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Abstract. We consider infinite-state Markov decision processes (MDPs)
that are induced by extensions of vector addition systems with states
(VASS). Verification conditions for these MDPs are described by reacha-
bility and Büchi objectives w.r.t. given sets of control-states. We study the
decidability of some qualitative versions of these objectives, i.e., the decid-
ability of whether such objectives can be achieved surely, almost-surely,
or limit-surely. While most such problems are undecidable in general,
some are decidable for large subclasses in which either only the controller
or only the random environment can change the counter values (while
the other side can only change control-states).

1 Introduction

Markov decision processes (MDPs) [17, 14] are a formal model for games on
directed graphs, where certain decisions are taken by a strategic player (a.k.a.
Player 1, or controller) while others are taken randomly (a.k.a. by nature, or
the environment) according to pre-defined probability distributions. MDPs are
thus a subclass of general 2-player stochastic games, and they are equivalent to
1.5-player games in the terminology of [10]. They are also called “games against
nature”.

A run of the MDP consists of a sequence of visited states and transitions on the
graph. Properties of the system are expressed via properties of the induced runs.
The most basic objectives are reachability (is a certain (set of) control-state(s)
eventually visited?) and Büchi objectives (is a certain (set of) control-state(s)
visited infinitely often?).

Since a strategy of Player 1 induces a probability distribution of runs of
the MDP, the objective of an MDP is defined in terms of this distribution,
e.g., if the probability of satisfying a reachability/Büchi objective is at least
a given constant. The special case where this constant is 1 is a key example
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of a qualitative objective. Here one asks whether Player 1 has a strategy that
achieves an objective surely (all runs satisfy the property) or almost-surely (the
probability of the runs satisfying the property is 1).

Most classical work on algorithms for MDPs and stochastic games has focused
on finite-state systems (e.g., [14, 19, 11]), but more recently several classes of
infinite-state systems have been considered as well. For instance, MDPs and
stochastic games on infinite-state probabilistic recursive systems (i.e., probabilistic
pushdown automata with unbounded stacks) [13] and on one-counter systems
[7, 6] have been studied. Another infinite-state probabilistic model, which is
incomparable to recursive systems, is a suitable probabilistic extension of Vector
Addition Systems with States (VASS; a.k.a. Petri nets), which have a finite
number of unbounded counters holding natural numbers.

Our contribution. We study the decidability of probability-1 qualitative reach-
ability and Büchi objectives for infinite-state MDPs that are induced by suitable
probabilistic extensions of VASS that we call VASS-MDPs. (Most quantitative
objectives in probabilistic VASS are either undecidable, or the solution is at least
not effectively expressible in (R,+, ∗,≤) [3].) It is easy to show that, for general
VASS-MDPs, even the simplest of these problems, (almost) sure reachability,
is undecidable. Thus we consider two monotone subclasses: 1-VASS-MDPs and
P-VASS-MDPs. In 1-VASS-MDPs, only Player 1 can modify counter values while
the probabilistic player can only change control-states, whereas for P-VASS-MDPs
it is vice-versa. Still these two models induce infinite-state MDPs. Unlike for
finite-state MDPs, it is possible that the value of the MDP, in the game theoretic
sense, is 1, even though there is no single strategy that achieves value 1. For
example, there can exist a family of strategies σε for every ε > 0, where playing
σε ensures a probability ≥ 1− ε of reaching a given target state, but no strategy
ensures probability 1. In this case, one says that the reachability property holds
limit-surely, but not almost-surely (i.e., unlike in finite-state MDPs, almost-surely
and limit-surely do not coincide in infinite-state MDPs).

We show that even for P-VASS-MDPs, all sure/almost-sure/limit-sure reacha-
bility/Büchi problems are still undecidable. However, in the deadlock-free subclass
of P-VASS-MDPs, the sure reachability/Büchi problems become decidable (while
the other problems remain undecidable). In contrast, for 1-VASS-MDPs, the
sure/almost-sure/limit-sure reachability problem and the sure/almost-sure Büchi
problem are decidable.

Our decidability results rely on two different techniques. For the sure and
almost sure problems, we prove that we can reduce them to the model-checking
problem over VASS of a restricted fragment of the modal µ-calculus that has
been proved to be decidable in [4]. For the limit-sure reachability problem in
1-VASS-MDP, we use an algorithm which at each iteration reduces the dimension
of the considered VASS while preserving the limit-sure reachability properties.

Although we do not consider the class of qualitative objectives referring
to the probability of (repeated) reachability being strictly greater than 0, we
observe that reachability on VASS-MDPs in such a setting is equivalent to
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reachability on standard VASS (though this correspondence does not hold for
repeated reachability).
Outline. In Section 2 we define basic notations and how VASS induce MDPs.
In Sections 3 and 4 we consider verification problems for P-VASS-MDP and
1-VASS-MDP, respectively. In Section 5 we summarize the decidability results
(Table 1) and outline future work. Omitted proofs can be found in [2].

2 Models and verification problems

Let N (resp. Z) denote the set of nonnegative integers (resp. integers). For two
integers i, j such that i ≤ j we use [i..j] to represent the set {k ∈ Z | i ≤ k ≤ j}.
Given a set X and n ∈ N \ {0}, Xn is the set of n-dimensional vectors with
values in X. We use 0 to denote the vector such that 0(i) = 0 for all i ∈ [1..n].
The classical order on Zn is denoted ≤ and is defined by v ≤ w if and only if
v(i) ≤ w(i) for all i ∈ [1..n]. We also define the operation + over n-dimensional
vectors of integers in the classical way (i.e., for v, v′ ∈ Zn, v + v′ is defined by
(v + v′)(i) = v(i) + v′(i) for all i ∈ [1..n]). Given a set S, we use S∗ (respectively
Sω) to denote the set of finite (respectively infinite) sequences of elements of S.
We now recall the notion of well-quasi-ordering (which we abbreviate as wqo). A
quasi-order (A,�) is a wqo if for every infinite sequence of elements a1, a2, . . . in
A, there exist two indices i < j such that ai � aj . For n > 0, (Nn,≤) is a wqo.
Given a set A with an ordering � and a subset B ⊆ A, the set B is said to be
upward closed in A if a1 ∈ B, a2 ∈ A and a1 � a2 implies a2 ∈ B.

2.1 Markov decision processes

A probability distribution on a countable set X is a function f : X 7→ [0, 1]
such that

∑
x∈X f(x) = 1. We use D(X) to denote the set of all probability

distributions on X. We first recall the definition of Markov decision processes.

Definition 1 (MDPs). A Markov decision process (MDP) M is a tuple 〈C,C1,
CP , A,→, p〉 where: C is a countable set of configurations partitioned into C1 and
CP (that is C = C1∪CP and C1∩CP = ∅); A is a set of actions; →⊆ C×A×C
is a transition relation; p : CP 7→ D(C) is a partial function which assigns to
some configurations in CP probability distributions on C such that p(c)(c′) > 0 if

and only if c
a−→ c′ for some a ∈ A.

Note that our definition is equivalent as seeing MDPs as games played between
a nondeterministic player (Player 1) and a probabilistic player (Player P). The
set C1 contains the nondeterministic configurations (or configurations of Player
1) and the set CP contains the probabilistic configurations (or configurations of
Player P). Given two configurations c, c′ in C, we write c→ c′ whenever there

exists a ∈ A such that c
a−→ c′. We will say that a configuration c ∈ C is a deadlock

if there does not exist c′ ∈ C such that c→ c′. We use Cdf1 (resp. CdfP ), to denote
the configurations of Player 1 (resp. of Player P) which are not a deadlock (df
stands here for deadlock free).
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A play of the MDP M = 〈C,C1, CP , A,→, p〉 is either an infinite sequence of

the form c0
a0−→ c1

a1−→ c2 · · · or a finite sequence c0
a0−→ c1

a1−→ c2 · · ·
ak−1−−−→ ck. We

call the first kind of play an infinite play, and the second one a finite play. A play
is said to be maximal whenever it is infinite or it ends in a deadlock configuration.
These latter plays are called deadlocked plays. We use Ω to denote the set of

maximal plays. For a finite play ρ = c0
a0−→ c1

a1−→ c2 · · ·
ak−1−−−→ ck, let ck = last(ρ).

We use Ωdf1 to denote the set of finite plays ρ such that last(ρ) ∈ Cdf1 .

A strategy for Player 1 is a function σ : Ωdf1 7→ C such that, for all ρ ∈ Ωdf1
and c ∈ C, if σ(ρ) = c then last(ρ)→ c. Intuitively, given a finite play ρ, which
represents the history of the game so far, the strategy represents the choice of
Player 1 among the different possible successor configurations from last(ρ). We use
Σ to denote the set of all strategies for Player 1. Given a strategy σ ∈ Σ, an infinite
play c0

a0−→ c1
a1−→ c2 · · · respects σ if for every k ∈ N, we have that if ck ∈ C1

then ck+1 = σ(c0
a0−→ c1

a1−→ c2 · · · ck) and if ck ∈ CP then p(ck)(ck+1) > 0. We
define finite plays that respect σ similarly. Let Plays(M, c, σ) ⊆ Ω be the set of
all maximal plays of M that start from c and that respect σ.

Note that once a starting configuration c0 ∈ C and a strategy σ have been
chosen, the MDP is reduced to an ordinary stochastic process. We define an
event A ⊆ Ω as a measurable set of plays and we use P(M, c, σ,A) to denote
the probability of event A starting from c ∈ C under strategy σ. The notation
P+(M, c,A) will be used to represent the maximal probability of event A starting
from c which is defined as P+(M, c,A) = supσ∈ΣP(M, c, σ,A).

2.2 VASS-MDPs

Probabilistic Vector Addition Systems with States have been studied, e.g., in [3].
Here we extend this model with non-deterministic choices made by a controller.
We call this new model VASS-MDPs. We first recall the definition of Vector
Addition Systems with States.

Definition 2 (VASS). For n > 0, an n-dimensional Vector Addition System
with States (VASS) is a tuple S = 〈Q,T 〉 where Q is a finite set of control states
and T ⊆ Q× Zn ×Q is the transition relation labelled with vectors of integers.

In the sequel, we will not always make precise the dimension of the considered
VASS. Configurations of a VASS are pairs 〈q,v〉 ∈ Q×Nn. Given a configuration
〈q,v〉 and a transition t = 〈q, z, q′〉 in T , we will say that t is enabled at 〈q′′,v〉, if
q = q′′ and v+z ≥ 0. Let then En(q,v) be the set {t ∈ T | t is enabled at 〈q,v)〉}.
In case the transition t = 〈q, z, q′〉 is enabled at 〈q,v〉, we define t(q,v) = 〈q′,v′〉
where v′ = v + z. An n-dimensional VASS S induces a labelled transition system
〈C, T,→〉 where C = Q × Nn is the set of configurations and the transition

relation →⊆ C × T ×C is defined as follows: 〈q,v〉 t−→ 〈q′,v′〉 iff 〈q′,v′〉 = t(q,v).
VASS are sometimes seen as programs manipulating integer variables, a.k.a.
counters. When a transition of a VASS changes the i-th value of a vector v, we
will sometimes say that it modifies the value of the i-th counter. We show now
in which manner we add probability distributions to VASS.
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Definition 3 (VASS-MDP). A VASS-MDP is a tuple S = 〈Q,Q1, QP , T, τ〉
where 〈Q,T 〉 is a VASS for which the set of control states Q is partitioned into
Q1 and QP , and τ : T 7→ N\{0} is a partial function assigning to each transition
a weight which is a positive natural number.

Nondeterministic (resp. probabilistic) choices are made from control states
in Q1 (resp. QP ). The subset of transitions from control states of Q1 (resp.
control states of QP ) is denoted by T1 (resp. TP ). Hence T = T1 ∪ TP with T1 ⊆
Q1×Zn×Q and TP ⊆ QP ×Zn×Q. A VASS-MDP S = 〈Q,Q1, QP , T, τ〉 induces
an MDP MS = 〈C,C1, CP , T,→, p〉 where: 〈C, T,→〉 is the labelled transition
system associated with the VASS 〈Q,T 〉; C1 = Q1 × Nn and CP = QP × Nn;

and for all c ∈ CdfP and c′ ∈ C, if c → c′, the probability of going from c to c′

is defined by p(c)(c′) = (
∑
{t|t(c)=c′} τ(t))/(

∑
t∈En(c) τ(t)), whereas if c 6→ c′, we

have p(c)(c′) = 0. Note that the MDP MS is well-defined: when defining p(c)(c′)
in the case c→ c′, there exists at least one transition in En(c) and consequently
the sum

∑
t∈En(c) τ(t) is never equal to 0. Also, we could have restricted the

weights to be assigned only to transitions leaving from a control state in QP
since we do not take into account the weights assigned to the other transitions.
A VASS-MDP is deadlock free if its underlying VASS is deadlock free.

Finally, as in [18] or [4], we will see that to gain decidability it is useful to
restrict the power of the nondeterministic player or of the probabilistic player by
restricting their ability to modify the counters’ values and hence letting them
only choose a control location. This leads to the two following definitions: a
P-VASS-MDP is a VASS-MDP 〈Q,Q1, QP , T, τ〉 such that for all 〈q, z, q′〉 ∈ T1,
we have z = 0 and a 1-VASS-MDP is a VASS-MDP 〈Q,Q1, QP , T, τ〉 such that
for all 〈q, z, q′〉 ∈ TP , we have z = 0. In other words, in a P-VASS-MDP, Player 1
cannot change the counter values when taking a transition and, in a 1-VASS-MDP,
it is Player P which cannot perform such an action.

2.3 Verification problems for VASS-MDPs

We consider qualitative verification problems for VASS-MDPs, taking as objectives
control-state reachability and repeated reachability. To simplify the presentation,
we consider a single target control-state qF ∈ Q. However, our positive decidability
results easily carry over to sets of target control-states (while the negative ones
trivially do). Note however, that asking to reach a fixed target configuration like
〈qF ,0〉 is a very different problem (cf. [3]).

Let S = 〈Q,Q1, QP , T, τ〉 be a VASS-MDP and MS its associated MDP. Given
a control state qF ∈ Q, we denote by J♦qF K the set of infinite plays c0 ·c1 · · · · and
deadlocked plays c0 · · · · · cl of MS for which there exists an index k ∈ N such that
ck = 〈qF ,v〉 for some v ∈ Nn. Similarly, J�♦qF K characterizes the set of infinite
plays c0 · c1 · · · · of MS for which the set {i ∈ N | ci = 〈qF ,v〉 for some v ∈ Nn}
is infinite. Since MS is an MDP with a countable number of configurations, we
know that the sets of plays J♦qF K and J�♦qF K are measurable (for more details
see for instance [5]), and are hence events for MS . Given an initial configuration
c0 ∈ Q× Nn and a control-state qF ∈ Q, we consider the following questions:
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1. The sure reachability problem: Does there exist a strategy σ ∈ Σ such that
Plays(MS , c0, σ) ⊆ J♦qF K?

2. The almost-sure reachability problem: Does there exist a strategy σ ∈ Σ such
that P(MS , c0, σ, J♦qF K) = 1?

3. The limit-sure reachability problem: Does P+(MS , c0, J♦qF K) = 1?
4. The sure repeated reachability problem: Does there exist a strategy σ ∈ Σ

such that Plays(MS , c0, σ) ⊆ J�♦qF K?
5. The almost-sure repeated reachability problem: Does there exist a strategy
σ ∈ Σ such that P(MS , c0, σ, J�♦qF K) = 1?

6. The limit-sure repeated reachability problem: Does P+(MS , c0, J�♦qF K) = 1?

Note that sure reachability implies almost-sure reachability, which itself implies
limit-sure reachability, but not vice-versa, as shown by the counterexamples in
Figure 1 (see also [7]). The same holds for repeated reachability. For the sure
problems, probabilities are not taken into account, and thus these problems can
be interpreted as the answer to a two player reachability game played on the
transition system of S. Such games have been studied for instance in [18, 1, 4].
Finally, VASS-MDPs subsume deadlock-free VASS-MDPs and thus decidability
(resp. undecidability) results carry over to the smaller (resp. larger) class.

q0

0

qF
0

q1

+1

q2
0

-1

qF
−1

Fig. 1. Two 1-dimensional VASS-MDPs. The circles (resp. squares) are the control
states of Player 1 (resp. Player P). All transitions have the same weight 1. From 〈q0, 0〉,
the state qF is reached almost-surely, but not surely, due to the possible run with an
infinite loop at q0 (which has probability zero). From 〈q1, 0〉, the state qF can be reached
limit-surely (by a family of strategies that repeats the loop at q1 more and more often),
but not almost-surely (or surely), since every strategy has a chance of getting stuck at
state q2 with counter value zero.

2.4 Undecidability in the general case

It was shown in [1] that the sure reachability problem is undecidable for (2-
dimensional) two player VASS. From this we can deduce that the sure reachability
problem is undecidable for VASS-MDPs. We now present a similar proof to show
the undecidability of the almost-sure reachability problem for VASS-MDPs.

For all of our undecidability results we use reductions from the undecidable
control-state reachability problem for Minsky machines. A Minsky machine is a
tuple 〈Q,T 〉 where Q is a finite set of states and T is a finite set of transitions
manipulating two counters, say x1 and x2. Each transition is a triple of the form
〈q, xi = 0?, q′〉 (counter xi is tested for 0) or 〈q, xi := xi + 1, q′〉 (counter xi is
incremented) or 〈q, xi := xi − 1, q′〉 (counter xi is decremented) where q, q′ ∈ Q.
Configurations of a Minsky machine are triples in Q × N × N. The transition
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relation ⇒ between configurations of the Minsky machine is then defined in
the obvious way. Given an initial state qI and a final state qF , the control-
state reachability problem asks whether there exists a sequence of configurations
〈qI , 0, 0〉 ⇒ 〈q1, v1, v′1〉 ⇒ . . .⇒ 〈qk, vk, v′k〉 with qk = qF . This problem is known
to be undecidable [16]. W.l.o.g. we assume that Minsky machines are deadlock-
free and deterministic (i.e., each configuration has always a unique successor)
and that the only transition leaving qF is of the form 〈qF , x1 := x1 + 1, qF 〉.

q1 q2
(1, 0)

q3 q4
(0,−1)

q5
(0, 0)

q6
(0, 0)

⊥

(−1, 0)

(0, 0)

Fig. 2. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

We now show how to reduce the control-state reachability problem to the
almost-sure and limit-sure reachability problems in deadlock-free VASS-MDPs.
From a Minsky machine, we construct a deadlock-free 2-dimensional VASS-MDP
for which the control states of Player 1 are exactly the control states of the
Minsky machine. The encoding is presented in Figure 2 where the circles (resp.
squares) are the control states of Player 1 (resp. Player P), and for each edge
the corresponding weight is 1. The state ⊥ is an absorbing state from which the
unique outgoing transition is a self loop that does not affect the values of the
counters. This encoding allows us to deduce our first result.

Theorem 1. The sure, almost-sure and limit-sure (repeated) reachability prob-
lems are undecidable problems for 2-dimensional deadlock-free VASS-MDPs.

In the special case of 1-dimensional VASS-MDPs, the sure and almost-sure
reachability problems are decidable [7].

2.5 Model-checking µ-calculus on single-sided VASS

It is well-known that there is a strong connection between model-checking branch-
ing time logics and games, and in our case we have in fact undecidability results
for simple reachability games played on a VASS and for the model-checking of
VASS with expressive branching-time logics [12]. However for this latter point,
decidability can be regained by imposing some restrictions on the VASS structure
[4] as we will now recall. We say that a VASS 〈Q,T 〉 is (Q1, Q2)-single-sided
iff Q1 and Q2 represents a partition of the set of states Q such that for all
transitions 〈q, z, q′〉 in T with q ∈ Q2, we have z = 0; in other words only
the transitions leaving a state from Q1 are allowed to change the values of
the counters. In [4], it has been shown that, thanks to a reduction to games
played on a single-sided VASS with parity objectives, a large fragment of the
µ-calculus called Lsv

µ has a decidable model-checking problem over single-sided
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VASS. The idea of this fragment is that the “always” operator � is guarded with
a predicate enforcing the current control states to belong to Q2. Formally, the
syntax of Lsv

µ for (Q1, Q2)-single-sided VASS is given by the following grammar:
φ ::= q | X | φ∧φ | φ∨φ | ♦φ | Q2∧�φ | µX.φ | νX.φ, where Q2 stands
for the formula

∨
q∈Q2

q and X belongs to a set of variables X . The semantics
of Lsv

µ is defined as usual: it associates to a formula φ and to an environment

ε : X → 2C a subset of configurations JφKε. We use ε0 to denote the environment
which assigns the empty set to any variable. Given an environment ε, a variable
X ∈ X and a subset of configurations C, we use ε[X := C] to represent the
environment ε′ which is equal to ε except on the variable X, where we have
ε′(X) = C. Finally the notation JφK corresponds to the interpretation JφKε0 .

The problem of model-checking single-sided VASS with Lsv
µ can then be

defined as follows: given a single-sided VASS 〈Q,T 〉, an initial configuration c0
and a formula φ of Lsv

µ , do we have c0 ∈ JφK?

Theorem 2. [4] Model-checking single-sided VASS wrt. Lsv
µ is decidable.

3 Verification of P-VASS-MDPs

In [4] it is proved that parity games played on a single-sided deadlock-free VASS
are decidable (this entails the decidability of model checking Lsv

µ over single-sided
VASS). We will see here that in the case of P-VASS-MDPs, in which only the
probabilistic player can modify the counters, the decidability status depends on
the presence of deadlocks in the system.

3.1 Undecidability in presence of deadlocks

We point out that the reduction presented in Figure 2 to prove Theorem 1 does
not carry over to P-VASS-MDPs, because in that construction both players
have the ability to change the counter values. However, it is possible to perform
a similar reduction leading to the undecidability of verification problems for
P-VASS-MDPs, the main difference being that we crucially exploit the fact that
the P-VASS-MDP can contain deadlocks.

We now explain the idea behind our encoding of Minsky machines into P-
VASS-MDPs. Intuitively, Player 1 chooses a transition of the Minsky machine to
simulate, anticipating the modification of the counters values, and Player P is
then in charge of performing the change. If Player 1 chooses a transition with
a decrement and the accessed counter value is actually 0, then Player P will
be in a deadlock state and consequently the desired control state will not be
reached. Furthermore, if Player 1 decides to perform a zero-test when the counter
value is strictly positive, then Player P is able to punish this choice by entering
a deadlock state. Similarly to the proof of Theorem 1, Player P can test if the
value of the counter is strictly greater than 0 by decrementing it. The encoding
of the Minsky machine is presented in Figure 3. Note that no outgoing edge of
Player 1’s states changes the counter values. Furthermore, we see that Player P
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reaches the control state ⊥ if and only if Player 1 chooses to take a transition
with a zero-test when the value of the tested counter is not equal to 0. Note that,
with the encoding of the transition 〈q3, x2 := x2 − 1, q4〉, when Player P is in the
control state between q3 and q4, it can be in a deadlock if the value of the second
counter is not positive. In the sequel we will see that in P-VASS-MDP without
deadlocks the sure reachability problem becomes decidable.

q1

(0, 0)

q2

(1, 0)

q3

(0, 0)

q4

(0,−1)

q5

(0, 0)

q6

(0, 0)

⊥
(−1, 0)

(0, 0)

Fig. 3. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

From this encoding we deduce the following result.

Theorem 3. The sure, almost sure and limit sure (repeated) reachability prob-
lems are undecidable for 2-dimensional P-VASS-MDPs.

3.2 Sure (repeated) reachability in deadlock-free P-VASS-MDPs

Unlike in the case of general P-VASS-MDPs, we will see that the sure (repeated)
reachability problem is decidable for deadlock-free P-VASS-MDPs. Let S =
〈Q,Q1, QP , T, τ〉 be a deadlock-free P-VASS-MDP, MS = (C,C1, CP ,→, p) its
associated MDP and qF ∈ Q a control state. Note that because the P-VASS-
MDP S is deadlock free, Player P cannot take the play to a deadlock to avoid
the control state qF , but he has to deal only with infinite plays. Since S is a
P-VASS-MDP, the VASS 〈Q,T 〉 is (QP , Q1)-single-sided. In [18, 1], it has been
shown that control-state reachability games on deadlock-free single-sided VASS
are decidable, and this result has been extended to parity games in [4]. This
implies the decidability of sure (repeated) reachability in deadlock-free P-VASS-
MDPs. However, to obtain a generic way of verifying these systems, we construct
a formula of Lsv

µ that characterizes the sets of winning configurations and use

then the result of Theorem 2. Let V PS be the set of configurations from which
the answer to the sure reachability problem (with qF as state to be reached)
is negative, i.e., V PS = {c ∈ C | @σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J♦qF K} and
similarly let WP

S = {c ∈ C | @σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ J�♦qF K}. The next
lemma relates these two sets with a formula of Lsv

µ (where QP corresponds to
the formula

∨
q∈QP

and Q1 corresponds to the formula
∨
q∈Q1

q).

Lemma 1. – V PS = JνX.(
∨
q∈Q\{qF } q) ∧ (Q1 ∨ ♦X) ∧ (QP ∨ (Q1 ∧�X))K.

9



– WP
S = JµY.νX.

(
(
∨
q∈Q\{qF } q)∧ (Q1∨♦X)∧ (QP ∨ (Q1∧�X))∨ (qF ∧QP ∧

♦Y ) ∨ (qF ∧Q1 ∧�Y )
)
K

We use (QP ∨ (Q1 ∧�X)) instead of (QP ∨�X) so that the formulae are in
the guarded fragment of the µ-calculus. Since the two formulae belong to Lsv

µ for
the (QP , Q1)-single-sided VASS S, decidability follows directly from Theorem 2.

Theorem 4. The sure reachability and repeated reachability problem are decid-
able for deadlock free P-VASS-MDPs.

3.3 Almost-sure and limit-sure reachability in deadlock-free
P-VASS-MDPs

We have seen that, unlike for the general case, the sure reachability and sure
repeated reachability problems are decidable for deadlock free P-VASS-MDPs,
with deadlock freeness being necessary to obtain decidability. For the correspond-
ing almost-sure and limit-sure problems we now show undecidability, again using
a reduction from the reachability problem for two counter Minsky machines,
as shown in Figure 4. The main difference with the construction used for the
proof of Theorem 3 lies in the addition of a self-loop in the encoding of the
transitions for decrementing a counter, in order to avoid deadlocks. If Player 1,
from a configuration 〈q3,v〉, chooses the transition 〈q3, x2 := x2 − 1, q4〉 which
decrements the second counter, then the probabilistic state with the self-loop
is entered, and there are two possible cases: if v(2) > 0 then the probability of
staying forever in this loop is 0 and the probability of eventually going to state
q4 is 1; on the other hand, if v(2) = 0 then the probability of staying forever in
the self-loop is 1, since the other transition that leaves the state of Player P and
which performs the decrement on the second counter effectively is not available.
Note that such a construction does not hold in the case of sure reachability,
because the path that stays forever in the loop is a valid path.

q1

(0, 0)

q2

(1, 0)

q3

(0, 0)

(0, 0)

q4

(0,−1)

q5

(0, 0)

q6

(0, 0)

⊥
(−1, 0)

(0, 0)

Fig. 4. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

This allows us to deduce the following result for deadlock free P-VASS-MDPs.

Theorem 5. The almost-sure and limit-sure (repeated) reachability problems are
undecidable for 2-dimensional deadlock-free P-VASS-MDPs.

10



4 Verification of 1-VASS-MDPs

In this section, we will provide decidability results for the subclass of 1-VASS-
MDPs. As for deadlock-free P-VASS-MDPs, the proofs for sure and almost-sure
problems use the decidability of Lsv

µ over single-sided VASS, whereas the technique
used to show decidability of limit-sure reachability is different.

4.1 Sure problems in 1-VASS-MDPs

First we show that, unlike for P-VASS-MDPs, deadlocks do not matter for 1-
VASS-MDPs. The idea is that in this case, if the deadlock is in a probabilistic
configuration, it means that there is no outgoing edge (because of the property of
1-VASS-MDPs), and hence one can add an edge to a new absorbing state, and the
same can be done for the states of Player 1. Such a construction does not work
for P-VASS-MDPs, because in that case deadlocks in probabilistic configurations
may depend on the counter values, and not just on the current control-state.

Lemma 2. The sure (resp. almost sure, resp. limit sure) (repeated) reachability
problem for 1-VASS-MDPs reduces to the sure (resp. almost sure, resp. limit-sure)
(repeated) reachability problem for deadlock-free 1-VASS-MDPs.

Hence in the sequel we will consider only deadlock-free 1-VASS-MDPs. Let
S = 〈Q,Q1, QP , T, τ〉 be a deadlock-free 1-VASS-MDP. For what concerns the
sure (repeated) reachability problems we can directly reuse the results from
Lemma 1 and then show that the complement formulae of the ones expressed
in this lemma belong to Lsv

µ for the (Q1, QP )-single-sided VASS 〈Q,T 〉 (in fact
the correctness of these two lemmas did not depend on the fact that we were
considering P-VASS-MDPs). Theorem 2 allows us to retrieve the decidability
results already expressed in [18] (for sure reachability) and [4] (for sure repeated
reachability).

Theorem 6. The sure (repeated) reachability problem is decidable for 1-VASS-
MDPs.

4.2 Almost-sure problems in 1-VASS-MDPs

We now move to the case of almost-sure problems in 1-VASS-MDPs. We consider
a deadlock free 1-VASS-MDP S = 〈Q,Q1, QP , T, τ〉 and its associated MDP
MS = 〈C,C1, CP ,→, p〉. We will see that, unlike for P-VASS-MDPs, it is here
also possible to characterize by formulae of Lsv

µ the two following sets: V 1
AS =

{c ∈ C | ∃σ ∈ Σ such that P(MS , c, σ, J♦qF K) = 1} and W 1
AS = {c ∈ C | ∃σ ∈

Σ such that P(MS , c, σ, J�♦qF K) = 1}, i.e. the set of configurations from which
Player 1 has a strategy to reach the control state qF , respectively to visit infinitely
often qF , with probability 1.

We begin with introducing the following formula of Lsv
µ based on the variables

X and Y : InvPre(X,Y ) = (Q1 ∧ ♦(X ∧ Y )) ∨ (♦Y ∧ QP ∧ �X). Note that

11



InvPre(X,Y ) is a formula of Lsv
µ for the (Q1, QP )-single-sided VASS 〈Q,T 〉.

Intuitively, this formula represents the set of configurations from which (i) Player
1 can make a transition to the set represented by the intersection of the sets
characterized by the variables X and Y and (ii) Player P can make a transition
to the set Y and cannot avoid making a transition to the set X.

Almost sure reachability. We will now prove that V 1
AS can be characterized

by the following formula of Lsv
µ : νX.µY.(qF ∨ InvPre(X,Y )). Note that a similar

result exists for finite-state MDPs, see e.g. [9]; this result in general does not
extend to infinite-state MDPs, but in the case of VASS-MDPs it can be applied.
Before proving this we need some intermediate results.

We denote by E the set JνX.µY.
(
qF ∨ InvPre(X,Y )

)
Kε0 . Since νX.µY.

(
qF ∨

InvPre(X,Y )
)

is a formula of Lsv
µ interpreted over the single-sided VASS 〈Q,T 〉,

we can show that E is an upward-closed set. We now need another lemma which
states that there exists N ∈ N and a strategy for Player 1 such that, from any
configuration of E, Player 1 can reach the control state qF in less than N steps
and Player P cannot take the play outside of E. The fact that we can bound
the number of steps is crucial to show that JνX.µY.

(
qF ∨ InvPre(X,Y )

)
Kε0 is

equal to V 1
AS . For infinite-state MDPs where this property does not hold, our

techniques do not apply.

Lemma 3. There exists N ∈ N and a strategy σ of Player 1 such that for all
c ∈ E, there exists a play c · c1 · c2 · . . . in Plays(MS , c, σ) satisfying the three
following properties: (1) there exists 0 ≤ i ≤ N such that ci ∈ JqF K; (2) for all
0 ≤ j ≤ i, cj ∈ E; (3) for all 0 ≤ j ≤ i, if cj ∈ CP then for all c′′ ∈ C such that
cj → c′′, we have c′′ ∈ E.

This previous lemma allows us to characterize V 1
AS with a formula of Lsv

µ . The
proof of the following result uses the fact that the number of steps is bounded,
and also the fact that the sets described by closed Lsv

µ formulae are upward-closed.
This makes the fixpoint iteration terminate in a finite number of steps.

Lemma 4. V 1
AS = JνX.µY.(qF ∨ InvPre(X,Y ))K.

Since 〈Q,T 〉 is (Q1, QP )-single-sided and since the formula associated to V 1
AS

belongs to Lsv
µ , from Theorem 2 we deduce the following theorem.

Theorem 7. The almost-sure reachability problem is decidable for 1-VASS-
MDPs.

Almost sure repeated reachability. For the case of almost sure repeated
reachability we reuse the previously introduced formula InvPre(X,Y ). We can
perform a reasoning similar to the previous ones and provide a characterization
of the set W 1

AS .

Lemma 5. W 1
AS = JνX.InvPre(X,µY.(qF ∨ InvPre(X,Y )))K.

12



As previously, this allows us to deduce the decidability of the almost sure
repeated reachability problem for 1-VASS-MDP.

Theorem 8. The almost sure repeated reachability problem is decidable for 1-
VASS-MDPs.

4.3 Limit-sure reachability in 1-VASS-MDP

We consider a slightly more general version of the limit-sure reachability problem
with a set X ⊆ Q of target states instead of a single state qF , i.e., the standard
case corresponds to X = {qF }.

We extend the set of natural numbers N to N∗ = N
⋃
{∗} by adding an element

∗ /∈ N with ∗+ j = ∗− j = ∗ and j < ∗ for all j ∈ N. We consider then the set of
vectors Nd∗. The projection of a vector v in Nd by eliminating components that
are indexed by a natural number k is defined by projk(v)(i) = v(i) if i 6= k and
projk(v)(i) = ∗ otherwise

Let Qc represent control-states which are indexed by a color. The coloring
functions coli : Q→ Qc create colored copies of control-states by coli(q) = qi.

Given a 1-VASS-MDP S = 〈Q,Q1, QP , T, τ〉 of dimension d, an index k ≤ d
and a color i, the colored projection is defined as:

Projk(S, d, i) = 〈coli(Q), coli(Q1), coli(QP ), projk,i(T ), τk,i〉

where projk,i(T ) = {projk,i(t)|t ∈ T} is the projection of the set of transitions
T and projk,i(t) = 〈coli(x), projk(z), coli(y)〉 is the projection of transition t =
〈x, z, y〉 obtained by removing component k and coloring the states x and y with
color i. The transition weights carry over, i.e., τk,i(t

′) =
∑
{τ(t) | projk,i(t) = t′}.

We define the functions state : Q×Nd∗ → Q and count : Q×Nd∗ → Nd∗ s.t for
a configuration ci = 〈q,v〉, where q ∈ Q and v ∈ Nd∗ we have that state(q,v) = q
and count(q,v) = v. For any two configurations c1 and c2, we write c1 ≺ c2 to
denote that state(c1) = state(c2), and there exists a nonempty set of indexes
I where for every i ∈ I , count(c1)(i) < count(c2)(i), whereas for every index
j /∈ I, 0 < j ≤ d, count(c1)(j) = count(c2)(j).

Algorithm 1 reduces the dimension of the limit-sure reachability problem for
1-VASS-MDP by a construction resembling the Karp-Miller tree [15]. It takes as
input a 1-VASS-MDP S of some dimension d > 0 with a set of target states X. It
outputs a new 1-VASS-MDP S′ of dimension d− 1 and a new set of target states
X ′ such that MS can limit-surely reach X iff MS′ can limit-surely reach X ′. In
particular, in the base case where d−1 = 0, the new system S′ has dimension zero
and thus induces a finite-state MDP MS′ , for which limit-sure reachability of X ′

coincides with almost-sure reachability of X ′, which is known to be decidable in
polynomial time. Algorithm 1 starts by exploring all branches of the computation
tree of S (and adding them to S′ as the so-called initial uncolored part) until it
encounters a configuration that is either (1) equal to, or (2) strictly larger than a
configuration encountered previously on the same branch. In case (1) it just adds
a back loop to the point where the configuration was encountered previously.
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In case (2), it adds a modified copy of S (identified by a unique color) to S′.
This so-called colored subsystem is similar to S except that those counters that
have strictly increased along the branch are removed. The intuition is that these
counters could be pumped to arbitrarily high values and thus present no obstacle
to reaching the target. Since the initial uncolored part is necessarily finite (by
Dickson’s Lemma) and each of the finitely many colored subsystems only has
dimension d− 1 (since a counter is removed; possibly a different one in different
colored subsystems), the resulting 1-VASS-MDP S′ has dimension d − 1. The
set of target states X ′ is defined as the union of all appearances of states in X
in the uncolored part, plus all colored copies of states from X in the colored
subsystems.

Algorithm 1 Reducing the dimension of the limit-sure reachability problem.

Require: S = 〈Q,Q1, QP , T, τ〉 1-VASS-MDP, dimension d > 0, c0 = 〈q0,v〉 ∈ Q×Nd

X ⊆ Q - set of target states
Ensure: S′ = 〈Q′, Q′1, Q′P , T ′, τ ′〉; c′0 = 〈q′0,0〉; X ′ ⊆ Q′; λ : Q′ → ((Q

⋃
Qc)× Nd

∗)
1: Q′ ← ∅; Q′1 ← ∅; Q′P ← ∅; T ′ ← ∅; τ ′ ← ∅;
2: new(q′); q′0 ← q′; λ(q′)← c0; Q′ ← {q′}; i← 0
3: if state(λ(q′)) ∈ Q1 then Q′1 ← {q′} else Q′P ← {q′}
4: ToExplore ← {q′}
5: while ToExplore 6= ∅ do
6: Pick and remove a q ∈ ToExplore
7: if ∃q′. q′ is previously on the same branch as q and λ(q′) ≺ λ(q) then
8: get indexes I in which the counter is increasing
9: pick and remove the first index k from I

10: i← i+ 1; // increase color index
11: new(q′′);
12: λ(q′′)← 〈coli(state(λ(q))), projk(count(λ(q)))〉
13: if state(λ(q)) ∈ Q1 then Q′1 ← Q′1

⋃
{q′′} else Q′P ← Q′P

⋃
{q′′}

14: T ′ ← T ′
⋃
{〈q,0, q′′〉}; τ ′(〈q,0, q′′〉) = 1;

15: Q′1 ← Q′1
⋃
coli(Q1); Q′P ← Q′P

⋃
coli(QP ); T ′ ← T ′

⋃
projk,i(T );

16: X ′ ← X ′
⋃
coli(X); τ ′ ← τ ′ ∪ τk,i

17: else
18: for every t = 〈x, z, y〉 in T such that t ∈ En(λ(q)) do
19: if ∃q′. q′ is previously on the same branch as q and t(λ(q)) = λ(q′) then
20: T ′ ← T ′

⋃
{〈q, z, q′〉};

21: else
22: new(q′); λ(q′)← t(λ(q))
23: T ′ ← T ′

⋃
{〈q, z, q′〉}; τ ′(〈q, z, q′〉)← τ(t)

24: if state(λ(q′)) ∈ Q1 then Q′1 ← Q′1
⋃
{q′} else Q′P ← Q′P

⋃
{q′}

25: if state(λ(q′)) ∈ X then X ′ ← X ′
⋃
{q′}

26: ToExplore← ToExplore
⋃
{q′}

27: end if
28: end for
29: end if
30: end while
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By Dickson’s Lemma, the conditions on line 7 or line 19 of the algorithm
must eventually hold on every branch of the explored computation tree. Thus, it
will terminate.

Lemma 6. Algorithm 1 terminates.

The next lemma states the correctness of Algorithm 1. Let S = 〈Q,Q1, QP , T, τ〉
be 1-VASS-MDP of dimension d > 0 with initial configuration c0 = 〈q0,v〉 and
X ⊆ Q a set of target states. Let S′ = 〈Q′, Q′1, Q′P , T ′, τ ′〉 with initial configu-
ration c′0 = 〈q′0,0〉 and set of target states X ′ ⊆ Q′ be the (d− 1) dimensional
1-VASS-MDP produced by Algorithm 1. As described above we have the following
relation between these two systems.

Lemma 7. P+(MS , c0, J♦XK) = 1 iff P+(MS′ , c
′
0, J♦X ′K) = 1.

By applying the result of the previous lemma iteratively until we obtain a
finite-state MDP, we can deduce the following theorem.

Theorem 9. The limit-sure reachability problem for 1-VASS-MDP is decidable.

5 Conclusion and Future Work

Table 1 summarizes our results on the decidability of verification problems for
subclasses of VASS-MDP. The exact complexity of most problems is still open.
Algorithm 1 relies on Dickson’s Lemma for termination, and the algorithm
deciding the model-checking problem of Theorem 2 additionally uses the Valk-
Jantzen construction repeatedly. However, all these problems are at least as hard
as control-state reachability in VASS, and thus EXPSPACE-hard [12].

The decidability of the limit-sure repeated reachability problem for 1-VASS-
MDP is open. A hint of its difficulty is given by the fact that there are instances
where the property holds even though a small chance of reaching a deadlock cannot
be avoided from any reachable configuration. In particular, a solution would
require an analysis of the long-run behavior of multi-dimensional random walks
induced by probabilistic VASS. However, these may exhibit strange nonregular
behaviors for dimensions ≥ 3, as described in [8] (Section 5).

P-VASS-MDP df P-VASS-MDP 1-VASS-MDP

sure reachability × (Thm. 3) X (Thm. 4) X (Thm. 6)

almost-sure reachability × (Thm. 3) × (Thm. 5) X (Thm. 7)

limit-sure reachability × (Thm. 3) × (Thm. 5) X (Thm. 9)

sure repeated reachability × (Thm. 3) X (Thm. 4) X (Thm. 6)

almost-sure repeated reachability × (Thm. 3) × (Thm. 5) X (Thm. 8)

limit-sure repeated reachability × (Thm. 3) × (Thm. 5) Open

Table 1. Decidability of verification problems for P-VASS-MDP, deadlock-free P-VASS-
MDP and 1-VASS-MDP. A X stands for decidable and a × for undecidable.
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