Counter System S = (Q, Cn, ∆, l),

an initial configuration c0 ∈ Q×Nn,

and a specification A from L;

Question: Does there exists an infinite run ρ starting at c0 such that ρ |= A?

Note that the model-checking problem we study corresponds to the existential version
of the model-checking, i.e. we seek for a run satisfying a specification, whereas usually it
is more natural to consider the universal version where one wants to verify that all the
runs satisfy a specification. The reason for this choice is that from an algorithmic point of
view it fits better to our framework. Furthermore, most specification languages we study
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are closed under complement hence our result can be adapted to deal with the universal
model-checking problem. However is some cases, complementing the specification to go
from the universal model-checking problem to the existential one might have a cost and it
could affect the complexity of the procedure.

4.2 a bunch of specification languages

We now present the different specification languages for which we obtain results for the
model-checking of flat counter systems. They can be separated in two categories, in the first
one we use automata to describe the specification, whereas in the second one we use logical
formalisms.

4.2.1 Automata based specifications

We present here two specification languages BS (Büchi Specifications) and ABS (Alternating
Büchi Specifications). To define these languages, we rely on (nondeterministic) Büchi
automata and alternating Büchi automata. However, even if the specification languages
are very close to the automata mechanism they rely on, we shall distinguish between the
specifications and their underlying automata. Moreover, nondeterministic Büchi automata
and alternating Büchi automata are known to have the same expressive power but not the
same conciseness and therefore it makes sense to distinguish them.

We first recall the definition of Büchi Automata.

Definition 4.1 (Büchi Automaton). A Büchi automaton B is a tuple (Q, Σ, δ, q0, F) where:

• Q is a non-empty finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×Q is the finite set of transitions,

• q0 ∈ Q is the initial state, and,

• F ⊆ Q is the set of final states.

An accepting run ρ in B for a word w ∈ Σω is as an infinite sequence of states ρ ∈ Qω

such that (ρ(i), w(i + 1), ρ(i + 1)) ∈ δ for every i ∈ N and ρ(j) ∈ F for infinitely many j’s.
We define then the language of B, denoted by L(B) as the set of infinite words {w ∈ Σω |
there exists an accepting run in B for w}.

Let us fix a constrained alphabet (at, agn, Γ) In order to be a bit concise, we define a speci-
fication languages where we allow the transitions to be labelled by Boolean combinations of
atoms from at∪ agn, leading to the specifications in BS (Büchi Specifications). First we define
B(at ∪ agn) the set of formulas obtained by Boolean combinations over at ∪ agn thanks to
the following grammar:

ψ := at | agn | ¬ψ | ψ ∧ ψ

Then we say that a specification A is in BS if it is of the form (Q, E.q0, F) where Q is a
finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states and E is a
finite subset of Q×B(at ∪ agn)×Q. A specification A in BS is just a concise representation
for the Büchi automaton BA = (Q, 2at∪agn , δ, q0, F) where δ is a subset of Q× 2at∪agn × Q
and (q, a, q′) ∈ δ if and only if there is (q, ψ, q′) ∈ E such that a |= ψ in the propositional
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sense (an atom in (at∪ agn) \ a is interpreted by false). We say that A is over the constrained
alphabet (at, agn, Γ), whenever for all edges (q, ψ, q′) ∈ E, we have that ψ holds at most
for valuations/letters from Γ. Finally, the language L(A) ⊆ Γω is defined as L(BA). Strictly
speaking, specifications in BS and Büchi automata over the alphabet Γ are not identical
objects but the first ones can be seen as a concise representations of the second ones (an
edge in A can lead to an exponential number of transitions in BA).

We now provide the definition of the specification language based on alternating Büchi
automata. Given a finite set Q, we write B+(Q) to denote the set of positive Boolean
formulas built over Q which respect the following grammar:

ψ ::= ⊥ | > | q | ψ ∨ ψ | ψ ∧ ψ

where q ∈ Q. Every subset Y ⊆ Q can be viewed as a propositional valuation such that
q ∈ Y if and only if q is interpreted as true. We write Y |= ψ with A ∈ B+(Q) to denote that
ψ holds true under the propositional valuation induced by the subset Y.

Definition 4.2 (Alternating Büchi Automaton). An alternating Büchi automaton B is a tuple
(Q, Σ, δ, q0, F) where:

• Q is a non-empty finite set of states,

• Σ is a finite alphabet,

• δ : Q× Σ 7→ B+(Q) is the transition function,

• q0 ∈ Q is the initial state, and,

• F ⊆ Q is the set of accepting states.

A run ρ for the ω-word a0a1a2 . . . ∈ Σω is a (possibly infinite) directed acyclic graph
(V, R) where V ⊆ Q×N is the set of vertices and R ⊆ V × V is the set of edges which
satisfies the following properties:

• (q0, 0) ∈ V,

• R ⊆ ⋃l≥0(Q× {l})× (Q× {l + 1}),
• For every (q, l) ∈ V \ {(q0, 0)}, there is q′ ∈ Q such that ((q′, l − 1)(q, l)) ∈ R.

• For every (q, l) ∈ V we have {q′ | ((q, l), (q′, l + 1)) ∈ R} |= δ(q, al).

A run ρ is accepting whenever every infinite path through that run defines an ω-word in
Qω such that a state from F is visited infinitely often. Similarly to BS, a specification A in
ABS over the constrained alphabet (at, agn, Γ) is of the form (Q, E, q0, F) where Q is a finite
set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states and E is the
partial transition function Q×B(at∪ agn)→ B+(Q) and for each φ ∈ B(at∪ agn), we have
that φ holds at most for valuations/letters from Γ. Following the same reasoning as for BS,
a specification A in ABS is only a concise representation for an alternating Büchi automaton
BA = (Q, Γ, δ, q0, F) where δ(q, a) = E(q, φ) whenever a |= φ in the propositional sense (an
atom in (at ∪ agn) \ a is interpreted by false). The language L(A) is then exactly equal to
L(BA).

Note that these two specification languages have the same expressive power however the
ABS are more concise than BS.
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4.2.2 Linear Time Logics

We now present three logical languages that are tailored to specify properties of runs of
counter systems: Past LTL (see e.g. [SC85]), first order logic and the linear µ-calculus, see
e.g. [Var88]. A specification in one of these logical specification languages is just a formula.
The main differences with their standard versions in which models are ω-sequences of
propositional valuations is that here atomic formulas are either propositional variables in
AT or atomic guards in G(Cn).

4.2.2.1 Past LTL

We now provide the syntax and semantics of Past LTL. Formulas of Past LTL over the
constrained alphabet (at, agn, Γ) are defined by the following grammar:

φ ::= p | g | ¬φ | φ ∧ φ | Xφ | X−1φ | φUφ | φSφ

where p belongs to at and g belongs to agn. A formula φ of Past LTL is interpreted over an
ω-word w in Γω at a certain position i ∈N and the temporal operator X, X−1, U and S allows
to navigate in this word. X is used to move to the next position, X−1 to the previous position,
U is used to move to a position in the ’future’ ensuring that some properties hold along the
path and S has a similar role but to move to a position in the past. This is formalized by the
satisfaction relation |= which is defined inductively as follows:

w, i |= p
def⇔ p ∈ w(i)

w, i |= g
def⇔ g ∈ w(i)

w, i |= ¬φ
def⇔ w, i 6|= φ

w, i |= φ1 ∧ φ2
def⇔ w, i |= φ1 and w, i |= φ2

w, i |= Xφ
def⇔ w, i + 1 |= φ

w, i |= φ1Uφ2
def⇔ w, j |= φ2 for some i ≤ j

such that w, k |= φ1 for all i ≤ k < j

w, i |= X−1φ
def⇔ i > 0 and w, i− 1 |= φ

w, i |= φ1Sφ2
def⇔ w, j |= φ2 for some 0 ≤ j ≤ i

such that w, k |= φ1 for all j < k ≤ i

Given a Past LTL formula φ, we define L(φ) as {w ∈ Γω | w, 0 |= φ}. Finally, the size of a
Past LTL formula is understood as the number of subformulas.

4.2.2.2 First Order logic (FO)

The second logical formalism we consider are first order logic formulas where the variables
are interpreted over the positions of an ω-word and which use atomic propositions or
atomic constraints as unary predicates and the successor relation as binary predicates. To
simplify we denote FO this logic in our context. Using Kamp’s Theorem [Kam68], first-order
logic has the same expressive power as Past LTL, however it is more concise, in fact it is
known that the satisfiability problem for first-order logic formulas is non-elementary and
consequently the translation into Past LTL leads to a significant blow-up in the size of the
formula.
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Formulas of FO over the constrained alphabet (at, agn, Γ) are defined by the grammar
below:

φ ::= p(z) | g(z) | succ(z, z′) | z < z′ | z = z′ | ¬φ | φ ∧ φ′ | ∃z φ(z)

where z is a propositional variable from VAR such that VAR is a countably infinite set of
variables that is disjoint from AT and p ∈ at and g ∈ agn. A variable z is free in a FO
formula φ if and only if z does not occur within the scope of any quantifier (∃) in φ. As
usual, we write free(φ) to denote the set of free variables in the formula φ. A formula with
no free variable is called a sentence. The quantifier height qh(φ) of a formula φ is then the
maximum nesting depth of the operators ∃ in φ.

As already mentioned, the variables in an FO formula represent positions in the word,
and the binary predicates < and = is the classical order relation, respectively the equality
on positions, whereas succ is used to say that a position is the next position of another
one. Models of FO formulas are then again ω-words in Γω. We define position assignment
as a partial function f : VAR→ N. Given a model w ∈ Γω, a FO formula φ and a position
assignment f such that f (z) ∈N for every variable z ∈ f ree(φ), the satisfaction relation |= f
is defined as follows:

w |= f p(z) iff p ∈ w( f (z))

w |= f g(z) iff g ∈ w( f (z))

w |= f succ(z, z′) iff f (z′) = f (z) + 1

w |= f z < z′ iff f (z) < f (z′)

w |= f z = z′ iff f (z) = f (z′)

w |= f ¬φ iff w 6|= f φ

w |= f φ ∧ φ′ iff w |= f φ and w |= f φ′

w |= f ∃z φ(z) iff there exists j ∈N such that w |= f [z→j] φ(z)

where f [z→ j] is the position assignment g such that g(z′) = f (z′) for all z′ ∈ dom( f ) \ {z}
and g(z) = j. As for Past LTL , for a FO formula φ, we define L(φ) as {w ∈ Γω | w |= φ}
and the size of a formula is understood as the number of its subformulas.

4.2.2.3 Linear µ-calculus

The last logical formalism we present is the linear µ-calculus. It is the most expressive logic
for which we study the model-checking problem and it has the same expressive power
as Büchi automata whereas Past LTL and FO are less expressive (see for instance [Wol83;
Var88]). Even if it is very expressive, it suffers from an important drawback: it is difficult
to have an intuition on the signification of formulas when many nested fixpoints are used.
Formulas of the linear µ-calculus over the constrained alphabet (at, agn, Γ) are defined by
the grammar below:

φ ::= z | p | g | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | X−1φ | µz · φ

where z is a propositional variable from VAR such that VAR is a countably infinite set of
variables that is disjoint from AT and p ∈ at and g ∈ agn. Only well-formed formulas are
really considered and taken care of. A formula φ is well-formed if and only if for all µz · ψ
in φ, the following conditions are verified:
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1. for all subformulas µz · ψ′, we have ψ = ψ′,

2. z is not free in φ and

3. every occurrence of z in the syntax tree of ψ is under an even number of negation
symbols in ψ.

Note that, given any linear µ-calculus formula, we can easily transform it to satisfy the first
two conditions. We include these conditions in the definition of “well-formed” formulas
to be precise about the form of the formula. In the rest of the document we only consider
well-formed linear µ-calculus formulas. As usual νz · φ is defined as ¬µz · ¬φ[z ← ¬z]

(where φ[z← ¬z] indicates that we substitute all the occurrences of z in φ with ¬z.
A formula φ of linear µ-calculus is interpreted over an ω-word w in Γω at a certain position

i ∈N and the satisfaction relation |= is parameterised by maps of the form f : VAR 7→ 2N

assigning set of positions to a variable. We have then:

w, i |= f z
def⇔ i ∈ f (z)

w, i |= f p
def⇔ p ∈ w(i)

w, i |= f g
def⇔ g ∈ w(i)

w, i |= f ¬φ
def⇔ w, i 6|= f φ

w, i |= f φ1 ∧ φ2
def⇔ w, i |= f φ1 and w, i |= f φ2

ρ, i |= f Xφ
def⇔ w, i + 1 |= f φ

ρ, i |= f X
−1φ

def⇔ i > 0 and w, i− 1 |= f φ

It remains to define the relation for formulas whose outermost connective is the fixpoint
operator. Fixpoints in linear µ-calculus are considered as monotone functions over the
complete lattice (2N,⊆). Given an ω-word in Γω and a linear µ-calculus formula φ, we first
define the least fixpoint of the monotone function F f ,w : 2N 7→ 2N by F f ,w(Y) = {i ∈ N |
w, i |= f [z→Y] φ}. This can be computed iteratively as a sequence (Zj)j∈N of sets of positions
verifying:

• Z0 = ∅ and

• Zj+1 = F f ,w(Zj) for all j ≥ 0.

and define the least fixpoint as Z =
⋃

j∈N Zj. It is well-known, by Knaster-Tarski’s Theo-
rem [Kna28; Tar55], that the least fixed point Z exists. So, the satisfaction relation is defined
as follows:

w, i |= f µz · φ def⇔ i ∈ Z where Z is the least fixpoint of the monotone function F f ,w

Note that νz can be defined similarly but using the greatest fixpoint instead of the least
fixpoint. As for Past LTL and FO, for a well-formed linear µ-calculus formula φ, we define
L(φ) as {w ∈ Γω | w, 0 |= φ} and the size of a formula is understood as the number of its
subformulas.

4.3 examples

In Figure 4.1, we present a simple flat Translating Counter System of dimension 2. We
assume that the set of atomic propositions AT is equal to {q0, q1, q2, q3, q4, q5} and the
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labelling function l is such that l(qi) = {qi} for all i ∈ [0, 5]. Furthermore, when we do not
write anything above an edge δ it means that the associated guard guard(δ) is equal to >
(true) and the update vector is update(δ) = [0, 0]. For this counter system, a specification in
Past LTL could be φ = > U (q4 ∧ Xq3 ∧ x1 > 5) which states that there exists a run where
the control state q4 is visited with the value for the first counter strictly bigger than 5 and
the next state in this run is q3. An example of run ρ starting at the configuration (q0, [0, 0])
satisfying φ is for instance:

ρ := (q0, [0, 0])→ (q0, [1, 0])→ (q2, [2, 0])→ (q3, [3, 5])→ (q4, [5, 9])→
(q3, [5, 9])→ (q4, [7, 13])→ (q3, [7, 13])→ (q5, [10, 14])→ (q5, [10, 14]) · · ·

This specification could as the well be expressed in FO thanks to the following formula
φ′ = ∃z1.∃z2.q4(z1) ∧ q3(z2) ∧ succ(z1, z2) ∧ (x1 > 5)(z1)

q0x1 = 0, [1, 0] q2
x1 ≥ 0, [1, 0]

q1

q3
x1 ≥ 2, [1, 5]

q4

x 2
>

1,
[2

, 4
]

q5
x1 ≥ 5∧ x2 < 25, [3, 1]

Figure 4.1: A flat Translating Counter System

In Figure 4.2, we give another simple Translating Counter System with two counters and
with labeling function l such that l(q3) = {p, q} and l(q5) = {p}. We would like to check
for some configuration c0 = (q0, v) with v ∈N2 whether there is some infinite run from c0

for which after some position i, all future even positions j (i.e. i = j mod 2) satisfy that p
holds and the first counter is equal to the second counter.

The specification in BS for this property is presented in Figure 4.3 (as it is usually done,
we indicate by a double circle the accepting states). This property can as well be specified in
linear µ-calculus using as atomic formulas either propositional variables or atomic guards.
The corresponding formula in linear µ-calculus is: µz1.(νz2.(p∧ (x1 − x2 = 0) ∧ XXz2) ∨ Xz1).

Clearly, a position verifying such a property occurs in any run after reaching the control
state q2 with the same value for both counters. Hence, the configurations (q0, v) from which
there exists an infinite run satisfying the above mentioned property have counter values
v ∈N2 verifying the Presburger formula below:

∃y.(((x1 = 3y + x2) ∧ (∀y′.g(x2 + y′, x2 + y′) ∧ g′(x2 + y′, x2 + y′ + 1)))∨

((x2 = 2y + x1) ∧ (∀y′.g(x1 + y′, x1 + y′) ∧ g′(x1 + y′, x1 + y′ + 1))))

The disjunction is designed so that we take into account whether the run visits q1 or q3. The
quantification over the variable y′ corresponds to the infinite number of visits of the loop
passing via q2 and q4.

In our works, we design a global method which allows to compute systematically for
flat Translating Counter System such formulas (even without universal quantifications) for
linear time specification languages.
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q0 q1 q2

q3

q4
>, [0, 0]

>, [0, 0]

>, [0, 0]

>, [−3, 0]

g′(x1, x2), [1, 0]

g(x1, x2), [0, 1]

>, [0, 0]

>, [0,−2]

Figure 4.2: A flat Translating Counter System

start

>

p∧ (x1 − x2 = 0)

>

p∧ (x1 − x2 = 0)

Figure 4.3: A specification in BS
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4.4 a general model-checking algorithm for flat translating counter

systems

In this section, we present the method we have developed in [DDS13] to perform the model-
checking of linear time properties over flat Translating Counter Systems. This method uses
the following formal tools. First, since the considered systems are flat, we are able to propose
a finite set representations of all the runs using structures we call constrained path schemas.
These structures have a specific shape, namely they correspond to a succession of finite
paths and loops and we associate to them a quantifier free Presburger formula specifying
the number of times each loop can be taken to form a run. We observe then that for the
linear time specifications we study,it is possible to bound the number of times each loop is
taken, this method can be seen as an adaptation of the stuttering method proposed for LTL
in [KS05]. The last formal tool we rely on uses the fact that for some equations systems over
the naturals, one can obtain small solutions [BT76]. The combination of these three tools
provides us with a general framework to perform model-checking.

4.4.1 Constrained Path Schemas: a structure to represent runs

In [DDS15] we introduce minimal path schemas for flat Translating Counter Systems. A
path schema P is an ω-regular expression over the alphabet of transitions of the form
p1(l1)∗ · · · pk−1(lk−1)

∗pk(lk)
ω where each pi is a finite path and each li is a simple cycle of

the given flat counter system. Such path schemas have been used as well in [LS04; LS05]
where they were called linear path schemes. A path schema P is said to be minimal when
no transition of the counter system is used more than twice in the expression. Minimal
path schemas enjoy the following properties: for a given flat Translating Counter System
there are a finite (exponential) number of minimal path schemas and the word of transitions
of each run of a flat Translating Counter System is accepted by a minimal path schema.
Furthermore, we can associate to each path schema an arithmetical constraint characterizing
how many times each loop is taken and thus they represent in a finite manner all the
possible runs of a flat counter system.

In [DDS13] we introduce constrained path schemas that are more abstract than path schemas.
A constrained path schema cps over a constrained alphabet (at, agn, Γ) is a pair :

(p1(l1)+ · · · pk−1(lk−1)
+pk(lk)

ω, φ(y1, . . . , yk−1))

where the first component is an ω-regular expression with pi ∈ Γ∗, li ∈ Γ+, and φ(y1, . . . , yk−1)

∈ G({y1, . . . , yk−1}) is a constraint specifying the number of times each loop li in the expres-
sion can be taken. We recall that G({y1, . . . , yk−1}), is made of Boolean combinations of atomic
guards of the form ∑k−1

i=1 ai · yi ∼ b where the ai’s are in Z, b ∈N and ∼∈ {=,≤,≥,<,>}.
Such a constrained path schema defines a language L(cps) ⊆ Γω, that is a subset of the
language defined by the ω-regular expression by taking into account the constraints on the
repetition of the li’s. More specifically, this language is defined as follows:

L(cps) = {p1(l1)n1 · · · (lk−1)
nk−1 pk(lk)

ω ∈ Γω |(n1, . . . , nk−1) |= φ(y1, . . . , yk−1)

and n1, n2, . . . , nk > 0}

Note that the formula φ(y1, . . . , yk−1) used only k− 1 variables because we do not specify the
number of times the last loop lk is taken since it is assumed to be traveled infinitely. The size
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of cps, written size(cps), is equal to 2k + len(p1ł1 · · · pk−1lk−1 pklk) + size(φ(y1, . . . , yk−1)).
In the sequel, whenever we will define a constrained path schema cps over a constrained
alphabet (at, agn, Γ), we will assume w.l.o.g. that the size of Γ is linear in the size of cps (if
it is not the case, one can remove the letters of Γ which do not appear in cps). For a run ρ

from an Affine Counter System and a constrained path schema cps, we say that ρ respects
cps iff there exists a word w ∈ L(cps) such that ρ |= w.

4.4.2 Decision Problems over Constrained Path Schemas

We introduce here three decision problems on constrained path schemas that will pave the
way towards obtaining upper bound for the model-checking of linear time properties over
flat Translating Counter Systems. First, observe that, in general, constrained path schemas
are defined under constrained alphabet (at, agn, Γ) with Γ ⊆ 2at∪agn . This in turn allows us
to define all the decision problems we consider assuming that the specifications are over the
constrained alphabet (at, agn, 2at∪agn) unless stated otherwise.

The first problem amounts to check whether the language defined by a constrained path
schema is empty or not. We call it the consistency problem and define it as follows:

Consistency

Input: A constrained path schema cps;

Question: Do we have L(cps) 6= ∅?

Note that Consistency amounts to check that the second argument of the constrained
path schema is satisfiable. Let us first recall simple consequences of the classical result [Pot91,
Corollary 1] which will be useful to state the complexity of the consistency problem but
also useful later.

Theorem 4.1. [Pot91] There exist polynomials pol1(·), pol2(·) and pol3(·) such that for every
guard g in G(Cn) of size N, we have:

(I) there exist B ⊆ [0, 2pol1(N)]n and P1, . . . , Pα ∈ [0.2pol1(N)]n with α ≤ 2pol2(N) such that for
every y ∈ Nn, y |= g iff there are b ∈ B and a ∈ Nα such that y = b + a[1]P1 + · · ·+
a[α]Pα;

(II) if g is satisfiable, then there is y ∈ [0, 2pol3(N)]n such that y |= g.

Note that (II) is an immediate consequence of (I). Now, we can obtain the NP upper
bound for the consistency problem (the lower bound being obtained directly by reducing
SAT for instance). Indeed, a constrained path schema defines a non-empty language iff its
formula can be satisfied by a tuple in [0, 2pol3(N)]k−1 where N is its size. This allows us to
state the next lemma.

Lemma 4.1. Consistency is NP-complete.

Another problem of interest is the intersection non-emptiness problem for the specification
language L. It is later shown to be related to model-checking problem. This problem is
parameterized by a specification language L over a constrained alphabet (at, agn, Γ) and is
defined as follows:
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Intersection-NonEmptiness(L)

Input: a constrained path schema cps,

and a specification A from L;

Question: Is L(cps) ∩ L(A) 6= ∅ ?

As we shall see, for the specification languages L we consider (first-order logic, Büchi spec-
ifications, etc.), given a path schema cps = (p1(l1)+ · · · pk−1(lk−1)

+pk(lk)
ω, φ(y1, . . . , yk−1))

and a specification A ∈ L it is possible to establish a bound (at most exponential) B such
that whenever L(cps) ∩ L(A) 6= ∅ there is a witness word p1(l1)n1 · · · pk−1(lk−1)

nk−1 pk(lk)
ω

belonging to the intersection and for which each ni is bounded by B. Hence a way to solve
an instance of the intersection non-emptiness problem is to guess n1, . . . , nk−1 bounded by
the corresponding bound B, and then to test that p1(l1)n1 · · · pk−1(lk−1)

nk−1 pk(lk)
ω indeed

belongs to L(cps) ∩ L(A). This motivates the introduction of the last decision problem over
constrained path schemas. This is the membership problem for a specification language L and
constrained path schemas:

Membership(L)

Input: A constrained path schema

cps = (p1(l1)+ · · · pk−1(lk−1)
+pk(lk)

ω, φ(y1, . . . , yk−1)) ,

a specification A from L,

and n1, . . . , nk−1 ∈N ;

Question: Does p1(l1)n1 · · · pk−1(lk−1)
nk−1 pk(lk)

ω ∈ L(cps) ∩ L(A) ?

We point out that here the ni’s are understood to be encoded in binary. Also note that
the problem whether p1(l1)n1 · · · pk−1(lk−1)

nk−1 pk(lk)
ω ∈ L(cps) is easy to solve since it

amounts to check whether (n1, . . . , nk−1) |= φ(y1, . . . , yk−1). Since both (n1, . . . , nk−1) and
φ(y1, . . . , yk−1) are provided as input, the check amounts to perform multiplication, addition
and comparison of polynomially many bits, which can be done in polynomial time.

4.4.3 Reduction from Intersection Non-Emptiness to Membership

We explain here a property regarding a specification language L which allows to reduce
(efficiently) the intersection non-emptiness problem to the membership problem. A spec-
ification language L is said to have an exponentially bounded limiting loops map if there
exists a map fL, which takes as argument a specification in L and a constrained path
schema, and a polynomial pol(·) such that for all A ∈ L and all constrained path schemas
cps = (p1(l1)∗ · · · pk−1(lk−1)

∗pk(lk)
ω, φ(y1, . . . , yk−1)), we have the two following properties:

1. fL(A, cps) is computable and fL(A, cps) ≤ 2pol(size(A)+size(cps));

2. L(cps)∩ L(A) 6= ∅ if and only if there is an infinite word p(l1)n1 · · · lk−1(lk−1)
nk−1 pk(lk)

ω

in L(cps) ∩ L(A) verifying ni ≤ fL(A, cps) for all i ∈ [1, k− 1].

Consequently a way to solve an instance of the intersection non-emptiness problem
for specification languages having an exponentially bounded limiting loops map con-
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sists in guessing n1, . . . , nk−1 bounded by fL(A, cps) and then to test that the word
p(l1)n1 · · · lk−1(lk−1)

nk−1 pk(lk)
ω indeed belongs to L(cps) ∩ L(A). This observation leads

to the following proposition which makes a connection between the Intersection Non-
Emptiness problem and the Membership problem. Before we state the lemma, let us define
two generalised complexity classes. This is necessary since, in the next part we will talk
about a range of complexity classes starting from Ptime to Pspace. We consider C as a class
of Turing machines characterizing a complexity class including Ptime. Also, let NC be its
corresponding non-deterministic class of Turing machines. In other words if we take C to be
equal to the class Ptime (or Pspace) then NC corresponds to exactly the class NP (NPspace

respectively).

Proposition 4.1. [DDS13] If L is a specification language having an exponentially bounded
limiting loops map and such that its membership problem is in C, then its intersection non-Emptiness
problem is in NC.

4.4.4 Reduction From Model-Checking to Intersection Non-Emptiness

We present here the main property that allows us to abstract runs of a flat Translating
Counter Systems into a finite set of constrained path schemas. The main ingredients to
obtain this result are detailed in [DDS15]. The first idea is that since the system is flat, we
can enumerate an exponential number of minimal path schemas, which are a succession of
simple path and simple loops in the counter system where no transition occurs more than
twice. We know then that any run follows necessarily the structure of one of this minimal
path schema. To go from a minimal path schema to a constrained path schema, it remains to
change the visited control state into labels belonging to the set of atomic propositions at and
the set of atomic guards agn. The main difficulty here lies in the fact that when a run goes
through a loop of a minimal path schema, the set of atomic guards that are satisfied might
evolve while taking the loop many times, but as shown in [DDS15, Theorem 7.11], when
dealing with Translating Counter Systems it is possible to unfold (at most a polynomial
number of times) such loops in order to obtain a set of constrained path schemas which
cover all the runs going through a minimal path schema. Such a construction is possible
because in a Translating Counter System, when a loop is taken many times, for each counter
the behavior is monotone and hence one can follow easily how the satisfiability of the
different atomic guards evolve. For instance, if we have a loop that increases a counter x1

and three atomic guards of the form x1 < 2, x1 > 3 and x1 > 5, then we know that these
guards will be verified exactly in these order while taking the loop. This reasonning can
be adapted to more complex guards and to the case where the updates are performed on
many counters. Furthermore a last argument is necessary in order for this unfolding to be
correct. In a Translating Counter System if an atomic guard of the form ∑n

i=1 ai · xi ∼ b is
satisfied in the first and last configurations of a sequence of transition, then by a convexity
argument, this guard is satisfied by all the configurations along the sequence of transitions.
These different properties lead us to the following proposition.

Proposition 4.2. [DDS15; DDS13] Let at be a finite set of atomic propositions, agn be a finite set
of atomic guards from G(Cn), S be a flat Translating Counter System, whose atomic propositions and
atomic guards are from at ∪ agn, and c0 = (q0, v0) be an initial configuration. One can construct in
exponential time a set X of constrained path schemas such that:
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• Each constrained path schema cps in X has an alphabet of the form (at, agn, Γ) (Γ may vary)
and cps is of polynomial size in size(S) + size(c0) + size((at, agn, ∅)).

• Checking whether a constrained path schema belongs to X can be done in polynomial time.

• For every run ρ from c0, there exists a constrained path schema cps in X and a word
w ∈ L(cps) such that ρ |= w.

• For every constrained path schema cps in X and for every w ∈ L(cps), there is a run ρ from
c0 such that ρ |= w.

This last proposition allows to reduce the model-checking problem for flat Translating
Counter System to the intersection non-emptiness problem for specification language L
over (at, agn, 2at∪agn). The idea of this reduction works as follows: given a flat Translating
Counter System S, an initial configuration c0 and a specification A ∈ L, a way to solve the
model-checking problem is to guess in polynomial time a constrained path schema cps

from the set X and then to solve L(cps)∩ L(A) 6= ∅. Proposition 4.2 ensures the correctness
of this non-deterministic procedure and also that the guess and checking of cps can both be
done in polynomial time.

Proposition 4.3. [DDS13] If the intersection non-emptiness problem for a specification language
L is in C, then CS-Model-Checking(L) over flat Translating Counter System is in NC.

4.4.5 General algorithm

By combining the results presented in Proposition 4.1 and Proposition 4.3, we deduce a gen-
eral reduction from the model-checking problem over flat Translating Counter System of a
specification language L to the membership problem for L when the L has an exponentially
bounded limiting loops map.

Theorem 4.2. If L is a linear specification language having an exponentially bounded limiting
loops map and such that its membership problem is in C, then CS-Model-Checking(L) over flat
Translating Counter System is in NC.

Hence the roadmap we follow in [DDS13] to obtain complexity bounds for the model-
checking problem over flat Translating Counter Systems with various specification languages
consist in proving that the considered languages admit an exponentially bounded limiting
loop map and also an associated membership problem either in Ptime or in Pspace.

Finally, from the proofs of Proposition 4.1 and Proposition 4.3 we can extract the general
non-deterministic Algorithm 1 to solve the model-checking problem of flat counter systems
with languages specification having an exponentially bounded limiting loops.

4.4.6 An illustrative example

In this section, we give an example of the concepts and constructions encountered in the
previous sections. In particular we show how a constrained path schema is obtained from
a given flat counter system and a specification as explained in Proposition 4.2. We start
with a flat Translating Counter System S and a formula φ in a specification language L, that
is satisfied by S. We will then follow the Algorithm 1 to guess a path schema cps with a
constrained alphabet, from S such that there is a run ρ in S satisfying φ iff there exists a
word w ∈ L(cps) ∩ L(φ).
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Algorithm 1 Solving CS-Model-Checking(L) for L with an exponentially bounded limit-
ing loop map fL over flat Translating Counter Systems

Input: A flat Translating Counter System S
Input: A configuration c0

Input: A specification A from L
Output: Is there a run ρ in S starting from c0 such that ρ |= A ?

1: Guess cps = (p1(l1)∗ · · · pk−1(lk−1)
∗pk(lk)

ω, φ(y1, . . . , yk−1)) in X [see Proposition 4.2]
2: Guess y ∈ [0, fL(A, cps)]k−1

3: if p1(l1)y[1] · · · pk−1(lk−1)
y[k−1]pk(lk)

ω ∈ L(A) ∩ L(cps) then
4: Return True
5: else
6: Return False
7: end if

q0 q1

>,
[

0
0

]
x1 ≥ 0,

[
1
0

]
q2

>,
[

0
1

]

q3

x1 ≥ 1,
[

3
4

]
x2 ≥ 1,

[
2
1

]

q4

2x1 + x2 > 18,
[

0
0

] >,
[

0
0

]

Figure 4.4: A flat Translating Counter System
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4.4 a general model-checking algorithm for flat translating counter systems

We consider the flat Translating Counter System S of dimension 2 as shown in Figure 4.4
with the initial configuration c0 = (q0, [0, 0]) and the specification ψ = µz1.(νz2.(p ∧ (x1 −
x2 = 0) ∧ XXz2) ∨ Xz1) in linear µ-calculus. The specification essentially states that in a run
there exists a reachable position after which every even position has same value in both
counters and the label p holds. The labelling function associated with S is l(q4) = {p}
and l(q) = {r} for q 6= q4. As explained, we guess then a constrained path schema over a
suitable constrained alphabet from X. For the constrained alphabet, for this case, we get
that at = {p, r} and ag2 = {x1 ≥ 0, x2 ≥ 1, x1 ≥ 1, 2x1 + x2 > 18, x1 − x2 = 0}. It remains to
define Γ in (at, agn, Γ) where Γ ⊆ 2at∪agn . As explained before, our aim is to label each state
in the constrained path schema with the guards and atomic propositions that are satisfied at
this instant. Hence, we include in Γ only those subsets of at ∪ ag2 that are useful in labelling
the states of the constrained path schema. Since the guards satisfied at any state in a loop
in a path schema can change for different iterations, we might have to unfold the loops to
label them with correct set from Γ consistently. To check that any run respecting the labelled
path schema stays in a loop only as long as the counter values are consistent with the labels
of states of the loop, we have a formula φ characterizing the number of times each loop can
be taken. This allows us to remove the guards and updates from the counter systems and
gives us a set X of constrained path schemas as described in Proposition 4.2.

`0 `1 l′1 `2

`3

`′3 `′2

`′′3

`4

Figure 4.5: A Constrained Path Schema for the flat Translating Counter System of Figure 4.4

Figure 4.5 shows the structure of a constrained path schema in X obtained from S. To
obtain this structure we have unfold once the loop on q1 which gives us the path between
`1 and `′1 and we have divided into two loops the loop between the set q2 and q3 to obtain
one loop between `2 and `3 and one between `′2 and `′′′3 . To ease the understanding each
subscript corresponds to the number of the associated control state, for instance `1 and
`′1 are associated with the control state q1. The different subsets of 2at∪ag2 we used in this
representation are described below:

• `0 stands for {r, x1 ≥ 0, x1 − x2 = 0},

• `1 stands for {r, x1 ≥ 0, x1 − x2 = 0},

• `′1 stands for {r, x1 ≥ 0, x1 ≥ 1},

• `2 stands for {r, x1 ≥ 0, x1 ≥ 1, x2 ≥ 1, x1 − x2 = 0},

• `3 stands for {r, x1 ≥ 0, x1 ≥ 1, x2 ≥ 1}

• `′3 stands for {r, x1 ≥ 0, x1 ≥ 1, x2 ≥ 1, 2x1 + x2 > 18},

• `′2 stands for {r, x1 ≥ 0, x1 ≥ 1, x2 ≥ 1, x1 − x2 = 0, 2x1 + x2 > 18},

• `′′′3 stands for {r, x1 ≥ 0, x1 ≥ 1, x2 ≥ 1, 2x1 + x2 > 18},
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verification of linear time properties

• `4 stands for {p, x1 ≥ 0, x1 ≥ 1, x2 ≥ 1, x1 − x2 = 0, 2x1 + x2 > 18}.

As a matter of fact, the constrained alphabet associated to this constrained path schema
is such that Γ = `0 ∪ `1 ∪ `′1 ∪ `2 ∪ `3 ∪ `′2 ∪ `′3 ∪ `′′3 ∪ `4. As noted earlier, Γ is a subset of
2at∪ag2 but is of polynomial in size(S) + size(c0) + size(at, ag2, ∅). It remains to provide
the formula φ(y1, y2) stating how many times the two first loops of this constrained path
schema can be travelled. For example, note that following the updates in S, we must take
the first loop exactly once, to preserve the labels (if we take more times this loop, then the
labels 2x1 + x2 > 18 will in fact become true and we will have to jump to another loop). For
what concerns the second loop it can be taken any number of times and the validity of the
encountered labels will still be ensured. Hence we deduce φ(y1, y2) = y1 = 1∧ y2 ≥ 1 (recall
that in a constrained path schema, by definition any loop is taken at lest once). If we call
cps this constrained path schema, then it remains to check that L(cps) ∩ L(ψ) 6= ∅ (which
here clearly holds).

4.5 results for flat translating counter systems

In [DDS13], by applying the general roadmap given by Propositions 4.1 and 4.3 and
Theorem 4.2, we were able to obtain upper bounds for the model-checking problem over flat
Translating Counter Systems of different specification languages presented in Section 4.1.

The first lower bound we obtained was for the specification language Past LTL in
[DDS12; DDS15]. In this latter work, we did not follow exactly the roadmap provided
in the previous section, because we developed a technique specific to Past LTL, however
it appears that the same results could be obtained by applying Theorem 4.2. First, we
obtain a exponential limiting loops map for Past LTL [DDS15, Theorem 4.1] by showing
that Past LTL enjoys some stuttering invariants. More precisely, given a constrained path
schema cps = (p1(l1)+ · · · pk−1(lk−1)

+pk(lk)
ω, φ(y1, . . . , yk−1)), a formula ψ in Past LTL and

n1, . . . , nk−1 ∈ N, we show that if p1(l1)n1 · · · pk−1(lk−1)
nk−1 pk(lk)

ω |= ψ and if ni is bigger
than 2.td(ψ) + 5 (where td corresponds to the temporal depth of ψ), then we can replace
ni by any n′i bigger than 2.td(ψ) + 5 and the obtained path will still satisfy the formula
ψ. Furthermore, we know from [MS03], that there is Ptime procedure to check the Past
LTL formula ψ over an ultimate periodic path of the form u(w)ω (where u and w are finite
paths). This allows us to conclude that the membership problem for Past LTL is in Ptime.
Using Theorem 4.2, we conclude that the model-checking of Past LTL over flat Translating
Counter System is in NP.

In [DDS12; DDS15] we obtain as well matching lower bounds, for this we provide different
hardness result. First we know from [KF11] that the model-checking of Past LTL over flat
Kripke structures is NP-complete hence this hardness result still holds for flat Translating
Counter System. But we show as well that CS-Reach is NP-hard for flat Translating Counter
System and since we can encode CS-Reach as a model-checking problem using Past LTL as
a specification language, this provides another proof for the lower bound.

Theorem 4.3. [DDS15] CS-Reach and CS-Model-Checking(Past LTL) for flat Translat-
ing Counter Systems are NP-complete.

In [DDS13], we first show that the specification language given by Büchi automata over
the alphabet Σ = 2at∪agn admits an exponentially bounded limiting loops map. For this
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4.5 results for flat translating counter systems

we prove a specific stuttering theorem on Büchi automata and we use the fact that for
a constrained path schema cps = (p1(l1)+ · · · pk−1(lk−1)

+pk(lk)
ω, φ(y1, . . . , yk−1)), the set

Jφ(y1, . . . , yk−1)K is semi-linear and hence somehow ultimately periodic. We furthermore
show that for this language, the membership problem is in Ptime. We obtain this result
by encoding the ultimately periodic words by straight-line programs and by observing
that checking whether an ultimately periodic word given by a straight-line program is
recognized by a Büchi automaton can be done in Ptime [MS03] . This allows us to obtain
results for specification in BS. We recall that specification in BS are automata labelled with
boolean combination over at ∪ agn. Any specification in BS can be translated into a Büchi
automaton over the alphabet 2at∪agn but this might lead to an exponential blowup. However
in our context we can avoid the blowup since we consider constrained path schema over a
constrained alphabet (at, agn, Γ) where the size of Γ is linear in the size of the constrained
path schema. Hence to obtain the desired upper bound we construct from a specification a
BS, a Büchi automaton over the alphabet Γ. Thanks to this trick, we get that BS admits an
exponentially bounded limiting loops map and that its membership problem is in Ptime.
Using Theorem 4.2 we get an upper bound for the model-checking of BS over flat Translating
Counter Systems and the matching lower bound is obtained by reducing the reachability
problem.

Theorem 4.4. [DDS15] CS-Model-Checking(BS) over flat Translating Counter Systems
is NP-complete.

For the specification language ABS and the linear µ-calculus, the treatment is similar. In
fact, we provide a Pspace upper bound for any specification languages having the nice
Büchi property. A specification language L is said to have the nice Büchi property if any
specification A ∈ L can be translated into a Büchi automaton (which accepts the same
language) such that the size of each state of the automaton is polynomial in the size of A and
such that it can be checked in polynomial time if a state is initial and such that the transition
relation can be decided in polynomial space. We prove then that if a specification language
has the nice Büchi property then it has an exponentially bounded limiting loops map (we
use the previous result on Büchi automaton) and its membership problem is in Pspace (to
solve this problem we check on the fly whether an ultimately periodic word is accepted by
the Büchi automaton associated to the specification, which avoids to build the automaton).
Using known results on alternating Büchi automata [MH84] and on linear µ-calculus [Var88],
we deduce that ABS and the linear µ-calculus have the nice Büchi property. To obtain a
matching Pspace lower bound for these two specification languages, we use a reduction
from the nonemptiness of a finite alternating automaton over a singleton alphabet [JS07].

Theorem 4.5. [DDS15] CS-Model-Checking(ABS) and CS-Model-Checking(linear
µ-calculus) over flat Translating Counter Systems are Pspace-complete.

Finally for FO, we show as well by establishing a stuttering theorem that it has an
exponentially bounded limiting loop maps. We know as well that checking whether an
ulimately periodic word satisfies a first order logic formula can be done in Pspace [MS03],
however due to the succinct encoding of the repetitions of loops in the membership problem,
this result will lead to an EXPspace upper bound for this latter problem. We are able to
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obtain a Pspace algorithm by using a technique which avoids to build explicitely the word
corresponding to the unfolding of the constrained path schema. The lower bound for the
model-checking problem for FO comes from the fact that checking whether an utlimately
periodic path satisfies a first order formula is Pspace-hard.

Theorem 4.6. [DDS15] CS-Model-Checking(FO) over flat Translating Counter System
is Pspace-complete.

Note that this last result is one of the most surprising since we know that model-checking
first order logic over Kripke structures is non-elementary [Sto74] and here it is true that
the underlying structure of the considered systems is simple but these systems manipulate
counter whose values can be tested by atomic propositions in the logic.

The Table 4.1 sums up the results we have obtained for the model-checking of flat
Translating Counter System. We point out that most of our lower bounds are true without
considering counters which lead to new results as well for the model-checking of flat
Kripke Structures. In the last column of this table, we recall as well the complexity of the
model-checking problem for the considered specification languages over classical Kripke
structures.

flat T CS flat KS KS

BS NP-complete in Ptime in PTime

[Thm 4.4]

ABS Pspace-complete PSpace-complete PSpace-complete

[Thm 4.5] [Thm 4.5]

Past LTL NP-complete NP-complete Pspace-complete

[Thm 4.3] [Thm 4.3], [KF11] [SC85]

linear µ-calculus Pspace-complete Pspace-complete Pspace-complete

[Thm 4.5] [Thm 4.5] [Var88]

FO Pspace-complete Pspace-complete Non-elementary

[Thm 4.6] [Thm 4.6] [Sto74]

Table 4.1: Complexity of the model-checking problem

4.6 dealing with affine counter systems

As we have explained, for flat Affine Counter Systems with the finite monoid property, it
has been shown in [FL02] that the reachability problem is decidable and in [Dem+10] that
the decidability still hold for the model-checking of an extension of the branching time
temporal logic CTL∗ (which can express properties in LTL). For these two problems, the
resolution technique consists in a reduction to the satisfiability of a Presburger formula
which is exponential in the size of the system, hence this leads to decision procedures in
4EXPtime. In [IS16], inspired by our previous works on flat Translating Counter Systems,
we looked whether these complexity bounds could be improved and provide algorithms
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4.6 dealing with affine counter systems

with much better complexity for the reachability problem and the model-checking of Past
LTL and FO but this time the atomic propositions cannot refer to the values of the counters
in the systems.

4.6.1 Hardness result for the control state reachability

First, we show that the control state reachability problem for flat Affine Counter Systems
with the finite monoid property is ΣP

2 -hard. We recall that ΣP
2 corresponds to the class NPNP

in the polynomial hierarchy, i.e. the problems that can be solved in NP by a Türing machine
using an oracle in NP. To show this result, we perform a reduction from the validity problem
for the ∃∗∀∗ fragment of quantified boolean formulas (Σ2-QBF), which is a well-known
ΣP

2 -complete problem (see for instance [AB09]). We present here the reduction only to give
an hint on what can be achieved with flat Affine Counter Systems with the finite monoid
property. Let us consider a formula φ := ∃y1 . . . ∃yp∀z1 . . . ∀zr . ψ(y1, . . . , yp, z1, . . . , zq),
where {y1, . . . , yp, z1, . . . , zr} are non-empty sets of boolean variables, and ψ is a quantifier-
free boolean formula. We build, in polynomial time, a flat Affine Counter System Sφ, with
the finite monoid property, such that Φ is valid if and only if Sφ has a run reaching the
control state q f which starts in (q0, v0) for a certain valuation v0 of its counters.

q0 q1

In, e1

In, 0

q2

In, e2

In, 0

q3

In, e3

In, 0

· · · qp−1 qp

In, ep

In, 0

q

g1

M, 0

g1

M, 0

q f

g2

In, 0

Figure 4.6: The counter system Sφ corresponding to the Σ2-QBF φ

Let πn denote the n-th prime number, i.e. π1 = 2, π2 = 3, π3 = 5, etc. Formally, Sφ =

(Q, Cn, ∆, l), where Q = {q0, . . . , qp, q, q f }, n = p + ∑r
k=1 πj, and l is the function associating

to each state an empty set of propositions (we do not consider any label here since we
are interesting in the reachability problem). We recall that πk is polynomial in the size of
k, hence n is as well polynomial in the size of φ. The transition rules ∆ are depicted in
Figure 4.6. Intuitively, each existentially quantified boolean variable yi of φ is modeled by
the counter xi in Sφ, each universally quantified variable zj of φ is modeled by the counter
xp+∑

j
k=1 πk

, and the rest are working counters. All counters range over the set {0, 1}, with

the obvious meaning (0 stands for false and 1 for true).
The counter system Sφ works then in two phases. The first phase, corresponding to

transitions q0 → . . . → qp, initialises the counters x1, . . . , xp to some values from the set
{0, 1}, thus mimicking a choice of boolean values for the existentially quantified variables
y1, . . . , yp from φ. We recall that In ∈ Zn×n is the identity matrix, and ek ∈ {0, 1}n is the unit
vector such that ek[i] = 0 if i 6= k and ek[i] = 1.

The second phase checks that φ is valid for each choice of z1, . . . , zr. This is done by
the loop on the control state q, which explores all combinations of 0’s and 1’s for the
counters xp+∑

j
k=1 πk

, corresponding to zj, for all j ∈ [1, r]. To this end, we use the permutation

matrix M, which consists of Ip and r rotation blocks Mπj ∈ {0, 1}πj×πj (see Figure 4.7).
The valuation v0 ensures that the initial value of xp+∑

j
n=1 πn

is 1, for all j ∈ [1, r], the other
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counters being 0 initially. All the guards in the system are set to true except the two guards
g1 and g2. Intuitively, after n iterations of the affine function (M, 0), labeling the loop on q in
SΦ, we have xp+∑

j
k=1 πk

= 1 iff n is a multiple of πj. This fact guarantees that all combinations

of 0’s and 1’s for z1, . . . , zr have been visited in Πq
j=1πj iterations of the cycle. The guard g1,

labeling the cycle, tests that, at each iteration, the formula ψ is satisfied, using a standard
encoding of the formula ψ. Namely, each variable yi is encoded as the term xi ≥ 1 and
each zj is encoded as xp+∑

j
k=1 πk

≥ 1. For instance, the formula y1 ∨ ¬z2 is encoded as

x1 ≥ 1∨ ¬(xp+π1+π2 ≥ 1)) which is equivalent to x1 ≥ 1∨ xp+π1+π2 < 1. Finally, the guard
g2 simply checks that xπ1 = . . . = xπ1+...+πrs = 1, ensuring that the loop has been iterated
sufficiently many times. This construction allows us to deduce that q f is reachable in Sφ if
and only if φ is satisfiable.

Ip
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
Mπ1

0 0
0 0

. . .
0 0 0
0 0 0
0 0 0
Mπr

0
0

p

p
π1

π1

πr

πr





0 1 0 0 0
0 0 1 0

0 0
. . . . . . 0

0 0 0 0 1
1 0 · · · 0 0

0




0
...
0
0
1
...
0
...
0
1


M Mπj v0

Figure 4.7: Matrix M and initial vector v0

Finally, it is clear that the Affine Counter System Sφ is flat and one can easily check that it
has the finite monoid property. This leads to the desire hardness result.

Theorem 4.7. CS-ControlReach and CS-Reach are ΣP
2 -hard for flat Affine Counter

Systems with the finite monoid property.

4.6.2 Bounding the iterations of cycles

We present now the technique that allows us to get upper bound for the reachability problem
when considering flat Affine Counter Systems with the finite monoid property. We use
a methodology similar to the one presented in Section 4.4, however we consider some
restrictions to ease the reasoning. Indeed we assume that the guards in the counter systems
do not have disjunctions. Formally, an Affine Counter Systems S = (Q, Cn, ∆, l) is said to
be disjunction free if for all edges δ ∈ ∆, we have that guard(δ) is a conjunction of atomic
guards of the form ∑n

i=1 ai · xi ∼ b where the ai’s are in Z, b ∈N and ∼∈ {=,≤,≥,<,>}.
Thanks to this restriction, we know that the set of valuations which satisfy a guard is a
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4.6 dealing with affine counter systems

convex set. This allows us to avoid to track in the unfolding of our systems the atomic
guards that are valid as it is done in Theorem 4.2 for Translating Counter Systems.

We know explain the techniques used in [IS16] to solve the reachability problem for a
disjunction free flat Affine Counter Systems with the finite monoid property S = (Q, Cn, ∆, l).
Instead of using constrained path schemas as presented in the previous section, we come
back to using simple path schemas as defined in [DDS15] for our first result on the model-
checking of Past LTL over flat Translating Counter Systems. Formally, a path schema is a
non-empty finite sequence P := u0 . . . uN , where ui is either an edge from ∆ or a simple cycle
in S, such that (1) u0, . . . , uN are pairwise distinct, (2) uN is a simple cycle and (3) u0 . . . uN

corresponds to a path in S. We know from [DDS15] that the number of such path schemas
is finite and can be exponential in the size of S. In order to represent runs of S thanks to
path schema, we have to iterate all the loops a finite number of times and the last one is
taken infinitely. An iterated path schema is hence a pair (P, m), such that P is a path schema,
and m ∈ Nlen(P)−1 is a vector, where m[i + 1] ≥ 1 and m[i + 1] > 1 implies that P(i) is a
cycle for all i ∈ [0, len(P)− 2]. An iterated path schema defines a unique infinite word over
∆, denoted by edges(P, m) = P(0)m[1]P(1)m[2] · · · P(len(P)− 2)m[len(P)−1]P(len(P))ω.

In order to match runs and iterated path schemas, for an infinite run ρ := c0
δ0−→

· · · δm−1−−→ cm
δm−→ · · · of S, we denote by edges(ρ) the infinite word δ0δ1δ2 . . .. Note that

for a run, there could be more than one iterated path schema associated to it because
of the way we could unfold some loops. For this reason we define ips(ρ) = {(P, m) |
(P, m) is an iterated path schema and edges(ρ) = edges(P, m)}. From [DDS15], we know
that if ρ is a run then ips(ρ) 6= ∅, hence the iterated path schemas are suitable to represent
all the runs.

For disjunction free flat Translating Counter Systems, the notion of iterated path schema
suffices to solve reachability. The idea is that for each path schema, one can build a
quantifier free Presburger formula whose free variables correspond to the number of times
each simple cycles can be taken in order to have a run. There are two reasons which make
this construction possible, first since the updates of the counter are translations, it is easy to
know the effect of the iteration of a cycle on each counter, hence one can compute the value
of the counters for each instantiation of the free variables. However this is not enough to
obtain a run, because one needs to ensure that the guards are satisfied along this path in
the counter system. But in a disjunction free system, since the guards define convex sets, it
is enough for each iteration of a cycle to check that the guards along the cycle are satisfied
in the first and in the last iteration. Once this observed, it is easy to build a quantifier free
Presburger formula φ for each path schema P such that m |= φ if and only if there is a run
ρ verifying edges(ρ) = edges(P, m).

When considering flat Affine Counter Systems with the finite monoid property, the used
arguments are similar, but the reasoning needs to be refined because of the fact that the
updates of the counters are much more complex. However we will see that in the end, it
reduces to building a system of equations (similar to a quantifier free Presburger formula)
whose variables correspond to the numbers of times the cycles of a path schema can be
iterated. Thanks to a linear algebra result, we show that such a system of equations, even
if it has an exponential number of lines admits a small solution, this allows to bound the
number of times a loop is taken in an iterated path schema in order to have a witness run.

In the sequel we fix a run ρ of S starting at a configuration c0, and an iterated path
schema (P, m) ∈ ips(ρ). We consider a simple cycle c = δ0 . . . δk−1 of P and we assume
that update(δi) = (Ai, bi) for all i ∈ [0, k− 1]. We consider the affince function fc = (Ac, bc)

57



verification of linear time properties

associated to the entire cycle c, where Ac = Ak−1 · · · A1 ·A0 and bc = ∑k−1
i=0 ∏i+1

j=k−1 Aj · bi.

Since S has the finite monoid property, the set Mc = {Ai
c | i ∈ N} is finite. Then there

exist two integer constants α, β ∈N, such that 0 ≤ α + β ≤ card(Mc) + 1, and Aα
c = Aα+β

c .
Observe that, in this case, we haveMc = {A0

c , . . . , Aα
c , . . . , Aα+β−1

c }.
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Figure 4.8: Behaviour of an execution which iterates α + 3β times the cycle c = δ0 . . . δk−1

We exhibit another run ρ′ of S and an iterated path schema (P, m′) ∈ ips(ρ′), such that
m′[i] ≤ 2Poly(size(S)+size(c0)) for all i ∈ [1, len(P)− 1], for a polynomial function Poly(x).
Because c = δ0 . . . δk−1 is a simple cycle of P and (P, m) ∈ ips(ρ), there exists a (possibly
infinite) contiguous subsequence of ρ, let us call it θ = (q0, v0)

τ0−→ (q1, v1)
τ1−→ . . . that iterates

c, i.e. τi = δ(i mod k), for all i ≥ 0. The main intuition now is that θ can be decomposed into
a prefix of length (α + β)k and k infinite sequences of translations along some effectively
computable vectors w0, . . . , wk−1. More precisely, all valuations vi of θ, for i ≥ (α + β)k, that
are situated at distance βk one from another, differ by exactly the same vector. Figure 4.8
provides a graphical representation of this idea where we show that morally if the cycle is
iterated more that (α + 2β) times then the different encountered configuration differ by a
translation.

As a consequence, we can use a reasoning similar to the one explained above for Translat-
ing Counter System and deduce that the number of times each loop can be iterated to form a
run is the solution of a big system of equations where the number of variables correspond to
the number of loops in P. To show that such a system admits a small solution, we prove the
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following result where ||v|| = maxn
i=1 |v[i]| for v ∈ Zn and ||A|| = maxm

i=1 maxn
j=1 |A[i][j]|

for A ∈ Zm×n. The proof being a consequence of a result from [Sch86, Theorem 17.2].

Proposition 4.4. [IS16] Given A ∈ Zm×n and b ∈ Zm, for n ≥ 2, the system A · x ≤ b has a
solution in Nn if and only if it has a solution such that ||x|| ≤ m2n · ||A||n · ||b||.

The result of this proposition together with the fact that if a cycle in a path schema is
iterated a certain number of times then the effect of the iterations can be simulated by some
translations allow us to bound the number of times cycles are iterated in order to obtain a
run.

Proposition 4.5. [IS16] Let ρ be a run of S starting from c0 and an iterated path schema (P, m) ∈
ips(ρ). There exists a run ρ′ starting from c0 and an iterated path schema (P, m′) ∈ ips(ρ′), such
that ||m′|| ≤ 2Poly(size(S)+size(c0)), for a polynomial function Poly(x).

4.6.3 Upper bounds for the reachability and model-checking problems

Whereas for flat Translating Counter System, the quantifier free Presbruger formula to
characterize the number of cycle iterations in a path schema is of polynomial size in the
size of the path schema, it is not anymore the case here and as a consequence it seems
difficult to use the result of Proposition 4.5 to guess a value for the vector m′ such that
||m′|| ≤ 2Poly(size(S)+size(c0)) and then verify it is a solution of the system of equations
associated to the path schema without building such a system of equations. In fact, we
choose a different path. We use a polynomial-time bounded nondeterministic Turing
machine that guesses an iterated path schema and then a NP oracle to check whether a
guard has been violated. This last step is possible because we guess the position (up to a
certain number of iterations of the last cycle) in the iterated path schema where the guard is
violated and we can compute the counter values at this position in polynomial time using
matrix exponentiation by squaring. This gives us an NPNP algorithm for CS-ControlReach

and since for flat Affine Counter Systems CS-Reach can be reduced to CS-ControlReach,
we have the following result.

Theorem 4.8. [IS16] CS-ControlReach and CS-Reach are in ΣP
2 for disjunction free flat

Affine Counter Systems with the finite monoid property .

Remark. It is true that this upper bound holds only for disjunction free counter systems but we
believe we could extend it to all the class flat Affine Counter Systems with the finite monoid property
by adapting the method presented in [DDS15] to eliminate the disjunctions (see Proposition 4.2).
This would allow us to match the lower bound from Theorem 4.7. However in [IS16] we did not wish
to enter into the heavy details of eliminating disjunctions and our goal was to focus more on the
specific aspects of Affine Counter Systems.

Finally thanks to the stuttering theorem for Past LTL and FO presented in [DDS15] and
[DDS13] and by adapting the method used for reachability, we were able to provide upper
bounds for the model-checking of these two specification languages. Here again to avoid
to track in the unfolding of our systems the atomic guards that are valid, we consider a
restriction of these specification languages that do not use atomic guards from G(Cn). The
specifications are hence built over constrained alphabets of the form (at, ∅, Γ). This means
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that the specifications can only speak about the atomic propositions of the counter systems.
Past LTL and FO both enjoy a stuttering property that state that there is no need to iterate a
cycle too many times to check whether an ultimately periodic word derived from a path
schema satisfies a formula. Actually this bound on the number of iterations to consider
is polynomial in the temporal depth of the formulas for Past LTL and exponential in the
quantifier height of the formulas for FO (this explains the difference in the complexity for
the model-checking problem). This consideration allows us to obtain the following result.

Theorem 4.9. [IS16] For specifications over constrained alphabets of the form (at, ∅, Γ) and
for disjunction free flat Affine Counter System with the finite monoid property, we have that:

1. CS-Model-Checking(Past LTL) is in ΣP
2 .

2. CS-Model-Checking(FO) is Pspace-complete.

Remark. For this latter result, we believe as well that we could remove the restrictions on the
constrained alphabet and on the guards of the considered systems and obtain the same complexity
upper bounds by adapting the results of Proposition 4.2 but this would lead to heavy writing
development without bringing any novelty scientifically speaking.
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V E R I F I C AT I O N O F F R E E Z E LT L

In the previous chapter, we have studied the model-checking problem for some linear time
specification languages over counter systems. The presented languages were extensions of
classical languages to which we added atomic guards over the counter values as atomic
properties, but with such mechanisms it is not possible to compare the values of the counters
between configurations. For instance, none of the presented languages allows to say that
a counter will have the same value infinitely often (without specifying the value) or that
after some time, the value of a counter will change at each step. In order to express such
properties, we need a specification language where the values of the counters at different
positions can be compared: a good candidate is the logic Freeze LTL, which extends the
temporal logic LTL with a storing mechanism to register some data values at some point and
compare them later on. I present in this chapter the results obtained in [DS10; BQS17; BQS19],
where we have investigated the decidability and the complexity of the model-checking
problem of Freeze LTL over some specific classes of counter systems.

The rise of logical formalisms like Freeze LTL comes from the desire to have specification
languages for data words, i.e. words where each position is labelled by a letter from a
finite alphabet and by a datum from an infinite alphabet. Typical examples are runs of
counter systems, timed words accepted by timed automata [AD94] and runs of systems with
unboundedly many parallel components (data are component indices) [BB07]. The extension
to trees makes also sense to model XML documents with values, see e.g. [Boj+09; JL07]. In
order to really speak about data, known logical formalisms for data words/trees contain a
mechanism that stores a value and tests it later against other values, see e.g. [Boj+11; DL09].
However, the satisfiability problem for these logics becomes easily undecidable even when
stored data can be tested only for equality. For instance, first-order logic for data words
restricted to three individual variables is undecidable [Boj+11] and Freeze LTL restricted
to a single register is undecidable over infinite data words [DL09]. By contrast, decidable
fragments for the satisfiability problems have been found in [Boj+11; DLN07; DL09] either
by imposing syntactic restrictions (bound the number of registers, constrain the polarity of
temporal formulas, etc.) or by considering subclasses of data words (finiteness for example).
Similar phenomena occur with metric temporal logics and timed words [OW07]. A key
point for all these logical formalisms is the ability to store a value from an infinite alphabet,
which is a feature also present in models of register automata, see e.g. [BPT03; NSV04;
Seg06]. However, the storing mechanism has a long tradition (apart from its ubiquity in
programming languages) since it appeared for instance in real-time logics [AH89] (the data
are time values) and in so-called hybrid logics (the data are node addresses), see an early
undecidability result with reference pointers in [Gor96].

During my PhD thesis, I have studied the decidability of the model-checking problem
of Freeze LTL and of first-order logic with data equality tests over simple One Counter
Systems [DLS10] and whereas many problems are decidable for this class of systems, it
turned out that these two model-checking problems are undecidable. However we showed
that decidability can be regained by considering deterministic systems (i.e. counter systems
where in any configuration there is only a single possible successive configuration).
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contributions . In [DS10], we have studied the decidability status of the model-
checking problem of Freeze LTL over counter systems and we have found some decidable
classes by restricting either the considered counter systems or the set of Freeze LTL formulas.
In particular we have shown for the flat fragment of Freeze LTL that the model-checking
problem can be reduced to the repeated reachability problem for an extension of counter
systems where parameterised guards are allowed. Parameterised guards consist in com-
parisons with a variable, and in that context the verification problem tries to assign values
to these variables in order to build some runs. Furthermore this reduction preserves the
number of counters. However this translation did not allow us to obtain decidability for
the model-checking of a fragment of flat Freeze LTL over simple One Counter Systems,
the reason being that we did not at this time know how to solve the repeated reachability
problem for simple One Counter Systems with parameterised guards.

Later on, in [Lec+16; Lec+18], Lechner et al show that the repeated reachability problem for
One Counter Systems with parameterised guards is decidable. They provided a reduction
to the satisfiability problem of an existential Presburger formula, whose size is doubly
exponential in the size of the system. This allowed them to obtain a 2NEXPtime upper
bound for the model-checking of flat Freeze LTL over simple One Counter Systems. In
[BQS17; BQS19], we have proved that this problem is in fact NEXPtime-complete using
a different technique based on the simulation of a simple One Counter System with
parameterised guards by an alternating two-way automaton working over infinite words.

5.1 specifying counter systems with freeze ltl

In this section, we present a variant of the temporal logic LTL with registers (also known
as Freeze LTL) in order to reason about runs from counter systems. When dealing with a
single counter as in [DLS10], the datum stored in a register is the current counter value and
equality tests are performed between a register value and the current counter value. But
when taking into consideration general counter systems, a register can store the value of
a counter x and test it later against the value of counter x′ with the possibility that x 6= x′.
Below, we present the syntax and semantics of Freeze LTL in the context of verification of
counter systems.

As for counter systems, we consider AT = {p1, p2, . . .} a countably infinite set of proposi-
tional variables and a natural n ≥ 1 (representing the number of counters in the counter
systems undez analysis), the formulas of the logic Freeze LTL, denoted LTL↓, are defined by
the following grammar:

φ ::= p | ↑c
r | ¬φ | φ ∧ φ | Xφ | φUφ | φRφ | ↓c

r φ

where p ∈ AT, c ∈ [1, n] and r ∈ N \ {0}. Intuitively, the modality ↓c
r is used to store

the value of the counter xc into the register r and the atomic formula ↑c
r holds true if the

value stored in the register r is equal to the current value of the counter xc. We say that an
occurrence of ↑c

r within the scope of some freeze quantifier ↓c
r is bound by it; otherwise it is

free. A sentence is a formula with no free occurrence of any ↑c
r .

In our context models of LTL↓ are runs of Affine Counter Systems of dimension n. To
define the semantics of LTL↓, we consider hence an Affine Counter System S = (Q, Cn, ∆, l)

and an infinite run ρ := (q0, v0)
δ0−→ · · · δm−1−−→ (qm, vm)

δm−→ · · · . We furthermore need to define
a counter valuation f which is a finite partial map from N \ {0} to N (we use it to store the
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contents of the register). In our semantics, whenever f (r) is undefined for r ∈N \ {0}, then
the atomic formula ↑c

r is interpreted as false. Given a position i ∈N, the satisfaction relation
|= is defined as follows:

ρ, i |= f p
def⇔ p ∈ l(qi)

ρ, i |= f ↑c
r

def⇔ r ∈ dom( f ) and f (r) = vi[c]

ρ, i |= f ¬φ
def⇔ ρ, i 6|= f φ

ρ, i |= f φ1 ∧ φ2
def⇔ ρ, i |= f φ1 and ρ, i |= f φ2

ρ, i |= f Xφ
def⇔ ρ, i + 1 |= f φ

ρ, i |= f φ1Uφ2
def⇔ ρ, j |= f φ2 for some i ≤ j

such that ρ, k |= f φ1 for all i ≤ k < j

ρ, i |= f φ1Rφ2
def⇔ ρ, j |= f φ2 for all i ≤ j

or ρ, j |= f φ1 for some i ≤ j and ρ, k |= f φ2 for all i ≤ k ≤ j

ρ, i |= f ↓c
r φ

def⇔ ρ, i |= f [r 7→vi [c]] φ

where f [r 7→ vi(c)] denotes the register valuation equal to f except that the register r
is mapped to vi[c]. In the sequel, we omit the subscript “ f ” in |= f when sentences are
involved.

As for classical linear-time properties, we can define the model-checking problem for
LTL↓ as follows:

CS-Model-Checking(LTL↓)

Input: An Affine Counter System S = (Q, Cn, ∆, l),

an initial configuration c0 ∈ Q×Nn,

and a LTL↓ sentence φ;

Question: Does there exists an infinite run ρ starting at c0 such that ρ, 0 |= φ?

Here again we consider the existential version of model checking, this problem can be
viewed as a variant of satisfiability in which satisfaction of a formula can be only witnessed
within a specific class of data words, namely the runs of a counter system. Note that
results for the universal version of model checking will follow easily from those for the
existential version when considering fragments closed under negation or deterministic
counter machines (for which there will be a unique infinite run).

Example 5.1. Consider the Translating Counter System depicted in Figure 5.1 where we assume
that the set of atomic propositions AT is equal to {q0, q1, q2, q3, q4} and the labelling function l
is such that l(qi) = {qi} for all i ∈ [0, 4]. We could take as a first LTL↓ sentence φ1 = G(↓1

1
(q1 → X(¬q1U(q1∧ ↑2

1)))) (where Gφ is the usual LTL shortcut for ¬(>U¬φ)). This formula checks
whether there is a run of the counter system verifying that at each instant t when the control state
q1 is met then it it will be met again in the future and the first time it will be met again the value
of the second counter will be the same as the value of the first counter at time t. The idea here is to
store the value of the first counter at time t in the first register and later on when q1 is met again
to compare the value of the first register with the value of the second counter. Another interesting
LTL↓ sentence could be the following one: φ2 = G(↓1

1↓2
2 (q4 → XG((¬ ↑1

1) ∧ (¬ ↑2
2)))). This latter
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q0>, [1, 0] q1
x1 > 0, [0, 0]

q2

x1 > 0,

[0, 0]

x1 = 0,

[0, 0]

>,

[−1, 1]

q3

x2 > 0,

[0, 0]

x2 = 0,

[0, 0]

>,

[1,−1]

q4
x1 > 0, [0, 0]

x1 > 0,

[1, 1]

Figure 5.1: A Translating Counter System

formula states that at each instantt when the control state q4 is met, then both counters always
take different values in the sequel of the run than the ones they had at time t . If we take as initial
configuration c0 = (q0, 0) for both these LTL↓ sentences, there is an infinite run in the Translating
Counter System of Figure 5.1 which satisfies it.

5.2 general results

5.2.1 Previously known results

We began to study the decidability status of CS-Model-Checking(LTL↓) over simple One
Counter Systems during my PhD and the results we obtained can be found in [DLS10].
Our first result was negative since we showed that we could reduce the halting problem
for deterministic Minsky machines into this model-checking problem using carefully the
registers of the logic to simulate the values of the counters of the Minsky machine. However,
we were able to regain decidability by considering a specific family of simple One Counter
Systems, namely deterministic simple One Counter Systems. Before to recall the results we
obtained, we provide the formal definition of these systems.

We say that an Affine Counter System S = (Q, Cn, ∆, l) is deterministic if for all config-
urations (q, v) ∈ Q×Nn, there is at most one configuration (q′, v′) ∈ Q×Nn such that
(q, v)→ (q′, v′) (note that in [DS10], the used definition is a bit less restricted since we apply
this restriction only to the configurations reachable from the given initial configuration).
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In [DLS10], we show that the transition system T(S) associated to a deterministic simple
One Counter System S has a very specific shape on which it is possible to reason to solve
the model-checking problem for LTL↓ and we obtained hence the following results.

Theorem 5.1. [DLS10] CS-Model-Checking(LTL↓) is undecidable over simple One Counter
Systems and is Pspace-complete over deterministic simple One Counter Systems (where the updates
are encoded in unary).

As we have already mentioned in the introduction of Chapter 4, in [Dem+10] it is shown
that the model-checking problem for an extension of the branching time temporal logic
CTL∗ where the atomic propositions are Presburger definable sets of configurations is
decidable for flat Affine Counter Systems with the finite monoid property. This extension,
called FOPCTL∗ allows furthermore the use of quantified first order variables to speak
about configurations. The temporal logic LTL↓ can hence be viewed as a fragment of this
latter logic.

Theorem 5.2. [Dem+10] CS-Model-Checking(LTL↓) is decidable over flat Affine Counter Sys-
tems with the finite monoid property.

5.2.2 Negative results for VASS and Reversal-Bounded Counter Systems

In [DS10], we have investigated if for some classes of counter systems for which the model-
checking problem of LTL is decidable, it is the case as well that CS-Model-Checking(LTL↓)
is decidable. In particular, we have studied this problem for VASS and Reversal-Bounded
Counter Systems. We shall now recall the definitions of these classes of systems.

Reversal-Bounded Counter systems were first introduced in [Iba78] by considering the
following restriction: each counter performs only a bounded number of alternations between
increasing and decreasing mode. This class of Counter Systems is particularly interesting
because it has been shown that each Reversal-bounded Counter System has a semilinear
reachability set that can be effectively computed. Furthermore in [FS08], we have extended
this class by showing that the same results could be obtained even if one counts only the
alternations that occur above a given bound. We provide now a formal definition of such
systems.

First we only consider Translating Counter Systems with simple guards, i.e. we assume
that each guard is a boolean combination of atomic guards of the form xi ∼ b where
∼ in{<,≤,=,>,≥} and b ∈N . In fact, it known that comparing the value of the counters
in Reversal-Bounded Counter Systems can break the nice properties of these systems (in
[Iba+02] it is proved that for Reversal-Bounded Counter Systems with equality tests between
distinct counters the reachability problem is undecidable). To such a Translating Counter
System S = (Q, Cn, ∆, l) and a bound b ∈ N, we associate an extended transition system
Tb(S) = (Q×Nn×{dec, inc}n×Nn,→b) where Q×Nn×{dec, inc}n×Nn corresponds
to the set of extended configurations. Intuitively an extended configuration (q, v, mode, ]alt)
records a standard configuration of T(S) (with the pair (q, v)), mode stores the current
mode (either decreasing or increasing) for each counter and ]alt stores the number of
alternations above b for each counter. The transition relation →b can then be defined as
follows. (q, v, mode, ]alt) →b (q′, v′, mode′, ]alt′) if and only if the following conditions
hold:

• (q, v)→ (q′, v′) (in the transition system T(S)), and,
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• for i ∈ [1, n], the relation described by the following table is verified:

v[i]− v′[i] mode[i] mode′[i] v[i] ]alt′[i]

> 0 dec dec − ]alt[i]

> 0 inc dec ≤ b ]alt[i]

> 0 inc dec > b ]alt[i] + 1

< 0 inc inc − ]alt[i]

< 0 dec inc ≤ b ]alt[i]

< 0 dec inc > b ]alt[i] + 1

= 0 dec dec − ]alt[i]

= 0 inc inc − ]alt[i]

As usual, we denote by→∗b the reflexive and transitive closure of→b. Following [FS08],
given b, k ∈N we say that a Translating Counter System with simple guards S = (Q, Cn, ∆, l)
is k-Reversal-b-Bounded from an initial configuration (q0, v0) iff for all (q, v, mode, ]alt) such
that (q0, v0, inc, 0) →∗b (q, v, mode, ]alt), we have ]alt ≤ k (here inc denotes the vector
where all the components are equal to inc). Finally a Translating Counter System with
simple guards is said to be Reversal-Bounded from (q0, v0) iff it is k-Reversal-b-Bounded from
(q0, v0) for some b, k ∈N. Note that the Reversal-Bounded Counter Systems introduced by
Ibarra in [Iba78] are k-Reversal-0-Bounded Counter Systems in our context. We will call
Ibarra-Reversal-Bounded Counter Systems such systems.

We have shown in [FS08] that if S is Reversal-Bounded from (q0, v0), then the set {(q, v) |
(q0, v0)→ (q, v)} is definable in Presburger arithmetic (and a corresponding formula can
be effectively computed). Consequently we have the following result for Reversal-Bounded
Counter System.

Theorem 5.3. [FS08] CS-ControlReach and CS-Reach are decidable for Reversal-Bounded
Counter Systems.

For what concerns the model-checking problem of LTL (which in this chapter can be seen
as the restriction of the logic LTL↓ without the use of ↑c

r or ↓c
r), one classical method,see

e.g. [VW86], consists in building from an LTL formula φ a Büchi automaton Bφ which
recognises exactly the sequences of set of atomic propositions satisfying φ and then to
perform a cross-product with the system under analysis to find an execution satisfying the
formula (we recall that this works in our case since we are looking at the existential version
of the model-checking problem). It is possible to perform such a cross-product with Counter
Systems to obtain a new Counter System for which one wants to check whether there exists
an infinite run which visits infinitely often a control-state. Hence if one can solve this latter
problem then the model-checking of LTL becomes as well decidable (with a possible blowup
in the complexity as the built Büchi automaton can be of exponential size with respect to
the LTL formula). Of course, for this translation to work, the cross product has to preserve
the restrictions that lead to the decidability of the repeated control-state reachability. We
now introduce formally this problem.
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CS-RepControlReach

Input: An Affine Counter System S = (Q, Cn, ∆, l),

an initial configuration (q0, v0) ∈ Q×Nn

and a set of control states F ⊆ Q;

Question: Does there exists an infinite run ρ := (q0, v0)
δ0−→ · · · δm−1−−→ (qm, vm)

δm−→ · · ·
such that the set {i ∈N | qi ∈ F} is infinite?

In [Jan90], it is shown that CS-RepControlReach is decidable for VASS. From [Hab97] we
know that it is even EXPspace-complete and this allows o concluse that the model-checking
problem of LTL over VASS is decidable. For what concerns Reversal-Bounded Counter
Systems a similar decidability result exists. Indeed CS-RepControlReach is shown to be
decidable for k-Reversal-0-bounded in [Iba+00] and the result has then been extended to
Reversal-Bounded Counter Systems in [San08]. However, in [DS10] we show that when we
extend LTL with the freeze quantifier, the model-checking problem over these two classes of
systems becomes undecidable.

To obtain both these negative results, we perform a reduction from the halting problem of
deterministic Minsky machines. For VASS, it suffices to remark that one can simulate zero
tests (present in the Minsky machines but not in VASS) by storing the initial value of the
counters (set to 0) in a register r = 1, thanks to ↓1

r , and then considering only runs where
when we execute in the Minsky machine a zero-test on counter xi, we take the corresponding
transition in the VASS ensuring that the counter is equal to the 0 stored in the register,
thanks to ↑i

r. For the case of Reversal-Bounded Counter Systems, we use a reduction similar
to the one presented in in [Iba+02] in order to prove that in Reversal-Bounded Counter
Systems extended with equality tests between distinct counters, the reachability problem
of a control state is undecidable. Indeed, assuming that the guards of the form x = x′ are
allowed, each counter x from the Minsky machine provides two increasing counters xinc and
xdec, that counts the number of incrementations on x and the number of decrementations,
respectively. Zero-test for x is simulated by a test xinc = xdec, that is logically equivalent to
↓xdec

1 ↑x
inc

1 in LTL↓. These two reductions lead to the following result.

Theorem 5.4. [DS10] CS-Model-Checking(LTL↓) over VASS and Reversal-Bounded Counter
Systems is undecidable.

5.2.3 Regaining decidability

In order to obtain decidability results for some new cases, a first direction, we have fol-
lowed in [DS10], was to check whether the results of Theorem 5.4 still hold in the case
of deterministic systems. Indeed even if we reduce the halting problem for deterministic
Minsky machines, the obtained VASS and Reversal-Bounded Counter Systems we build are
intrinsically non deterministic, because the zero-tests are performed by a transition with
no test and no update and their validity is ensured by the LTL↓ formula. We have in fact
shown that this negative result is not true anymore if we focus on deterministic systems.

To obtain this new result, we introduce a new notion on deterministic Affine Counter
Systems. We say that a deterministic Affine Counter Systems S = (Q, Cn, ∆, l) (with Q ⊆N)
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equipped with an initial configuration c0 ∈ Q×Nn has the PA-property if and only if one
can effectively build a Presburger formula φR(x0, . . . , xn+1) verifying the following assertion:
for all w ∈ Nn+2, we have w |= φR if and only if there exists a run starting from c0 of

the form ρ := c0
δ0−→ · · · δm−1−−→ cm

δm−→ · · · with cw[n+2] = (w[1], v) and v[i] = w[i + 1] for
all i ∈ [1, n]. Since we consider deterministic systems, there is a single run starting from
c0, hence (w[1], v) is the w[n + 2]-th configuration of this run. Consequently the formula
φR(x0, . . . , xn+1) allows to navigate along the run and we can use it to solve the model-
checking problem for LTL↓ by translating this latter problem into the sastisfiability problem
for Presburger arithmetic. The translation is classical for the temporal operators and for
what concerns the freeze operator, we use extra variables to simulate the registers where
the counter values are stored.

Proposition 5.1. [DS10] CS-Model-Checking(LTL↓) is decidable for deterministic Affine Counter
Systems with the PA-property.

The positive result of Theorem 5.1 uses partially the fact that deterministic simple One
Counter Systems have the PA-property. Among the other deterministic Affine Counter
Systems having the PA-property, we have the following classes:

• deterministic flat Affine Counter Systems with the finite monoid property [FL02];

• deterministic Reversal-Bounded Counter Systems [DS10];

• deterministic VASS [DS10].

We get this latter result for deterministic Reversal-Bounded Counter Systems by adding
an extra counter to the system which is increased at each step and which allows to monitor
the position in the execution and then we use the fact these systems have a semi-linear
reachability set. The proof that deterministic VASS have the PA-property is achieved by
showing that for these systems the Karp and Miller tree [KM69] is a single path from which
we can deduce the Presburger formula characterising the property. As a matter of fact, we
come to the following conclusion for deterministic counter systems.

Theorem 5.5. [DS10] CS-Model-Checking(LTL↓) over deterministic VASS and determinis-
tic Reversal-Bounded Counter Systems is decidable.

5.3 model-checking the flat fragment

5.3.1 Flat freeze LTL ([LTL↓)

One of the feature of the logic LTL↓ is the ability to use registers which can potentially store
an infinite number of different values. For instance, the formula G(↓1

1 XG(¬ ↑1
1)) (where Gφ

is the usual LTL shortcut for ¬(>U¬φ) meaning ‘always’ φ) states that the value taken by
the first counter are all distinct and to specify this the formula uses the first register to
remember all the different encountered values. We have observed in [DS10], that if one
restricts the syntax of LTL↓ to limit the number of values that can be stored in registers,
then decidability can be restored. We call such restriction the flat fragment of freeze LTL.
Formally, this fragment, denoted by [LTL↓, contains a formula φ if, for every occurrence of
a subformula ψ = φ1Uφ2 (respectively, ψ = φ2Rφ1) in φ, the following two properties hold:
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• If the occurrence of ψ is in the scope of an even number of negations, then the freeze
quantifier ↓ does not occur in φ1;

• If the occurrence of ψ is in the scope of an odd number of negations, then the freeze
quantifier ↓ does not occur in φ2.

Example 5.2. For instance the formula G(↓1
1 XG(¬ ↑1

1)) which is equivalent to ¬(>U(↓1
1 X(>U ↑1

1)))

does not belong to [LTL↓ but its negation is in this fragment. The following formula (where Fφ is
a shortcut for >Uφ meaning ‘eventually’ φ) belongs to the flat fragment and it states that at some
point the counter 1 takes a value v such that infinitely often counter 2 is equal to v if and only if
infinitely often counter 3 is equal to v. and afterwards there is another position from wich the value
of counter 4 is always v: F ↓1

1 [(GF ↑2
1⇔ GF ↑3

1) ∧ FG ↑4
1].

5.3.2 Counter systems with parameterised guards

In order to show that the model-checking of flat Freeze LTL is decidable for some classes
of Translating Counter Systems, we use a reduction towards the repeated control-state
reachability problem for Translating Counter Systems equipped with parametric variables
to which the counters can be compared to and for which we seek an instantiation allowing
the system to verify a specification. To perform this reduction, we use the previously
discussed fact that formulas of the flat fragment of LTL↓ can only store a finite number
of values in their registers and the parametric variables are hence used to store these
registered values. We can then build from a flat Freeze LTL formula and a Translating
Counter System, a Translating Counter System with parameterised guards with some states
to be visited infinitely often by adapting the classical automata based approach to solve the
model-checking problem for LTL[VW86].

Given the finite set of counters Cn = {x1, x2, . . . , xn} and a finite set of parameters Γ =

{γ1, . . . , γk}, we call a parameterised guard, a boolean combination of atomic guards of the
form xi ∼ b where ∼ in{<,≤,=,>,≥} and b ∈N∪ Γ. We denote then by PG(Cn, Γ) the set
of parameterised guards over Cn and Γ.

Definition 5.1 (Translating Counter System with parameterised guards). For a natural
number n ≥ 1, a Translating Counter System with parameterised guards S of dimension n is a tuple
(Q, Cn, Γ, ∆, l) where:

• Q is a finite set of control states,

• Γ is a finite set of parameters,

• l : Q→ 2AT is a labeling function, and,

• ∆ ⊆ Q× PG(Cn, Γ)×Zn ×Q is a finite set of edges labelled by guards and affine functions
to update the the counter values.

Note that these systems only differ from Translating Counter Systems by the introduction
of parameters in the guards (and the limitation to simple guards). Given a Translating
Counter System with parameterised guards S = (Q, Cn, Γ, ∆, l) and a concretization for the
parameters, given by a function pc : Γ 7→ N, we build the Translating Counter System
Spc = (Q, Cn, ∆′, l) from S by replacing in the guards, each parameter γ ∈ Γ by the natural
pc(γ). We can then redefine the repeated control state reachability problem for these systems
as follows:
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Param-CS-ControlReach

Input: A Translating Counter System with parameterised guards S = (Q, Cn, Γ, ∆, l),

an initial configuration (q0, v0) ∈ Q×Nn

and a control state q f ∈ Q;

Question: Does there exists a concretization pc : Γ 7→N

and v ∈Nn such that (q0, v0)→∗ (q f , v) in T(Spc)?

Param-CS-RepControlReach

Input: A Translating Counter System with parameterised guards S = (Q, Cn, Γ, ∆, l),

an initial configuration (q0, v0) ∈ Q×Nn

and a set of control states F ⊆ Q;

Question: Does there exists a concretization pc : Γ 7→N

and an infinite run ρ := (q0, v0)
δ0−→ · · · δm−1−−→ (qm, vm)

δm−→ · · · in T(Spc)

such that the set {i ∈N | qi ∈ F} is infinite?

We obtain decidability results for these problems for Reversal-Bounded Counter Systems
and for One Counter Systems. We say that a Translating Counter System with parameterised
guards is (Ibarra)-Reversal-Bounded if the Counter System obtained by replacing all the
atomic guards of the form xi ∼ b with b a parameter by xi ≥ 0 is (Ibarra)-Reversal-Bounded.
This latter class of systems has been studied in [Iba+02] where the authors show that the
repeated control state reachability is decidable. To obtain this result, the trick consists in
storing the parameter in some extra-counters that are increased at the beginning of the run
and to show that in an run it is enough to check each parameterised guard a finite number
of times (the atomic guards being convex). This trick allows to reason finally on a classical
Ibarra-Reversal-Bounded Counter Systems and apply known results on it.

Theorem 5.6. [Iba+02] Param-CS-ControlReach and Param-CS-RepControlReach re-
stricted to Ibarra-Reversal-Bounded Counter Systems are decidable.

The proof to obtain these results can certainly be adapted to Reversal-Bounded Counter
Systems, however in [DS10] we did not need this result for the model-checking of the flat
fragment of Freeze LTL as we shall explain later on.

5.3.3 Reduction of the model-checking problem

As we have already mentioned, given a Translating Counter System S with simple guards,
an initial configuration c0 and a formula φ of [LTL↓, we can build a Counter System with
parameterised guards S′ such that there exists an infinite run of S starting at c0 and satisfying
φ if and only if there exists an infinite run in S′ starting at c0 which visits infinitely often a
set of control states. Moreover this translation from S to S′ preserves the number of counter
and the operation (apart from the guards with parameters) performed on the counters and
if S is (Ibarra)-Reversal-Bounded, so is S′.

To build S′, we follow the same path as the automata theoretic approach which allows
to build a Büchi automaton from an LTL formula, with the specificity that we do directly

70



5.3 model-checking the flat fragment

here the cross product with the system S and that we take care of the registers by using
parameters. The detail of the construction can be found in [DS10] and we provide here a
small example to give an intuition on why this translation is feasible.

q0

>, [2, 1]

q1
x1 > 7, [0, 0]

>, [−1, 0]

q2
>, [0, 0]

>, [0, 0]

Figure 5.2: A Reversal-Bounded Translating Counter System

q0

>, [2, 1]

q′0

>, [2, 1]

x2 = γ1, [2, 1]
q1

x1 > 7, [0, 0]

>, [−1, 0]

q1
x1 = γ1, [−1, 0]

>, [−1, 0]

q2
>, [0, 0]

>, [0, 0]

Figure 5.3: A Reversal-Bounded Translating Counter System with parameterised guards

Example 5.3. The Figure 5.2 provides an example of a Translating Counter System of dimension 2
which is Revarsal-Bounded when equipped with the initial configuration c0 = (q0, 0). We consider
then the following [LTL↓ formula φ := F(↓2

1 XF(↑1
1)). It checks whether there is an execution for

which at some point the value of the second counter will eventually (in the strict future) be seen in
the first counter. For this, it stores at some point the value of the second counter in the first register
and it compares later on the value of the first counter with the content of this register. On Figure 5.3,
we provide part of the Translating Counter System with parameterised guards whose role is to check
whether the system of Figure 5.2 has a run starting from c0 satisfying φ. We see that the parameter
γ1 plays in a sense the same role as the first register of φ, the first time it is encountered it is used to
store a value and the next times to test one. The control state q′0 and q′1 are simple copy of q0 and q1

used to non-deterministically chose which value of the counter will be stored or tested. If we take
as a concretization pc(γ1) = 4, we can find in the obtained system an infinite run which visits the
control state q2 infinitely often and deduce that there is a run satisfying φ in the first system.

We obtain then the following result, where CS-Model-Checking([LTL↓) denotes CS-
Model-Checking(LTL↓) restricted to the flat fragment of LTL↓, thanks to this construction.

Proposition 5.2. [DS10] There is an exponential time translation from CS-Model-Checking([LTL↓)
restricted to Translating Counter Systems with simple guards to Param-CS-RepControlReach

and this translation does not change the number of counters, nor the set of non-parameterised
operations on these counters and it preserves the (Ibarra)-Reversal-Boundedness of the input systems.

The exponential blowup comes from the fact that when building the system with parame-
terised guards, each state is labelled with some subformulas of the provided [LTL↓ formula
(the same problem occurs when translating LTL to Büchi automata). Using Theorem 5.6, we
directly deduce our first result for the model-checking of [LTL↓ over Translating Counter
Systems.
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Theorem 5.7. [DS10] CS-Model-Checking([LTL↓) restricted to Ibarra-Reversal-Bounded
Counter Systems is decidable.

We have furthermore shown that the previous result extends to Reversal-Bounded Counter
Systems. One way would have been to adapt the proof of Theorem 5.6, but we have proven
that CS-Model-Checking([LTL↓) restricted to Reversal-Bounded Counter Systems reduced
to CS-Model-Checking([LTL↓) restricted to Ibarra-Reversal-Bounded Counter Systems.
The main idea for this reduction is to encode the counter value in the control state when this
value is below the bound b (for a k-Reversal-b-Bounded Counter System). A similar idea
was indeed used in [FS08] to show that the reachability set of Reversal-Bounded Counter
Systems is semi-linear.

Theorem 5.8. [DS10] CS-Model-Checking([LTL↓) restricted to Reversal-Bounded Counter
Systems is decidable.

5.3.4 The specific case of One Counter Systems

In [DS10], we have as well applied Proposition 5.2 to obtain results for the model-checking
of the flat fragment of Freeze LTL over One Counter Systems. However we were not able to
show that the model-checking of the whole flat fragment is decidable. The reason being
that we relied on existing results presented in [Haa+09], where it is shown that for One
Counter Systems with parameterised updates (i.e. in addition to the normal updates, there
are some actions that can increment or decrement the counter with parameterized integer
constants) the reachability problem of a control state is decidable. It is then easy to use this
result in our context by substituting each test of the form = γ1 by the following sequence of
instructions: decrement by γ1, perform a zero-test and increment by γ1. The same technique
can be used to encode the tests ≥ γ1 except that we do not introduce a zero-test between the
decrementation (in fact we also add a decrementation by 1 and an incrementation by 1) and
the incrementation. However this trick does not allow to deal with parameterised guards
of the form 6= γ1 or < γ1, because the value of the counter cannot be negative. This is the
reason why we could only deduce in this first work the decidability of the model-checking
of [LTL↓ over One Counter Systems for flat formulas where the operator ↑ does not occur in
the scope of an odd number of negations (we called this fragment the positive flat fragment
of LTL↓).

Later on, in [Lec+16; Lec+18], the repeated Control State Problem for One Counter Systems
with parameterised guards was shown to be decidable by a reduction to the satisfiability
problem for quantifier free Presburger arithmetic. Since the built formula has size doubly
exponential in the size of the input this allows to obtain a 2NEXPtime upper bound for
CS-Model-Checking([LTL↓) over One Counter Systems. We will now explain how we
improved this result in [BQS17; BQS19].

The first step of our contribution consists in showing how to encode the behavior of
One Counter Systems with unary encoding of the constants and parameterised guards
into an Alternating Two-Way Automaton. We first recall the definition of this model, the
difference with Alternting Büchi Automaton (see Definition 4.2 in Chapter 4) is that here
the automaton can navigate on the read word in two directions.
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Definition 5.2 (Alternating Two-Way Büchi Automaton). An Alternating Two-Way Büchi
Automaton (A2A) B is a tuple (Q, Σ, δ, q0, F) where:

• Q is a non-empty finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× (Σ ∪ {first?})×B+(Q× {+1, 0,−1}) is the transition relation,

• q0 ∈ Q is the initial state, and,

• F ⊆ Q is the set of accepting states.

A transition (s, test, β) ∈ δ will also be written s test−→ β. The symbols +1, 0 and −1 are
used here to move on the input word and they respectively mean go left, stay and go right
whereas first? is used to test whether the automaton is at the beginning of the word.

A run of B on an ω-word w = a0a1a2 . . . ∈ Σω is a rooted tree (possibly infinite, but
finitely branching) whose vertices are labelled with elements in Q×N. A node with label
(q, n) represents a proof obligation that has to be fulfilled starting from state q and position
n in the input word. The root of a run is labelled by (q0, 0). Moreover, we require that, for
every vertex labelled by (q, n) with k ∈N children labelled by (q1, n1), . . . , (qk, nk), there is
a transition (s, test, β) ∈ δ such that:

(i) the set {(q1, n1 − n), . . . , (qk, nk − n)} ⊆ S× {+1, 0,−1} satisfies β,

(ii) test = first? implies n = 0, and

(iii) test ∈ Σ implies an = test.

Note that, similarly to a One Counter System, a transition with move −1 is blocked if
n = 0, i. e., if B is at the first position of the input word. A run is accepting if every infinite
branch visits some accepting state from F infinitely often. The language of B is defined as
L(B) = {w ∈ Σω | there exists an accepting run of B on w}. The non-emptiness problem for
A2As can then be defined as follows:

A2A-NonEmptiness

Input: An A2A B;

Question: Do we have L(B) 6= ∅?

And here is a result providing an upper bound to solve this latter problem.

Theorem 5.9. [Ser06] A2A-NonEmptiness is in Pspace.

We shall now see how these automata can help us to solve Param-CS-ControlReach

and Param-CS-RepControlReach for One Counter Systems with parameterised guards.
Let S = (Q, Cn, Γ, ∆, l) be a One Counter System with parameterised guards where the
updates are encoded in unary. The main idea proposed in [BQS17; BQS19] is to encode a
concretization pc : Γ 7→ N as a word over the alphabet Σ = Gamma ∪ {�}, where � is a
fresh symbol. A word w = a0a1a2 · · · ∈ Σω, with ai ∈ Σ, is called a parameter word (over
Γ) if a0 = � and, for all γ ∈ Γ, there is exactly one position i ∈ N such that ai = γ. Said
differently, w starts with � and every parameter occurs exactly once. Then, w determines
a concretization pcw : Γ → N as follows: if γ = ai, then pcw(γ) = |a1 · · · ai−1|� where
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|a1 · · · ai−1|� denotes the number of occurrences of � in a1 · · · ai−1 (note that we start at the
second position of w). For example, given Γ = {γ1, γ2, γ3}, both w = �γ2��γ1γ3�ω and
w′ = �γ2��γ3γ1�ω are parameter words with pcw = pcw′ = {γ1 7→ 2, γ2 7→ 0, γ3 7→ 2}.
Note that, for every concretization pc, there is at least one parameter word w such that
pcw = pc. From S, an initial configuration (q0, v0) and a subset of states F ∈ Q, we can
build an A2A that accepts the set of parameter words w such that there exists an execution
in T(Spcw) visiting infinitely often some states of F. The simulation proceeds as follows.
When the One Counter System increments its counter, the A2A moves to the right to the
next occurrence of �. To simulate a decrement, it moves to the left until it encounters the
previous �. To mimic the zero test, it verifies that it is currently on the first position of the
word. Moreover, it will make use of the letters in Γ to simulate parameterised guards. At
the beginning of an execution, the A2A spawns independent copies that check whether
the input word is a valid parameter word and during the execution, each time the system
encounters a guard, the A2A generates a new branch in charge of verifying that the guard
is satisfied.

This construction allows us to reduce in polynomial time Param-CS-ControlReach and
Param-CS-RepControlReach for One Counter Systems to A2A-NonEmptiness and as a
matter of fact to obtain a Pspace upper bound for these two problems. Actually we show
that this upper bound can be improved. For this matter, we use the two following arguments
given a One Counter System with unary encoding of the constants and parameterised
guards S, an initial configuration (q0, v0) and a final state q f :

1. the reduction towards A2A allows us to state that if there exists a concretization
pc : Γ 7→ N and v ∈ Nn such that (q0, v0) →∗ (q f , v) in T(Spc) then the value of the
parameters given by the concretization pc can be bounded by a number exponential
in the size of S as well as the values of the counter in the execution from (q0, v0) to
(q f , v);

2. in [Gal76], it is shown that for a One Counter System given two configurations c
and c′ (where the values of the counters are encoded in binary), one can decide in
polynomial time, whether there exists an execution between these two configurations
whose counter values is strictly between the values of c and c′.

Thanks to these two results, we are able to propose an NP algorithm to solve Param-
CS-ControlReach which works as follows: it first guesses a value for the parameters
in Γ (and store it in a binary encoding), then it guesses some configurations of the run
where the counter takes value of these parameters (it guesses at most |Q| · (|Γ|+ 2) such
configurations, because there is no need to go twice through the same configuration and
the +2 is here to deal with the initial and final counter values) and finally it uses the result
of [Gal76] to verify in polynomial time whether the proposed execution is feasible. Note
that this algorithm allows to deal as well with constants in guards encoded in binary (we
treat them as parameter but instead of guessing their value, we impose them).

Furthermore, we remark that to visit a set of states infinitely often, either an execution sees
infinitely often the same configuration or the counter values always increase, this allows us
to reduce in polynomial time Param-CS-RepControlReach to Param-CS-ControlReach

for One Counter Systems with parameterised guards. Finally the lower bound for these two
problems is obtained from the fact that the non-emptiness problem for nondeterministic
two-way automata over finite words over a unary alphabet and two end-markers is NP-
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complete [Gal76]. This allows us to obtain the following results for simple One Counter
Systems (i.e. where the constants in the updates are encoded in unary)

Theorem 5.10. [BQS17; BQS19]
Param-CS-RepControlReach and Param-CS-ControlReach restricted to One Counter
Systems with updates constants encoded in unary and parameterised guards are NP-complete.
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Figure 5.4: The gadget for simulating an transitions (q, g, z, q′) with binary update z.

Thanks to Proposition 5.2, we can hence deduce that the model-checking of the flat
fragment of freeze LTL restricted to One Counter Systems is in NEXPtime when the updates
constants are encoded in unary. However, we show that the power of LTL allows us to deal
with constants in binary by encoding succinct updates in small LTL formulas. In fact, from
a simple One Counter System S and a formula φ of [LTL↓ we can build another system
S′ which uses only updates of the form +1 or −1 and we can translate the formula φ into
another formula φ′ of [LTL↓ whose in charge to both check that there exists an execution
of S satisfying φ and to select executions of S′ which correspond to executions of φ by
checking that the updates of S are performed correctly in S′. The fundamental key is that
there is no exponential blowup while building the formula φ′. To do this translation, we
encode each transition of S into a some small looping circuit that will be traveled in a
repeated way to simulate the updates. Figure 5.4 provides an example of this translation
where new added propositions are depicted in dashed boxes; states 1, . . . , n, 1′, . . . , n′, where
n = bits(z), represent the bits needed to encode z in binary and at the transitions originating
from n and n′, the counter is updated by +1 or −1, depending on whether z is positive
or negative, respectively. The LTL formula ensures then that the circuit is taken a number
of times corresponding to the update. This construction gives us an upper bound for the
model-checking of [LTL↓ over simple One Counter Systems and the matching lower bound
can be deduced from the complexity of model-checking of LTL over One Counter Systems
with parameterised and succinct updates [Göl+10].

Theorem 5.11. [BQS17; BQS19] CS-Model-Checking([LTL↓) restricted to One Counter
Systems is NEXPtime-complete.
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5.4 summary of the results

The Table 5.1 sums up the results we have obtained for the model-checking of LTL with
the freeze quantifier over Affine Counter Systems. For many cases, we only established
the decidability status and did not mention any complexity bound. Some of them can be
derived by a careful analysis on the existing studies over the considered models.

No restriction Deterministic Flat formulas

VASS Undecidable Decidable Undecidable

[Thm 5.4] [Thm 5.5] [Thm 5.4]

flat ACS Decidable Decidable Decidable

with finite monoid [Thm 5.2] [Thm 5.2] [Thm 5.2]

Reversal-Bounded Undecidable Decidable Decidable

[Thm 5.4] [Thm 5.5] [Thm 5.8]

Pspace-complete

OCS Undecidable (unary encoding) NEXPtime-complete

[Thm 5.1] [Thm 5.1] [Thm 5.11]

Table 5.1: Complexity/Decidability of the model-checking problem of LTL↓ over counter systems
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6
V E R I F I C AT I O N O F B R A N C H I N G T I M E P R O P E RT I E S

After having presented results on the model-checking of linear time properties in the
previous chapters, we present now the works we have done concerning the model-checking
of branching time properties over counter systems. As the considered formalisms allow,
as linear time properties, to express the reachability of a control state, we know that the
model-checking of such properties is undecidable even for simple counter systems equipped
with two counters (as a consequence of Theorem 3.1). However as for the model-checking of
linear time properties, decidability can be regained by using restrictions on the considered
models.

Whereas linear properties consider the different executions individually, branching time
properties allow to reason on the tree of executions of a system and can for instance express
the possibility of a system to be in a state from which two differents successor states can be
reached. As for linear time properties, many specification languages have been proposed
to reason on such trees among which the Computation Tree Logic (CTL), its extension
CTL∗, which allows to express as well linear time properties like fairness, and the modal
µ-calculus, a fixpoint logic with some modal operators to consider one successor or all
the successors of a configuration. For what concerns the algorithmic point of view, when
considering finite state systems, solving the model-checking problem is not harder and
sometimes easier when going from linear time properties to branching time properties. For
instance, as we have seen previously the model-checking of LTL over Kripke Structures is
Pspace-complete [SC85], but the model-checking of CTL over these systems turns to be
in Ptime, the complexity for CTL∗ is as well Pspace-complete and for what concerns the
µ-calculus, there is an algorithm in NP ∩ co-NP.

When taking as models infinite state systems and more specifically counter systems, it
turns out that dealing with branching time formalisms tends to be more complex than
having linear time specifications. For instance for VASS, the model-checking of the linear
time temporal logic LTL is EXPspace-complete but as soon as one uses a branching reasoning
which can express the existence of a successor, the model-checking becomes undecidable.
One can in fact easily simulates the zero tests of deterministic Minsky machines with such
a mechanism. In fact, as said in [EN94], “no natural and useful branching time temporal
logics for Petri nets seems to be decidable”. We shall see here that there are some ways to
overcome this undecidability result for VASS.

For one counter systems, it turns out that model-checking branching time properties is
feasible. It has in fact be shown that the model-checking of CTL properties and of the modal
µ-calculus over one counter systems is Pspace-complete when the updates are encoded in
unary [GL13; Ser06] and is EXPspace-complete with a binary encoding [Göl+10; Ser06].
The results for the modal µ-calculus is obtained by solving two-player games played on
the graph of a one counter system where the winning condition is expressed as a parity
condition. Indeed one can translate the model-checking problem for modal µ-calculus into
this kind of games (see e.g. [GTW02]). We will see that we exploit as well this translation in
the case of VASS.
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In this chapter we focus on developing model-checking algorithms for branching time
temporal logics over VASS and translating counter systems.

contributions . After having described the precise complexity of the model-checking
of linear time properties over flat Translating Counter Systems (see Chapter 4), in [DDS14;
DDS18] we have determined the complexity of the model-checking of the branching time
temporal logic CTL∗ (where arithmetical constraints can be used as atomic propositions).
The decidability of this problem is given in [Dem+10], however the proof is based on a
translation towards an exponential size formula of Presburger arithmetic and we showed
that this blow-up can be avoided.

We have then studied the model-checking of a restricted fragment of the modal µ-calculus
over VASS. As already mentioned, in its full generality when considering VASS, the model-
checking of branching time logics is undecidable, but we succeed in finding an unstudied
fragment for which we can design an algorithm. This work was originally motivated by
the verification a probabilistic version of VASS where some transitions can be taken with
a certain probability. In [AHM07], the authors have studied verification of infinite-state
Markov chains, and they have shown that if the models respect a property which they call
decisiveness, then verification of certain qualitative and quantitative probabilistic properties
can be achieved. In particular they have shown that Probabilistic VASS, which extend VASS
by adding a probabilistic distribution to each set of transitions available in a configuration,
induce decisive Markov chains. In Probabilistic VASS, all choices are hence probabilistic
and we wanted to study whether some properties could be verified if we considered both
probabilistic and non-deterministic choices in VASS obtaining hence infinite-state Markov
Decision Processes. It appears that for finite Markov Decision Processes, the verification
of qualitative properties (which consists in determining whether a properties hold almost
surely or not) can be encoded into verification problems of µ-calculus formulas (interpreted
over the underlying system of the Markov Decision Process) as shown in [Cha+09]. However
such a translation cannot be trivially adapted to any infinite state Markov Decision Process.
Following this line of study, in [Abd+13], we showed that the model-checking of a fragment
of the modal µ-calculus is decidable for VASS, by relying on a classical translation towards
two player games played on the transition system associated to a VASS and in [Abd+16a]
we exploited this decidability result to show that we can verify some qualitative properties
on Markov Decision Processes induced by VASS.

6.1 model-checking of ctl
∗

over flat translating counter systems

In this section, we will present the results we obtained in [DDS14; DDS18] concerning the
model-checking of flat Translating Counter Systems with the branching time logic CTL∗.

6.1.1 Specifying counter systems with CTL∗

As for the linear time temporel logic Past LTL presented in Chapter 4, the branching time
logic we consider can both speak about the atomic propositions labelling each state of a
counter system but as well use some atomic guards to state specification on the counter
values. As for counter systems, we consider C = {x1, x2, . . .} an infinite set of counters
(variables interpreted over non-negative integers), Cn = {x1, x2, . . . , xn} its restriction to n
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counters and AT = {p1, p2, . . .} a countably infinite set of propositional variables. We recall
that we denote by G(Cn) atomic guards of the form ∑n

i=1 ai · xi ∼ b where the ai’s are in Z

and b ∈N.
The formulas of the branching time temporal logic CTL∗ are then given by the following

grammar:

φ ::= p | g | ¬φ | φ ∧ φ | Xφ | φUφ | Eφ

where p belongs to at and g belongs to G(Cn). Our version of CTL∗ is defined as the
standard one, see e.g. [EH86], except that the Kripke structures are replaced by transitions
systems of counter systems and at the atomic level, arithmetical constraints are allowed.
To define the semantics of this logic, we consider hence an Affine Counter System S =

(Q, Cn, ∆, l). We need as well to introduce new notations on runs. We recall that a run ρ

starting from c0 in S is an infinite path in the associated transition system T(S) denoted as:

ρ := c0
δ0−→ · · · δm−1−−→ cm

δm−→ · · ·

where ci ∈ Q ×Nn and δi ∈ ∆ for all i ∈ N and a finite run is defined similarly by
considering finite paths in T(S). We will say that a run is maximal if it is either infinite or
finite and its last configuration cm has no successor configuration (i.e. there does not exist a
configuration c such that cm → c). For such a run and i ≥ 0, we let ρ(i) = ci. Given a finite

run ρ := c0
δ0−→ · · · δm−1−−→ cm

δm−→ cm+1, we write |ρ| = m + 1 its length and if ρ is an infinite
run, we set |ρ| = ω ( for all n ∈ N, we have n ≤ ω). We are now ready to provide the
semantics of CTL∗. In this case, the satisfaction relation |= is defined as follows, where φ is
a CTL∗ formula, ρ is a maximal run of S and i ∈N is a position in the run such that i < |ρ|:

ρ, i |= p
def⇔ ρ(i) = (q, v) and p ∈ l(q)

ρ, i |= g
def⇔ ρ(i) = (q, v) and v |= g

ρ, i |= ¬φ
def⇔ ρ, i 6|= φ

ρ, i |= φ1 ∧ φ2
def⇔ ρ, i |= φ1 and ρ, i |= φ2

ρ, i |= Xφ
def⇔ i + 1 ≤ |ρ| and ρ, i + 1 |= f φ

ρ, i |= φ1Uφ2
def⇔ ρ, j |= φ2 for some i ≤ j ≤ |ρ|

such that ρ, k |= φ1 for all i ≤ k < j

ρ, i |= Eφ
def⇔ there is a maximal run ρ′ such that

ρ′(0) = ρ(i) and ρ′, 0 |= φ

As usual, we use the shortcuts Fφ for the formula >Uφ (meaning ’eventually φ’) and Gφ

for ¬F¬φ (meaning ’always φ’) and Aφ for the formula ¬E¬φ. Given a CTL∗ formula φ, an
Affine Counter System S and a configuration c of S, we write S, c |= φ if and only if there
exists a maximal run ρ starting from c and such that ρ, 0 |= φ.

As linear-time properties, we can define the model-checking problem for CTL∗ as follows:
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CS-Model-Checking(CTL∗)

Input: An Affine Counter System S = (Q, Cn, ∆, l),

an initial configuration c0 ∈ Q×Nn,

and a CTL∗ formula φ;

Question: Do we have S, c0 |= φ?
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Figure 6.1: A flat Translating Counter System

Example 6.1. We consider the flat Translating Counter System S of dimension 2 depicted in Figure
6.1 equipped with the initial configuration c0 = (q0, 0) (and where all the states are labelled with the
empty set). First, if we take a look at the CTL∗ formula φ := AG(EF(x1 ≥ x2)) which specifies, that
in all the runs, from each encountered configuration, there is a run reaching a configuration where
the value of the first counter is bigger than the one of the second counter, then we have S, c0 |= φ.
On the other hand, if we take the CTL∗ formula φ′ := AF(x2 > 15), then S, c0 6|= φ′ because there is
a run starting at c0 which goes to q2 and then loops on q4 for which the value of the second counter
is always strictly smaller than 15.

It is well known that the branching time temporal logic CTL∗ allows to express strictly
more properties than the linear time temporal logic LTL and that if we restrict CTL∗ such
that every modal operator (X or U) must be directly preceded by a path quantifier one, then
we get the branching time temporal logic CTL which is incomparable with LTL (as for
instance you can not express fairness properties in CTL where you need formula of the
shape GFφ), as it is explained in [BK08].
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over flat translating counter systems

6.1.2 Reduction to the satisfiability problem for Presburger arithmetic

Because of the undecidability of the reachability of a control state in translating counter ma-
chines of dimension 2, it is clear that CS-Model-Checking(CTL∗) is undecidable. However,
we know from [Dem+10] that if we restrict ourselves to flat Translating Counter Systems
then decidability can be regained (actually the result still holds for flat Affine Counter Sys-
tems with the finite monoid property). The proof of this later result is based on a reduction
towards the satisfiability problem for Presburger arithmetic. It exploits the fact that in a
flat Counter System, every run can be represented by a minimal path schema of the form
p1(l1)∗ · · · pk−1(lk−1)

∗pk(lk)
ω, where each pi is a finite path and each li is a loop, together

with an arithmetical constraint characterising how many times each loop is taken. It is the
same technique we used for the model-checking of linear time properties (see Section 4.4 of
Chapter 4). In order to perform the model-checking of CTL∗, given a run represented by
such an iterated path schema, it is easy to encode formulas of the form p, g, Xφ and φUφ into
a formula of the Presburger arithmetic. To deal with the path quantifier, i.e. formulas of the
form Eφ, the translation relies on the fact that the number of such minimal path schemas is
finite but exponential, hence it is possible to enumerate the runs thanks to a disjunction. The
main issue is that the cost of this translation, due to the enumeration of the path schemas, is
exponential in the size of the counter system.

In [DDS14; DDS18], we improved this translation by encoding minimal path schemas
and their iterations into some vectors. The trick consists in attributing a number to each
transition and each single loop in the system and then we can check thanks to a formula of
the Presburger arithmetic whether a vector corresponds to the description of a minimal path
schema. Consequently, we can avoid the exponential blowup when building the formula to
encode the model-checking of CTL∗, by replacing the concrete enumeration of all minimal
path schemas by an existential guess of vectors encoding minimal path schemas. This allows
to obtain the following result.

Theorem 6.1. [DDS14; DDS18] There is a logarithmic-space reduction from from CS-Model-
Checking(CTL∗) restricted to flat Translating Counter Systems to the satisfiability problem
for Presburger arithmetic.

6.1.3 Lower bound

We have as well shown in [DDS14; DDS18] that it is possible to reduce the satisfiability
problem for Presburger arithmetic into an instance of CS-Model-Checking(CTL∗) restricted
to flat Translating Counter Systems. We shall explain now briefly this reduction. We consider
a Presburger arithmetic formula ψ := Q1z1Q2z2 . . . Qnznφ′(z1, . . . , zn) in prenex normal form,
i.e. with Q1, Q2, . . . , Qn ∈ {∃, ∀} and φ′ is a quantifier-free formula. From this formula, we
build the flat Translating Counter System Sφ depicted in Figure 6.2 (where the transitions
without label carry the guard > and the update 0).

We then build a formula ψ in CTL∗ whose atomic formulas are among q1, . . . , qn+1

(also abusively understood as control states) such that Sφ, (q0, 0) |= ψ if and only if φ is
satisfiable in Presburger arithmetic. Intuitively, each variable zi from φ is taken care of by
the ith loop (that can only increment the ith counter). Additionally, the quantifications
from φ are simulated in the formula ψ by using EF or AG, depending whether the first-
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Figure 6.2: The flat Translating Counter System Sφ

order quantification is existential or universal. Formally, we introduce the formulas ψi with
i ∈ [1, n + 1] as follows:

ψi :=


EF(qi ∧ ψi+1) i ≤ n and Qi = ∃
AG(¬qi ∨ ψi+1) i ≤ n and Qi = ∀
EFqn+1 i = n + 1

The formula ψ corresponds finally to ψ1. Note that this formula only uses modalities of the
form EF and AG. This construction leads to the following result.

Theorem 6.2. [DDS14; DDS18] There is a logarithmic-space reduction from the satisfiability
problem for Presburger arithmetic to CS-Model-Checking(CTL∗) restricted to flat Translating
Counter Systems.

6.2 model-checking of µ-calculus over vass

In this section, we present the results we obtained concerning the model-checking problem
of the positive µ-calculus over VASS [Abd+13]. We shall see that to solve it, we use a classical
reduction towards two-player games with parity conditions and we show how to solve such
games played on the arena generated by a VASS under some specific conditions (since the
general case is undecidable).

Remark. As we shall see we do not take into account atomic propositions in the rest of this chapter.
Consequently in order to use simpler notations, when dealing with Affine Counter System (and their
various restrictions), we will from now on omit the labelling function which will be of no use.

6.2.1 Specifying counter systems with the positive µ-calculus

In order to simplify the presentation, the version of the µ-calculus we present here uses
the control states of the counter systems as atomic propositions. This logic uses least and
greatest fixpoints on the set of configurations of a counter system and allows two ’temporal’
modalities � and ♦ to speak respectively of all successors of a set of configurations or one
successor. We consider an Affine Counter System S = (Q, Cn, ∆). The syntax of the positive
µ-calculus Lpos

µ is given by the following grammar:

φ ::= q | X | φ ∨ φ | φ ∧ φ | ♦φ | �φ | µX.φ | νX.φ

82



6.2 model-checking of µ-calculus over vass

where q ∈ Q and X belongs to a countable set of variables X .
Free and bound occurences of variables are defined as usual and a formula is said to

be close if it has no free variable. Note that we do not use any negation in our syntax
but negation can be pushed inward by the usual dualities of fixpoints and the negation
of an atomic proposition referring to a control state can be expressed by a disjunction of
propositions referring to all the the other control states.

We now give the interpretation of a formula of Lpos
µ over the Affine Counter System

S = (Q, Cn, ∆). For this matter, we define an environment ρ : X 7→ 2Q×Nn
which associates

to each variable a subset of configurations. Given such an environment ρ, a formula φ in
Lpos

µ characterises a subset of configurations denoted by JφKρ and defined inductively as
follows:

JqKρ = {c ∈ Q×Nn | c = (q, v) for some v ∈Nn}
JXKρ = ρ(X)

Jφ1 ∨ φ2Kρ = Jφ1Kρ ∪ Jφ2Kρ

Jφ1 ∧ φ2Kρ = Jφ1Kρ ∩ Jφ2Kρ

J♦φKρ = {c ∈ Q×Nn | ∃c′ ∈ JφKρ s.t. c→ c′}
J�φKρ = {c ∈ Q×Nn | ∀c′ ∈ Q×Nn.c→ c′ implies c′ ∈ JφKρ}
JµX.φKρ =

⋂{C ⊆ Q×Nn | JφKρ[X←C] ⊆ C}
JνX.φKρ =

⋃{C ⊆ Q×Nn | C ⊆ JφKρ[X←C]}

where the notation ρ[X ← C] is used to define an environment equal to ρ on every variable
except on X where it returns C. We recall that (2Q×Nn

,⊆) is a complete lattice and that for
every φ ∈ Lpos

µ and every environment ρ, the function G : 2Q×Nn 7→ 2Q×Nn
, which associates

to C ⊆ Q×Nn the subset G(C) = JφKρ[X←C], is monotonic. Hence by the Knaster-Tarski
Theorem the set JµX.φKρ, respectively JνX.φKρ, is the least fixpoint, respectively the greatest
fixpoint of G and it is well defined. Finally, we denote by JφK the subset of configurations
JφKρ0 where ρ0 is the environment assigning the empty set to each variable.

We define then the model-checking problem for the positive µ-calculus in our context as
follows:

CS-Model-Checking(Lpos
µ )

Input: An Affine Counter System S = (Q, Cn, ∆),

an initial configuration c0 ∈ Q×Nn,

and a close formula φ ∈ Lpos
µ ;

Question: Do we have c0 ∈ JφK?

As we have said, we can reduce most of the model-checking problems we have considered
so far over counter systems into a model-checking problem for µ-calculus formulas (if we
do note allow atomic propositions over the values of the counters) as this latter logic is
more expressive (except for the logic freeze LTL). Indeed there exists for instance translation
from LTL to Lpos

µ and as well from CTL∗ to Lpos
µ (see e.g. [GTW02]). However in our context,

these translations would not have been very useful, as we do not know for instance whether
CS-Model-Checking(Lpos

µ ) is decidable over flat Translating Counter Systems and even if
it is the case, using such a translation might not have given the nice complexity bounds
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we obtained in the previous sections, as it might have a cost in terms of complexity (the
translation of an LTL formula into Lpos

µ generates for instance an exponential blowup).
Of course, in its full generality, CS-Model-Checking(Lpos

µ ) is undecidable (since as for
the other temporal logics, it can express control state reachability problem). This negative
result still holds even if we consider as models VASS (in fact the model-checkling of CTL is
already undecidable for VASS) but surprisingly we shall see in the rest of this chapter that
we are able to obtain decidability results for a nice fragment of Lpos

µ , which will allow us to
establish results for the verification of Markov Decision Processes induced by VASS.

Example 6.2. If we consider an Affine Counter System S = (Q, Cn, ∆) with a specific state
bad ∈ Q, then one can show that the Lpos

µ formula φ := νX.
∨

q∈Q\{bad} q ∧�X characterizes the
configurations that cannot reach configurations of the shape (bad, v) with v ∈ Nn. Formally, we
have in fact JνX.

∨
q∈Q\{bad} q ∧�XK = {c ∈ Q×Nn |6 ∃v ∈Nn s.t. c→∗ (bad, v)}.

6.2.2 A detour via two-player games

We shall now present two-player games played on the transition system of a VASS and we
shall see how in some cases, we can solve such games and how this allows us to solve CS-
Model-Checking(Lpos

µ ) over VASS under some specific conditions. Note that for the general
definitions, we could have introduced games played on the general transition systems of an
Affine Counter Systems but in [Abd+13] we have studied only such games for VASS.

Definition 6.1 (Parity VASS game). A Parity VASS game G is a tuple (Q, Q1, Q2, Cn, ∆, col) is
a tuple such that :

• (Q, Cn, ∆) is VASS,

• (Q1, Q2) is a partition of the set of states Q, and,

• col : Q 7→N is a coloring function.

The transition system associated to the VASS games will define an arena for a turn based
two players (Player 1 and Player 2) game. From a configuration (q, v) with q ∈ Q1 [resp.
q ∈ Q2], Player 1 [resp. Player 2] will play and propose a successor configuration. The goal
of Player 1 from an initial configuration is to build an infinite execution such that the highest
color that appears infinitely often will be even, this is what is commonly called the parity
condition, and this no matters what are the choices of Player 2. We shall now formalize this
aspect.

Remark. First, we consider only deadlock-free games this means that for each configuration c ∈
Q×Nn there always exists at least one successor configuration c′ ∈ Q×Nn such that c→ c′. This
restriction is here mostly to simplify some aspects and we could deal as well with deadlocks but in that
case we only need to be careful on defining well what it means for Player 1 to win in case a deadlock
is reached. Classcically, the player which is blocked, i.e. when the state of the deadlock-configuration
belongs to him, loses.

We consider a Parity VASS game G = (Q, Q1, Q2, Cn, ∆, col). The definition of configura-
tions, finite and infinite runs are the same ones as for the underlying VASS. For id ∈ {1, 2},
a strategy for Player id is a mapping that assigns to each finite run ρ := c0

δ0−→ · · · δm−1−−→ cm

with cm ∈ Qid ×Nn a configuration c such that cm → c (since G is deadlock-free such a
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configuration always exists). We denote by Σid the set of strategies of Player id. We say that

an infinite run ρ := c0
δ0−→ · · · δm−1−−→ cm · · · respects a strategy π of Player id if and only if

for each i ∈ N if ci ∈ Qid ×Nn then π(c0
δ0−→ · · · δi−1−−→ ci) = ci+1. Given a configuration

c ∈ Q ×Nn, a strategy π1 for Player 1 and a strategy π2 for Player 2, there exists an
unique run starting from c, which respects both π1 and π2, and we shall denote it with
run(c, π1, π2).

To an infinite run ρ := (q0, v0)
δ0−→ · · · δm−1−−→ (qm, vm)

δm−→ · · · , we associate the set of colors
it sees infinitely often defined by InfCol(ρ) = {d ∈ N | {i ∈ N | col(qi) = d} is infinite }.
This allows us to define a parity winning condition for Player 1: we say that a run ρ is a
winning run for Player 1 if and only if max(InfCol(ρ)) is even, otherwise it is winning
for Player 2 (note that since the number of states of a VASS is finite, such a maximum
necessarily exists). Finally, we say that c0 is a winning configuration for Player 1 if and
only if there exists a strategy π1 for Player 1 such that for all strategies π2 of Player 2,
run(c0, π1, π2) is a winning run for Player 1.

Thanks to these previous definitions, we can define the parity game problem for VASS as
follows:

Parity-VASS-Game

Input: A Parity VASS game G,

and an initial configuration c0;

Question: Is c0 a winning configuration for Player 1?

In the sequel, we shall denote by Win(G) the set of winning configurations for Player 1 in
the parity VASS game G.

Parity games in the case of finite state systems have been intensively studied. It was first
shown that solving such games is in NP∩co-NP [EJS93], this result can be obtained by
showing that it is enough to consider memoryless strategies, i.e. strategies whose choice
for the next state only depends on the current state. This result was then refined in [Jur98]
where it is proven that determining whether a state is winning for Player 1 is in UP∩co-UP.
It is still an open problem to know whether this problem can be solved in polynomial time
and many works have been done to propose new approaches (see e.g. [Cze+19a] where the
authors propose a quasi-polynomial time algorithm framework).

When such games are played on an arena defined by an infinite state system, such as
Parity VASS games, determining whether a configuration is winning for Player 1 can be
harder to solve and in fact Parity-VASS-Game is an undecidable problem (we shall explain
in the sequel why). However there are still some specific cases where decidability can be
regained as for instance when the games is played on the transition systems of a one counter
system [Ser06]. Figure 6.3 shows how to reduce the halting problem for deterministic
Minsky machines into a Parity VASS game. On this figure, we have drawn the encoding
of the instructions (1) L : x1 := x1 + 1; goto L′ and (2) J : if x2 = 0 then goto J′ else x2 :=
x2 − 1; goto J′′. On this Figure, we assume that circle states belong to Player 1 and the
square states to Player 2; all the states carry the color 1 except the halting state LF (not
depicted on the Figure) which belongs to Player 1, carries the color 0 and is equipped with
a self-loop not modifying the counter value. Consequently, the only way for Player 1 to win
the game is to reach this state LF. The game fully simulates the Minsky machine and the
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L L′
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J′′
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[0, 0]
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[0, 0]

J′
[0, 0]

Figure 6.3: Encoding the instructions of a Minsky machine in Parity VASS game

trick relies in the encoding of the zero-test: to achieve this we let Player 1 the option to cheat
by choosing the path leading from J to J′ for any counter value, but if it does so when the
counter is not equal to 0 then Player 2 can punish him by bringing the game in the state
where Player 1 loses.

Example 6.3. Figure 6.4 provides an example of a Parity VASS games. Here again states of Player 1
are represented by circles and squares are used to characterize states of Player 2. All states are colors
with 1 except q4 which carries the color 2. The configuration (q0, 0) is winning for Player 1 but the
strategies to follow is a bit involved. In fact, to win, Player 1 has to visit infinitely often state q4, for
this he needs to have a second counter value bigger than 10. He has the ability to increase as much
as he wants this counter in state q0 but then the first counter is increased as well from the same
amount. Furthermore, if the game reaches state q2 with a strictly positive value on the first counter,
then Player 1 loses because Player 2 will have the ability to loop forever between q2 and q3. To avoid
this trap, Player 1 can use the loop on the control state q1 in order to decrease until 0 the value of the
first counter (when in q2 the first counter is equal to 0, Player 2 cannot move to q3). To sum up, a
winning strategy for Player 1 consists in taking 10 times the loop on q0, then moving to state q1 and
taking 10 times the self loop, then moving to the configuration (q2, [0, 10]) from which Player 2 can
only move to (q4, [0, 10]) and finally Player 1 can come back to (q0, 0) and repeat the whole scenario.

Remark. As explained in [Abd+13], Parity VASS games are closely related to Energy Parity Games
[CRR12]. Both these games manipulate integer variables, the difference is that in the latter case, if a
transition makes one of the counter goes to a negative value, it can be taken but in that case Player
2 wins the game. In [CRR12; Cha+10], the authors has proven that the unknown initial credit
problem for Energy Parity Games is coNP-complete. This problem consists in determining given
a control state q0 whether there exists a value for the counters v0 such that (q0, v0) is winning for
Player 1. We shall see that we rely on these results. In [BJK10], the authors have shown that without
any Parity condition they can decide whether a configuration is winning in Energy Games. However
in its full generality deciding whether a configuration is winning in Energy Parity Games was an
open problem and people did not know as well how to compute the sets of winning configurations.
We answered these two questions as we shall see in the next subsection.

86



6.2 model-checking of µ-calculus over vass
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Figure 6.4: A Parity VASS game

We now explain the reason why we present these games. One way to solve the µ-calculus
model-checking problem for a given Kripke structure is to encode the problem into a parity
game [GTW02]. The idea is to construct a parity game whose states are pairs, where the
first component is a state of the structure and the second component is a subformula of the
give µ-calculus formula. States of the form (q,�φ) and (q, φ ∧ ψ) belong to Player 2 and the
other states belong to Player 1. The colors are then assigned to reflect the nesting of least
and greatest fixpoints. In [Abd+13], we have shown that this construction can be adapted to
solve the model-checking problem for Lpos

µ over VASS.

Proposition 6.1. [Abd+13] Let S be a VASS, c0 an initial configuration of S and φ a close formula
of Lpos

µ . One can construct in polynomial time a Parity VASS Game G(S, φ) equipped with an
initial configuration c′0 such that c′0 is a winning configuration for Player 1 in G(S, φ) if and only if
c′0 ∈ JφK.

Since both Parity-VASS-Game and CS-Model-Checking(Lpos
µ ) are undecidable, at the

moment this reduction is not very helpful but we will shall see now how to regain decid-
ability.

6.2.3 Regaining decidability

One aspect that leads to undecidability is the ability of Player 2 in the games to decrease the
counter, in fact if we do not allow the transitions going out of a state of Player 2 to modify
any of the counters valuess then the reduction from the halting problem for deterministic
Minsky machines presented previously cannot be done anymore. Indeed we have proven
that this restriction allows to regain decidability.

We will say that a Parity VASS game G = (Q, Q1, Q2, Cn, ∆, col) is single-sided if and only
if for all transitions (q, true, b, q′) with q ∈ Q2, we have b = 0. For instance, the Parity
VASS game depicted in Figure 6.4 is not single-sided because of the transition between q2

and q3. In [RSB05], the authors shows that one could solve single-sided VASS game with
coverability objectives (the objective for Player 1 boils down to reach a specific state). In
[Abd+13], we have proven that Parity-VASS-Game restricted to single-sided Parity VASS
game is decidable. We shall now give the main ideas to obtain this result.
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We consider a single-sided Parity VASS game G = (Q, Q1, Q2, Cn, ∆, col). In [Abd+13], we
propose an algorithm to compute Win(G). Since this set is potentially infinite, we first need to
show why it can be represented finitely. We define the order �⊆ (Q×Nn)× (Q×Nn) over
configurations of G as follows: (q, v) � (q, v′) if, and only if, q = q′ and v ≤ v′. This order �
is a well-quasi-order and we show that Win(G) is upward-closed for this order. As a matter
of fact, this latter set has a finite number of minimal elements that can be used to represent
it. In order to compute these minimal elements, we reason on abstract configurations. A
partical configuration γ = (q, v) is a pair in Q× (N ∪ {∗})n. The intuition behind such a
partial configuration is that the ∗ corresponds to any counter values that can be instantiated.
We then define the domain of partial configuration dom(γ) = {i ∈ [1, n] | v(i) 6= ∗} and
its concretization as JγK = {(q, v′) ∈ Q ×Nn | v′(i) = v(i) for all i ∈ dom(γ)}. We also
extend the order � to partial configurations as follows: given two partial configurations
γ = (q, v) and γ′ = (q, v′), we have γ � γ′ if and only if q = q′ and dom(γ) = dom(γ′) and
v[i] ≤ v′[i] for all i ∈ dom(γ). Here again � over Q× (N∪ {∗})n is a well-quasi-order. Then
to compute Win(G), we rely on the Valk-Jantzen lemma [VJ85] which can be stated as follows
in our terminology.

Lemma 6.1. [VJ85] Let U ⊆ Q×Nn be an upward-closed set. Then the minimal elements of U
can be computed if and only if we can decide whether JγK∩U 6= ∅ for any partical configuration γ.

We have shown in [Abd+13], that we can encode the Energy Parity games from [CRR12;
Cha+10] in single-sided Parity VASS games and vice-versa. We use then the fact that for
Energy Parity games, the unknown initial credit problem is decidable as a basic block for
our procedure to solve Parity-VASS-Game restricted to single-sided parity VASS game. In
our terms, the unknown initial credit problem can be expressed as follows: given a partial
configuration γ with dom(γ) = ∅, deciding whether JγK ∩ Win(G) is empty or not is a
co-NP-complete problem [CRR12; Cha+10].

In order to compute Win(G), in [Abd+13] we reason by induction on the size of the
domain of abstract configurations k ∈ [0, n] and we show, adapting Lemma 6.1 that we
can compute the minimal elements of the set Wk = {γ ∈ Q× (N ∪ {∗})n | |dom(γ)| =
k and Win(G) ∩ JγK 6= ∅}. We have just explained how to deal with the case k = 0. To show
knowing Wk−1 that we can compute Wk we rely on an adaptation of the classical Karp-Miller
forward analysis algorithm [KM69] to build another Parity VASS game where we only need
to check if there is a winning configuration winning from an initial given control state
(which we can do similarly to the way we treated the case k = 0).

Theorem 6.3. [Abd+13] Parity-VASS-Game restricted to single-sided Parity VASS games is
decidable.

This result was then later refined in [Col+17], where the authors show that Parity-VASS-
Game restricted to single-sided Parity VASS games is a 2EXPtime-complete problem (the
lower bound was established in [CS14]).

Remark. In [RSB05], the authors state that they cannot decide whether Player 1 can win a
single-sided VASS game where the winning conditions is given by a LTL formula, which seems as
contradiction with the previous theorem. In fact usually LTL objectives can be translated into a Parity
condition. This result was shown in a Master thesis and it seems that the main difference with what
we show here is due to who is winning in case the game reaches a deadlock configuration. In our case,
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6.3 qualitative verification of markov decision processes induced by vass

we assume that if we have deadlock , then the player whose state is in the deadlock configuration loses,
and this is why we can get rid of deadlock by encoding this condition adding extra states. But if one
assumes that if a deadlock is met, then Player 1 wins, no matter what is the current configuration,
then we cannot get rid of deadlock (keeping the single-sided condition) and we cannot decide whether
Player 1 can win the game under parity condition.

The result of the previous theorem together with Proposition 6.1 allows us to obtain as
well a decidability result for model-checking of the positive µ-calculus over VASS. First,
we reuse the notion of single-sided over VASS by saying that a VASS S = (Q, Cn, ∆) is
(Q1, Q2)-single-sided (shortly single-sided) if and only if the subset of states Q1 and Q2 forms
a partition of Q such that for all transitions (q, true, b, q′) with q ∈ Q2, we have b = 0. The
guarded fragment Lsv

µ of Lpos
µ for single-sided VASS is then defined by guarding the �

operator with a predicate that enforces the control states to be in Q2. Formally, the syntax
of Lsv

µ is given by the following grammar:

φ ::= q | X | φ ∨ φ | φ ∧ φ | ♦φ | Q2 ∧�φ | µX.φ | νX.φ

where Q2 stands for the formula
∨

q∈Q2
q. The semantics of these formulas interpreted

over a single-sided VASS is then the same as for Lpos
µ and we can define an adequate

model-checking problem.

CS-Model-Checking(Lsv
µ )

Input: A single-sided VASS S = (Q, Cn, ∆),

an initial configuration c0 ∈ Q×Nn,

and a close formula φ ∈ Lsv
µ ;

Question: Do we have c0 ∈ JφK?

In [Abd+13], we have shown that the Parity VASS game G(S, φ) from Proposition 6.1
built from a single-sided VASS S and a formula φ in Lsv

µ is equivalent to a single-sided VASS
game. By combining the results of this latter proposition and of Theorem 6.3, we directly
obtained the next result.

Theorem 6.4. [Abd+13] CS-Model-Checking(Lsv
µ ) is decidable.

Furthermore our proof techniques allows us to state that given a single-sided VASS
S = (Q, Cn, ∆) and a close formula φ ∈ Lsv

µ then the set of configurations JφK is upward-
closed (with respect to the order � we introduced previously) and we can effectively
compute its finite set of minimal elements.

6.3 qualitative verification of markov decision processes induced by vass

We shall now see how the result of Theorem 6.4 allowed us in [Abd+16a] to deduce some
results for the qualitative verification of Markov Decision Processes induced by VASS.

89



verification of branching time properties

6.3.1 Markov Decision Processes

We first recall the definition of Markov Decision Processes which correspond to systems
where one can find both non-determinism and probabilistic choices (they extend in a certain
sense Markov Chains which do not have non-determinism but only a probabilistic transition
relation).

Definition 6.2 (MDP). A Markov Decision Process (MDP) M is a tuple (Γ, Γ1, ΓP,→, prob) where:

• Γ is a countable set of configurations,

• (Γ1, ΓP) is a partition of Γ,

• →⊆ Γ1 × Γ is the non-deterministic transition relation, and,

• prob : ΓP → Dist(Γ1) is a partial function corresponding to the probabilistic transition
relation.

Γ1 are called the configurations of Player 1 and ΓP are the probabilistic configurations.

Remark. Usually, in MDPs, the non-deterministic transition relation comes with an action alphabet,
however for the verification problem we address, such an alphabet is not useful and we choose to
represent MDPs as games played between a non-deterministic player (Player 1) and a probabilistic
player (Player P).

Given two configurations γ, γ′ in Γ, we will sometimes use the notation γ→ γ′ instead
of (γ, γ′) ∈→. We will say that a configuration γ ∈ Γ1 is a deadlock if there does not exist
γ′ ∈ Γ such that γ → γ′. We denote by Γd f

1 the set of configurations of Player 1 which
are not a deadlock (d f stands here for deadlock free). Similarly a configuration γ ∈ ΓP

is a deadlock if prob(γ) is not defined. A finite play of the MDP M is a finite sequence
of configurations γ0γ1 . . . γk such that for all i ∈ [0, k− 1], if γi ∈ Γ1 then γi → γi+1 and
otherwise prob(γi)(γi+1) > 0. We say that such a play starts from the configuration γ0. An
infinite play is an infinite sequence ρ ∈ Γω such that any of its prefix is a finite play. A play is
said to be maximal it is infinite or it is finite and it ends in a deadlock configuration. These
latter plays are called deadlock plays. We denote by Ω the set of maximal plays.

A scheduler in the MDP M = (Γ, Γ1, ΓP,→, prob) is a function π : Γ∗ · Γd f
1 7→ Γ that

assigns to a finite sequence of configurations ending with a configuration in Γd f
1 a successor

configuration such that for all ρ ∈ Γ∗, γ ∈ Γd f
1 and γ′ ∈ Γ, if π(ρ · γ) = γ′ then γ → γ′.

We denote by Π the set of schedulers. Given a scheduler π ∈ Π, we say that a finite play
γ0γ1 . . . γk respects the scheduler π if for all i ∈ [0, k − 1], we have that if γi ∈ Γ1 then
π(γ0 . . . γi) = γi+1. Similarly we say that an infinite play ρ respects the scheduler π if every
finite prefix of ρ respects π. Given an initial configuration γ and a scheduler π, we denote
by Plays(M, γ, π) the set of all maximal plays of M that start from γ and respect π.

Once a starting configuration γ and a scheduler π have been chosen, the MDP is reduced
to an ordinary stochastic process. Given a measurable set of plays A ⊆ Ω, we denote
by P(M, γ, π,A) the probability of event A for the plays in Plays(M, γ, π). The notation
Psup(M, γ,A) will then be used to represent the maximal probability of the event A
starting from γ and is defined as follows: Psup(M, γ,A) = supπ∈Π P(M, γ, π,A). Similarly
Pin f (M, γ,A) = infπ∈Π P(M, γ, π,A).
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6.3 qualitative verification of markov decision processes induced by vass

6.3.2 VASS-MDP and their associated verification problems

A first extension of VASS with probabilities have been proposed in [AHM07], however the
authors proposed a model where only probabilistic choices were allowed. In [Abd+16a], we
extend this latter model with non-deterministic choices made by a controller (or equivalently
Player 1).

Definition 6.3 (VASS-MDP). A VASS-MDP S is a tuple (Q, Q1, QP, Cn, ∆, τ) such that:

• (Q, Cn, ∆) is VASS such that for each (q, true, b, q′) ∈ ∆ with q ∈ QP, we have q′ ∈ Q1,

• (Q1, QP) is a partition of the set of states Q, and,

• τ : ∆ 7→N \ {0} is a function assigning to each transition a weight.

As for MDP, Q1 corresponds to the states of Player 1, whereas QP are the states of
the probabilistic player. A VASS-MDP S = (Q, Q1, QP, Cn, ∆, τ) induces a MDP MS =

(Γ, Γ1, ΓP,→, prob) where:

• Γ = Q×Nn, Γ1 = Q1 ×Nn and ΓP = QP ×Nn,

• for all γ ∈ Γ1 and γ′ ∈ Γ, we have γ→ γ′ if and only if γ 99K γ′ (assuming (Γ, 99K) is
the transition system associated to the VASS (Q, Cn, ∆)),

• for all γ ∈ ΓP , if there exists γ′′ such that γ 99K γ′′ (i.e. γ is not a deadlock configura-

tion) then for γ′ ∈ Γ1 we have prob(γ)(γ′) = τ(δ)/(Σ
{δ′∈∆|∃γ′′.γ

δ′
99Kγ′′}

τ(δ′)) if γ
δ
99K γ′

and prob(γ)(γ′) = 0 otherwise. If there does noet exists γ′′ such that γ 99K γ′′, then
prob(γ) is not defined.

Remark. The definition of the MDP MS is well founded. Indeed, when defining prob(γ)(γ′) in the

case γ 99K γ′, we are sure that {δ′ ∈ ∆ | ∃γ′′.γ
δ′
99K γ′′} is not empty and Σ

{δ′∈∆|∃γ′′.γ
δ′
99Kγ′′}

τ(δ′)

is never equal to 0. Also we could have restricted the weight function τ to be assigned only to
transitions δ such that source(δ) ∈ QP since we do not take into account the weights assigned to the
other transitions.

We say that a VASS-MDP S = (Q, Q1, QP, Cn, ∆, τ) is deadlock-free if and only if in the
transition system (Γ, 99K) associated to the VASS (Q, Cn, ∆), for all configurations γ ∈ Γ,
there exists a configuration γ′ ∈ Γ such γ 99K γ′.

In [Abd+16a], we consider qualitative verification problems for VASS-MDPs, taking as
objectives control-state reachability and repeated control-state reachability. In order to define
formally these problems, we need some preliminary definitions. Let S = (Q, Q1, QP, Cn, ∆, τ)

be a VASS-MDP and MS = (Γ, Γ1, ΓP,→, prob) it associated MDP. For a control state qF ∈ Q,
we denote by JFqFK the set of maximal plays {γ0γ1γ2 . . . ∈ Ω | ∃i.γi = (qF, v) for some v ∈
Nn} for which there exists a reachable configuration having qF as a control state. Sim-
ilarly, we denote by JGFqFK the set of maximal plays {γ0γ1γ2 ∈ Ω . . . | {i ∈ N | γi =

(qF, v) for some v ∈Nn} is infinite} which visits infinitely often the control state qF. Since
MS is a MDP with a countable set of configurations, the set of maximal plays JFqFK and
JGFqFK are measurable (see e.g. [BK08]).

We are now ready to introduce the six problems which all takes as input: :

• A VASS-MDP S = (Q, Q1, QP, Cn, ∆, τ),
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verification of branching time properties

• an initial configuration γ0 ∈ Q×Nn, and,

• a control state qF ∈ Q.

Each problem is declined in two versions, one regarding control-state reachability and
the other one control-state repeated reachability. First we deal with the sure version of these
problems where in a certain sense VASS-MDPs are interpreted as a 2-Player games and no
probability is involved. These systems are then equivalent to VASS games as presented in
the previous sections (with simpler objectives).

Sure-VASS-MDP-Reach

Question: Does there exist a scheduler π such that Plays(MS, γ0, π) ⊆ JFqFK ?

Sure-VASS-MPD-RepReach

Question: Does there exist a scheduler π ∈ Π such that Plays(MS, γo, π) ⊆ JGFqFK ?

Then we will look at the almost-sure version of this problem where we seek for the
existence of a scheduler guaranteeing with probability one the objective.

AlmostSure-VASS-MDP-Reach

Question: Does there exist a scheduler π ∈ Π such that P(MS, γ0, π, JFqFK) = 1 ?

AlmostSure-VASS-MPD-RepReach

Question: Does there exist a scheduler π ∈ Π such that P(MS, γ0, π, JGFqFK) = 1 ?

Finally, we have the limit-sure version of these problems, where we will check whether
the supremum probability on all schedulers for the concerned objective is equal to one.

LimitSure-VASS-MDP-Reach

Question: Does Psup(MS, γ0, JFqFK) = 1 ?

LimitSure-VASS-MPD-RepReach

Question: Does Psup(MS, γ0, JGFqFK) = 1 ?

Note that sure (repeated) reachability implies, almost-sure (repeated) reachability which
implies limit-sure (repeated) reachability but as we shall see the reverse implications are not
true in general.

Example 6.4. We consider the VASS-MDP S depicted on Figure 6.5 for which we suppose that the
weight function assigns 1 to all the transitions. We take as initial configuration γ0 = (q0, 0). First
we see that from γ0, the system can surely reach the state q4, i.e. there exists a scheduler π such that
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Plays(MS, γ0, π) ⊆ JFq4K. In fact, this scheduler takes once the loop between q0 and q1s and then
it moves to the configuration (q2, [1, 0]) belonging to the probabilistic player, who will be force to
move to q4 after taking once the loop with q3 as the value of the first counter will then be 0. From γ0

it is not possibly to reach q7 surely because of the loop between the states q5 and q6 but this state is
almost-surely reachable, as the probability of the infinite path between q5 and q6 is 0. Finally, the
state q10 is neither surely, nor almost-surely reachable, but it can be reached limit-surely, in fact
the more times the scheduler loops between q0 and q1 at the beginning of the play, the higher is the
probability to reach q10 afterwards since higher counter values for the first counter, allows him to
loop more between q8 and q9.

q0 q1

[+3, 0]

[−1,+1]

q2

[−1,−1]

q3

[−1, 0]

[0, 0]

q4

[0, 0]

[0, 0]

q5

[−6, 0]

q6

[0, 0]

[0, 0]

q7

[0, 0]

[0, 0]

q8
[0,−2]

q9

[0, 0] [−1, 0]

[0, 0]

q10

[0, 0]

[0, 0]

Figure 6.5: A VASS-MDP

Similarly to the undecidability result for Parity-VASS-Game, all the problems mentioned
above for VASS-MDPs are undecidable. The reduction from the halting problem of deter-
ministic Minksy machines is basically the same as the one presented on Figure 6.3 but here
we consider that Player 2 is a probabilistic player and all the edges have weight 1. We shall
see now that here as well restricting the ability of one of the players to modify the counters
values allows to regain, in some cases, decidability.
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6.3.3 Verification of P-VASS-MDP

First, we study the case where the Player 1 cannot modify the counters. A VASS-MDP
S = (Q, Q1, QP, Cn, ∆, τ) is a P-VASS-MDP if and only if for all (q, true, b, q′) ∈ ∆ with
q ∈ QP, we have b = 0.

Unlike for single-sided Parity VASS games where we can get rid of deadlocks, we show
in [Abd+16a] that the presence or absence of deadlocks in P-VASS-MDP can change the
decidability status of the qualitative verifications problems. First, note that the reduction
presented in Figure 6.3 does not carry over to P-VASS-MDPs, because in that construction
both players have the ability to change the counter values. However, it is possible to perform
a similar reduction leading to the undecidability of verification problems for P-VASS-MDP,
the main difference being that we crucially exploit the fact that the P-VASS-MDP can
contain deadlocks. We now explain the idea behind our encoding of Minsky machines
into P-VASS-MDPs. Intuitively, Player 1 chooses a transition of the Minsky machine to
simulate, anticipating the modification of the counters values, and Player P is then in charge
of performing the change. If Player 1 chooses a transition with a decrement and the accessed
counter value is actually 0, then Player P will be in a deadlock state and consequently the
desired control state will not be reached. Furthermore, if Player 1 decides to perform a zero-
test when the counter value is strictly positive, then Player P is able to punish this choice
by entering a deadlock state. Player P can test if the value of the counter is strictly greater
than 0 by decrementing it. The encoding of the Minsky machine is presented in Figure 6.6
where we have represented the encoding of the instructions (1) L : x1 := x1 + 1; goto L′

and (2) J : if x2 = 0 then goto J′ else x2 := x2 − 1; goto J′′ and where each edge has a
weight equal to 1. Note that no outgoing edge of Player 1’s states changes the counter values.
Furthermore, we see that Player P reaches the control state if and only if Player 1 chooses
to take a transition with a zero-test when the value of the tested counter is not equal to
0. For the encoding of the instruction J : if x2 = 0 then goto J′ else x2 := x2 − 1; goto J′′,
when Player P is in the control state between J and J′′, it can be in a deadlock if the value of
the second counter is not positive. In the sequel we will see that in P-VASS-MDP without
deadlocks the sure reachability problem becomes decidable.

Theorem 6.5. [Abd+16a] The six following problems:

• Sure-VASS-MDP-Reach and Sure-VASS-MPD-RepReach,

• AlmostSure-VASS-MDP-Reach and AlmostSure-VASS-MPD-RepReach

• LimitSure-VASS-MDP-Reach and LimitSure-VASS-MPD-RepReach

are undecidable for P-VASS-MDP (of dimension 2).

However when considering deadlock-free P-VASS-MDP, we show that the sure (repeated)
reachability problem is decidable. Let S = (Q, Q1, QP, Cn, ∆, τ) be a deadlock-free P-VASS-
MDP and qF ∈ Q a control state. Note that because the P-VASS-MDP S is deadlock free,
the probabilistic Player P cannot take the play to a deadlock to avoid the control state qF,
but he has to deal only with infinite plays. Since S is a P-VASS-MDP, the VASS (Q, Cn, ∆) is
(QP, Q1)-single-sided. We can use Theorem 6.3 to deduce the decidability of sure (repeated)
reachability in deadlock-free P-VASS-MDP.
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L

[0, 0]

L′

[1, 0]

J

[0, 0]
J′′

[0,−1]

[0, 0]

[0,−1]

[0, 0]

J′
[0, 0]

Figure 6.6: Encoding the instructions of a Minsky machine in P-VASS-MDP

Theorem 6.6. [Abd+16a] Sure-VASS-MDP-Reach and Sure-VASS-MPD-RepReach

are decidable for deadlock-free P-VASS-MDP.

For the corresponding almost-sure and limit-sure problems we show undecidability even
when the considered P-VASS-MDP are deadlock free. We rely again on a reduction from
the halting problem for deterministic Minsky machines. The main difference with the
construction used for the proof of Theorem 6.5 lies in the addition of a self-loop in the
encoding of the transitions for decrementing a counter, in order to avoid deadlocks. In
fact, we add a self-loop with no effect on the counters on the probabilistic state between J
and J′′ on Figure 6.6. If Player 1, from a configuration (J, v), chooses the transition which
decrements the second counter, then the probabilistic state with the self-loop is entered, and
there are two possible cases: if v[2] > 0 then the probability of staying forever in this loop is
0 and the probability of eventually going to state J′′ is 1; on the other hand, if v[2] = 0 then
the probability of staying forever in the self-loop is 1, since the other transition that leaves
the state of Player P and which performs the decrement on the second counter effectively is
not available. Note that such a construction does not hold in the case of sure reachability,
because the path that stays forever in the loop is a valid path.

Theorem 6.7. [Abd+16a] The four following problems:

• AlmostSure-VASS-MDP-Reach and AlmostSure-VASS-MPD-RepReach

• LimitSure-VASS-MDP-Reach and LimitSure-VASS-MPD-RepReach
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are undecidable for deadlock-free P-VASS-MDP (of dimension 2).

6.3.4 Verification of 1-VASS-MDP

We shall now see that when we restrict the power of the probabilistic player then different
results can be obtained. A VASS-MDP S = (Q, Q1, QP, Cn, ∆, τ) is a 1-VASS-MDP if and only
if for all (q, true, b, q′) ∈ ∆ with q ∈ Q1, we have b = 0.

First, oppositely to the case of P-VASS-MDP, in [Abd+16a] we show that for 1-VASS-MDP
we can get rid of deadlocks without changing the status of the qualitative verification
problems, consequently we can assume that the considered 1-VASS-MDPsare deadlock free.

For (repeated) sure reachability, similarly to Theorem 6.6 for P-VASS-MDP, we can
consider a 1-VASS-MDP as a single-sided Parity VASS game and obtain decidability using
Theorem 6.3.

Theorem 6.8. [Abd+16a] Sure-VASS-MDP-Reach and Sure-VASS-MPD-RepReach are
decidable for 1-VASS-MDP.

For what concerns the almost sure qualitative problems, we have proven that given a
control state qF we can compute the set of configurations from which it is possible to
almost-surely (repeatedly) reach qF. For this, we rely on the fact that 1-VASS-MDP can
be interpreted as single-sided VASS and that such set of configurations can be express in
Lsv

µ . Theorem 6.4 allows us then to conclude. Note that it is well-known for finite state
systems, that such a set of configurations can be represented by a µ-calculus formula, see e.g.
[Cha+09], but this characterisation does not automatically extend to infinite state systems,
and in our case it works well because the underlying system is a VASS.

We consider a 1-VASS-MDP S = (Q, Q1, QP, Cn, ∆, τ), its associated MDP MS = (Γ, Γ1, ΓP,
→, prob) and a control state qF ∈ Q. We denote by AS− Reach the set {γ ∈ Γ | ∃π ∈
Π.P(MS, γ, π, JFqFK) = 1} of configurations from which qF can almost-surely be reached and
by AS− RepReach the set {γ ∈ Γ | ∃π ∈ Π.P(MS, γ, π, JGFqFK) = 1} the set of configurations
from which we can almost-surely repeatedly reach qF. In [Abd+16a], we have shown the
following equalities:

1. AS− Reach = JνX.µY.(qF ∨ InvPre(X, Y))K

2. AS− RepReach = JνX.InvPre(X, µY.(qF ∨ InvPre(X, Y)))K

where InvPre(X, Y) = (Q1 ∧ ♦(X ∧ Y)) ∨ (♦Y ∧QP ∧�X). Intuitively this latter formula,
which belongs to Lsv

µ for the (Q1, QP)-single-sided VASS (Q, Cn, ∆), represents the set of
configurations from which Player 1 can make a move towards the set represented by the
intersection of the sets characterised by X and Y and Player P can make a move to the set
represented by Y and cannot avoid making a transition to the set represented by X. Note
that to show that these two equalities are correct, we rely on the fact that there exists N ∈N

and a scheduler such that if a configuration belongs to JνX.µY.(qF ∨ InvPre(X, Y))K, then
the state qF can be reached in less than N steps and the probabilistic player cannot bring
the play outside of JνX.µY.(qF ∨ InvPre(X, Y))K. This result relies on the fact that this set
is upward-closed and can be computed by an iterative sequence of upward-closed sets,
each one included in the successor. As a matter of fact, our proof technique does not apply
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for general infinite-state MDPs. Since the formulas to characterise the sets AS− Reach and
AS− RepReach belong to the guarded fragment of the µ-calculus Lsv

µ interpreted over the
(Q1, QP)-single-sided VASS (Q, Cn, ∆), Theorem 6.4 allows us to obtain the following result.

Theorem 6.9. [Abd+16a] AlmostSure-VASS-MDP-Reach and AlmostSure-VASS-MPD-
RepReach are decidable for 1-VASS-MDPs.

Finally, we obtain as well a decidability result for what concerns the limit-sure reachability
problems. For this we rely on a technique similar to the one used to solve single-sided
Parity VASS game relying on a construction inspired by the one proposed by Karp and
Miller [KM69] to build a finite tree representing an abstraction of the possible executions of
a VASS.

Theorem 6.10. [Abd+16a] LimitSure-VASS-MDP-Reach is decidable for 1-VASS-MDPs.

6.3.5 Summary of the results

P-VASS-MDP df P-VASS-MSP 1-VASS-MDP

Sure-VASS-MDP-Reach Undecidable Decidable Decidable

[Thm 6.5] [Thm 6.6] [Thm 6.8]

Sure-VASS-MPD-RepReach Undecidable Decidable Decidable

[Thm 6.5] [Thm 6.6] [Thm 6.8]

AlmostSure-VASS-MDP-Reach Undecidable Undecidable Decidable

[Thm 6.5] [Thm 6.7] [Thm 6.9]

AlmostSure-VASS-MPD-RepReach Undecidable Undecidable Decidable

[Thm 6.5] [Thm 6.7] [Thm 6.9]

LimitSure-VASS-MDP-Reach Undecidable Undecidable Decidable

[Thm 6.5] [Thm 6.7] [Thm 6.10]

LimitSure-VASS-MPD-RepReach Undecidable Undecidable Open

[Thm 6.5] [Thm 6.7]

Table 6.1: Decidability of the qualitative verification of VASS-MDP

The Table 6.1 sums up the results we have obtained in [Abd+16a] for the qualitative
verification of VASS-MDP. In this table, the abbreviation df stands for deadlock-free. For
these problems, we did not establish any complexity bounds. However, some upper bounds
can be retrieve using the fact that solving Parity VASS-game is a 2EXPtime-complete
problem[Col+17]. Since most of the decidable results rely on a translation towards such
games (sometimes through the model-checking of µ-calculus). Finally, the decidability
of the limit sure repeated reachability problem for 1-VASS-MDP is an open problem. A
hint of its difficulty is given by the fact that there are instances where the property holds
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even though a small chance of reaching a deadlock cannot be avoided from any reachable
configuration. In particular, a solution would require an analysis of the long-run behavior of
multi-dimensional random walks induced by probabilistic VASS. However, these may exhibit
strange nonregular behaviours for dimensions greater than 3 as described in [Brá+15].
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Part II

V E R I F I C AT I O N O F PA R A M E T E R I S E D N E T W O R K S

In this part, I will detail the results I obtained on the verification of parameterised
networks. Such systems are defined by a protocol which is executed by all the
entities of a network. The difficulty for the verification process in this setting
lies in the fact that the size of the network is fixed but a priori unknown. Hence
one needs to establish results which are somehow independant of the number
of entities executing the protocol. Most of the studied verification problems
seek for a number of participants which allows to witness a certain property.
Because of the parameterised number of participants, this class of systems can
be seen as well as infinite-state systems; in fact the whole system consists in
the union of each system with a fixed number of participants. The main mean
of communication I considered is inspired by ad-hoc networks and it can be
defined as a broadcast over a graph of connectivity (with or without mobility).
These works lie in the direct continuity of the work of German and Sistla [GS92]
which deals with the verification of networks of entities communicating thanks
to rendez-vous.





7
V E R I F I C AT I O N O F A D H O C N E T W O R K S

In this chapter, we present the model of parameterised networks we have introduced in
[DSZ10]. In this model, we assume that each entities executes the same broadcast protocol,
given by a finite state automaton, and the communication is performed thanks to a broadcast
to the neighbourhood. In order to model this last characteristic, we represent the network as
an undirected graph and an edge between two entities expresses that they are neighbours
in the network. In this first model, we furthermore impose that an entity which can receive
a broadcast, cannot ignore it if it is performed, however it is not mandatory that an entity
has to always be able to receive a broadcast.

Our model is inspired by real Ad Hoc Networks where the communication is performed
by radio transmission and all the entities in the range of an emitter receive the emitted
message. We assume in this chapter that the communication topology does not evolve
during time, in other words, all the entities always have the same neighbours and during
an execution, new entities cannot appear in the network and no entity can disappear.
Furthermore this model was inspired by the ω-calculus [SRS09], a formal model of Ad
Hoc Networks with selective broadcast and spontaneous movement. In the ω-calculus
a configuration consists of a finite set of processes. Each process has a local state and
an interface containing a finite set of group names. A group name represents a possible
communication link with other processes in the network. From an abstract point of view,
the structure underlying a configuration of the ω-calculus is a finite graph that defines the
communication topology of a network. A node in the graph represents the current state
of an individual process. There exists an edge between two nodes if the corresponding
interfaces share a common group name. Adjacent nodes are called single-hop neighbours.
Processes communicate through selective broadcast. Specifically, a broadcast message can be
received only by the set of single-hop neighbours of the emitter. Even if we do not consider
here mobility, we shall see in the next chapter how we can add this feature in our model
and as well that it has important consequences for the verification process.

When the number of nodes is fixed a priori, formal models of Ad Hoc Networks like those
provided by the ω-calculus can be verified by using finite-state model checking or constraint-
based model-checking as done in [SRS09]. We study here the case in which networks have
arbitrary size and possibly unknown topology and for this matter there is a need for new
methods. Studying such parameterised systems is however not a new thematic and another
work from which we had inspiration is the seminal paper by German and Sistla [GS92]
where the authors study parameterised networks in which the nodes communicate thanks
to pairwise rendez-vous. Later on in [EFM99], networks with broadcast communication have
been studied, the main difference with our method being the absence of communication
topology, i.e. when a broadcast is performed all the entities in the networks that can receive
it performs the reception. This work can be retrieved in our formalisation by restricting
our systems to communication topologies which correspond to complete graphs (in which
between each pair of nodes there is an edge).
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contributions . In [DSZ10], we have first introduced the model of parameterised Ad
Hoc Networks and we have studied two main reachability questions on this model. The first
one asks given a broadcast protocol whether there is a communication topology for which
we can find an execution leading an entity to a specific control state. The second one can
be formulated similarly, except that it asks whether a configuration can be reached where
all the entities are in a specific control state. The difficulty in these problems lies in finding
the initial communication topology. In fact, when a topology is provided, since it fixes both
the number of entities and the way they communicate with each other, the verification
boils down to the analysis of a finite state system. Unfortunately, we showed that the two
considered problems are undecidable. However we have shown that decidability can be
regained for the first above mentioned problem by restricting the allowed communication
topologies. We obtained a first decidability result in [DSZ10] which we refined later on in
[DSZ11]. To obtain these two results, we relies on the theory of well-structured transition
systems [Abd+96; Abd+00; FS01] and to apply this theory we found in [DSZ11] a new
class of graphs equipped with a well-quasi-order which extends in a significant way other
well-known well-quasi-orders on graphs.

In [Abd+11; Abd+16b], we proposed an extension of our model of parameterised Ad
Hoc Networks by making our protocols time sensitive. For this, we equipped each entity
with a set of clocks, the same way clocks are added to finite state automata to obtain
timed automata [AD94]; each clock evolves at the same time rate and each entity can
compare the values of its clocks and reset them. We followed here the same path as in [AJ03]
where the authors have extended the model of parameterised networks with rendez-vous
communication proposed in [GS92] by adding clocks to the considered protocols. We have
shown that we can in fact use similar techniques developed for timed networks with rendez-
vous to obtain new results on the verification of timed Ad Hoc Networks. The verification
problem we studied in this work consists again in seeking for an initial configuration from
which another configuration exhibiting a specific control state can be reached. Since this
model is richer than the model without time constraints, this problem is as well undecidable
for timed Ad Hoc Networks and we provided here again some restrictions (on the shape
of the communication toplogies and the number of allowed clocks) allowing to regain
decidability.

7.1 broadcast protocols and ad hoc networks

7.1.1 Broadcast protocols

We consider networks of entities, that we will call equivalently nodes or processes, which all
execute the same protocol given by a finite state system. We hence begin by providing the
definition of such protocols. Given a finite alphabet of messages M, we use the notations
BAct(M) to represent the set of ’Broadcast Actions’ corresponding to {!!m, ??m | m ∈
M} ∪ {τ}. Intuitively, τ is used for an internal action of an entity, i.e. an action that is done
independently, !!m corresponds to the emission of the message m and ??m corresponds to
the reception of the message m.

Definition 7.1 (Broadcast Protocol). A Broadcast Protocol BP is a tuple (Q, M, ∆, qin) where:

• Q is a finite set of control states,

• M is a finite alphabet of messages,
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• ∆ ⊆ Q× BAct(M)×Q is a finite set of edges labelled by broadcast actions, and,

• qin ∈ Q is the initial control state.

qin q2
!!m1 q f

??m3

q1

!!m
2 ??m3

q3

??m1
q4

??m2
!!m

3

Figure 7.1: A Broadcast Protocol

Figure 7.1 provides an example of a Broadcast Protocol with six control states and three
types of messages that can be broadcasted (m1, m2 and m3).

7.1.2 Ad Hoc Network induced by a protocol

We how now present the ad hoc networks configurations. In these networks, we assume
that each entity can only communicate with its neighbours and each entity is in a state
of the considered broadcast protocol. Hence, we use labeled graphs to represent such
configurations where the nodes/vertices of the graph correspond to the entities of the
network and an edge between two nodes expresses the fact that the nodes are neighbours.

Definition 7.2 (Q-graphs). Given a set of elements Q, a Q-graph is a labelled undirected graph
γ = (V, E, L) where:

• V is a finite set of nodes,

• E ⊆ V ×V \ {(v, v) | v ∈ V} is a finite set of edges such that (u, v) ∈ E implies (v, u) ∈ E,
and,

• L : V 7→ Q is a labeling function.

We use L(γ) to denote the set {q ∈ Q | ∃v ∈ V.L(v) = q} of labels present in the Q-graph
γ. Given two nodes u, v ∈ V, we will write u ∼γ v if and only if we have (u, v) ∈ E (the
nodes u and v are adjacent in γ) and we might omit γ and write simply u ∼ v when the
considered Q-graph is clear from the context.

We are now ready to move to the definition of an Ad Hoc Networks induced by a
broadcast protocol BP = (Q, M, ∆, qin). It is given in term of a transition system. The set
of configurations, denoted by Γ, is the set of Q-graphs and the set of initial configurations
Γin ⊆ Γ is the set of {qin} − graphs. On Figure 7.2, a configuration with six nodes for the
broadcast protocol of Figure 7.1 is depicted.

Given a Q-graph γ = (V, E, L), a node v ∈ V and a message m ∈ Σ, we define the set
Rγ

m(v) = {v′ ∈ V | v ∼ v′ and ∃q′ ∈ Q.(L(v′), ??m, q′) ∈ ∆} characterising the neighbors
of v ∈ γ which can receive the message m. The transition system AHN(BP) induced by
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qin q1

q f q2

q3

q2

Figure 7.2: A possible configuration for the protocol of Figure 7.1

BP is then given by the tuple (Γ,→) where→⊆ Γ× ∆× Γ is the transition relation which

we shall now define. We have γ
δ−→ γ′ if, and only if, γ = (V, E, L) and γ′ = (V, E, L′) and

δ = (q, a, q′) and one the following conditions holds:

• Internal action: a = τ and there exists v ∈ V such that L(v) = q and L′(v) = q′ and
L(v) = L′(v′) for all v′ ∈ V \ {v};

• Broadcast communication: a =!!m and there exists v ∈ V such that L(v) = q and
L′(v) = q′ and (L(v′), ??m, L′(v′)) ∈ ∆ for all v′ ∈ Rγ

m(v) and L′(v′) = L(v′) for all
v′ ∈ V \ Rγ

m(v).

We observe that the graph structure does not change when taking a transition, but only
the labels of the nodes evolve. Furthermore, an internal action has effect on a single node
and when a broadcast !!m is performed by a node v, it is delivered only to the subset
of neighbors which can receive it (and have to receive it). We denote by γ → γ′ if there

exsits δ ∈ ∆ such that γ
δ−→ γ′ and→∗ represents the reflexive and transitive closure of→.

Given an initial configuration γin ∈ Γin, a finite run (or finite execution) starting from γin in
AHN(BP) is a finite path in AHN(BP) denoted as:

ρ := γ0
δ0−→ γ1

δ1−→ . . .
δn−1−−→ γn

with γ0 = γin.

Example 7.1. Figure 7.3 provides an example of execution for the Broadcast Protocol of Figure
7.1. In each configuration, we have indicated the node which was responsible of the broadcast. For
instance, at the first stage, the node located at the bottom left takes the translation (qin, !!m1, q2) and
as a consequence, all its neighbours in state qin (from which m1 can be received) move to q3.

7.1.3 Reachability problems

We introduce the two verification problems we have studied for Ad Hoc Networks induced
by Broadcast Protocols. These problems are both formulated in the parameterised case in
which the size and the topology of the networks are not known. The first problem is the
parameterised control state reachability which asks whether a configuration exhibiting a
specific control state can be reached from an initial configuration. It can be formulated as
follows:
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qin qin

qin qin

qin

qin

→

q2 q3

q3 q3

qin

qin

↓

q f q f

q3 q3

q f

qin

←

q2 q4

q3 q3

q1

qin

Figure 7.3: A finite run in the Ad Hoc Network associated to the protocol of Figure 7.1

AHN-ControlReach

Input: A Broadcast Protocol BP = (Q, M, ∆, qin)

and a control state q f ∈ Q;

Question: Does there exists an initial configuration γin and a configuration γ

such that q f ∈ L(γ) and γin →∗ γ in AHN(BP)?

We point out that we do not impose here any constraints on the seeked initial configura-
tions and this is where lies the difficulty of this problem. Indeed, since in Ad Hoc Networks
the communication topology does not change (but only the labels of the different entities
evolve), if one fixes an initial configuration γin, then the number of reachable configurations
from γin is finite, but the set of initial configurations is infinite. To justify the interest
of this verification problem, one can think of the control state q f as a bad state of the
protocol that should never be seen in any reachable configurations and if the answer to
AHN-ControlReach is positive then it means that this specification is not respected.

The second problem we have studied is very similar, the main difference being that its
asks to reach a configuration where all the nodes are in the control state q f of the protocol.
We call this problem, target state reachability and define it as follows:
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AHN-Target

Input: A Broadcast Protocol BP = (Q, M, ∆, qin)

and a control state q f ∈ Q;

Question: Does there exists an initial configuration γin and a configuration γ

such that L(γ) = {q f } and γin →∗ γ in AHN(BP)?

Imagine that the control state q f represents a deadlock state in the Broadcast Protocol,
then this problem basically asks whether there is an initial configuration from which an
execution will lead to a configuration where all the nodes are in this deadlock state. Note
that if we consider the same Broadcast Protocol and the same control state in the two
previously mentioned protocols, then a positive answer to AHN-Target implies a positive
anwer to AHN-ControlReach.

Example 7.2. If we consider the Broadcast Protocol depicted on Figure 7.1 with the control state q f
then the answer to the problems AHN-Target is positive, indeed a witness execution can be built by
taking the same execution as the one represented on Figure 7.3 but restricting the configurations to
the three nodes at the bottom.

7.2 undecidability in the general case

In [DSZ10], we have first proven that AHN-ControlReach and AHN-Target are unde-
cidable. To obtain this result, we have performed a reduction from the halting problem for
deterministic Minsky machines (see Section 3.2). The main difficulty in Ad Hoc Networks
to simulate a Minsky machine lies in the fact that we can have any initial configuration and
this lack of structure renders tough a simulation. To overcome this difficulty, we begin to
show that we can in a certain sense extract a structure from any initial configuration, by
showing that if a certain state is reachable from a given initial configuration, then in the
reached configuration, some nodes are arranged in a specific way (in order for instance to
form a line) and the other nodes do not participate anymore to the communcation (they are
sent in a deadlock state).

To illustrate how we can extract a structure from a communication topology, we have
built in [DSZ10] a specific Broadcast Protocol depicted on Figure 7.4 where the states q0 and
p0 are reachable from the initial control state qin thanks to an internal action. This protocol
respects the following property: if at some point a configuration γ is reached with a node
labelled by p3, then we are sure that in γ, each node v labelled by p3 has an unique neighbor
v′ label by q3 and all the other nodes neighbors of v or v′ are in the deadlock state err.

Using an extension of the RAO protocol, we can define a Brodacast Protocol which
simulates the execution of a deterministic Minsky machine. This allows us to reduce
the halting problem to AHN-ControlReach. We now explain the intuition behind this
reduction. In a first phase, we adapt the RAO protocol to ensure that a given control node
is connected to two distinct lists of nodes used to simulate the contents of the two counters.
Each node in the list associated to a counter xi is either in state Zi or NZi, the current value
of xi being given by the number of nodes in state NZi in the list. The length of each list is
guessed non-deterministically during the execution of the first phase and it should be bigger
than the maximum value stored in a counter for the simulation to succeed. Initially all
nodes simulating counter values are in state Zi to state that the initial value of the counters
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q0

q1

!!req

q2

??ack

q3

!!ok

err
??req, ??ack

??ack

p0
??ack

p1

??req

p2

!!ack

??ok,

??req,

??ack

p3

??ok

Figure 7.4: The RAO (Req/Ack/Ok) Broadcast Protocol

is zero. Since the RAO protocol can only be used to connect pair of nodes, in our extension
we use three control states Zi, Z′i and Z′′i to encode Zi; this allows us to guarantee that each
node in the list has only a single successor and a single predecessor (for instance, each node
Zi has a predecessor Z′′i and a successor Z′i in the list) and all the other nodes, if present, are
sent to an ’error’ state as in the RAO protocol. In the second phase, the control node starts
the simulation of the instructions. It operates by querying and changing the states of the
nodes in the two lists according to the type of instructions to be executed. The queries are
propagating back and forth in the lists to change the states accordingly. For instance, if the
instruction consists in incrementing the counter x1, the control node sends a message that
should reach the end of the list (the last node in state NZi), when its successor in state Zi
receives this messages it stop the propagation, changes its state to NZi and sends backward
in the list a message to acknowledge that the increment has been correctly performed.

We show as well how to reduce AHN-Target to AHN-ControlReach. This allows us to
present our first negative result.

Theorem 7.1. [DSZ10] AHN-ControlReach and AHN-Target are undecidable.

7.3 restricting the communication topology to regain decidability

In [DSZ10; DSZ11] we have shown that the decidability of the two problems AHN-
ControlReach and AHN-Target can be regained by restricting the set of configurations.
To obtain there results, we rely on the theory of Well-Structured Transition Systems [Abd+00;
Abd+96; FS01].

7.3.1 Well-Structured Transition Systems everywhere

We recall here some aspects of the theory of Well-Structured Transition Systems introduced
in [Abd+00; Abd+96; FS01]. This theory proposes a methodology to solve some verification
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problems on systems for which the set of configurations can be associated to a well-quasi-
order (wqo).

Well-Structured Transition Systems correspond to transition systems equipped with a
well-quasi order on the configurations which respects some properties. In the sequel, we
call a transition system a tuple (Γ,→) where Γ is the set of configurations and → Γ× Γ
corresponds to the transition relation. Given a quasi-order (Γ,≤) on the configurations, the
relation→ is said to be monotonic with respect to ≤ if and only if it respects the following
condition:

• for all γ1, γ2, γ′1 ∈ Γ, if γ1 → γ2 and γ1 ≤ γ′1, then there exists γ′2 ∈ Γ such that
γ′1 → γ′2.

This notion allows us to recall the definition of Well-Structured Transition Systems.

Definition 7.3. [FS01] A Well-Structured Transition System (WSTS) is a tuple (Γ,→,≤) verifying
the following properties:

• (Γ,→) is a transition system,

• (Γ,≤) is a wqo,

• → is monotonic with respect to ≤.

As shown in [FS01], many infinite state systems can be seen as WSTS as for instance the
transition systems induced by Petri Nets (or equivalently VASS), by Lossy Channel Systems
(with the subword ordering) or by some family of counter systems with incrementing errors.

The introduction of WSTS is motivated by the fact that in many cases some safety
verification problems become decidable in these systems. We will provide here the conditions
we use in the sequel to obtain decidability results for some specific WSTS. We assume that
(Γ,→,≤) is a WSTS. Given a subset of elements Γ′ ⊆ Γ, we define its predecessor set,
denoted by Pred(Γ′), as the set of configurations {γ ∈ Γ | ∃γ′ ∈ Γ′.γ→ γ′}. Now thanks to
the monotonicity of→, one can show that if U ⊆ Γ is an upward-closed set, then Pred(U)

is upward-closed. Furthermore thanks to Lemma 2.1, we know that U and Pred(U) have a
finite basis. One important property consists in being able to compute the finite basis of
Pred(U) from the finite basis of U. Following [FS01], we say that (Γ,→,≤) has an effective
pred-basis if given a finite set of elements B ⊆ γ, one can effectively compute a finite set of
elements B′ such that ↑ B′ = Pred(↑ B). Finally, we say that the wqo (Γ,≤) is decidable if
one can decide given two elements γ, γ′ ∈ Γ whether γ ≤ γ′ holds or not.

These two last conditions allow to compute a finite basis for the set Pred∗(↑ B) = {γ ∈
Γ | ∃γ′ ∈↑ B.γ→∗ γ′} ( where→∗ represents the reflexive and transitive closure of→) and
B is a finite subset of Γ. The technique to compute Pred∗(↑ B) consists in considering an
increasing (with respect to inclusion) sequence of upward-closed sets (Ui)i∈N as follows :

• U0 =↑ B,

• Ui+1 = Ui ∪ Pred(Ui) for all i ∈N.

together with a sequence of finite set (Bi)i∈N such that Ui =↑ Bi for all i ∈ N. Then
using Lemma 2.2, we know that there exists k ∈ N such that Ui = Uk for all i ≥ k and
consequently we have Uk = Pred∗(↑ B). Finally if (Γ,→,≤) has an effective pred-basis and ≤
is decidable then it is possible to effectively compute Bk the basis of Uk.
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Proposition 7.1. [FS01] Let (Γ,→,≤) be a WSTS with an effective pred-basis and such that ≤ is
decidable. For any finite set B ⊆ Γ, one can compute a finite set B′ ⊆ Γ such that ↑ B′ = Pred∗(↑ B).

This proposition will be particularly useful in our context to compute the set of config-
urations from which an upward closed set of configurations can be reached. In fact, for
AHN-ControlReach, we want to check if there is an initial configuration from which a
configuration exhibiting a specific control state q f can be reached. But we shall see that, for
some specific wqo, the set of configurations exhibiting q f can bes defined as an upward
closed set of configurations for which we can provide the finite basis. Hence the problem
boils down at computing the set of predecessors and checking whether it contains an initial
configuration.

7.3.2 Restrictions on the topology

As we have seen with Theorem 7.1, AHN-ControlReach is undecidable but we will see
here that we can propose some well-quasi-orders on a subset of configurations of Ad-Hoc-
Networks such that the induced transition system (limited to these configurations) is a
WSTS which respects the conditions of Proposition 7.1. The main difficulty boils down to
finding a wqo on a subset of graphs for which the transition relation of Ad Hoc Networks
happens to be monotonic. For instance, the graph minor relationship which was shown by
Robertson and Seymour to be a wqo [RS04] is not well suited for our reasoning because the
transition relation is not monotonic for this order.

7.3.2.1 K-path-bounded configurations

The first wqo we found in [DSZ10] that leads to a WSTS is the induced subgraph relation
which have been shown by Ding [Din92] to be a wqo for the classes of K-bounded path
graphs (where K belongs to N). We rephrase this result in our context and what it implies
for the verification Ad Hoc Networks.

We consider a Broadcast Protocol BP = (Q, M, ∆, qin). For a configuration γ = (V, E, L),
a simple path in γ is a finite sequence of vertices v1v2 . . . v` such that (vi, vi+1) ∈ E for all
i ∈ [1, `− 1] and vi 6= vj for all i, j ∈ [1, `]. The length of this simple path is `. Given a
natural K ≥ 1, a configuration γ = (V, E, L) is K-path-bounded if and only if the length of
the longest simple path in γ is at most K. We denote by ΓK_Path the set of K-path-bounded
configurations and if AHN(BP) = (Γ,→) then K_Path_AHN(BP) is the trasition system
restricted to K-path-bounded configuration (ΓK_Path,→K) where→K is the restriction of→
to triple in ΓK_Path × ∆× ΓK_Path.

Example 7.3. On Figure 7.5, we have depicted a 5-path-bounded configuration. This configuration
could represent some nodes servers, carrying the label s and nodes clients labelled with a or b. Here
we could add any number of clients, each one only connected to a single server, and the obtained
configuration would stay 5-path-bounded.

We now have to define the order relation we consider on configurations which corresponds
to the induced subgraph relation adapted to our context. Given two configurations γ1 =

(V1, E1, L1) and γ2 = (V2, E2, L2), we have γ1 � γ2 if and only if there exists an injective
function h : V1 7→ V2 verifying the following conditions:

1. (v, v′) ∈ E1 if and only if (h(v), h(v′)) ∈ E2 for all v, v′ ∈ V1, and,
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s

a b

s

a b a
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a a a
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Figure 7.5: A 5-bounded configuration

2. L1(v) = L2(h(v)) for all v ∈ V1.

Remark. The induced subgraph relation is stronger than the usual subgraph relation which in our
context would only require that each edge (v, v′) ∈ E1 has a corresponding edge (h(v), h(v′)) ∈ E2.
It means that if we considered the subgraph relation in E2 we could add new edges between
(h(v), h(v′)) that do not have a corresponding edge (v, v′) ∈ E1. We need to consider the induced
subgraph relation to guarantee the monotonicity of the transition relation.

q1
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q3
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q1

q2

q3

γ3
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q1

q2

q3

q4
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Figure 7.6: Example for the induced subgraph relation

Example 7.4. On Figure 7.6-(a), we have depicted three configurations γ1, γ2 and γ3 such that
γ1 � γ2 and γ3 6� γ2. In graph terminology, γ3 is a subgraph of γ2 but not an induced subgraph.
We can furthermore justify on this example why the subgraph relation does not suffice to obtain
the monotonicity of the transition relation in Ad Hoc Networks. If in γ3, the nodes labelled with
q2 performs a broadcast, only the node in q1 can receive it and might change its state consequently,
however in γ2, both the state in q1 and q3 can receive this broadcast and change their state, hence one
might end in a configuration γ′2 which is not anymore a subgraph of the configuration γ′3 reached
from γ3.

In [Din92], it is proved that for any k ≥ 1, the subclass of k-path-bounded graphs
equipped with the induced subgraph relation is a wqo. In [DSZ10], we used this result
and show that, for all K ≥ 1, (ΓK_Path,→K,�) is a WSTS with an effective pred-basis and
such that � is decidable. To obtain the desired decidability result, it remains to show how
to encode AHN-ControlReach into a computation of Pred∗(↑ B) for a certain finite set
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of elements B. For this matter, given a control state q f ∈ Q, we define the configuration
γ f = ({v}, ∅, L f ) where L f (v) = q f . We can then easily show that for all K ≥ 1 there
exists an initial configuration γin ∈ ΓK_Path and a configuration γ with q f ∈ L(γ) such
that γin →∗K γ iff Pred∗(↑ {γ f }) ∩ Γin 6= ∅ in the WSTS (ΓK_Path,→K,�). Consequently, we
deduce the following result thanks to Proposition 7.1.

Theorem 7.2. [DSZ10] For any K ≥ 1, the problem AHN-ControlReach restricted to
K-path-bounded configurations is decidable.

Unfortunately, we proved as well that this result does not extend to AHN-Target where
we ask that in the reached configuration all the configurations are in a given control state.
Indeed we cannot use the previous technique basically because this problem does not reduce
to the reachability of a configuration belonging to an upward closed set. Indeed, if we
take an upward closed set with respect to the order �, we cannot guarantee that all these
configurations in this set are such that all the nodes are labelled with a single control state.
We showed that this latter problem is undecidable when K-path-bounded configurations
for all K ≥ 3. The proof is very similar to the one of Theorem 7.1. It is based as well on a
reduction from the halting problem for deterministic Minsky machines. The main difference
being that, in this case, we cannot enforce the communication topology to have the shape
of two connected lists of nodes of unbounded length (as such topologies would not be
K-path-bounded for any K). Instead the communication topology we enforce, thanks to a
protocol similar to the RAO protocol of Figure 7.4, are stars topology. In our context, a star
of radius 1 is a graph with a central node and all other nodes (which are not in an error
state and are still active in the protocol) are only connected to this central node and we call
them satellite nodes. Figure 7.7 provides an example of a star of radius 1 with 5 satellite
nodes.

c

s

ss

ss

Figure 7.7: A radius 1 star with 5 satellite nodes

We design hence a protocol, which in a first phase extract a star from the topology (with
an unbounded number of nodes) and in a second phase simulates the Minsky machine, the
central node bein responsible for the simulation of the instructions and the satellite nodes
simulating the values of the two counters. To simulate a counter, these satellite nodes are
either in a state Zi or NZi or sink and during the simulation the number of states in NZi
indicates the values of the counter i. The increment and decrement of the counter are done
in a classical way, but the most interesting part is how to test whether a counter is equal to
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0 and this is where we use the fact that the considered problem is AHN-Target. Indeed, we
cannot test the absence of nodes, but when performing a zero test, if some satellite nodes
are in state NZi (meaning that the counter is not equal to 0), they are sent into the state sink.
Consequently if at the end of the computation, there are nodes in state sink, this mean that
at some point the controller has assumed the value of the counters was 0 but it was not the
case. Hence if at the end, there is no node in state sink, it means that the simulation has
followed correctly the rules of the Minsky machine. Consequently, only the satellite nodes
not in sink are able to move to the final control state q f and the hypothesis of the problem
AHN-Target allows to only consider correct simulations of the machine. Thanks to this
reduction and by noting that star of radius are 3-path-bounded, we can state the following
negative result.

Theorem 7.3. [DSZ10] For any K ≥ 3, the problem AHN-Target restricted to K-path-
bounded configurations is undecidable.

7.3.2.2 K-clique-path-bounded configurations

There are other restrictions that can be imposed on the set of considered configurations
in order to obtain decidability of AHN-ControlReach. For instance, in [EFM99], the
authors consider a model very close to Ad Hoc Networks, the main difference being that
the configurations are not equipped with a communication topology and all the entities that
can receive an emitted message have to receive it. In our context, it is equivalent to consider
Ad Hoc Networks restricted to complete configurations. We shall now recall this result, see
how it compares with the previous results and finally show how we obtain a decidability
result incorporating these two previous result.

q1

q2q3

q4q5

Figure 7.8: A complete configuration

We fix a Broadcast Protocol BP = (Q, M, ∆, qin). A configuration γ = (V, E, L) is complete
if, and only if, E = V × V \ {(v, v) | v ∈ V}. We denote by ΓComp the set of complete
configurations. Figure 7.8 shows an example of a complete configuration. One can show
that (ΓComp,�) is a wqo. In fact, for each configuration in ΓComp, the graph structure is always
the same and can hence be forgotten, the only relevant information being, for each control
state q, the number of nodes labelled by q. Consequently (ΓComp,�) is a wqo because it is
equivalent to the quasi order (NQ,≤) which is a wqo, thanks to Dickson’s lemma[Dic13].
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7.3 restricting the communication topology to regain decidability

By the same reasoning that leads to Theorem 7.2, we can retrieve the result of [EFM99] and
obtain that AHN-ControlReach restricted to complete configurations is decidable.

Something that was frustrating with these two last results is that the first one does
not allow to take complete graphs into account, as for any K ≥ 1, there always exists a
complete configurations γ such that γ 6∈ ΓK_Path. In fact, if γ is a complete configuration
with n vertices, then the length of its longest simple path is n. On the other hand, for
all K ≥ 2 there are many configurations in ΓK_Path which are not complete. The fact that
configurations in ΓK_Path do not include all complete graphs or even better graphs with a
complete subgraphs (of any order) is not entirely satisfying since somehow complete graphs
allow to model the most optimistic view of the protocol where all the nodes can broadcast
their messages to all the others and receive messages from them. However, dealing only
with complete configurations would be too restrictive as it does not allow any topology.
This is the reason why in [DSZ11], we introduced a new subset of configurations, which
extend K-path-bounded configurations and include complete graphs, and even better every
configurations which can be decomposed in a set of complete configurations connected by
a bounded simple path. Not only, this result allowed us to improve the decidability result
of Theorem 7.2 to larger classes of configurations, but to obtain our result, we relied on a
new wqo on subset of labelled undirected graphs. We now present formally this result.

q1

q2q3

q4q5

q6

q7

q8

q9
γ

•

q1

q2q3

q4q5

• q6

q7

q8

q9

•

CLγ

Figure 7.9: A configuration γ and its associated clique graph

For a configuration γ = (V, E, L), the set of maximal cliques of γ is a set of subset of
nodes such that if W = {W1, . . . , Wk} then:

113



verification of ad hoc networks

• V = W1 ∪ . . . ∪Wk, and,

• for all v, v′ ∈ V, we have (v, v′) ∈ E if and only if there exists i ∈ [1, k] such that
v, v′ ∈Wi, and,

• for all i ∈ [1, k], for all v ∈ Wi, if there exists v′ ∈ V \Wi such that (v, v′) ∈ E, then
there exists v′′ ∈Wi such that (v′, v′′) 6∈ E.

Intuitively the maximal cliques of γ are the subgraphs which are complete and cannot be
extended to bigger complete subgraphs and which covers E. Note that this set is unique.
Based on these maximal cliques, we will propose another way to represent a configuration
γ where edges between nodes belonging to the same maximal clique will be forgotten
and instead another node representing the clique will be added. Let γ = (V, E, L) be a
configuration and let • 6∈ L(γ). We associate to γ the clique graph CLγ which is the bipartite
graph (V, W, E′, L′) such that :

• W is the set of maximal cliques of γ,

• for all v ∈ V and w ∈W, we have (v, w) ∈ E′ if and only if v ∈W,

• L′(v) = L(v) for all v ∈ V and L′(w) = • for all w ∈W.

Figure 7.9 provides an example of a configuration γ and its associated clique graph CLγ.
Given a natural K ≥ 1, a configuration γ = (V, E, L) is K-clique-path-bounded if and only if
the length of the longest simple path in CLγ is at most K. We denote by ΓK_CliquePath the set
of K-clique-path-bounded configurations. By an adaptation of the proof of Ding that shows
tha the subclass of k-path-bounded graphs equipped with the induced subgraph relation is
a wqo [Din92], we showed the following lemma.

Lemma 7.1. [DSZ11] (ΓK_CliquePath,�) is a wqo for all k ≥ 1.

Note that this result is interesting on its own as it extends the result of Ding to larger
subclasses of graphs, in fact we have that ΓComp ⊆ Γ2_CliquePath , which shows that complete
configurations are taken into account if we consider configurations in ΓK_CliquePath with
K ≥ 2, and ΓK_Path ⊆ Γ2K_CliquePath, consequently these subclasses of configurations allow
to deal as well with K-path-bounded configurations. This lemma together with the same
reasoning as for the proof of Theorem 7.2 leads us to the following decidability result.

Theorem 7.4. [DSZ11] For any K ≥ 1, the problem AHN-ControlReach restricted to
K-clique-path-bounded configurations is decidable.

Unfortunately, we show in [DSZ11] that for every K ≥ 2, the problem AHN-ControlReach

restricted to K-clique-path-bounded configurations is non-primitive recursive. Hence even if
we have a decidable restriction for AHN-ControlReach, the complexity of the verification
process is high.

7.4 timed extension of ad hoc networks

In [AD94], Alur and Dill extend finite state automata by equipping the model with clocks,
which correspond to variables with positive real values, that can be tested and reset by
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the automaton and which are incremented at the same rate in a non deterministic fashion.
This model has proven to be very useful to model time sensitive systems and its has been
adapted and extended in many different ways. In particular. in [AJ03], the authors propose
a model of networks with a parameterised number of entities communicating thanks to
rendez-vous and where each entities is equipped with some clocks à la timed automaton.
We proposed in [Abd+11; Abd+16b] a similar extension for Ad Hoc Networks that we
present in this section.

7.4.1 Timed Ad Hoc Networks

As for Ad Hoc Networks, a Timed Ad Hoc Network (TAHN) consists of a graph where
the nodes represent processes executing a common protocol defined by a timed broadcast
protocol. The values of the clocks manipulated by the protocol inside each process are
incremented all at the same rate. In addition, processes may perform discrete transitions
which are either local transitions or communication events. When firing a local transition, a
single process changes its local state without interacting with the other processes. For what
concerns communication, as in Ad Hoc Networks, it is performed by means of broadcast
to the neighbours, the communication topology being represented as a graph. Finally,
transitions of the protocol are guarded by conditions on values of clocks and may also reset
clocks. We now provide the formal definition of the model.

We assume that each process operates on a set of clocks X. In this context, a guard is a
boolean combination of predicates of the form x ∼ k with x ∈ X, ∼∈ {< . ≤,=,≥,>, }
and k ∈N. We denote by G(X) the set of guards over X. These guards are used to impose
conditions on the clocks of each process. A clock valuation is a mapping ξ : X 7→ R≥0 that
assigns to each clock a positive real value. We denote by RX

≥0 the set of clock valuations
overt the set of clocks X. We say that a clock valuation ξ satisfies a guard g, denoted by
ξ |= g, when the formula obtained by replacing in g each clock x by its valuation ξ(x) is
valid. For a clock valuation ξ and a subset of clocks Y ⊆ X, we denote by ξ[Y] the clock
valuation verifying that ξ[Y](x) = 0 if x ∈ Y and ξ[Y](x) = ξ(x) otherwise. We can now
define Timed Broadcast Protocols which extend Broadcast Protocols with clocks.

Definition 7.4 (Timed Broadcast Protocol). A Timed Broadcast Protocol BP is a tuple
(Q, X, M, ∆, qin) where:

• Q is a finite set of control states,

• X is a finite set of clocks,

• M is a finite alphabet of messages,

• ∆ ⊆ Q× G(X)× BAct(M)× 2X × Q is a finite set of edges such that each edge is labelled
by a guard, a broadcast action and a subset of clocks to reset, and,

• qin ∈ Q is the initial contro state.

Figure 7.10 provides an example of a Timed Broadcast Protocol with one clock x and
three types of messages that can be broadcasted (m1, m2 and m3).

We fix now a Timed Broadcast Protocol BP = (Q, X, M, ∆, qin). The configurations of the
Timed Ad Hoc Networks associated to BP are (Q×RX

≥0)-graphs, there interpretation is the
same as for Ad Hoc Networks, with the difference that each node carries as well a clock
valuation. We denote by Θ this set of configurations. Instead of writing a configuration
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qin

q1

x >
1, !!

m1, ∅

q2x > 1, !!m3, ∅

q3
>, ??m1, {x}

x > 1, !!m2, ∅

q4

true, ??m2, {x}
qF

x = 2, ??m3, ∅

Figure 7.10: A Timed Broadcast Protocol

θ = (V, E, L) with L : V 7→ Q×RX
≥0, we will write it θ = (V, E, L, ξ) with L : V 7→ Q and

ξ : V 7→ RX
≥0 to simplify some notations and we denote by L(θ) the set {L(v) | v ∈ V}. A

configuration θ = (V, E, L, ξ) is initial if L(v) = qin and ξ(v)(x) = 0 for all v ∈ V and x ∈ X.
The set of initial configurations is denoted by Θin.

As for Ad Hoc Networks, before to provide the semantics associated to Timed Broadcast
Protocol, we need to express which node can (and will) receive a broadcast message. We
consider a configuration θ = (V, E, L, ξ), a node v ∈ V and a message m ∈ Σ, we use the
same notations as for Ad Hoc Networks and define the set Rθ

m(v) = {v′ ∈ V | (v, v′) ∈
E and ∃(q, g, ??m, Z, q′) ∈ ∆ s.t L(v′) = q and ξ(v′) |= g} characterizing the neighbors of
v ∈ θ which can receive the message m. Note that here the clock valuation associated to
the node should as well satisfy the guard on the transition performing the reception of
the message m. The timed transition system TAHN(BP) induced by BP is then given by
the tuple (Θ,→) where→⊆ Θ× (∆ ∪R≥0)×Θ is the timed transition relation which we

shall now define. We first describe the discrete transitions: for δ ∈ ∆, θ
δ−→ θ′ if and only if

θ = (V, E, L, ξ) and θ′ = (V, E, L′, ξ ′) and δ = (q, g, a, Z, q′) and one the following conditions
holds:

• Internal action: a = τ and there exists v ∈ V such that L(v) = q, ξ(v) |= g, L′(v) = q′

and ξ ′(v) = ξ(v)[Z] and for all v′ ∈ V \ {v} , we have L(v′) = L′(v′) and ξ ′(v′) =

ξ(v′);

• Broadcast communication: a =!!m and there exists v ∈ V such that L(v) = q, ξ(v) |=
g, L′(v) = q′ and ξ ′(v) = ξ(v)[Z] and for all v′ ∈ Rθ

m(v), there exists an edge
(L(v′), g′, ??m, Z′, L′(v′)) ∈ ∆ such that ξ(v′) |= g′ and ξ ′(v′) = ξ(v′)[Z′] and for all
v′ ∈ V \ Rγ

m(v), we have L′(v′) = L(v) and ξ ′(v′) = ξ(v′) .

For the timed transition: for d ∈ R≥0, we have θ
d−→ θ′′ if and only if:

• Time: θ = (V, E, L, ξ) and θ′ = (V, E, L, ξ ′) and ξ ′(v)(x) = ξ(v)(x) + d for all v ∈ V
and x ∈ X.
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The main change with respect to the semantics of Ad Hoc Networks is that we take into
account the guards and the reset on clocks and as well that we have now some transitions

which let time pass. We denote by θ → θ′ if there exists δ ∈ ∆ such that θ
δ−→ θ′ or d ∈ R≥0

such that θ
d−→ θ′. Finally,→∗ represents the reflexive and transitive closure of→.

qin

0

qin

0

qin

0

1,5−→ qin

1, 5

qin

1, 5

qin

1, 5

↓

q3

0

q1

1, 5

qin

1, 5

1,8←−qin

3, 3

q3

1, 8

q1

3, 3

↓

q3

1, 8

q1

3, 3

q4

0

Figure 7.11: A finite run in the Timed Ad Hoc Network associated to the protocol of Figure 7.10

Example 7.5. On Figure 7.11, we have depicted a run in the Timed Ad Hoc Network depicted on
Figure 7.10. In each configuration, we have indicated the node which was responsible of the broadcast
and we have indicated the delay above the time transition. For instance, the first transition lets time
elapse for 1, 5 time units and afterwards the left node can broadcast the message m1 received by the
center node which moves to state q3 and resets its clock.

The problem we study in this section is the pendant of AHN-ControlReach adapted to
Timed Ad Hoc Networks and can be stated as follows.

TAHN-ControlReach

Input: A Timed Broadcast Protocol BP = (Q, X, M, ∆, qin)

and a control state q f ∈ Q;

Question: Does there exists an initial configuration θin and a configuration θ

such that q f ∈ L(θ) and θin →∗ θ in TAHN(BP)?

7.4.2 Undecidability results

First as Timed Ad Hoc Networks are an extension of Ad Hoc Networks, using Theorem
7.1, we know that in its full generality TAHN-ControlReach is undecidable. We first
show that the decidability results obtained in the case of Ad Hoc Networks, see Theorems
7.2 and 7.4, cannot be extended to the case of Timed Ad Hoc Networks. To obtain these
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new undecidability results, we use a reduction towards a similar problem as TAHN-
ControlReach but in a different context. In [AJ03] , the authors study indeed a similar
problem for networks of entities equipped with clocks, the main difference being that the
communication is not performed thanks to broadcast but by pairwise rendez-vous. The
introduced model is called Timed Network and has the following feature:

• a Timed Network contains a distinguished controller that is a finite state system
without any clock;

• Each process in a Timed Network may communicate with all the other processes and
hence there is no need for an underlying communication topology;

• Communication takes place through rendez-vous between fixed set of processes (all
the processes involved in the rendez-vous changing their state according to the defined
rules).

They show that if in Timed Networks, nodes are equipped with two clocks, then the
parameterised control state reachability problem which asks whether there exists an initial
configuration from which it is possible to reach a configuration exhibiting a given control
state is undecidable. However, this problem becomes decidable if each node has a single
clock.

First, we show that we can reduce the undecidability result for Timed Networks to
Timed Ad Hoc Networks when the considered configurations are complete. As for Ad
Hoc Networks, we say that a configuration θ = (V, E, L, ξ) of a Timed Ad Hoc Network
is complete if, and only if, E = V × V \ {(v, v) | v ∈ V. }. We remark indeed that if the
considered configurations in Timed Ad Hoc Networks are complete, then it is easy to
extract a controller (the first process to emit a broadcast message received by all the others
becoming the controller) and as well to simulate rendez-vous communications (for instance
if it is a pairwise rendez-vous, a node sends a message to initiate the rendez-vous, this
message is received by all the other nodes, and the first one to answer, acknowledges the
rendez-vous to the sender and at the same time puts all the other nodes in the state they
were before the rendez-vous to be initiated). This leads us to the following undecidability
result.

Theorem 7.5. [Abd+11; Abd+16b] TAHN-ControlReach restricted to complete configura-
tions and to Timed Broadcast Protocols with two clocks is undecidable.

For what concerns configurations with bounded paths, we also obtain an undecidability
result. For this we consider configurations whose topology forms what we call a star. We
say that a configuration θ = (V, E, L, ξ) of a Timed Ad Hoc Network is a star of radius `

with ` ≥ 1 if and only if there is a partition of V of the form {v0} ∪V1 ∪ . . . ∪V` such that
the following conditions are satisfied:

• (v0, v1) ∈ E for all v1 ∈ V1, and,

• for each i ∈ [1, `− 1] and vi ∈ Vi there is a unique vi+1 ∈ Vi+1 such that (vi, vi+1) ∈ E
and there is a unique vi−1 ∈ Vi−1 such (vi, vi−1) ∈ E, and,

• E does not contains other edges.
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Figure 7.12: A radius 2 star

Figure 7.7 shows an example of a star of radius 1 (where the values of clocks are omitted)
and Figure 7.12 an example of star of radius 2 (where the labels and the clocks values
are omitted). In [Abd+11; Abd+16b], we have shown how to simulate a Timed Network
working with two clocks per node with a Timed Ad Hoc Network with a single clock per
process and taking into account only radius 2 stars, as allowed configurations. The idea is
that the central node of the star simulates the controller of the Timed Network (and as well
the rendez-vous rules) and each ray of the star which includes two nodes equipped with a
single clock simulates a node of the Timed Network. First note, that it is possible to extract
the controller in such a Timed Ad Hoc Network as the central node of the star is the only
one that is connected to strictly more than 3 nodes, hence it suffices to broadcast a message
and if a node receives three acknowledgment of it, then we know it is the central node. The
main difficulty lies in the simulation of the rendez-vous transitions, since in the considered
Timed Ad Hoc Network each node has access to a single clock. However the simulation is
made possible thanks to the fact that in Timed Networks (as in Timed Ad Hoc Networks)
clocks are not compared between each other, it is hence possible to simulate a guard over
two clocks using the clocks of two processes in the same ray of the star configurations. This
simulation leads us to state this other undecidability result.

Theorem 7.6. [Abd+11; Abd+16b] TAHN-ControlReach restricted to stars of radius 2
configurations and to Timed Broadcast Protocols with one clock is undecidable.

7.4.3 Decidability results

We will now see in which matter the two undecidability results we have just presented are
tight. First, following the same path as the method proposed in [AJ03] to show that the
parameterised reachability of a control state in Timed Networks where processes have a
single clock is decidable, we prove that if we consider Timed Broadcast Protocols with a
single clock then TAHN-ControlReach restricted to complete configurations is decidable.
To obtain this result, we rely again on the theory of Well-Structured Transition Systems, but
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we cannot find directly an order over configurations of Timed Ad Hoc Networks (mostly
because of the clocks which are interpreted over the real) and hence the trick consists in
representing such configurations differently. Our proof is based on the following step:

1. Define a symbolic way to represent set of configurations.

2. Exhibit a well-quasi-order over symbolic configurations.

3. Show that it is possible to compute symbolically the predecessors of a symbolic
configuration.

4. Give an iterative method to compute all the elements from which a given symbolic
configuration can be reached. Termination is ensured by the well-quasi-order over
symbolic configurations.

We will now present the symbolic configurations our reasoning is based on. This symbolic
representation is very similar to the one proposed in [AJ03] to represent configurations of
Timed Networks, the main difference being that in Timed Ad Hoc Networks we do not
have to deal with a controller and the computation of the discrete symbolic predecessor
configurations is different since we consider broadcast and not rendez-vous communication.
We fix a Timed Broadcast Protocol BP = (Q, {x}, M, ∆, qin) with a single clock x and we
denote by max the maximal constant occurring in the guards of BP. A symbolic configuration
η for BP is a tuple (m, Lsymb, ξsymb,v) such that:

• m ∈N so that [1, m] is the set of indices for the processes present in the network (recall
that since these symbolic configurations are used to represent complete configurations,
we do not need to consider a communication topology but only a set of processes),

• Lsymb : [1, m] 7→ Q assigns to each process a state of BP,

• ξsymb : [1, m] 7→ [0, max] assigns to each process a natural less or equal than max

corresponding to the integral part (up to max) of the clock of the process;

• v is a total preorder on the set [1, m] ∪ {>,⊥} verifying the following conditions,

– ⊥ and > are respectively the minimal and maximal elements of v with ⊥ 6= >,

– for j ∈ [1, m], if ξsymb(j) = max then j ≡ >or j ≡ ⊥ (where a ≡ b iff a v b and
b v a),

– for j ∈ [1, m], if j ≡ > then ξsymb(j) = max.

The relation v provides an ordering for the process corresponding to the ordering of the
fractional parts of their respective clock value and if j ≡ ⊥ it means that the clock value
of process j is at most max and its fractional part is 0, and if j ≡ > then the clock value of
process j is strictly bigger than max.

Remark. (ξsymb,v) corresponds exactly to the clock regions for the m clocks represented in the
symbolic configuration η. This region construction was originally introduced in [AD94] for the
analysis of timed automata since it allows to get rid of the precise values of the clocks by keeping an
abstraction over the possible different values.
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In order to explain fully, the interpretation behind such symbolic configurations, we shall
now define the set of configurations JηK representing by one such symbolic configuration η.
Let η = (m, Lsymb, ξsymb,v) be a symbolic configuration and θ = (V, E, L, ξ) be a complete
configuration. We have θ ∈ JηK if and only if there exists an injective function h : [1, m] 7→ V
such that for all i, j ∈ [1, m], we have:

• L(h(i)) = Lsymb(i), and,

• min(max, bξ(h(i))c) = ξsymb(i) (where bac) denotes the integral part of a), and,

• i ≡ ⊥ if and only if ξ(h(i)) ≤ max and frac(ξ(h(i))) = 0 (where frac(a) denotes the
fractional part of a),

• i ≡ > if and only if ξ(h(j)) > max,

• if i 6≡ ⊥ and j 6≡ > then frac(ξ(h(i))) ≤ frac(ξ(h(j))) if, and only if i v j.

Note that in the above definition, we do not require the number of nodes in θ and
the number of processes in η to be the same, but only that each process in η can be
matched with a process in θ. We denote by Hsymb the set of symbolic configurations and we
consider the quasi-order (Hsymb,�) defined as follows: given two symbolic configurations

η1 = (m1, Lsymb
1 , ξ

symb
1 ,v1) and η2 = (m2, Lsymb

2 , ξ
symb
2 ,v2) in Hsymb, we have η1 � η2 if and

only if there exists an injective mapping g : [1, m1] 7→ [1, m2] such that for all i, j ∈ [1, m1]

the following conditions hold:

• Lsymb
2 (g(i)) = Lsymb

1 (i),

• ξ
symb
2 (g(i)) = ξ

symb
1 (i),

• g(i) ≡2 ⊥ if and only if i ≡1 ⊥ (where for k ∈ {1, 2}, a ≡k b if and only if a vk b and
b vk a),

• g(i) ≡2 > if and only if i ≡1 >,

• g(i) v2 g(j) if and only if i v1 j.

We then prove in [Abd+11; Abd+16b] that given η1, η2 ∈ Hsymb we have that η1 � η2 if and
only if Jη2K ⊆ Jη1K and that (Hsymb,�) is a well-quasi-order.

The last part of our reasoning consists in showing that given a symbolic configuration
η, we can compute a set of symbolic configurations {η1, . . . , ηk} such that for each θ ∈ JηK
and θ′ verifying θ′ → θ in TAHN(BP), there exists η′ ∈ {η1, . . . , ηk} such that θ′ ∈ Jη′K. To
conclude, we prove thanks to the well-quasi-order (Hsymb,�) that the iterative computation
of the symbolic predecessors terminate.

A similar method based on symbolic configurations can be used if the considered config-
urations are stars of radius 1 (and the Timed Broadcast Protocol has again a single clock),
the main differences being that in the symbolic configurations we have to take care of
an extra process corresponding to the center of the stars and that the computation of the
predecessors is a bit different. This allows us to state the following decidability results in
the case of Timed Ad Hoc Network.
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Theorem 7.7. [Abd+11; Abd+16b]

1. TAHN-ControlReach restricted to complete configurations and to Timed Broadcast
Protocols with one clock is decidable.

2. TAHN-ControlReach restricted to stars of radius 1 configurations and to Timed
Broadcast Protocols with one clock is decidable.
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When we introduced the model of Ad Hoc Networks in [DSZ10], we showed that apart from
restricting the considered configurations (see Theorems 7.2 and 7.4), there exists another way
to regain decidability for the parameterised control state reachability problem by allowing
non-deterministic reconfiguration of the communication topology. We studied this new
semantic not only to obtain decidability results but as well because it can be interpreted as
mobility of the entities in Ad Hoc Networks.

In this new model, we will refer to as Reconfigurable Broadcast Network, as in Ad Hoc
Network, all entities follows the same Broadcast Protocol and the communication is achieved
as well thanks via a node which broadcast a message to its neighbours, but at any moment,
the communication topology can change arbitrarily. This reconfiguration can be seen, from
an abstract point of view as mobility of the entities inside the networks: when an edge of the
topology is deleted, it means that the two concerned nodes have moved away one from each
other and when a new edge appears, it means that the nodes have come close one to each
other. Of course, since we do not put any constraints on the new communication topology
obtained after a reconfiguration step, it does not correspond directly to a real mobility where
one might want to take into account more geometrical constraints in order for instance
to represent the fact that when a node moves, it has to follow a certain path at a certain
speed and as a matter of fact from a given communication topology, not all topologies can
be reached during a reconfiguration. However building a model which allows this kind
of geometrical consideration is a hard task itself and in our works we choose to study a
simpler version of this mobility for the following reasons: it eases the definition of the
model and the verification process and it is not completely meaningless as our semantics
can correspond to an overapproximation of a more constrained one. Indeed, if no bug is
found in the model where reconfiguration can be performed in a complete uncontrolled
fashion, then no bug will occur in the model where reconfiguration is more restricted.

Introducing reconfiguration in Ad Hoc Networks consists in relaxing the reachability
transition of these networks in a sense that it allows more behaviours of the model. There
exist other works in the field of verification of infinite state systems, where such relaxations
of the relation transition have been studied and for which the verification process has become
easier than in the original model. This is in particular the case for Lossy Channel Systems
[AJ96]: these systems correspond to a finite number of finite state machines communicating
thanks to FIFO channel. When the channels are reliable, i.e. no message is lost, then
simple verification problems such as the reachability of a control state are undecidable,
whereas if the channels are unreliable, then this latter problem becomes decidable (but non
primitive recursive [Sch02]). Similarly, in [May03], the author considers a model of counter
machines with increment, decrement and zero tests and where at any time the counter can
be decreased non-deterministically and he shows that here again this relaxation allows to
obtain the decidability of the reachability of a control state (which is undecidable without
the relaxation, see Theorem 3.1). In [DL09], the authors have considered a similar model but
they allow incrementing errors instead of decrementing errors and here again the relaxation
allows to jump the gap from undecidability to decidability for some verification problems.
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Note that the reconfiguration we introduce in the Ad Hoc Networks semantics could as well
be seen as an unreliable communication, i.e. the broadcasted message can be lost, indeed
to simulate the lost of a message between two entities, the reconfiguration can detach the
receiver from the emitter just before the message is sent and right after bring back the
receiver. We shall see however that, surprisingly, in Reconfigurable Broadcast Networks the
verification process has not a high complexity as it is the case for lossy channel systems or
counter systems with increasing errors.

contributions . The first time we introduced Reconfigurable Broadcast Networks
was in [DSZ10] where we showed that for this model the parameterised reachability of a
control state is decidable and in EXPspace thanks to a reduction towards the control state
reachability problem in VASS (see Theorem 3.5). However we observed later on in [Del+12]
that our verification process could be improved and hence we obtained tight complexity
bounds for various reachability questions where we allow to count the number of processes
in ech state in the configuration to be reached.

Encouraged by theses decidability results we obtained (together with the nice complexity
bounds), we decided to study other problems on Reconfigurable Broadcast Networks and
their possible extensions. In [BFS15], we studied reachability problems for Reconfigurable
Broadcast Networks adding a restriction on the considered executions, indeed we required
that all the processes in the networks must follow the same local strategy. With this last term,
we mean that all processes with the same sequence of last performed actions and received
messages do the same action. This restriction reflects in a sense the distributed aspect of
our networks where we would like that each process behaves the same way with the same
information. This problem can be seen as a synthesis problem where we want to extract a
deterministic behaviour for the different processes of our networks from a non-deterministic
broadcast protocol.

We have then studied two extensions of Reconfigurable Broadcast Networks. In [BFS14],
we studied a probabilistic version of these networks where each process can perform an
internal action probabilistically, i.e. from some states there is a probabilistic distribution
over the set of states a process can move to. This allows to model a randomised change
of the internal state of a process (this change could be caused by an external component
whose probability is known). The semantics of this model is then given in terms of a
Markov Decision Process with an infinite number of states over which we solved qualitative
reachability questions: as for instance, does there exists a number of entities which allows
to reach almost surely a control state of the protocol. The technique we used to solve these
latter problems is particularly interesting as it is based on a reduction towards a two player
game played on the graph of a Reconfigurable Broadcast Network with parity objective.

In [DST13; DST16], we have extended the message alphabet of Reconfigurable Broadcast
Networks to data from an infinite set. In order to manipulate these data in a finite represen-
tation, we equipped each process with a finite set of registers where the received data can
be stored and we allowed a process to test for equality between a received data and a stored
one. We have here again studied some parameterised reachability questions on this model
and investigated the impact on decidability and complexity of different restrictions as for
instance the number of registers or the number of values carried by each single message.
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8.1 reachability in reconfigurable broadcast networks

In this section, we present the results we obtained for the verification of reachability
properties in Reconfigurable Broadcast Networks. As for Ad Hoc Networks, we assume in
these networks, that each entity or process executes the same protocol given by a Broadcast
Protocol (see Section 7.1.1) and that a during an execution the size of the network does
not evolve. The main difference being that at each step the communication topology might
change in a complete non-deterministic way.

8.1.1 Reconfigurable Broadcast Networks induced by a Broadcast Protocol

We first introduced Reconfigurable Broadcast Networks in [DSZ10] by extending the seman-
tics of Ad Hoc Networks with a reconfiguration step which could happen at any time and
whose role is to change the communication topology of the network without altering the
number of entities, basically a reconfiguration step changes the edges of a configuration
(which is a graph, see Section 7.1.2), but not the set of vertices. However, to deal with
the verification questions we are interested in, we can abstract this reconfiguration step
and delete away the graph structure of the configurations and keep only track on the
number of processes in a certain state of the protocol. In this abstraction, to respect the
semantics of reconfigurable networks, we assume that when a broadcast is performed,
only a non-deterministically chosen set of entities will receive the emitted message, this
set corresponding to the entities connected to the emitter at the moment of the broadcast.
We present here this semantics where the reconfiguration step is abstracted away and
substituted by a broadcast to some of the entities in the network.

We are now ready to move to the definition of a Reconfigurable Broadcast Network
induced by a Broadcast Protocol BP = (Q, M, ∆, qin). A configuration of such a network is
given by a vector λ ∈ ⋃`∈N\{0} Q`. For a configuration λ ∈ Q` with ` ≥ 1, we denote by
‖λ‖ = ` its dimension, intuitively it corresponds to the number of entities/processes present
in the network and λ[p] represents the state of the p-th process for each 1 ≤ p ≤ ‖λ‖.
The set of configurations of the Reconfigurable Broadcast Network induced by BP is then
Λ =

⋃
`∈N\{0} Q` and the set of initial configurations is Λin =

⋃
`∈N\{0}{qin}`. Hence in an

initial configuration, all processes are in state qin.
The transition system RBN(BP) induced by BP is then given by the tuple (Λ,⇒) where
⇒⊆ Λ×N× ∆× 2N × Γ is the transition relation which we shall now define. We have

λ
p,δ,R
==⇒ λ′ if and only if ‖λ‖ = ‖λ′‖ and p ∈ [1, ‖λ‖] and R ⊆ [1, ‖λ‖] \ {p} and one of the

following conditions holds:

• Internal action: δ = (λ[p], τ, λ′[p]) and R = ∅ and λ′[p′] = λ[p′] for all p′ ∈ [1, ‖λ‖] \
{p};

• Broadcast communication: δ = (λ[p], !!m, λ′[p]) and (λ[p′], ??m, λ′[p′]) ∈ ∆ for all
p′ ∈ R such that {(λ[p′], ??m, q) ∈ ∆ | q ∈ Q} 6= ∅ and λ′[p′′] = λ[p′′] for all
p′′ ∈ [1, ‖λ‖] \ (R∪{p}) and for all p′′ ∈ R such that {(λ[p′], ??m, q) ∈ ∆ | q ∈ Q}−∅.

Note that here we label the transition relation with p, the process performing an internal
action or a broadcast, δ the edge of the protocol taken by process p and R a reception set
which determines which processes will receive the broadcast. For the next section, we do
not really need in our definition p and R but introducing this term will make sense when
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we will deal with local strategies. If we sum up the semantics, with an internal action,
only the process p changes its state and when a process p broadcasts a message m then
all the processes in R than can receive this message will receive it and change their state
accordingly. Note that here again, since we require that ‖λ‖ = ‖λ′‖, it means that the
number of processes remains the same during an execution (there is no creation or deletion
of processes). As for Ad Hoc Networks, we denote by λ⇒ λ′ if there exists p ∈N, δ ∈ ∆

and R ∈ 2N such that λ
p,δ,R
==⇒ λ′ and⇒∗ represents the reflexive and transitive closure of

⇒. Given an initial configuration λin ∈ Λin, a finite run (or finite execution) starting from
λin in RBN(BP) is a finite path in RBN(BP) denoted as:

ρ := λ0
p0,δ0,R0
====⇒ λ1

p1,δ1,R1
====⇒ . . .

pn−1,δn−1,Rn−1
========⇒ λn

with λ0 ∈ Λin. We then denote by ‖ρ‖ the natural ‖λ0‖ corresponding to the number of
processes involved in the execution ρ. Note that by definition ‖ρ‖ = ‖λ0‖ = · · · = ‖λn‖.

Example 8.1. On Figure 8.2, we have represented a possible run in the Reconfigurable Broadcast
Network associated to the Broadcast Protocol depicted on Figure 8.1. To see the fundamental difference
with Ad Hoc Networks, note that in the first step, the process 1 emits a message m1 which is received
only by process 3 (the number of each process being written in the first configuration) and not by
process 2, otherwise this latter process would have to change its state from qin to q3, but in the second
step process 2 emits a message which is received by process 1. It could be seen as a change in the
communication topology between these two steps: in the second step 1 and 2 being adjacent but not
in the first step. Furthermore in the second step, we remark that 4 belongs to the set of receivers for
the message m2 emitted by 2, but since in qin there is no outgoing transition labelled with ??m2,
process 4 does not change its state.

qin q2
!!m2

δ2

q5
??m3

δ6

q3

??m1

δ3

!!m3
δ7

q1

!!m1

δ1

q4
??m2

δ4
τ

δ 5

Figure 8.1: A Broadcast Protocol

8.1.2 Reachability of counting constraints

In [DSZ10], we have shown that the parameterised control state reachability problem and
the parameterised target state reachability problem are both decidable when considering
Reconfigurable Broadcast Networks instead of Ad Hoc Networks thanks to a reduction
to the coverability and reachability problems in Petri nets (or equivalently control state
reachability and reachability in Vector Addition with States). However, in [Del+12], we
designed algorithms to solve these problems with a much better complexity. Actually to
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qin

1

qin

2

qin

3

qin

4

qin

5

qin

6

1,δ1,{3}
====⇒

q1 qin q3

qin qin qin

2,δ2,{1,4}
=====⇒

q4 q2 q3

qin qin qin

q5 q2 q3

qin qin qin

1,δ5,∅
===⇒ 4,δ1,{5,6}

=====⇒
q5 q2 q3

q1 q3 q3

Figure 8.2: A run in the Reconfigurable Broadcast Network associated to the protocol of Figure 8.1

fully understand where lies the difficulty in solving reachability queries in Reconfigurable
Broadcast Networks, we introduced a new problem which consists in checking whether a
configuration satisfying a logical constraint on the number of present states can be reached.
We then provide different algorithms to solve this problem depending on the shape of the
counting constraint.

We first define formally these counting contratins and how we interpret them. Let
BP = (Q, M, ∆, qin) be a broadcast protocol. The set of counting constraints for BP is given
by the following grammar:

φ ::= a ≤ #q < b | φ ∧ φ | φ ∨ φ | ¬φ

where a ∈ N, q ∈ Q and b ∈ (N \ {0}) ∪ {+∞}. We denote by CC the class of counting
constraints, by CC[≥ 1] the class in which negation is forbidden and atomic formulas have
only the form 1 ≤ #q < +∞ and finally by CC[≥ 1,= 0] the class of counting constraints
in which negation is forbidden and atomic formulas have only the form 1 ≤ #q < +∞ or
0 ≤ #q < 1.

Intuitively, a counting constraint of the form a ≤ #q < b specifies that in a considered
configuration the number of processes which is in state q should be bigger that a and strictly
smaller b. Given a configuration λ of RBN(BP), for q ∈ Q, we use the notation #q(λ) to
represent the value |{p ∈ N | 1 ≤ p ≤ ‖λ‖ and λ[p] = q}|, in other words it corresponds
to the number of processes in λ being in the control state q. Given a counting constraint
for BP and a configuration λ of RBN(BP), we then define the satisfaction relation λ |= φ as
follows: for atomic formula, we have λ |= a ≤ #q < b if and only if a ≤ #q(λ) < b and the
cases of the boolean combinations directly follow.

We are now ready to present the counting reachability problem for Reconfigurable
Broadcast Networks to which is dedicated this section.
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RBN-CountingReach

Input: A Broadcast Protocol BP = (Q, M, ∆, qin)

and a counting constraint φ for BP;

Question: Does there exists an initial configuration λin and a configuration λ

such that λin ⇒∗ λ in RBN(BP) and λ |= φ?

8.1.3 Solving the counting reachability problem

In [Del+12], we have determined the precise complexity bounds for RBN-CountingReach

taking into account whether the provided counting contraint belongs to CC[≥ 1], CC[≥ 1,= 0]
or to the general class CC.

8.1.3.1 Counting constraints in CC[≥ 1]

If the counting constraint belongs to CC[≥ 1], it means that it can only test the presence
of some control states in a configuration. It corresponds to a generalization of the pa-
rameterised control state reachability problem. We have shown that under this restriction
RBN-CountingReach is Ptime-complete. To obtain the upper bound we observe the follow-
ing property of Reconfiguration Broadcast Networks: if a configuration in which the control
state q can be reached from an initial configuration λin, then there is another configuration
than can be reached where q appears an arbitrary number of times from a larger initial
configuration λ′in. More specifically, λ′in is obtained by replicating several times λin and we
use then reconfiguration to mimic parallel executions of the execution witnessing originally
the state q and reach a configuration with several repeated occurrences of q. Furthermore,
since the considered constraint belongs to CC[≥ 1], we do not need to solve the counting
reachability problem to count the occurrences of states and we just have to remember which
states have been seen. As a consequence, we design a polynomial time procedure which at
each step increases the set of seen states checking which edge of the protocol can be applied
and add, whenever it is the case, new states to the considered set. For instance, if in this
set there are two states q and q′ and in the protocol two edges (q, !!m, q′′) and (q′, ??m, q′′′),
we know that we can add states q′′ and q′′′ and that there is a reachable configuration
where each state q, q′, q′′ and q′′′ occurs an arbitrarily number of times. This procedure
halts whenever the set of reachable states cannot be increased anymore. To obtain the lower
bound we provide a reduction logarithmic in space from the Circuit Value Problem which
is known to be Ptime-complete[Lad75].

8.1.3.2 Counting constraints in CC[≥ 1,= 0]

If the counting constraint belongs to CC[≥ 1,= 0], it means that it can only test the presence
or absence of some control states in a configuration and here again it is not necessary to
count the number of occurrences of each state. This restriction corresponds to an extension
of the parameterised target reachability problem (where we seek for a configuration where
all the processes are in the same given state). We have shown that under this restriction
RBN-CountingReach is NP-complete. As for the previous case, the decision procedure
manipulates a set of seen control state and is based on the following observation. If there is
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an execution of the Reconfigurable Broadcast Network which allows to reach a configuration
λ satisfying a counting constraint φ ∈ CC[≥ 1,= 0] then there is an execution which allows to
reach another configuration λ′ satisfying as well φ and this second execution can be divided
into two consecutive phases verifying the following property: during the first phase the set
of control states appearing in each configuration strictly increases and during the second
phase it strictly decreases. The non-deterministic procedure consists then in guessing two
sequences of set of control states, one that strictly increases and the other one that strictly
decreases and then in checking that they correspond to an execution of the Reconfigurable
Brodcast Network. By definition, these two sequences are of polynomial length in the
number of states of the considered protocol. To obtain the lower bound we provide a
reduction from the boolean satisfiability problem which is known to be NP-complete.

8.1.3.3 Counting constraints in CC

Finally, we proved that, in its full generality, RBN-CountingReach is Pspace-complete
(assuming that the values provided in the counting constraint are encoded in unary). The
main idea to solve the general case consists in relying on a symbolic representation of
configurations in which the behavior of the network is observed precisely for a fixed
number of nodes only, while for the other nodes only the set of present states is taken into
account (and we forgot the number of occurrences).

We consider a broadcast protocol BP = (Q, M, ∆, qin) and a counting constraint φ for
BP and we denote by val(φ) the largest natural constant that appears in φ. A symbolic
configuration of RBN(BP) and φ is then a pair (v, S) where v ∈ Q|Q|×val(φ) and S ⊆ Q.
Intuitively v represents |Q| × val(φ) processes that in the symbolic approach we simulate
faithfully with respect to the semantics of Reconfigurable Broadcast Networks and in set
S we store the states of other processes. Hence a symbolic configuration (v, S) represents
all the configurations λ such that ‖λ‖ ≥ |Q| × val(φ) and #q(λ) > #q(v) for all q ∈ S and
#q(λ) = #q(v) for all q ∈ Q \ S. We then show how to compute the symbolic successors of a
configuration and how we can test whether all the configurations of a symbolic configuration
satisfy a counting constraint. This provides us with an algorithm which consists in looking in
the graph of symbolic configurations where the transition relation is the symbolic successor
configuration, whether it is possible to reach a symbolic configuration satisfying φ (ie
such that all its configurations satisfy φ). Since the number of symbolic configurations is
exponential and each symbolic configuration needs only a polynomial number of bits to be
stored and since checking whether a symbolic configuration satisfies a counting constraint
can be done in polynomial time so as checking whether a symbolic configuration is the
symbolic successor of another one, we obtain a (non-deterministic) Pspace algorithm to
solve RBN-CountingReach. To obtain the lower bound we provide a reduction from the
reachability problem for 1-safe nets (Petri nets where in every reachable markings every
place has at most one token) which is known to be Pspace-complete [CEP95].

8.1.3.4 Summary of the results

From what we have explained previously we hence have obtained the following complexity
results for the counting reachability problem for Reconfigurable Broadcast Networks.
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Theorem 8.1. [Del+12]

1. RBN-CountingReach restricting to counting constraints in CC[≥ 1] is Ptime-
complete.

2. RBN-CountingReach restricting to counting constraints in CC[≥ 1,= 0] is NP-
complete.

3. RBN-CountingReach is Pspace-complete.

Remark. As already mentioned the parameterised target state reachability for Reconfigurable Broad-
cast Networks (defined as for Ad Hoc Networks but considering the semantics with reconfiguration)
can be encoded in RBN-CountingReach with a constraint in CC[≥ 1,= 0], hence the previ-
ous theorem tells us that this problem is in NP. However this problem is Ptime-complete (as the
parameterised control state reachability) as it is explained in the second chapter of [Fou15].

8.2 verification of reconfigurable broadcast networks under local

strategies

In [BFS15], we have considered the parameterised reachability state and target state problems
for Reconfigurable Broadcast Networks under a new perspective, which could have its
interest for other models of networks where entities all follow the same protocol. Indeed in
such models, the executed protocol is often non-deterministic in the sense that in a certain
configuration, an entity in a certain state could have different possible options (for instance
it can go to two different states while broadcasting or sending a message m). Therefore it
may happen that two entities behave differently, even if they have the same information on
what has happened so for in the execution. To forbid such non-truly distributed behaviours,
in [BFS15], we constrain processes to take the same decision in case they have taken the same
sequence of transitions in their past. We thus study the aforementioned reachability problems
restricted to what we call local strategies. Interestingly, the notably difficult distributed
controller synthesis problem [PR90] is relatively close to the problem of existence of a local
strategy. Indeed a local strategy corresponds to a local controller for the processes executing
the protocol and whose role is to resolve the non-deterministic choices.

8.2.1 Local strategies

We will present here the definition of local strategies for Reconfigurable Broadcast Networks
which will ensure that in an execution all processes perform the same choices of edges
according to their past history (ie the edges of the protocol it has fired so far).

We first need some preliminary definitions. We consider a Broadcast Protocol BP =

(Q, M, ∆, qin). A finite path in BP is either the empty path, denoted by ε, or a non-empty
finite sequence of consecutive edges δ0 · · · δ` with δi = (qi, a, qi+1) ∈ ∆ for all i ∈ [0, `])
and q0 = qin. We use the notation last(π) to represent the last state of the path π: for the
empty path, we will have last(ε) = qin and if π = δ0 · · · δ` with δi = (qi, a, qi+1), we set
last(π) = q`+1. We denote by Path(BP) the set of finite paths of BP.

A local strategy σ for BP is then a pair (σa, σr) of partial functions such that, given an
history, σa specifies the next active edge to be taken (labelled by a broadcast or an internal
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action) and σr the reception edge (labelled by a reception) to be chosen when receiving a
message. Formally, we have:

• σa : Path(BP) 7→ (Q× ({!!m | m ∈ M} ∪ {τ})× Q) is a partial function such that if
σa(π) = (q, a, q′) for the finite path π ∈ Path(BP) then (q, a, q′) ∈ ∆ and q = last(π),

• σr : Path(BP)× M 7→ (Q × {??m | m ∈ M} × Q) is a partial function such that if
σa(π, m) = (q, a, q′) for the finite path π ∈ Path(BP) and the message m ∈ M then
(q, a, q′) ∈ ∆ and q = last(π) and a =??m.

Since our aim is to analyze executions of Reconfigurable Broadcast Networks where each
process behaves according to the same local strategy, we now need to provide the definition

of such executions. We consider an execution ρ := λ0
p0,δ0,R0
====⇒ λ1

p1,δ1,R1
====⇒ . . .

pn−1,δn−1,Rn−1
========⇒ λn

of RBN(BP). For p ∈ ‖ρ‖, we first define πp(ρ) as the past of process p in ρ. It corresponds
to the sequence κ0 . . . κn−1 where for each i ∈ {0, n − 1}, we have: κi = δi if pi = p, or
κi = (λi[p], ??m, λi+1[p]) if p ∈ Ri and δi = (q, !!m, q′) and (λi[p], ??m, λi+1[p]) ∈ ∆, or
κi = ε in the other cases (where we assume that ε.δ = δ.ε = δ for all δ ∈ ∆). Note that
by definition we have πp(ρ) ∈ Path(BP). We then say that a finite path δ0 · · · δ` of BP
respects a local strategy σ = (σa, σr) if for all i ∈ [0, `− 1], we have either δi+1 = σa(δ0 · · · δi)

or δi+1 = σr(δ0 · · · δi, m) for some m ∈ M. Following this, an execution ρ respects a local
strategy σ if and only if πp(ρ) respects σ for all p ∈ [1, ‖ρ‖] (i.e. each process participating
in ρ behaves as specified by σ).

8.2.2 Verification problems

In [BFS15], we studied the parameterised control state and target state reachability problems
for Reconfigurable Broadcast Networks restricted to local strategies. These two problems
can be defined as follows:

RBN-Local-ControlReach

Input: A Broadcast Protocol BP = (Q, M, ∆, qin)

and a control state q f ∈ Q;

Question: Does there exist an execution ρ := λin ⇒∗ λ in RBN(BP)

and a local strategy σ

such that ρ respects σ and #q f (λ) > 0 ?

RBN-Local-Target

Input: A Broadcast Protocol BP = (Q, M, ∆, qin)

and a control state q f ∈ Q;

Question: Does there exist an execution ρ := λin ⇒∗ λ in RBN(BP)

and a local strategy σ

such that ρ respects σ and #q f (λ) = ‖ρ‖ ?
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As we have seen before, if we forget the fact that the considered executions have to respect
some local strategies then these two problems are Ptime-complete and in [BFS15] we have
shown that considering local strategies make them NP-complete.

Example 8.2. To illustrate these verification problems, we provide an example of a Broadcast
Protocol on Figure 8.3. On this protocol, there exists a local strategy which allows to reach the
control state q f . Consider indeed the following execution with two processes: [qin, qin]⇒ [q1, qin]⇒
[q f , q1]. It respects the local strategy which says that from an empty past, a process has to take the
edge (qin, !!m, q1) and in the state q1 a process on reception of a message m has to take the edge
(q1, ??m, q f ); in the first step of the execution, no process receives the broadcasted message and in
the second step, only the first process receives it (we recall that in Reconfigurable Broadcast Networks
at each step the set of processes that can receive a message possibly changes). On the other hand,
no local strategy allows an execution which can reach the state q′f . The reason being that to reach
this state, one process with empty past needs to go to q2 and another to q1. Finally the execution
[qin, qin, qin]⇒ [q1, qin, q3]⇒ [q1, q1, q4]⇒ [qt, qt, qt] brings the three processes in the target state
qt and it respects a local strategy.

qin q1
!!m

τ

q2
τ

τ

q′f
??m

??m q f
??m

??m

q3

??m
τ q4

??m qt
!!m

??
m

Figure 8.3: A Broadcast Protocol

8.2.3 Solving reachability problems under local strategies

In [BFS15], we have proved that RBN-Local-ControlReach and RBN-Local-Target are
NP-complete problems. To obtain this result, we use trees to represent local strategies and
show that a control state can be reached in an execution respecting a local strategy if and
only if there exists such a tree of polynomial size respecting some conditions. The idea
behind these trees being that the paths in the tree represent past histories and the edges
outgoing a specific node represent the decisions of the local strategy. We now present the
different steps of this proof for RBN-Local-ControlReach.

We first provide the definition of our tree representation of strategies. A strategy pattern
for a broadcast protocol BP = (Q, M, ∆, qin) is a labelled tree T = (N, n0, E, ∆, lab) where N
is a finite set of nodes, n0 ∈ N is the root of the tree, E ⊆ N × N is the edge relation and
lab : E 7→ ∆ the edge labelling function. Moreover T is such that if e1 . . . e` is a path in T
(starting at n0) then lab(e1) . . . lab(e`) belongs to Path(BP) and for every node n ∈ N there is
a most one edge e = (n, n′) such that lab(e) ∈ Q× ({!!m | m ∈ M} ∪ {τ})×Q and, for each
message m ∈ M there is at most one edge e′ = (n, n′′) such that lab(e′) ∈ Q× {??m} ×Q.
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Since all labels of edges outgoing a node share a common source state (due to hypothesis
on labelling of paths), the labelling function lab can be consistently extended to nodes by
letting lab(n0) = qin and lab(n) = q for any (n, n′) ∈ E with lab(n′, n) = (q′, a, q).

Example 8.3. On Figure 8.4, we have depicted a strategy pattern for the Broadcast Protocol of
Figure 8.3.

n0

n1

(q in
, ??m, q3)

n2

(qin , !!m, q1 )

n3

(q3, τ
, q3)

n4

(q3 , ??m, q4 )

n5
(q1, τ, q1)

n6
(q3, ??m, q4)

n7
(q1, ??m, q f )

n8
(q4, !!m, qt)

Figure 8.4: A strategy pattern for the Broadcast Protocol of Figure 8.3

Our aim is to reason on such strategy patterns to solve RBN-Local-ControlReach.
First, remark that we can say that a local strategy σ for a Broadcast Protocol BP follows a
strategy pattern T for the same protocol if for every path e1 . . . e` in T (starting at n0), we
have that lab(e1) . . . lab(e`) respects σ. By definition, any strategy pattern admits at least one
local strategy. But we can as well refine the definition of strategy patterns such that they
represent precisely local strategies yielding an execution which reaches a specific control
state. We formalize this idea. Let BP = (Q, M, ∆, qin) be a Broadcast Protocol and q f ∈ Q. A
strategy pattern T = (N, n0, E, ∆, lab) is said to be q f -admissible if and only if there exists a
strict total order ≺⊆ N × N on the nodes of T such that:

1. n ≺ n′ for all (n, n′) ∈ E,

2. for all e = (n, n′) ∈ E, if lab(e) = (q, ??m, q′) for some q, q′ ∈ Q and m ∈ M, then
there exists e1 = (n1, n′1) ∈ E such that n′1 ≺ n′ and lab(e1) = (q1, !!m, q′1) for some
q1, q′1 ∈ Q.

3. if n ∈ N is such that for all n′ ∈ N, n 6= n′ implies n′ ≺ n, then lab(n) = q f .

In other words, the first condition states that ≺ respects the order of the tree T, the second
condition that every node corresponding to a reception of a message m should be preceded
by a node corresponding to the broadcast of this message and the last condition that the
state q f can be reached.

Example 8.4. If we take the strategy pattern T represented on Figure 8.3 and we consider the
following strict total order n0 ≺ n2 ≺ n1 ≺ n3 ≺ n4 ≺ n5 ≺ n6 ≺ n8 ≺ n7, then it allows us to
deduce that T is q f admissible.
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In [BFS15], we have shown that given a Broadcast Protocol BP = (Q, M, ∆, qin) and a
control state q f ∈ Q, there exist an execution ρ := λin ⇒∗ λ in RBN(BP) and a local strategy
σ such that ρ respects σ and #q f (λ) > 0 if and only if there exists a q f -admissible strategy
pattern whose size is polynomial in the size of BP. This allows us to obtain an NP-algorithm
for RBN-Local-ControlReach by guessing a strategy pattern together with the order
characterising its q f -admissibility. Similarly, by adapting the notion of admissibility we
obtain an NP algorithm for RBN-Local-Target. A reduction from 3SAT allows us to get
the matching lower bounds.

Theorem 8.2. [BFS15] RBN-Local-ControlReach and RBN-Local-Target are NP-
complete problems.

Remark.

1. The proof techniques developed in [BFS15] allow us furthermore to bound the number of
processes necessary to have an execution respecting a local strategy and exhibiting a specific
control strate [resp. target state] by a polynomial in the size of the considered protocol.

2. In [BFS15], we have as well studied the existence of local strategies for the parameterised
control state and target state reachability problems in Ad Hoc Networks restricted to complete
configurations. We have proved that these two problems are undecidable (even if, under the same
assumption, the parameterised control state reachability without local strategy is decidable
as recalled in Section 7.3.2.2). However, decidability can be regained for the control state
reachability if one consider complete Broadcast Protocols where for every state q and every
message m, there exists an outgoing edge from q able to receive the message m. But in that
case, the problem is non primitive recursive.

8.3 verification of probabilistic reconfigurable broadcast networks

As we have seen in the previous section, Reconfigurable Broadcast Networks enjoy good al-
gorithmic properties for what concerns the verification of reachability properties. In [BFS14],
we have investigated an extension of this model with probabilities. There are different
options and motivations to insert probabilities in Reconfigurable Broadcast Networks. A
first option to consider could be that the reconfiguration of the networks is probabilistic,
in other words the set of receivers of a broadcast is chosen according to a probabilistic
distribution among the possible sets of receivers. This option would allow to model in
a certain sense the probability of failure of the message reception. It is not the direction
we followed but it could be worth investigating it. Another option consists in equipping
broadcast protocols with probabilities. This choice allows to model a probabilistic choice
at the level of the protocol. This feature is inspired by randomised distributed algorithms
where probabilities are used locally to break symmetries in the behavior of the network.

In [BFS14], we have hence extended the model of Reconfigurable Broadcast Networks by
allowing probabilistic internal actions; a process can change its internal state according to a
probabilistic distribution. As a consequence, the semantics of such networks is given by an
infinite state system with probabilistic and non-deterministic choices (due to the possible
interleaving and the choices of receiver set for each broadcast). As we have seen in Section
6.3, the verification of infinite state Markov Decision Processes can be a tedious task however
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8.3 verification of probabilistic reconfigurable broadcast networks

in the case of Probabilistic Reconfigurable Broadcast Networks, the peculiar shape of the
systems allow to ease the reasoning and to propose nice algorithms. We have indeed studied
in this latter context the probabilistic version of the parameterised control state reachability
problem by seeking for the existence of a scheduler resolving the non-determinism while
maximising or minimising the probability to reach a configuration exhibiting a specific
state. In [BFS14], we have focused on the qualitative aspects of this problem comparing the
probabilities with 0 and 1.

8.3.1 Probabilistic Reconfigurable Broadcast Networks

8.3.1.1 Probabilistic Broadcast Protocols

We begin by presenting the syntax and semantics behind what we call Probabilistic Recon-
figurable Networks. In this model, as for Reconfigurable Broadcast Networks, we assume
that each entity executes the same protocol represented by a finite state machine and that
we call Probabilistic Broadcast Protocol. The main difference with Broadcast Protocol lies in
the fact that some internal actions ares probabilistic in the sence that they are equipped with
a probabilistic distribution defining the successor state in the protocol. This aspect allows to
model randomised choices at the protocol level. The definition of probabilistic protocol is
very close to the one of Markov Decision Processes given in Section 6.3 but the semantics
will be different, however we will here as well use a semantics with the intervention of two
players the non-deterministic player (Player 1) and the probabilistic player (Player P).

Definition 8.1 (Probabilistic Broadcast Protocol). A Probabilistic Broadcast Protocol BP is a
tuple (Q, Q1, QP, M, ∆, ∆P, qin) where:

• Q is a finite set of control states partitioned into Q1 (states of Player 1) and QP (states of
Player P),

• M is a finite alphabet of messages,

• ∆ ⊆ (Q1×{!!m, ??m | m ∈ M}×Q1)∪ (Q1×{τ}×Q) correspond to the non-deterministic
edges labelled by broadcast actions,

• ∆P : QP 7→ Dist(Q1) is the set of probabilistic edges, and,

• qin ∈ Q1 is the initial control state.

As for Broadcast Protocols, the label τ is used for an internal action of an entity, i.e. an
action that is done independently, !!m corresponds to the emission of the message m and
??m corresponds to the reception of the message m. In this model, we assume that only
internal actions can lead to a probabilistic choice.

Example 8.5. On Figure 8.5, we have depicted a simple example of Probabilistic Broadcast Protocols
in which Player P has only a single state, qP from which the probability to go to q1 is one half as the
probability to go to q2.

8.3.1.2 Semantics in terms of Markov Decision Process

We can now present the semantics associated to Probabilistic Broadcast Protocols in terms of
Markov Definition Process. This definition extends the one of Reconfigurable Broadcast Net-
works presented previously by taking into account the difference between non-deterministic
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qin qP
τ

q11
2

τ

q2

1
2

!!m

qF
??m

Figure 8.5: A Probabilistic Broadcast Protocol

and probabilistic choices. We suppose here that the choice of the active process (the one
performing an internal action or a broadcast) is non-deterministic.

Let BP = (Q, Q1, QP, M, ∆, ∆P, qin) be a Probabilistic Broadcast Protocol. The Player 1’s
configurations of the Probabilistic Reconfigurable Broadcast Network associated to BP are
given by the set Υ1 =

⋃
`∈N\{0}{υ ∈ (Q1×{⊥,>})` | card({p ∈ [1, `] | υ[p] = (q,>)}) ≤ 1}.

Hence in these configurations, no process is labelled with a probabilistic state and at
most one process has label >, it corresponds to the process chosen to perform the next
action, that we called the active process. The Player P’s configurations are given by the
set ΥP =

⋃
`∈N\{0}{υ ∈ (Q× {⊥})` | card({p ∈ [1, `] | υ[p] = (q,⊥) and q ∈ QP}) = 1}.

For this last set of configurations, the intuition is that when the network moves into a
configuration of ΥP from which it performs a probabilistic choice, this choice corresponds
to the next possible state for the single process labelled by a state of QP (which is the one
that has performed before an internal action leading to a state of Player P). We then denote
by Υ the set of configurations Υ1 ∪ ΥP. As for Broadcast Reconfiguration Networks, for a
configuration υ ∈ Υ such that υ ∈ (Q ∪ {>,⊥})`with ` ≥ 1, we denote by ‖υ‖ = ` the
number of entities/processes present in the network. The set of initial configurations is
Υin =

⋃
`∈N\{0}{(qin,⊥)}`. Hence in an initial configuration, all processes are in state qin

and none of them is active.
The Probabilistic Reconfigurable Broadcast Network induced by BP is then given by

the Markov Decision Process PRBN(BP) = (Υ, Υ1, ΥP,⇒, prob) where ⇒⊆ Υ1 × Υ and
prob : ΥP → Dist(Υ1) are defined as follows. We have υ⇒ υ′ if and only if ‖υ‖ = ‖υ′‖ and
one of the following conditions holds:

• Process choice: card({p ∈ [1, ‖υ‖] | υ[p] = (q,>)}) = 0 and there exists p ∈ [1, ‖υ‖]
such that υ[p] = (q,⊥) and υ′[p] = (q,>) and there exists (q, a, q′) ∈ ∆ with a ∈ {!!m |
m ∈ M} ∪ {τ} and υ[p′] = υ′[p′] for all p′ ∈ [1, ‖υ‖] \ {p};

• Internal action: there exists p ∈ [1, ‖υ‖] such that υ[p] = (q,>) and υ′[p] = (q′,⊥)
and (q, τ, q′) ∈ ∆ and υ[p′] = υ′[p′] for all p′ ∈ [1, ‖υ‖] \ {p};

• Broadcast communication: there exist p ∈ [1, ‖υ‖] and m ∈ M such that υ[p] = (q,>)
and υ′[p] = (q′,⊥) and (q, !!m, q′) ∈ ∆ and for all p′ ∈ [1, ‖υ‖] \ {p} either υ[p′] =
(q′′,⊥) and υ′[p′] = (q′′′,⊥) and (q′′, ??m, q′′′) ∈ ∆, or υ[p′] = (q′′,⊥) = υ′[p′].

And for all υ ∈ ΥP, if p is the unique process such that υ[p] = (q,⊥) with q ∈ QP then
for all υ′ ∈ Υ1 we have that if ‖υ‖ = ‖υ′‖ and υ′[p] = (q′,⊥) and υ[p′] = υ′[p′] for all
p′ ∈ [1, ‖υ‖] \ {p} then prob(υ)(υ′) = ∆P(q)(q′) and otherwise prob(υ)(υ′) = 0.
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Example 8.6. On Figure 8.6, we have depicted some finite plays of the Markov Decision Process
PRBN(BP) induced by the Probabilistic Broadcast Protocol BP of Figure 8.5. All these plays start
from the initial configuration with three processes and we have represented by dotted edge the
probabilistic transitions.

8.3.1.3 Qualitative reachability problems

We now present the verification problems we have studied in [BFS14] over Probabilistic
Reconfigurable Broadcast Networks. it corresponds to the probabilistic version of the
parameterised control state reachability we have studied previously in Ad Hoc Networks and
Reconfigurable Broadcast Networks. We have only obtained results for qualitative questions
(where we compare the probabilities with 0 and 1) and computing the exact probabilities
seem to be a tedious task. Before to define the problem, we need an extra notation. Given a
Probabilistic Broadcast Protocol BP = (Q, Q1, QP, M, ∆, ∆P, qin) and a control state qF ∈ Q,
we denote by JFqFK the set of maximal plays of PRBN(BP) given by {υ0υ1υ2 . . . | ∃i.∃j.j ≤
‖υi‖ and υi[j] = (qF,⊥)}, i.e. the set of maximal plays reaching a configuration where
one of the process is labelled by (qF,⊥). The different qualitative reachability problems
we analysed are parameterised by an option opt ∈ {in f , sup} specifying if we wish to
minimise or maximise the probability of reaching the state, by a constant b ∈ {0, 1} and by
∼∈ {<,=,>} and they are given by the following common definition:

PRBN-ControlReach
∼b
opt

Input: A Probabilistic Broadcast Protocol BP = (Q, Q1, QP, M, ∆, ∆P, qin)

and a control state qF ∈ Q ;

Question: Does there exists an initial configuration υin ∈ Υin such that

Popt(PRBN(BP), υin, JFqFK) ∼ b?

Note that as the previous problems presented in the framework of parameterised networks,
here again we are seeking for an initial configuration in an infinite set. However, if we fix
the initial configuration, then the problem boils down to the analysis of a finite state Markov
Decision Process.

8.3.2 Reconfigurable Broadcast Networks Games

In order to solve some of the parameterised qualitative problems mentioned before, as
we have done in the case of VASS-MDP (see Section 6.3), we will here as well propose a
reduction towards a two player game. This technique is not classical and in [Cha+09], the
authors show the connection between qualitative questions in Markov Decision Processess
and fixpoint logics (for which the model-checking can be solved thanks to games). However,
what makes the task hard in our context is that we need to define a game on parameterised
networks and then to propose a method to solve it, knowing that we deal with an infinite
system. We will show in this section how we have faced these two issues in [BFS14].
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Figure 8.6: Example of plays in PRBN(BP) for the Probabilistic Broadcast Protocol BP of Figure 8.5
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8.3.2.1 Playing games on Reconfigurable Broadcast Networks

We first need to propose a new definition of a Broadcast Protocol where the set of states is
divided among two players and to which we add some colouring functions to deal with
parity conditions. We will as well equip our protocol with a subset of edges, we will call
safe edges, which correspond to edges that Player 1 can take and if an edge not belonging
to this set is taken then Player 1 will lose. This extra condition will be useful to solve for
instances PRBN-ControlReach

=0
min where we want to find a scheduler that can avoid to go

to the target state.

Definition 8.2 (Parity Broadcast Protocol). A Parity Broadcast Protocol BP is a tuple (Q, Q1, Q2,
M, ∆, qin, col, sa f e) where:

• Q is a finite set of control states partitioned into Q1 (states of Player 1) and Q2 (states of
Player 2),

• M is a finite alphabet of messages,

• ∆ ⊆ (Q1 × ({!!m, ??m | m ∈ M} ∪ {τ})×Q) ∪ (Q2 × {τ} ×Q) correspond to the edges
labelled by broadcast actions,

• qin ∈ Q1 is the initial control state,

• col : ∆ 7→N is the colouring function, and,

• sa f e ⊆ ∆ is the set of safe edges.

We remark that we associate in our context colours to edges and not to states because
since we deal with networks where each process is in a state of the Parity Broadcast Protocol,
having colours associated to states would mean to deal with set of colours which might
be difficult. On the other hand, having colours associated to edges allows us to focus on
the sequence of colours generated by the active transitions (internal ones or broadcasts of
a message) in an execution. Note as well that the roles of Player 1 and Player 2 are not
symmetric: only Player 1 can initiate a communication and Player 2 performs only internal
actions.

The semantics associated to a Parity Broadcast Protocol is given in term of a 2 Player
game whose definition is similar to the Markov Devision Process induced by a Probabilistic
Broadcast Protocol. Let BP = (Q, Q1, Q2, M, ∆, qin, col, sa f e) be a Parity Broadcast Protocol.
Here as well, the Player 1 has the ability to chose a process which will perform an action
and according to the control state labelling the process, either Player 1 or Player 2 will
then perform the next move. The Player 1’s configurations of the Reconfigurable Broadcast
Network Game associated to BP are given by the set Υ1 =

⋃
`∈N\{0}(Q × {⊥})` ∪ {υ ∈

(Q × {⊥,>})` | card({p ∈ [1, `] | υ[p] = (q,>) and q ∈ Q1}) = 1 and card({p ∈ [1, `] |
υ[p] = (q,>) and q ∈ Q2}) = 0} and the Player 2’s configurations are given by the set
Υ2 =

⋃
`∈N\{0}{υ ∈ (Q × {⊥,>})` | card({p ∈ [1, `] | υ[q] = (q,>) and q ∈ Q2}) =

1 and card({p ∈ [1, `] | υ[q] = (q,>) and q ∈ Q1}) = 0} and we set Υ = Υ1 ∪ Υ2. For υ ∈ Υ
such that υ ∈ (Q ∪ {>,⊥})`with ` ≥ 1, we use again the notation ‖υ‖ to denote ` the
number of entities/processes present in the network and the set of initial configurations is
Υin =

⋃
`∈N\{0}{(qin,⊥)}`.

The Reconfigurable Broadcast Networks Game induced by BP is then given by the two
player game RBNG(BP) = (Υ, Υ1, Υ2,⇒, col, sa f e) where ⇒⊆ Υ × Υ, Col :⇒7→ N and
Sa f e ⊆⇒ are defined as follows. We have υ ⇒ υ′ if, and only if, ‖υ‖ = ‖υ′‖ and one the
following conditions holds:
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• Process choice: card({p ∈ [1, ‖υ‖] | υ[p] = (q,>)}) = 0 and there exists p ∈ [1, ‖υ‖]
such that υ[p] = (q,⊥) and υ′[p] = (q,>) and there exists (q, a, q′) ∈ ∆ with a ∈ {!!m |
m ∈ M} ∪ {τ} and υ[p′] = υ′[p′] for all p′ ∈ [1, ‖υ‖] \ {p}; in that case col(υ, υ′) = 0
and (υ, υ′) ∈ Sa f e;

• Internal action: there exists p ∈ [1, ‖υ‖] such that υ[p] = (q,>) and υ′[p] = (q′,⊥)
and (q, τ, q′) ∈ ∆ and υ[p′] = υ′[p′] for all p′ ∈ [1, ‖υ‖] \ {p}; in that case Col(υ, υ′) =

col((q, τ, q′)) and (υ, υ′) ∈ Sa f e if and only if (q, τ, q′) ∈ sa f e;

• Broadcast communication: there exist p ∈ [1, ‖υ‖] and m ∈ M such that υ[p] = (q,>)
and υ′[p] = (q′,⊥) and (q, !!m, q′) ∈ ∆ and for all p′ ∈ [1, ‖υ‖] \ {p} either υ[p′] =
(q′′,⊥) and υ′[p′] = (q′′′,⊥) and (q′′, ??m, q′′′) ∈ ∆, or υ[p′] = (q′′,⊥) = υ′[p′]; in that
case Col(υ, υ′) = col((q, !!m, q′)) and (υ, υ′) ∈ Sa f e if and only if (q, !!m, , q′) ∈ sa f e
and for all (q′′, ??m, q′′′) used we have (q′′, ??m, q′′′) ∈ sa f e .

Note hence that in our definition only the colours of the edges labelled by a broadcast or
an internal action matter.

In order to define how the game is played between Player 1 and Player 2, we need further
notations. A finite play ρ in RBNG(BP) is a finite sequence of configurations υ0υ1 . . . υn ∈ Υ∗

such that υi ⇒ υi+1 for all 0 ≤ i < n and υ0 ∈ Υin; it is said to be maximal if there does not
exists υ ∈ Υ such that υn ⇒ υ, in other words υn is a deadlock configuration. An infinite
play is an infinite sequence ρ ∈ Υω such that any prefix of ρ is a finite play. Maximal plays
of RBNG(BP) are either finite maximal plays or infinite plays.

A strategy for Player id, with id ∈ {1, 2}, is a function π : Υ∗ · Υid 7→ Υ such that for every
finite play ρ = υ0υ1 . . . υn with υn ∈ Υid, we have υn ⇒ π(ρ). Given an initial configuration
υin, a strategy π1 for Player 1 and a strategy π2 for Player 2, there exists an unique maximal
play play(υin, π1, π2) = υ0υ1 . . . such that υ0 = υin and for all i ∈ N if υi+1 exists and
υi ∈ Υid for id ∈ {1, 2} then πid(υ0υ1 . . . υi) = υi+1.

We should now define the winning objectives for Player 1 we consider. A winning
objective is a subset of maximal plays W ⊆ Υ∗ ∪ Υω and we will look at two different
winning objectives:

1. The parity objective: WP = {υ0υ1 . . . is an infinite play | max(n ∈ N | ∀i ≥ 0.∃j ≥
i.Col((υj, υj+1)) = n) is even }

2. The safety parity objective: WSP = {υ0υ1 . . . ∈ WP | ∀i ≥ 0.(υi, υi+1) ∈ Sa f e} ∪ {ρ =

υ0 . . . υn | ρ is a finite play and ∀0 ≤ i < n.(υi, υi+1) ∈ Sa f e}

Hence the parity objective denotes the infinite plays for which the maximal color visited
infinitely often is even and the safety parity objectives represents the infinite plays satisfying
the parity objective which only use edges in sa f e and the finite plays which only use edges
in sa f e. Finally, we say that υin is a winning configuration for Player 1 for an objective W if
and only if there exists a strategy π1 for Player 1 such that for all strategies π2 of Player 2,
play(υin, π1, π2) ∈W. In that case, play(υin, π1, π2) is called a winning play for W.

Thanks to these previous definitions, we can define the parameterised parity game
problem for Reconfigurable Broadcast Networks Games as follows:
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Parity-RBN-Game

Input: A Parity Broadcast Protocol BP;

Question: Does there exists an initial configuration υin ∈ Υin such that

υin is a winning configuration for Player 1 for WP?

Similarly, if instead of WP, we consider the safety parity objective, this gives rise to the
following problem.

SafeParity-RBN-Game

Input: A Parity Broadcast Protocol BP;

Question: Does there exists an initial configuration υin ∈ Υin such that

υin is a winning configuration for Player 1 for WSP?

8.3.2.2 Solving Reconfigurable Broadcast Network Games

In order to solve Reconfigurable Broadcast Network Games for both parity and safety parity
objectives, we first show in [BFS14] that we can restrict the strategies of Player 2 to strategies
that always choose from a given control state the same successor independently of the
configuration or the history in the game.

It is well-known for the case of parity games over a finite state arena, that it is enough
to consider memoryless strategies for both Player 1 and Player 2 (memoryless in the sense
that in each state of the arena, when a play reaches this state, the owner of the state always
choose the same successor state) to find whether a configuration is winning or not, see
for instance [Zie98; GTW02]. Having such a result allows to design a simple algorithm for
verifying if a given state of the arena is winning for Player 1 which consists in guessing a
memoryless strategy for Player 1 (there is a finite number of such strategies) and then check
in the game arena whether there exists a play following this strategy that does not respect
the parity condition (this latter condition being easier to check because we only have to deal
with the choices of Player 2).

In the context of Reconfigurable Broadcast Network Games, since when the number of
entities in the network is given, the number of possible configurations is finite, we could
derive a similar property, stating that it is enough to consider memoryless strategies, which
always choose the same successor configuration from a given configuration. However the
difficulty here lies one again in that we do not know the size of the initial configuration and
we do not have a way to represent memoryless strategies which should take into account
an infinite set of configurations. This is the reason why finding more restrictions on the
allowed strategies is necessary for these games.

We move now to the definition of this specific strategies. We consider a Parity Broadcast
Protocol BP = (Q, Q1, Q2, M, ∆, qin, col, sa f e). A local behavior for Player 2 is a function
b : Q2 7→ Q such that (q, τ, b(q)) ∈ ∆ for all q ∈ Q2. This local behavior indicates to Player 2

from each of its state which successor state it should choose. Such a local behavior induces
a state strategy πb for Player 2 defined as follows. For every finite play ρ = υ0υ1 . . . υn with
υn ∈ Υ2, we have πb(ρ) = υ′ if and only if υn[p] = (q,>) for some (unique) p ∈ [1, ‖υn‖]
and υn[p] = (b(q),⊥) and υn ⇒ υ, in other words, if p is the unique process which should
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perform the action and whose state belongs to Q2 then this process will change its state
accordingly to the local behavior b. Note that the number of state strategies for BP is finite
and each strategy can be represented by a local behavior which has a polynomial size in the
size of BP.

The main proposition which allows then to solve Reconfigurable Broadcast Network
Games can then be stated as follows.

Proposition 8.1. [BFS14] For W ∈ {WP, WSP}, there exists an initial configuration υin ∈ Υin
such that υin is a winning configuration for Player 1 for W if and only if for all state strategies π2

of Player 2, there exists an initial configuration υin ∈ Υin and a strategy π1 for Player 1 such that
play(υin, π1, π2) ∈W.

This proposition shows us first that we can restrict our attention to state strategies for
Player 2 to solve the Reconfigurable Broadcast Network Games, but as well it provides
a methodology to solve the game. Indeed, the last task to show is that in a game where
Player 2 has no choice, we can decide the existence of maximal plays satisfying the winning
condition.

To show that there exists a finite maximal plays which only uses edges in sa f e, it suffices
to show that there exists an initial configuration from which one can reach a configuration
where none of the processes is in a state from which it can perform a broadcast or an
internal action (without taking edges that are not safe). This last property can be verified in
NP for Reconfigurable Broadcast Networks as we have shown with Theorem 8.1.

To show that there exists an infinite plays which belongs WSP, we follow the following
steps which can be achieved in polynomial time:

1. We remove the unsafe edges from the protocol;

2. We compute in polynomial time the reachable control states, as explained in Section
8.1.3.1 and in [Del+12] and we know from [Del+12] that there exists a reachable
configuration exhibiting as many as this reachable control states as we want;

3. We look for an infinite loop respecting the parity condition from such a configuration
which can be done in polynomial time (it boils down to find a positive cycle in a VASS
[KS88]).

Consequently, we deduce that to find the existence of a maximal play satisfying WP can
be done in polynomial time and if one looks for a maximal play satisfying WSP it can
be achieved by a NP algorithm. To solve Reconfigurable Broadcast Networks Games, the
strategy consists in guessing a state strategy for Player 2, and then verifying that there does
not exist a maximal plays satisfying the winning objective. Using Proposition 8.1, we obtain
the following result.

Theorem 8.3. [BFS14] Parity-RBN-Game is in co-NP and SafeParity-RBN-Game is in
ΠP

2 (= co-NPNP).

8.3.3 Solving the qualitative reachability problems

In [BFS14], we provide the precise complexity of all the relevant qualitative reachability
problems for Probabilistic Reconfigurable Broadcast Networks. For some cases, the answer
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was easy to provide, for other we relies on a reduction towards Reconfigurable Broadcast
Network Games and used the result of Theorem 8.3.

We first present the easy cases. First for PRBN-ControlReach
>0
sup, this problem is intere-

ducible to the parameterised control state reachability problem in Reconfigurable Broadcast
Networks which we know to be P-complete (see Theorem 8.1). For PRBN-ControlReach

=0
sup,

PRBN-ControlReach
<1
sup, PRBN-ControlReach

=1
in f and PRBN-ControlReach

>0
in f we use a

monotonicity property: intuitively with more processes the probability to reach the target
state can only increase, hence these problems reduce to the qualitative reachability problems
in the finite state Markov Decision Process representing the behavior of the network with a
single process and which can be solved in polynomial time (see e.g. [BK08]).

Theorem 8.4. [BFS14] PRBN-ControlReach
>0
sup, PRBN-ControlReach

=0
sup, PRBN-

ControlReach
<1
sup, PRBN-ControlReach

=1
in f and PRBN-ControlReach

>0
in f are in Ptime.

We shall now explain how we solve the other cases thanks to the results on Reconfig-
urable Broadcast Network Games. We present the most involved case which is PRBN-
ControlReach

=1
sup. From a Probabilistic Broadcast Protocol BP = (Q, Q1, QP, M, ∆, ∆P, qin)

and a control state qF ∈ Q, we derive the Parity Broadcast Protocol BP′ = (Q′, Q′1, Q′2, M, ∆′,
q′in, col, sa f e) such that:

• Q′ = Q′1 ∪Q′2 and Q′1 = Q1 ∪ (QP × {1}) and Q′2 = QP × {2},

• ∆′ is the smallest set containing the following sets of edges:

1. Q1 × {!!m, ??m | m ∈ M} ∪ {τ} ×Q1) ∩ ∆,

2. {(qF, τ, qF)},
3. {(q, τ, (q′, 2)), ((q′, 2), τ, (q′, 1)) | q′ ∈ QP, (q, τ, q′) ∈ ∆, i ∈ {1, 2}},
4. {(q, i), τ, q′) | q ∈ QP, ∆P(q)(q′) > 0, i ∈ {1, 2}},

• col((qF, τ, qF)) = 2 and col((q, 2), τ, q′) = 2 and col(δ) = 1 for all other edges, and,

• sa f e = ∆′.

Here is the intuition behind this construction. All random choices are replaced in BP′

with choices for Player 2, where either he decides the outcome of the probabilistic choice
taking a transition of the form ((q, 2), τ, q′) or he lets Player 1 perform the choice taking
a transition of the form ((q, 2), τ, (q, 1)). And only transitions where Player 2 makes the
decision corresponding to a probabilistic choice and the self loop on the state qF have colours
2 whereas all the other edges have colour 1. Hence if there is an initial configuration υin in the
Probabilistic Reconfigurable Broadcast Network such that Psup(PRBN(BP), υin, JFqFK) = 1,
then υin is a winning configuration for Player 1 for the parity objective in the Reconfigurable
Broadcast Network Game associated to BP′. The intuition being that to win in this game,
from each reachable configuration Player 1 should be able to reach a configuration exhibiting
the control state qF (indeed the only way for Player 1 to lose would be that at some
point Player 2 always let him do the probabilistic choice and that he cannot reach qF

from this moment on), but this last sentence is exactly the characterisation of having
Psup(PRBN(BP), υin, JFqFK) = 1 in the finite state Markov Decision Process corresponding
to the network with υin as started configuration. We show as well that is if there exists an
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initial winning configuration υ′in for the parity objective in RBNG(BP′), then there exists an
initial configuration υin such that Psup(PRBN(BP), υin, JFqFK) = 1, however this direction
is more complex. This reasonning tells us that there is a logarithmic space solution from
PRBN-ControlReach

=1
sup to Parity-RBN-Game. We show as well in [BFS14] that PRBN-

ControlReach
=1
sup is co-NP-hard by reducing the unsatisifiability problem for propositional

logic formulas.

Example 8.7. On Figure 8.7, we have depicted the Parity Broadcast Protocol BP′ associated to the
Probabilistic Broadcast Protocol BP given on Figure 8.5 to solve PRBN-ControlReach

=1
sup. On the

example, we have provided the colour associated to each edge after the action. On this example, we
can see that the initial configuration υin with two processes both in (qin,⊥) is winning for Player 1
for the parity objective WP. The strategy of Player 1 consists in first choosing always the first process
as the active one, until it is put in the state q1 (this will necessarily happens either because Player 2,
will put him in q1 or at some point Player 2 will put this process in state (qP, 1) from which Player
1 will choose to move it to q1). Then Player 1 can force the second process to be eventually in state q2

and finally the second process can broadcast the message m received by the first process which geos to
qF. Consequently, we have as well that Psup(PRBN(BP), υin, JFqFK) = 1.

qin qP, 2τ : 1

q1

τ
: 2

τ : 1

q2

τ : 2

!!m : 1

qP, 1τ : 1

τ : 1

τ
: 1

qF
??m

τ : 2

Figure 8.7: The Parity Broadcast Protocol built from the Probabilistic Broadcast Protocol of Figure
8.5 to solve PRBN-ControlReach

=1
sup

For the decision problems PRBN-ControlReach
=0
in f and PRBN-ControlReach

<1
in f , we can

both reduce them similarly to SafeParity-RBN-Game, the reduction being more intuitive.
For PRBN-ControlReach

=0
in f , from a Probabilistic Broadcast Protocol BP, we build a Parity

Broadcast Protocol where all random choices are replaced by choices for Player 2 and the
transitions leading to the target state qF are the only one not to be safe,because Player 1

wants to avoid this state (in this case all the edges have the same colour 0). For PRBN-
ControlReach

<1
in f , we build a Parity Broadcast Protocol consisting of two copies of the

Probabilistic Broadcast Protocol. In the fist copy, all random choices are replaced with
choices of Player 1, whereas in the second copy they are replaced with choices of Player
2 and at any time, it is possible to move from the first copy to the second copy. In this
construction, the colours of edges with target in the second copy is 2 and all the other edges
have colour 1 and the only unsafe edges are those leading to qF.

All these reductions, together with the result of Proposition 8.3 lead to the following
theorem.
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Theorem 8.5. [BFS14]

• PRBN-ControlReach
=1
sup is co-NP-complete.

• PRBN-ControlReach
=0
in f and PRBN-ControlReach

<1
in f are in ΠP

2 (= co-NPNP).

Remark. Note that as one can see in [Fou15], if there is no reachable deadlock configuration in the net-
work associated to Parity Broadcast Protocol or to Probabilistic Broadcast Protocol, then the complexity
of SafeParity-RBN-Game and of PRBN-ControlReach

=0
in f and PRBN-ControlReach

<1
in f

becomes co-NP. Indeed when looking at the resolution method for SafeParity-RBN-Game, the
NP upper bound comes from the search of the finite maximal plays. In the general case, to the best of
my knowledge, it is not known whether these two problems are complete for the class ΠP

2 or if better
upper bounds can be found.

8.4 verification of reconfigurable broadcast networks with registers

In all the variants of Reconfigurable Broadcast Networks we have presented so far, the
different entities in the networks communicate via broadcasted messages which belong
to a finite alphabet. In [DST13; DST16], we have extended the original model in order to
take into account messages belonging to an infinite alphabet and we have furthermore
assumed that each entity in the network is equipped with a finite set of registers allowing
to store the exchanged values. This research is strongly inspired by the model of register
automata introduced in [KF94]. This latter model extends finite state automata with a
storing mechanism, also called registers, used to store a data and compare it with future
values and it recognises words over a data alphabet where at each position there is a pair
composed of a letter from a finite alphabet and a letter from an infinite alphabet called the
data. In our context, we use as well registers to store data and to compare it with future
values, the main difference being that the values do not appear in a word being read but are
exchanged between the entities. As for Reconfigurable Broadcast Networks, we then study
the parameterised control state reachability problem for this model asking whether there
exists an initial configuration from which it is possible to reach a configuration exhibiting a
specific control state.

8.4.1 Reconfigurable Broadcast Networks with Registers

8.4.1.1 Syntax

As in the previous models, each entity in our networks executes the same finite state protocol
whose edges are labelled with operations over a finite set of registers. An entity (we may
call equivalently node or process) can then transmit part of its current registers to other
entities thanks to broadcast. For this matter, we assume that the exchanged messages carry
both a type and a finite tuple of data and upon reception, a receiver can test/store/ignore
the data contained inside the message.

We first present the set of ’actions’ which label the edges of the protocols. We use R ≥ 0
to denote the number of registers in each node and F ≥ 0 to denote the number of data
fields available in each message. Furthermore, the message type will be given by a finite
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message alphabet M. The set of Broadcast Actions with registers parameterised by R, F and
M is then given by:

BcastR,F(M) = {!!m[r1, . . . , rF] | m ∈ M and ri ∈ [1, R] for all i ∈ [1, F]}

The action !!m[r1, . . . , rF] corresponds to the broadcast of a message of type m whose i-th
field (for i ∈ [1, F]) contains the value of the ri-th register of the emitter. For instance for
R = 2 and F = 4, the action !!req(1, 1, 2, 1) sends a message of type req in which the current
value of the first register of the sender is copied in the two first fields and in the last field of
the message and the value of the second register of the sender is copied into the third field
of the message.

On reception of a message, an entity can then either compare the value of a message field
against the current value of a register or store the value of a message field in a register or
ignore a message field. The set of Receive Actions with registers parameterised by R, F and
M is then given by:

RecR,F(M) =

{
??m[α1, . . . , αF]

∣∣∣∣∣ m ∈ M and αi ∈ RegActR for all i ∈ [1, F]

and if αi = αj =↓ r then i = j

}
where RegActr = {?r, ?r̄, ↓ r, ∗ | r ∈ [1, R]} is the set of Register Actions. When used in a
given position of a receive action, ?r [resp. ?r̄] tests whether the content of the r-th register of
the receiver is equal [resp. different] to the corresponding value stored in the corresponding
field of the message, ↓ r is used to store the value present in the field of the message in
the r-th register and ∗ is used to ignore the value present in the field of the message. For
instance for R = 2 and F = 4, the action !!req(?2̄, ?1, ∗, ↓ 1) is used to receive a message of
type req in which the value of the first field is tested for inequality against the value present
in the second register of the receiver, the value of the second field is tested for equality
against the value present in the first register of the receiver, the third field is ignored and
the value stored in the fourth field is stored in the first register.

We have now all the elements to define Register Broadcast Protocols which extend
Broadcast Protocols and which will be executed by nodes in the network equipped with
registers and where the transmitted messages will have some fields to store values.

Definition 8.3 (Register Broadcast Protocol). A (R, F)-Register Broadcast Protocol BP is a
tuple (Q, M, ∆, qin) where:

• Q is a finite set of control states,

• M is a finite alphabet of messages,

• ∆ ⊆ Q× (BcastR,F(M)∪ RecR,F(M)∪{τ})×Q is a finite set of edges labelled by broadcast
and receive actions, and,

• qin ∈ Q is the initial control state.

8.4.1.2 Semantics

To a (R, F)-Register Broadcast Protocol BP = (Q, M, ∆, qin), we associate a Data Reconfig-
urable Broadcast Network whose configurations are pairs (λ, M) in

⋃
`∈N\{0} Q` × (NR)`.

As for Reconfigurable Broadcast Networks, for a configuration ζ = (λ, M) ∈ Q` × (NR)`

with ` ≥ 1, we denote by ‖ζ‖ = ` its dimension, corresponding to the number of enti-
ties/processes present in the network and, for each 1 ≤ p ≤ ‖ζ‖, λ[p] represents the state
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of the p-th process wheras M[p] ∈NR represents the memory (the contents of the registers)
of the p-th process. A configuration ζ = (λ, M) is said to be initial if and only if λ[p] = qin
for all p ∈ [1, ‖ζ‖] and for all p, p′ ∈ [1, ‖ζ‖] and all r, r′ ∈ [1, R], if p 6= p′ or r 6= r′, we
have M[p][r] 6= M[p′][r′]. In other words, in an initial configuration, all processes are in the
initial state of the protocol and no register share the same value. We denote by Z the set of
configurations and by Zin the set of initial configurations.

The Data Reconfigurable Broadcast Network induced by the (R, F)-Register Broadcast
Protocol BP = (Q, M, ∆, qin) is given by The transition system DRBN(BP) = (Z,⇒) where
⇒⊆ Z× Z is the transition relation which we shall now define. We have ζ ⇒ ζ ′ if and only
if ‖ζ‖ = ‖ζ ′‖ and there exists p ∈ [1, ‖ζ‖] such that if ζ = (λ, M) and ζ ′ = (λ′, M′) one the
following conditions holds:

• Internal action: there exists (λ[p], τ, λ′[p]) ∈ ∆ and M[p] = M′[p] and for all p′ ∈
[1, ‖ζ‖] \ {p}, we have λ[p′] = λ′[p′] and M[p′] = M′[p′];

• Broadcast communication: there exists δ = (λ[p], !!m[r1, . . . , rF], λ′[p]) ∈ ∆ and
M[p] = M′[p] and for all p′ ∈ [1, ‖ζ‖] \ {p}, we ave either (λ[p′] = λ′[p′] and
M[p′] = M′[p′]), or, there exists δ = (λ[p′], ??m[α1, . . . , αF], λ′[p′]) ∈ ∆ such that

1. for all i ∈ [1, F], if there exists r ∈ [1, R] such that αi =?r [resp.αi =?r̄] then
M[p′][r] = M[p][ri] [resp. M[p′][r] 6= M[p][ri]], and,

2. for all r ∈ [1, R], if there exists i ∈ [1, F] such that αi =↓ r then M′[p′][r] = M[p][ri]

and othewise M′[p′][r] = M[p′][r].

Hence if a broadcast communication is performed, a node can receive it if the values
of its register pass the tests (given by ?r and ?[̄r] in the description of the reception) and
afterwards he can store received values in its register (thanks to the fields ↓ r provided in
the description of the reception). Here again the reconfiguration of the network is done by
assuming that for any broadcast, an entity might not receive it. As always in this document,
we denote by⇒∗ the reflexive and transitive closure of the relation⇒.

8.4.1.3 Example

On Figure 8.8, we have represented a Register Broadcast Protocol whose role is to extract
a list structure from a configuration. In this protocol, each entity is equipped with two
registers and we assume that the value store in the first register of each entity in the initial
configuration corresponds to its identity and it will never be overwritten. The idea is that
when we will have a node in qT, then there is a node either in state qZ or in state qH which
has in its second register the identity of the node in qT. Similarly for each process p in
state qZ there is a node either in state qZ or in state qH which has in its second register
the identity of p. This way the protocol can build separate linked lists whose head is a
process in state qH, their tail is a node in state qT, intermediate nodes are in state qZ and
each node has a pointer to the successor in its second register. Hence even if we do not have
a communication graph in this model, we can extract a graph structure using registers as
pointers.

On Figure 8.9, we have depicted an example of runs in the transition system DRBN(BP)
induced by the Register Broadcast Protocol BP of Figure 8.9. This run shows how this proto-
col can extract a linked list from an initial configuration. Note that one key feature of this
protocol which ensures its correctness in term of list construction is that the communication

147



verification of reconfigurable broadcast networks

qin

q1

!!s
(1

, 1
)

q2

??s(↓ 2, ∗)

q3
??a(↓ 2, ?1)

q4
!!a(1, 2)

qH
!!sa(1, 2)

qI
??sa(?2, ?1)

qT
τ

q5

!!s
(1

,1
)

q6
??a(↓ 2, ?1)

qZ
!!sa(1, 2)

Figure 8.8: A (2, 2)-Register Broadcast Protocol

are performed in an handshake fashion and uses the register of the processes to check the
handshake. Indeed when a process p in qin broadcasts a message s(1, 1), it could be received
by more than one node, however the first one that will send a message a(1, 2) received
by p will be consider as a successor and p will not be able to receive the other messages
a(1, 2) sent by other nodes. Finally thanks to the message sa(1, 2), an acknowledgment is
concluded between p and its successor which checks on reception with ??sa(?2, ?1) that the
two processes have performed an handshake. This allows to avoid interferences between
processes and leads to the construction of separated linked lists. In the last configuration of
the run depicted on Figure 8.8, we see a possible list, where the node with identity 1 is the
head and has as successor process with identity 2, which has as successor the process with
identity 4 and finally the tail of the list is the process with identity 4. Note that with more
processes in the initial configuration we could have extracted a longer list.

8.4.2 Parameterised coverability problem

The problem we study over Data Reconfigurable Broadcast Networks extends the param-
eterised control state reachability problem to allow to deal as well with the contents of
the registers. However here again we seek for a configuration to reach exhibiting a certain
pattern which is defined thanks to what we call reachability queries. We consider a (R, F)-
Register Broadcast Protocol BP = (Q, M, ∆, qin) and a denumerable set of variables V. A
reachability query φ for BP is a formula gernerated by the following grammar:

φ ::= q(v) | Mr(v) = Mr′(v′) | Mr(v) 6= Mr′(v′) | φ ∧ φ

where v, v′ ∈ V, q ∈ Q and r, r′ ∈ [1, R]. Intuitively the variables of V will be mapped to
processes of a configuration and with such formula we can state whether there is a node in
a certain state and wether some registers share or not the same value. Given a configuration
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Figure 8.9: A run in the Data Reconfigurable Broadcast Network for the protocol of Figure 8.8
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ζ = (λ, M) of the DRBN(BP), a valuation function is a function f : V 7→ [1, ‖ζ‖] and
we define the satisfaction relation for reachability queries, parameterised by a valuation
function f , inductively as follows:

ζ |= f q(v) def⇔ λ[ f (v)] = q

ζ |= f Mr(v) = Mr′(v′)
def⇔ M[ f (v)][r] = M[ f (v′)][r′]

ζ |= f Mr(v) 6= Mr′(v′)
def⇔ M[ f (v)][r] 6= M[ f (v′)][r′]

ζ |= f φ ∧ φ′
def⇔ ζ |= f φ and ζ |= f φ′

Finally, we say that a configuration ζ satisfies a reachability query φ, denoted by ζ |= φ,
if and only if there exists a valuation function f such that ζ |= f φ. We have now all the
elements to provide the definition of the parameterised coverability problem for Data
Reconfigurable Broadcast Networks.

DRBN-Cover

Input: A Register Broadcast Protocol BP = (Q, M, ∆, qin)

and a reachability query φ for BP;

Question: Does there exists an initial configuration ζin and a configuration ζ

such that ζin ⇒∗ ζ in DRBN(BP) and ζ |= φ?

Example 8.8. If we consider the Register Broadcast Protocol BP described on Figure 8.8, thanks to
the execution in DRBN(BP) shown on Figure 8.9, we know that there exists an initial configuration
ζin and a configuration ζ such that ζin ⇒∗ ζ and ζ |= qH(v) ∧ qZ(v′) ∧M2(v) = M1(v′). On
the other hand we can show that there does not exist a configuration ζ ′ reachable from an initial
configuration such that ζ |= qH(v) ∧ qZ(v′) ∧ qZ(v′′) ∧M2(v) = M1(v′) ∧M2(v) = M1(v′′).

8.4.3 Results

The example provided in section 8.4.1.3 shows us that even if in Data Reconfigurable
Broadcast Networks the communication topology does not matter and hence cannot be used
as a structure (as it is the case when the topology is fixed), it is possible to use the registers
of the processes as data field to store pointer towards other entities. Indeed we have seen
that this latter Register Broadcast Protocol allows us to extract a list structure from an initial
configuration. Reusing an idea of the proof of undecidability for the parameterised control
state reachability problem Broadcast Network (without reconfiguration), see Theorem 7.1,
we know that we can then use such structures to simulate a deterministic Minsky machine as
explained in Section 7.2. Hence for what concerns, the parameterised coverability problem
over Data Reconfigurable Broadcast Networks, our first result is negative.

Theorem 8.6. [DST13; DST16] DRBN-Cover is undecidable for (R, F)-Register Broadcast
Protocols with R ≥ 2 and F ≥ 2.

Note that in the statement of the previous theorem, we insist on the fact that the considered
protocol should be executed by entities with at least two registers and the broadcast messages
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should be able to carry two data values , it is indeed necessary to extract a list structure (one
register stores the identity of the node and the other one the identity of the successor of the
node) and as we shall explain now we have proven in [DST13; DST16] that restricting to
protocols with a single data field in the messages leads to the decidability of DRBN-Cover.

We consider now a (R, 1)-Register Broadcast Protocol BP = (Q, M, ∆, qin) and we will
provide a method to analyze the behavior of the associated Data Reconfigurable Broadcast
Network. As for Timed Ad Hoc Networks with a single clock and restricted configurations
(see Section 7.4.3) or for Reconfigurable Broadcast Networks when considering reachability
of a counting constraint (see Section 8.1.3), we rely here again on symbolic configurations
which allow to reason in a finite matter over the executions of DRBN(BP). The idea behind
these symbolic configurations is to use graphs that keep track of the control states that may
appear during an execution and as well of relations between values present in the registers.

We now provide a formal definition. A symbolic configuration for BP is a labelled graph
(W, E, L) where W is a finite set of vertices, E ⊆W × [1, R]× [1, R]×W is the set of labelled
edges and L : W 7→ Q is a labelling function associating a control state to each vertex, such
that for all w, w′ ∈W, if w 6= w′ then L(w) 6= L(w′) (i.e. there cannot be two vertices labelled
with the same control state). We now explain what represent such symbolic configurations:
a concrete configuration ζ = (λ, M) belongs to the concretisation J(W, E, L)K of a symbolic
configuration (W, E, L) if for any process p ∈ [1, ‖ζ‖], there is a vertex labelled with λ[p],
the control state of p, and furthermore, for any pair of processes p, p′ ∈ [1, ‖ζ‖] containing
the same value in registers r and r′ respectively, there exists two nodes w and w′ such that
L(w) = λ[p] and L(w′) = λ[p′] and {(w, r, r′w′), (w′, r′, r, w)} ∩ E 6= ∅, i.e. there is an edge
between w and w′ labelled with the pair (r, r′).

We remark then that if we take the symbolic configuration ({win}, ∅, Lin) such that
Lin(win) = qin then it corresponds to the set of initial concrete configurations.

To decide DRBN-Cover over (R, 1)-Data Register Protocols, we propose a saturation
method over symbolic configurations: it consists in applying iteratively to a symbolic
configuration, a symbolic successor computation which adds information to the symbolic
configuration and we do this iteratively until the obtained symbolic configuration is satu-
rated, i.e. the symbolic successor computation does not have any effect. Finally, it remains
to test whether the obtained symbolic configuration satisfies the reachability query. We
provide in [DST13; DST16] the detail of this saturation method and show it is sound and
complete for DRBN-Cover over (R, 1)-Data Register Protocol. One of the reason for this
method to work is connected to the fact that in reconfigurable networks if a configuration
exhibiting a specific pattern is reachable it is possible to add this pattern to all reachable
configurations, since we can assume that first we reach the pattern with a subset of vertices
and then we assume that these vertices do not participate in the execution to reach the rest
of the configuration.

Example 8.9. On Figure 8.10, we illustrate the key idea behind the computation of symbolic
successor of a symbolic configuration. We consider the symbolic configuration on the left side of the
Figure with two vertices labelled respectively with qin and q1. This configuration represents any
configuration with any number of processes in qin and in q1 and where processes in state qin do not
share any data value whereas processes in state q1 may have the same value in their second register
that may be as well equal to the value of the first register on a process in qin.

We now give examples of edges of a (2, 1)-Register Broadcast Protocol BP which would lead to the
construction of the symbolic configuration on the right side of the figure. Assume that we have two
edges (qin, !!m(1), qin) and (qin, ??m(↓ 1), qin) in BP. This pair of edges indicate that some nodes in
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2

2, 2

2,2
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Figure 8.10: A symbolic configuration and a possible symbolic successor

control state qin may now have the same value in their first register, and this leads to adding the self
loop labelled by (1, 1) around the vertex with the label qin. Consider now that we have the reception
edge (q1, ??m(?2), q2). Thanks to the edge labelled with (1, 2) between vertices qin and q1, we know
that some processes in state q1 may share the same value in their second register as the value stored
in the first register of a process in state qin which would broadcast the message m. To model the effect
of this reception, we create hence a new vertex in the symbolic configuration with label q2 which
share the same properties in term of data value as the vertex labelled by q1. Finally, if we have as well
a reception edge of the form (q1, ??m(?2̄), q3), we know that the message m can be sent by a node in
state qin and received by nodes in state q1 which do not share the same value in their first and second
register, hence the guard is satisfied. However their could be another node in state qin which shares
the same value in its first register as the one present in the second registers of the nodes receiving m.
As a consequence, we create a vertex labelled by q3 which inherits as well of the data relation carried
by vertex q1.

Since a symbolic configuration has at most card(Q) states and at most card(Q)2 · R2

edges, we know that our saturation method which computes iteratively new symbolic
configurations can be done in polynomial space. Furthermore testing whether the obtained
symbolic configuration satisfies a reachability query can as well be done in polynomial
space (in fact this test can be performed in non-deterministic linear time by guessing the
vertices in the symbolic configuration that should be mapped to the free variables of the
query). This allows us to deduce an upper bound for DRBN-Cover restricted to Register
Broadcast Protocol where messages have a single data field. For what concerns the lower
bound, we provide in [DST13; DST16] a reduction from the reachability problem for 1-safe
Petri nets [CEP95].
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Theorem 8.7. [DST13; DST16] DRBN-Cover is Pspcace-complete for (R, 1)-Register
Broadcast Protocols.
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C O N C L U S I O N A N D P E R S P E C T I V E S

9.1 conclusion

In this thesis I have presented my contributions for the automatic verification of computing
systems with an infinite state space focusing on two families of systems, namely counter
systems and networks with a parameterised number of entities communicating thanks
to broadcast communication. In both cases, I have tried to establish the characteristics
of the models which render the verification process complex, in other words to establish
the frontier between decidability and undecidability, simple reachability questions being
undecidable in both cases for the general model (see Theorem 3.1 and 7.1) and in the cases I
could prove that the considered problems were decidable, I have tried to state precisely to
which complexity classes they belong. In most of the cases, I have succeeded in providing
lower and upper bounds and the presented works offer as a matter of fact an overview of
what are the aspects of the considered infinite state systems that ease or complicate the
automatic verification. More importantly, most of the results rely on new techniques or
combinations of already known techniques in a new way and can be of some use to analyze
other models.

Finally, I would like to insist that all the results I have obtained in the last fourteen
years were the fruit of collaborations with other researchers and some of them have been
produced in the context of a PhD or an internship of students and even if I presented them
in my thesis, they are the consequences of team works in which each of the coauthors have
participated to the research. During the period covered by this document, I have hence not
only learned a lot from the scientific point of view, but as well from a social point of view
on how to collaborate, to work together on a project and to supervise students.

9.2 perspectives

I present in this section some directions for my future research, first by stating some open
questions directly connected to the works I have presented in this document and second by
presenting wider research thematics.

9.2.1 Problems directly connected to the presented works

In the first part of this thesis, we present some results concerning the model-checking of
counter systems with a specific focus on flat counter systems. The starting point of all these
works was when I asked Stéphane Demri to study the model-checking problem of the
temporal logic freeze LTL, he had introduced in [DLN07], over counter systems. We quickly
showed that in general this problem is undecidable (see Theorem 5.1) but that decidability
can be regained in particular if one considered flat counter systems (see Theorem 5.2).
However, we did not obtain a precise complexity characterization of this problem and we
started by first looking at the results we could obtain for the linear time temporal logic
without the freeze quantifier, which gave rise to all the results presented in Chapter 4.
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However, the complexity of the model-checking of LTL with the freeze quantifier over flat
counter systems is still unknown, but certainly some of the techniques proposed in Chapter
4 can be used to find an answer.

For what concerns the branching time temporal logics, we have shown that the model-
chekcing problem for the temporal logic CTL∗ over flat translating counter system is
equivalent (in terms of complexity) to the satisfiability problem for Presburger arithmetic
(see Theorems 6.1 and 6.2) but we did not provide further results for other branching time
specifications. Indeed, it is an open problem whether the model-checking of the modal
µ-calculus (see Section 6.2) is decidable or not for flat Affine Counter Systems (either
translating or with the finite monoid property). Whereas I believe this latter problem should
be decidable, I as well think that to obtain this result, one needs to use different techniques
than the one introduced for the model-checking of CTL∗.

In the part dedicated to the verification of parameterised networks, we have presented
that for parameterised ad hoc networks, where the communication topology remains
the same along an execution, even simple reachability properties are undecidable (see
Theorem 7.1) but if we allow the topology of the network to change in a complete non-
deterministic fashion, then these problems become decidable and even easy (see Theorem
8.1 where we show that the reachability of a control state can be solved in polynomial time).
However, from a modeling point of view, this change of the topology seems a too strong
relaxation. It would be interesting to constraint the way the communication topologies
can change, as in fact it has been done in [BBM18] where the authors propose to bound
the number of reconfigured linked between two communication steps. Other formalisms
can be taken into account in order to constraint these changes of topologies, for instance
one could use some formal languages over graphs which provide allowed sequences of
communication graphs, or it could as well be interesting to assume that the reconfiguration
is uncontrollable and to consider in this context a turn based two player game where
the first player resolves the non-determinism at the protocol level and the second player
is in charge to choose who can receive the broadcast messages. Another solution could
be to use a logical formalism describing the allowed movement. Studying the impact of
the modelling of the reconfiguration on the verification of parameterised networks with
broadcast communication is hence a wide research area.

In the models I have considered for parameterised networks, I was focusing on ’low-level’
communication primitives such as message passing, rendez-vous or broadcast communi-
cation, however it would be interesting to study such networks equipped with ’high-level’
storage mechanisms. For instance, a starting idea would be to assume that the entities in the
networks share a set of counter variables (as the ones used in counter systems) on which they
can perform operations such as test or updates. In such a model we would assume that the
operations on the counters are atomic and are performed correctly. This allows to consider
more high-level properties when modelling a distributed system equipped with a shared
storage mechanism (one could think for instance at operation on a bank account, or at some
distributed systems in charge of measuring some discrete events). From the theoretical point
of view, we have seen that in some cases, looking at parameterised networks instead of
networks with a fixed number of entities allows to ease the verification process in terms of
complexity. Furthermore for the case where the shared storage mechanisms are counters,
this would allow me to reuse an expertise I have gained both in the field of analysis of
counter systems and of parameterised networks. We have begun with Julien Roupin, who
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did an internship under my supervision in 2021, to study this class of models and we have
obtained interesting results, but there is still work to do.

9.2.2 Long term research perspectives

9.2.2.1 On the scheduling of distributed algorithms

The basic building blocks of distributed applications are distributed algorithms, which
address particular problems in specific contexts like for instance, consensus[FLP85; GR07]
and its relaxation like set agreement and k-set agreement[Cha93] which ask a system with
machine replication to agree on a value or a set of values. Another example of distributed
task is the renaming [CRR11], which is used to provide different entities in a network with
a small set of names. Even though most distributed algorithms to solve classical distributed
problems are not very long and essentially consist of an iterated loop, their behavior is
difficult to understand due to the numerous possible interleavings of an execution. As a
result, correctness proofs of distributed algorithms are extremely intricate. Furthermore their
correctness proofs strongly depend on the specific assumptions made on the considered
execution context (usually referred to as system model in the realm of distributed algorithms).
For example, communication can be synchronous or asynchronous, the entities in the
network may or may not be equipped with a unique identifier, or a certain number of
errors and failures can happen during an execution. These assumptions are crucial and may
lead to different families of algorithms designed for a specific context. This is, for instance,
the case for algorithms that solve the fundamental set-agreement task, in which processes
collectively choose a small subset of values from a larger set of proposals (see, e.g., [Ali+12]).
The behavior of many distributed algorithms tend to be very sensitive to any deviation from
the context it has been conceived for. In other words, distributed algorithms tend to be not
robust.

In the distributed computing literature, many execution frameworks have been proposed.
Some are very intuitive, like the synchronous context, in which all entities behave syn-
chronously, or the completely asynchronous context, in which arbitrary long communication
delays may occur. In practice, systems are neither synchronous nor fully asynchronous.
Many other models lying between the synchronous and the asynchronous model have thus
been defined. Investigation of such partially synchronous models have also been motivated
by the fact that tolerating at the same time asynchrony and failures is hard or even impos-
sible depending on the problem being considered. Hence, one is interested in execution
contexts that degrade (or relax) to some extend the assumptions of the synchronous model in
order to capture real systems executions while leaving the problem under study solvable.
For example, in the round-based heard-of model [CS09], a message in transit that is not
received within a round is considered to be lost and processes then react according to
the set of messages they have received in the previous round. In the Θ-model [WS09], a
bound Θ represents the ratio between the shortest and longest time delay of messages in
transit simultaneously. Contexts with partial synchrony have also been studied in the case of
shared-memory systems, (see for instance [Agu+12]): one can restrict the way the different
processes access the memory by, for example, bounding the number of times a process can
perform read/write actions while other active processes do not access the memory.

As distributed algorithms correspond to solution to distributed problems under an
execution context. In order to have a formal methodology for the design of distributed
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algorithms through the lens of such contexts it is necessary to establish ways to define them.
There are indeed a whole family of execution contexts such as the synchronous model, the
asynchronous model, model with a certain number of failures, model with partial synchrony,
etc, but there is no systematic way to define them and most of the different options are
not compared to each other. There is indeed no exhaustive study that relates the different
relaxations. One could want to check, for example, whether one relaxation is included in
another, or, conversely, whether it allows for strictly more behaviors. It is hence necessary
to perform such a study to list and classify the different execution contexts and eventually
propose new ones. Furthermore, in the context of verification of concurrent systems, in
order to regain decidability or to be more efficient, researchers have propose too some ways
to restrict the set of considered executions by imposing some restrictions on it (for instance
by bounding the number of phase in message passing system, a phase being a period of
time where only one process is allowed to send messages). Such restrictions can as well be
seen as specific executive contexts. It is hence as well important to understand the relation
between the execution contexts developed in the distributed computing community and
the restrictions used in the verification of distributed systems to under-approximate the
behaviors of systems. I know describe four possible directions for this research thematic.

Design methods to synthesize distributed algorithms from a distributed problem and
a scheduler. In [Del+19], we have proposed a first way to define executive contexts for
distributed systems with shared memory using what we call a scheduler. The scheduler
defines at each instant which process can access the shared memory and it furthermore says
which process can be active infinitely often. We have indeed observed that this last point is
crucial if one wants to characterise execution contexts like the obstruction-free model where
every process that eventually executes in isolation has to terminate[HLM03]. This leads us
to see a scheduler as a finite state Büchi automaton and we furthermore checked that such a
formalism allows to represent many important execution contexts like the wait-free model,
which requires that each process terminates after a finite number of its own steps[Her91], or
the round-robin model, or model with a fixed number of failures. We then considered the
following synthesis question: given a distributed problem (like for instance the consensus
problem) and a scheduler specifying an execution context, does there exists an algorithm
solving the given problem under the scheduler. In [Del+19], we have proposed a first method
based on SMT solver to solve this question for some specific distributed problems in the
case where the size of the distributed algorithms ( corresponding to its number of states and
to the local memory it uses) is fixed. Our method was able to generate automatically some
new distributed algorithms (which were correct by construction), however the considered
conditions were very restrictive. Hence the first task of this research direction will consist in
studying deeper this synthesis question, and see in which case it is decidable (the question
in its full generality in certainly undecidable, using the fact that one cannot decide given a
distributed problem whether there exists a wait-free algorithm to solve it [FRT11]). I plan as
well to look at schedulers defined by more complex formalisms than Büchi automata.

Build adaptive distributed algorithms. I plan in here to study in which manner it is
possible to build distributed algorithms which are robust to changes of the considered
schedulers. It can be explained as follows. Assume for instance that for a distributed
problem, we have a set of distributed algorithms each one corresponding to a specific
scheduler. The question we want to study is in which manner we can build from these
different distributed algorithms, a new one which can adapt to the changes of schedulers.
For this task, we will first look for reasonable formalisms to specify how the scheduling
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policy can change and then we will try to see in which cases, the different algorithms can
be used in order to obtain an adaptive robust algorithm. This task is especially important
because it will allow to develop new algorithms which will be, in a certain sense, aware
of their environment. It could as well be that in order to obtain an adaptive algorithm, we
could relax dynamically the considered distributed problems. For instance, k-set agreement
can be seen as a relaxation of the consensus problem (in the former the entities can decide
at most k different values, whereas in the latter they all have to decide the same value). Of
course, in this task, I will have to take into account what it is reasonable to monitor during
the execution of the algorithms in order to detect a change in the scheduler.

Build schedulers from distributed algorithms. Another interested aspect is to study how
distributed algorithms can be scheduled and in particular how to build automatically
good schedulers for distributed algorithms. Given a distributed algorithm to be run in a
distributed system, we plan to seek some ways to schedule the different entities in order to
obtain an execution or a set of executions solving the original problem. Of course, if the
algorithm is correct, we know that such a scheduler exists, and it consists in following a
path in the transition system corresponding to the behaviour of the distributed algorithm.
But to find such a path, the scheduler has to keep in mind the information about the current
state of the system, and as a matter of fact, such a scheduler could be exponentially big.
In some cases, a much smaller scheduler can however be obtained using some structural
specificities of the algorithm. For instance, if one as a wait-free distributed algorithm then
all possible interleavings will lead to a correct solution and a scheduler with only one state
from which any process is allowed to take the hand will lead to a correct set of executions.
The goal of this track is hence to provide algorithmic solutions to find good schedulers for
(partially) correct distributed algorithms. To achieve this, it will be necessary to define some
measures to compare schedulers and to identify the key aspects which make a distributed
algorithm under a certain scheduler better than an other one. I also plan to study schedulers
where concurrent actions are allowed and as well probabilistic schedulers.

Measure the concurrency of distributed algorithms by looking at their schedulers. This
direction is certainly the most challenging one and it consists in proposing ways to measure
the concurrency of a distributed algorithm. In fact, for a specific distributed problem there
might be different algorithmic solutions and if the tasks involve many processes, it is capital
for matters of efficiency to understand whether one solution will make a better use of the
concurrent setting than another one. However defining such a measure is tedious. One can
note that the formalisms and methods developed in this context could be well suited in the
context of concurrent systems.

9.2.2.2 Quantitative analysis of parameterised networks

In the presented works on parameterised networks, the explored verification questions
were considering mostly reachability or repeated reachability problems without taking into
account any information one could get on the number of processes necessary to verify
the desired property or whether such a number could be optimised. In other words, the
analysis performed on the models was qualitative but actually it could be interesting to
develop techniques to get quantitative information about these systems which will allow to
understand how the number of processes influence the behaviour of the system. Towards
this direction, population protocols, which have been recently studied from the verification
point of view [Esp+17] are an interesting example. In fact, population protocols can be seen
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as parameterised model where the communication is performed by pairwise rendez-vous.
They furthermore respect the following property: when the population protocol ran by
all the entities in the system is well-specified, eventually all the entities will be either in
an accepting state or a rejecting state. In [Ang+04], Angluin et al. show that population
protocols compute exactly semilinear predicates, which in our context can be stated as
follows, the number (and types) of processes from which the entities eventually all ends in
an accepting state is a semi-linear set and can consequently be represented by a formula of
the Presburger arithmetic (first order logic over the naturals with addition). Consequently,
for such systems, it is possible to represent finitely the numbers for which the protocols
terminate and furthermore to analyse some properties of these numbers. The purpose of
this aspect of my research project consists in developing techniques to perform quantitative
analysis of parameterised networks, to understand what are the mathematical tools needed
for this purpose and what are the connections with existing works on infinite state systems.
I propose here again some possible research directions.

Quantitative analysis on the number of participants in parameterised systems. First, I
will track properties concerning the number of initial processes which allow to guarantee
a certain property. One interesting aspect is to check whether the considered model has a
cutoff property, i.e. whether there exists a bound b such that if the model has a problem for a
certain number of processes then this problem occurs as well with b processes. In fact, when
a model has a cutoff, the verification of the systems boils down to the verification of a finite
state system. In [Ami+14], the authors provide some classes of systems communicating
through rendez-vous for which there exists indeed a cutoff for some properties expressed
in linear temporal logic. However in many important cases such a cutoff property on the
model is generally not verified. For instance, in a system where processes communicate
through pairwise rendez-vous and the goal is that there is an execution for which all the
processes end in a final state, it is easy to build an example for which the goal is satisfied if
and only if the number of entities is even. However, instead of trying to see if a family of
systems respects a certain cutoff property, it could be nice to have algorithms which given a
system (and a specification) decides whether it has a cutoff. Even better, if we could find a
logical formalism (like for instance formulae of the Presburger arithmetic) to characterise
for a given system the number of processes which ensures a certain property by then it
would be possible to reason on formulae to decide the existence of a cutoff. Consequently,
one of my first objective will be to seek for families of parameterised systems for which
one can design algorithms to reason on the number of entities which ensure a certain
property. In [HS20], we have obtained first results in this direction providing an algorithm
to decide whether there is a cutoff for systems with rendez-vous communication and with
a specification which requires all the entities to reach a final state. I plan furthermore to
deal with quantitative aspects in the considered properties: for instance, it could be nice to
state properties for a protocol about the proportion between the number of entities which
will always verify a certain properties and the one which will not but whose presence is
useful to the other ones. For example, it can be the case that in a system all the entities do
not succeed in reaching a final state but a majority of entities always succeed.

Quantitative analysis of parameterised systems with costs. Another aspect to go beyond
the properties concerning only the number of participants in the networks would be to
insert some cost or rewards in the models and then to see if it is possible for instance
to compute functions or relations taking into account the number of participants and
connecting it with these costs. For instance, assume we have a model with synchronous
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messages and non-determinism and we want to establish the smallest number of concurrent
steps (knowing that in one concurrent step, many processes can evolve) which allows all
the entities to reach a final state. Is it possible to find a function which associates to each
number of participants this number of steps? If we do not consider anymore the minimal
number of steps, is there a definable relation which links the number of entities with such a
cost? To determine if such functions/relations are definable and can be computed will allow
to see more in details the computational power of the considered systems and to understand
better what can be expected when such models are upgraded with new functionalities so
that they can represent more faithfully existing algorithms. This works represents a real
challenge for formal methods. In fact, it is well known that tackling quantitative aspects is
more difficult than solving qualitative problems especially when the considered systems
have an unbounded number of states. And it is even more difficult to conceive algorithmic
methods which automatically compute functions or relations.

Analysis of the reachability set of the Petri nets corresponding to parameterised net-
works. The last point I could pursue in this part of my project is more exploratory. As
one can notice in the paper of German and Sistla [GS92] but as well in the more recent
works on population protocols [Esp+17], parameterised networks with simple protocols
(represented for instance by a finite state automaton) and simple communication paradigm
(as for instance rendez-vous or synchronous) can be encoded into Petri nets and verification
questions on such systems can be automatically deduced from the decidability of problems
like coverability or reachability in Petri nets. However for what concerns qualitative aspects,
such a methodology can be hard to apply. To illustrate this idea, if we consider the pop-
ulation protocols, it has been shown that they compute semilinear predicates and hence
in a certain matter they can be encoded into a Petri net whose reachability set (or part of
it) is semi-linear. It is known that some Petri nets have a semilinear reachability sets but
other not[HP79] and there exist some subclasses of Petri nets with a semilinear reachability
set, the most famous one being the cyclic Petri net[AK77]. However, it seems that the Petri
net built from a population protocol does not belong to any of these subclasses (otherwise
such a reduction would simplify the proofs presented in [Ang+04] or [Esp+17]). On the
other hand, it is commonly accepted that the problem of knowing if a given Petri net has a
semilinear reachability set is decidable and it has been proved in Hauschildt’s PhD thesis
[Hau90], but the results of this thesis have never been published and the content is very
technical and difficult to read. My aim is hence to understand if there are new classes of
Petri nets with a semilinear reachability set, focusing on Petri nets characterising some
parameterised systems. I plan as well to see if some hypothesis on the considered systems
render the results of Hauschildt more easy to parse in order to use its algorithm to build
the corresponding semilinear sets. Even if this task seems very challenging (Hauschildt’s
result is known from more than 20 years, but nobody since then tried to simplify it), the
period seems adequate for an exploration on this direction thanks to the new works that
have made the algorithm for the reachability problem in Petri nets more accessible [LS15]
knowing that part of the algorithm of Hauschildt is based on the decomposition used in the
reachability algorithm.
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