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Abstract

We study decidability and undecidability results for parameterized verification
of a formal model of timed Ad Hoc network protocols. The communication
topology is defined by an undirected graph and the behaviour of each node is
defined by a timed automaton communicating with its neighbours via broad-
cast messages. We consider parameterized verification problems formulated in
terms of reachability. In particular we are interested in searching for an initial
configuration from which an individual node can reach an error state. We study
the problem for dense and discrete time and compare the results with those
obtained for (fully connected) networks of timed automata.
Keywords Parameterized Verification, Timed Automata, Ad Hoc Networks,
Graphs, Decidability, Well Structured Transition Systems

1. Introduction

In recent years there has been an increasing interest in automated verifica-
tion methods for ad hoc networks, see e.g. [18, 24, 23, 11, 12]. Ad Hoc Networks
(AHN) consist of wireless hosts that, in absence of a fixed infrastructure, com-
municate sending broadcast messages. In this context, protocols are supposed
to work independently from a specific configuration of the network. Indeed,
discovery protocols are often applied in order to identify the vicinity of a given
node. In the AHN model proposed in [11] undirected graphs are used to rep-
resent a network in which each node executes an instance of a fixed (untimed)
interaction protocol based on broadcast communication. Since individual nodes
are not aware of the network topology, in the ad hoc setting it is natural to
consider verification problems that are parametric in the size and shape of the
initial configuration as in [11].

1This work is partially supported by the ANR national research program ANR-14-CE28-
0002 PACS.
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In this paper we introduce a new model of distributed systems obtained by
enriching the AHN model of [11] with time-sensitive specification of individual
nodes. In the resulting model, called Timed Ad Hoc Networks (TAHN), the
connection topology is still modelled as a graph in which nodes communicate
via broadcast messages but the behaviour of a node is now defined as a timed
automaton. More in detail, each node has a finite set of clocks which all advance
at the same rate and transitions describing the behaviour of the nodes are
guarded by conditions on clocks and have also the ability to reset clocks.

Following [11, 12], we study the decidability status of the parameterized
reachability problem taking as parameters the initial configuration of a TAHN,
i.e., we aim at checking the existence of an initial configuration that can evolve
using continuous and discrete steps into a configuration exposing a given lo-
cal state (usually representing an error). Our model presents similarities with
Timed Networks introduced in [2]. A major difference between TAHN and
Timed Networks lies in the fact that in the latter model the connection topol-
ogy is always a fully-connected graph, i.e., broadcast communication is not
selective since a message sent by a node always reaches all other nodes. For
Timed Networks, it is known that reachability of a configuration containing a
given control location is undecidable in the case of two clocks per node, and
decidable in the case of one clock per node.

When constraining communication via a complex connection graph, the de-
cidability frontier becomes much more complex. More specifically, our technical
results are as follows:

• For nodes equipped with a single clock, parameterized reachability be-
comes undecidable in a very simple class of graphs in which nodes are
connected so as to form stars with diameter five.

• The undecidability result still holds in the more general class of bounded
path graphs, i.e., graphs in which the length of maximal simple paths is
bounded by a constant. In our proof we consider a bound N ≥ 5 on the
length of simple paths. Since nodes have no information about the shape of
the network topology, the undecidability proof is not a direct consequence
of the result for stars. Indeed the undecidability construction requires a
preliminary step aimed at discovering a two-star topology in a graph of
arbitrary shape but simple paths of at most five nodes.

• The problem turns out to be undecidable in the class of cliques of arbitrary
order (that contains graphs with arbitrarily long paths) in which each
timed automaton has at least two clocks.

• Decidability holds for special topologies like stars with diameter three and
cliques of arbitrary order assuming that the process running in each node
is equipped with a single clock (as in Timed Networks).

• Finally when considering discrete time, e.g. to model time-stamps, instead
of continuous time, we show that the local state reachability problem
becomes decidable for processes with any number of clocks in the class of
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graphs with bounded path. The same result holds for cliques of arbitrary
order.

2. Preliminaries

Let N be the set of natural numbers and R≥0 the set of non-negative real
numbers. For sets A and B, we use f : A 7→ B to denote that f is a total
function that maps A to B. For a ∈ A and b ∈ B, we write f [a←↩ b] to denote
the function f ′ defined as follows: f ′(a) = b and f ′(a′) = f(a′) for all a′ 6= a.
We denote by [A 7→ B] the set of all total functions from A to B.

We now recall the notion of well-quasi-ordering (which we abbreviate as
wqo). A quasi-order (A,�) is a wqo if for every infinite sequence of elements
a1, a2, . . . in A, there exist two indices i < j such that ai � aj . Given a set A
with an ordering � and a subset B ⊆ A, the set B is said to be upward closed
in A if a1 ∈ B, a2 ∈ A and a1 � a2 implies a2 ∈ B. Given a set B ⊆ A, we
define the upward closure ↑B to be the set {a ∈ A | ∃a′ ∈ B such that a′ � a}.
For a quasi-order (A,�), an element a is minimal for B ⊆ A if for all b ∈ B,
b � a implies a � b. If (A,�) is a wqo and if B is upward closed in A, then
the set of minimal elements of B is finite. If {b1, . . . , bk} is the set of minimal
elements of B, then ↑{b1, . . . , bk} = B; hence B can be represented finitely.

3. Timed Ad Hoc Networks

3.1. Syntax

A Timed Ad Hoc Network (TAHN) consists of a graph where the nodes
represent processes that run a common predefined protocol defined by a com-
municating timed automaton. The values of the clocks manipulated by the au-
tomaton inside each process are incremented all at the same rate. In addition,
processes may perform discrete transitions which are either local transitions or
communication events. When firing a local transition, a single process changes
its local state without interacting with the other processes. For what concerns
communication, it is performed by means of selective broadcast, a process sends
a broadcast message which can be received only by its neighbours in the net-
work. We choose to represent the communication relation as a graph. Finally,
transitions are guarded by conditions on values of clocks and may also reset
clocks.

We now provide the formal definition of the model. We assume that each
process operates on a set of clocks X. A guard is a boolean combination of
predicates of the form k C x for k ∈ N, C ∈ {=, <,≤, >,≥}, and x ∈ X. We
denote by G(X) the set of guards over X. A reset R is a subset of X. The guards
will be used to impose conditions on the clocks of processes that participate in
transitions and the resets to identify the clocks that will be reset during the
transition. A clock valuation is a mapping F : X 7→ R≥0. For a guard g and
a clock valuation F , we write F |= g to indicate that the formula obtained by
replacing in the guard g each clock x by F (x) is valid. For a clock valuation F
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and a subset of clocks Y ⊆ X, we denote by F [Y ] the clock valuation such that
F [Y ](x) = 0 for all x ∈ Y and F [Y ](x) = F (x) for all x ∈ X \ Y .

For a finite alphabet Σ of messages, we define the set of events associated
to this alphabet as follows: M(Σ) = {τ} ∪ {!!a, ??a | a ∈ Σ}. These events
correspond to the following ideas:

(i) τ is used for a local move ;

(ii) !!a represents the broadcast of the message a;

(iii) ??a denotes the reception of the message a (that has been broadcasted by
another process).

We now give the definition of a protocol which will be executed by the nodes
in the network.

Definition 1. A protocol P is a tuple
(
Q,X,Σ,R, qinit

)
such that Q is a finite

set of states, X is a finite set of clocks, Σ is a finite message alphabet, R ⊆
Q × G(X) ×M(Σ) × 2X × Q is a finite set of rules labelled with a guard, a
message and a reset, and qinit ∈ Q is an initial state.

Intuitively P defines the protocol that is run by each of the nodes (or entities)
present in the network, where Q is the set of local states of each node, while
R is a set of rules describing the behaviour of each node. We will use the

notation
(
q, g

e−→ R, q′
)

to represent the rule (q, g, e, R, q′). For a protocol

P =
(
Q,X,Σ,R, qinit

)
, we denote by nbclocks(P ) the size of X, i.e., the number

of clocks it uses.
A TAHN T is then simply a pair (G,P ) where:

• G = (V,E) is a connectivity graph composed of a finite set of nodes V and a
set of undirected edges without self-loops, i.e., E ⊆ V ×V \{(v, v) | v ∈ V }
s.t. E is symmetric;

• P is the protocol which will be executed by the node present in the nodes
of the graph.

Intuitively, the graph G characterizes potential process interactions in the net-
work T ; the set V represents the nodes and E defines the connectivity relation
between the nodes of the network. The nodes belonging to an edge are called
the endpoints of the edge. For an edge (u, v) ∈ E, we often use the notation
u ∼ v and say that the vertices u and v are adjacent to each other.

3.2. Operational Semantics

We now define the operational semantics of TAHN by means of a timed
transition system. Let T = (G,P ) be a TAHN with G = (V,E) and P =(
Q,X,Σ,R, qinit

)
. A configuration γ of T is a pair (Q,X ) where:

• Q : V 7→ Q is a function that maps each node of the graph with a state
of the protocol;
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• X : V 7→ [X 7→ R≥0] is a function that assigns to each node a clock
valuation.

An important point is that, in a configuration, each node of the graph has its own
set of clocks. We denote by CT the set of configurations. The initial configuration
of T is the configuration

(
Qinit ,X init

)
with Qinit(v) = qinit and X init(v)(x) = 0

for all v ∈ V and x ∈ X. In other words, in an initial configuration all the nodes
are in the initial local state and all their associated clocks have value 0.

We now introduce a notation to characterize the nodes in a configuration
that are able to receive a message a. Given a configuration γ = (Q,X ) of the
TAHN T = (G,P ) (with G = (V,E)) and given a message a ∈ Σ, let EnT (γ, a)
be the following set of nodes able to receive a in γ from the connectivity graph
G:

EnT (γ, a) = {v ∈ V | ∃
(
q, g

??a−→ R, q′
)
∈ R s.t. Q(v) = q and X (v) |= g}

In the rest of the paper we will use En(γ, a) when T is clear from the context.
The semantics associated to a TAHN T is then defined by the timed tran-

sition system (CT ,=⇒T ), where the transition relation =⇒T ⊆ CT × CT corre-
sponds to the union of a discrete transition relation =⇒T ,d, representing tran-
sitions induced by the rules of T and a timed transition relation =⇒T ,t which
characterizes the elapse of time.

The discrete transition relation =⇒T ,d⊆ CT × CT is such that given two
configurations γ = (Q,X ) and γ′ = (Q′,X ′), we have γ =⇒T ,d γ′ if and only if
one of the following conditions is satisfied:

Local: There exists a rule
(
q, g

τ−→ R, q′
)

and a vertex v ∈ V such that Q(v) =

q, X (v) |= g, Q′ = Q [v ←↩ q′], and X ′ = X [v ←↩ X (v)[R]], and, for each
w ∈ V \ {v}, we have Q′(w) = Q(w), X ′(w) = X (w).

Broadcast: There exists a rule
(
q, g

!!a−→ R, q′
)

and a vertex v ∈ V such that

Q(v) = q, X (v) |= g, Q′(v) = q′ and X ′(v) = X (v)[R], and, for each
w ∈ V \ {v}, we have:

• either w ∼ v and w ∈ En(γ, a) and there exists a rule of the form(
q1, g1

??a−→ R1, q
′
1

)
such that Q(w) = q1, X (w) |= g1, Q′(w) = q′1,

and X ′(w) = X (w)[R1].

• or (w 6∼ v or w /∈ En(γ, a)), Q′(w) = Q(w), and X ′(w) = X (w).

The timed transition relation =⇒T ,t⊆ CT × CT is such that given two con-
figurations γ = (Q,X ) and γ′ = (Q′,X ′), we have γ =⇒T ,t γ′ if and only
if:

Time: There is a δ ∈ R≥0 such that for all v ∈ V and x ∈ X, Q′(v) = Q(v)
and X ′(v)(x) = X (v)(x) + δ .

As said before, =⇒T is then equal to =⇒T ,d ∪ =⇒T ,t.
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3.3. Topologies

As we will see, we will often restrict the connectivity graph of TAHN to
belong to a family of graphs. In this paper, we consider different families of
graphs that we call topologies. A topology Top is hence a class of graphs that
we use to impose structural restrictions on the communication graph of a set
of configurations. In the sequel we write G ∈ Top to indicate that the graph G
belongs to a given Top. We now list the topologies we will take into account in
this work.

• GRAPH is the topology consisting of all finite graphs.

• For ` ≥ 0, STAR(`) is the star topology of depth `. It characterizes graphs
G = (V,E) for which there is a partition of V of the form {v0}∪V1∪· · ·∪V`
such that:

(i) v0 ∼ v1 for all v1 ∈ V1;

(ii) for each 1 ≤ i < ` and vi ∈ Vi there is one and only vi+1 ∈ Vi+1 with
vi ∼ vi+1 and one and only one vi−1 ∈ Vi−1 with vi ∼ vi−1;

(iii) no other nodes are adjacent to each other.

In other words, in a star graph of dimension `, there is a central node v0

and an arbitrary number of rays. A ray consists of a path v1, v2, . . . , v` of `
nodes, starting from v1 adjacent to v0. We call v0 the root, v1, v2, . . . , v`−1

internal nodes, and v` a leaf of G.

• For ` ≥ 0, BOUNDED(`) is the bounded path topology of bound `. It charac-
terizes graphs for which the length of the maximal simple path is bounded
by `. Formally, if G ∈ BOUNDED(`) with G = (V,E) then there does not
exist a finite sequence of nodes (vi)1≤i≤m such that m > `, and, vi 6= vj for
all i, j in {1, . . . ,m} with i 6= j, and, vi ∼ vi+1 for all i ∈ {1, . . . ,m− 1}.

• CLIQUE is the set of cliques which characterizes graphs G = (V,E) such
that v ∼ w for all v, w ∈ V with v 6= w.

3.4. State reachability problem

We now present the verification problem we study in this work. It consists
in determining for a given protocol whether there exists a connectivity graph
belonging to a certain topology such that in the obtained TAHN it is possible
to reach, from the initial configuration, a configuration exhibiting a specific
state (for instance an error state). We insist on the fact that we do not restrict
the number of nodes appearing in the considered connectivity graphs. Notice
that all the classes of graphs (called topologies) introduced previously have an
infinite cardinality hence an algorithm enumerating all the graphs belonging to
a given topology cannot be applied to solve our reachability problem. In fact,
as we shall see, the main difficulty in this problem is that the set of connectivity
graphs to consider is infinite.
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Let T = (G,P ) be a TAHN with a protocol P =
(
Q,X,Σ,R, qinit

)
and a

connectivity graph G = (V,E). We say that a configuration γn is reachable in T
if there exists a finite path, starting at the initial configuration γ0, of the form
γ0 =⇒T γ1 =⇒T · · · =⇒T γn in the associated transition system . Given a state
q ∈ Q, we say that q is reachable in the TAHN T if there exists a reachable
configuration γ = (Q,X ) and a vertex v ∈ V such that Q(v) = q.

We now define the state reachability problem TAHN−Reach (Top,K) param-
eterized by a topology Top and a number of clocks K as follows:

Input: A protocol P such that nbclocks(P ) ≤ K and a control state q;

Output: Is there a TAHN T = (G,P ) with G ∈ Top such that q is reachable
in T ?

In [11, 12], a model of Ad Hoc Networks without time has been studied; it
is the same as the one we have introduced considering protocols without clocks.
The authors have shown that when the connectivity graphs are unrestricted,
then the state reachability problem is undecidable. However, one can regain
the decidability by restricting the graphs to have bounded path (i.e., graphs in
which the length of the maximal simple path is bounded). Note also that when
the reachability problem is restricted to cliques, then TAHN without clocks are
equivalent to Broadcast Protocols (with no rendez-vous communication) which
were introduced in [17] and for which the reachability problem is proved to be
decidable. A proof, in terms of Ad Hoc Networks, of this latter result can also
be found in [12]. The following theorem rephrases these results in our context.

Theorem 1. [11, 17, 12]

1. TAHN−Reach (GRAPH, 0) is undecidable.

2. For all N ≥ 1, TAHN−Reach (BOUNDED(N), 0) is decidable.

3. TAHN−Reach (CLIQUE, 0) is decidable

Remark 1. We point out the fact that for a number of clocks K and given two
topologies Top and Top′, if Top ⊂ Top′, we cannot infer directly any relation be-
tween the decidability status of TAHN−Reach (Top,K) and TAHN−Reach (Top,K ′).
For instance if TAHN−Reach (Top,K) is undecidable, then it does not imply nec-
essarily that TAHN−Reach (Top,K ′) is undecidable, it could be in fact the case
that dealing with a larger class of graphs renders the problem solvable. Similarly
if TAHN−Reach (Top,K ′) is undecidable, we know that TAHN−Reach (Top,K)
could be decidable (see the above theorem where we have CLIQUE ⊂ GRAPH).

3.5. Example

Consider the protocol P described at Figure 1 which uses a single clock per
process. In this protocol, after more than one time unit, processes can broadcast
m1 or m3. A process in initial state can then receive a message m1, and after
reception of such a message, it can broadcast a message m2 if the delay between
the reception of m1 and the broadcast of m2 is strictly more than one time unit.
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qinit

q1

x > 1, !!m1, ∅

q2

x > 1, !!m3, ∅

q3

true, ??m1, {x}
x > 1, !!m2, ∅

q4

true, ??m2, {x}
qf

x = 2, ??m3, ∅

Figure 1: A protocol P

Finally, a process can reach the state qf if it receives a message m2 and exactly
2 times unit after, it receives a message m3.

The Figure 2 gives two examples of connectivity graphs; the first one G1

belongs to the topology CLIQUE and the second one G2 belongs to STAR(2).

(a) A clique graph G1 (b) A star graph G2 of depth 2

Figure 2: Example of two connectivity graphs

We are interested in knowing whether qf is reachable in (G1, P ) and (G2, P ).
We first consider the TAHN (G1, P ). In this model as soon as a process broad-
casts a message m1, then all the processes in initial state have to receive it with

the rule
(
qinit , true

??m1−→ {x}, q3

)
; because of the clique graph, each broadcast

message is received by all the processes in the TAHN. Consequently, there does
not remain any node in qinit ready to receive the message m2 that is needed to
go to qf . Indeed there does not exist any connectivity graph G ∈ CLIQUE, such
that qf is reachable in the TAHN (G,P ).

On the other hand, if we consider the TAHN (G2, P ), then qf can be reached.
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We describe a possible scenario. After 2 times units one of the leaf broadcasts
m1, which is received by the adjacent internal node. After 2 times units this
latter node broadcasts m2 (note that this broadcast happens at global time 4).
The message m2 is received by the root node, which resets its clock, and exactly
2 times unit after (the global time is now 6), one of the two internal nodes,
which remained in state qinit , broadcasts a message m3, allowing thus the root
node to reach qf (it receives m3 exactly two times units after the reception of
m2).

4. Undecidability with Dense Time

In this section, we show undecidability of the reachability problem in TAHN
for three different topologies, namely:

• STAR(2): star connectivity graphs of depth 2 (one root and several rays
with two nodes); the undecidability holds even if each process uses a single
clock;

• CLIQUE: clique topologies; for this case, we need at least two clocks per
process to get the undecidability;

• BOUNDED(5) : bounded path topologies with maximal simple path of length
at most 5; the undecidability holds even if each process uses a single clock.

In the first two cases, the undecidability results are obtained thanks to a re-
duction into the reachability problem for timed networks where processes are
equipped with two clocks. We will hence first recall the definition of this latter
model, which was originally presented in [2]. Afterwards, we will provide the
reduction allowing to lift the undecidability result for Timed Network to the
case of TAHN.

4.1. Timed Networks

In [2], the authors introduce a model called Timed Network (TN) which can
be used to describe a system consisting of an arbitrary number of processes,
each of which being a finite-state system operating on real-valued clocks. The
differences between the TN model and TAHN can be summarized as follows:

1. A TN contains a distinguished controller that is a finite-state automaton
without any clocks [2] (note that adding clocks to the controller does not
affect our results).

2. Each process in a TN may communicate with all the other processes and
hence it is not meaningful to describe connectivity graphs in the case of
TN.

3. Communication takes place through rendez-vous between fixed sets of pro-
cesses rather than broadcast messages.

Following [2], we provide the syntax and the semantics of Timed Networks.
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4.1.1. Syntax

Definition 2. A Timed Network (TN) N is a tuple (Qctrl , Qproc , X,R, qinitctrl ,
qinitproc) where Qctrl is a finite set of controller states, Qproc is a finite set of

process states, X is finite set of clocks, qinitctrl ∈ Qctrl is an initial controller
stater, qinitproc ∈ Qproc is an initial process state and R is a finite set of rules. A
rule is of the form: q0

→
q′0

  q1
g1 → R1

q′1

 · · ·

 qn
gn → Rn

q′n


such that q0, q

′
0 ∈ Qctrl , and, qi, q

′
i ∈ Qproc, gi ∈ G(X) and Ri ∈ 2X for all

i ∈ {1, . . . , n}.

4.1.2. Operational semantics

As for TAHN, we give the semantics associated to a TN in term of a timed
transition system. We consider a TN N =

(
Qctrl , Qproc , X,R, qinitctrl , q

init
proc

)
. A

configuration γ is a tuple of the form (I, q,Q,X ) with:

• I is a finite set of indices;

• q ∈ Qctrl ;

• Q : I 7→ Qproc ;

• X : I 7→ [X → R≥0].

Intuitively, the configuration refers to the controller whose state is q, and to a
finite set of processes, each one associated to an element of I. The mapping
Q describes the states of the processes and the mapping X their associated
clock values. More precisely, for i ∈ I and x ∈ X, X (i)(x) gives the value of
clock x in the process of index i. We use |γ| to denote the number of processes
in γ, i.e., |γ| = |I|. Let CN be the set of configurations of N . A configuration
γinit = (I, q,Q,X ) is said to be initial if q = qinitctrl , Q(i) = qinitproc , and X (i)(x) = 0
for each i ∈ I and x ∈ X. This means that an execution of a timed network
starts from a configuration where the controller and all the processes are in
their initial states, and the clock values are all equal to 0. Note that there is an
infinite number of initial configurations, namely one for each finite index set I.

Before we give the formal definition of the transition relation associated to
N , let us explain intuitively the behaviour of a rule of the form: q0

→
q′0

  q1
g1 → R1

q′1

 · · ·

 qn
gn → Rn

q′n


Such a rule is enabled from a given configuration, if the state of the controller

is q0 and if there are n processes with states q1, · · · , qn whose clock values satisfy
the corresponding guards. The rule is then executed by simultaneously changing
the state of the controller to q′0, the states of the n processes to q′1, · · · , q′n and
by resetting the clocks belonging to the sets R1, . . . , Rn.
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The semantics associated to the TN N is given by the timed transition sys-
tem (CN ,−→N ) where the transition relation −→N⊆ CN ×CN is defined as the
union of a discrete transition relation −→N ,d, representing transitions induced
by the rules of N and a timed transition relation −→N ,t which characterizes the
elapse of time.

We begin by describing the transition relation −→N ,d⊆ CN × CN . For this
matter, we define a transition relation −→N ,r for each rule r ∈ R of the TN
N . We consider a rule r described as above. Let γ = (I, q,Q,X ) and γ′ =
(I ′, q′,Q′,X ′) be two configurations in CN . We have γ −→N ,r γ′ if and only
if I = I ′ and there exists an injection h : {1, . . . , n} → I such that, for all
i ∈ {1, . . . , n}:

1. q = q0, Q(h(i)) = qi and X (h(i)) |= gi (i.e., the rule r is enabled);

2. q′ = q′0 and Q′(h(i)) = q′i (i.e. the states of the processes are changed
according to r);

3. X ′(h(i)) = X (h(i))[Ri] (i.e. a clock is reset to 0 if it occurs in the set Ri,
otherwise its value remains unchanged).

4. Q′(j) = Q(j) and X ′(j) = X (j) for all j ∈ I \ {h(i) | i ∈ {1, . . . , n}}.
The discrete transition relation −→N ,d is then equal to

⋃
r∈R −→N ,r .

We now provide the definition of the timed transition relation −→N ,t⊆ CN ×
CN . Given two configurations γ = (I, q,Q,X ) and γ′ = (I ′, q′,Q′,X ′) in CN , we
have γ −→N ,t γ′ if and only if I ′ = I, q′ = q, Q′ = Q and there exists δ ∈ R≥0

such that X ′(i)(x) = X (i)(x) + δ for all i ∈ I and all x ∈ X. Hence, as in
TAHN, a timed transition has no effect on the states of the different processes
but its effect changes the value of the different clocks making them evolve at
the same rate.

Finally we define −→N to be −→N ,d ∪ −→N ,t. Note that if γ −→N γ′ then
the index sets of γ and γ′ are identical (by definition of the transition relation)
and therefore |γ| = |γ′|. This reflects the fact that in the considered networks,
the number of processes is indeed parametric but once fixed it does not change
during an execution, in other words there is no dynamic creation or deletion of
processes.

4.1.3. State reachability problem

Similarly to the case of TAHN, we will present here the state reachability
problem for TN. Here also this problem is parameterized by the number of
processes involved in the execution, that is why we do not impose any bounds
on the size of the initial configurations and we investigate whether there exists
an initial configuration from which the system can reach another configuration
in which the controller is in a given control state (for instance an error state).

Let N =
(
Qctrl , Qproc , X,R, qinitctrl , q

init
proc

)
be a TN. We say that a configura-

tion γn in CN is reachable in N if there exists a finite path γ0 −→N γ1 −→N
· · · −→N γn in the transition system associated to N . As for TAHN, a con-
troller state q is said to be reachable in N if there is a reachable configuration
of the form (I, q,Q,X ). The TN state reachability problem TN−Reach (K),
parametric in the a number of clocks K, is defined as follows:
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Input: A TN N =
(
Qctrl , Qproc , X,R, qinitctrl , q

init
proc

)
with |X| ≤ K and a con-

troller state q ∈ Qctrl ;

Output: Is q reachable in N ?

As said earlier, Timed Networks have already been introduced in [2] where
results for the state reachability problems are also presented. These latter result
can be expressed as follows:

Theorem 2. [4]

1. TN−Reach (2) is undecidable.

2. TN−Reach (1) is decidable.

4.2. Two-Star Topologies

In this section we prove that the reachability problem for the star topology
is undecidable even when the rays are restricted to have length 2 and the nodes
are restricted to have a single clock. The proof is based on the encoding of a
generic TN N with two clocks per process into a protocol P of TAHNs. We
will refer to the clocks inside a process of N as x1 and x2 respectively. For
each state q in N , we will have a corresponding state κ(q) in the protocol P .
Furthermore, we will have a number of auxiliary states in P that we need to
perform the simulation. We omit state labels in the automata representation
when their names are not relevant.

Given a TN N =
(
Qctrl , Qproc , X,R, qinitctrl , q

init
proc

)
and a controller state q in

N , we define a protocol P with nbclocks(P ) = 1 together with a local state κ(q)
satisfying the following property: there exists a T = (G,P ) with G ∈ STAR(2)
such that such that κ(q) is reachable in T iff q is reachable in N . The root of G
plays the role of the controller in N , while each ray in G plays the role of one
process in N . The local state of a process in N is stored in the internal node of
the corresponding ray. Furthermore, the two clocks x1 and x2 of a process are
represented respectively by the clock of the internal node and by the clock of
the leaf of the ray. For technical reasons, we require that the connectivity G of
the considered TAHNs has at least three rays needed in the initialization phase.
In case N has fewer than three processes, the additional rays will not simulate
any processes, and remain passive (except during the initialization phase; see
below).

Notation. We will assume without loss of generality that the guards present
in the TN N are conjunctions of predicates of the form k C x for k ∈ N,
C ∈ {=, <,≤, >,≥}, and x ∈ X. In the sequel, (e.g. Fig. 4, 5, and 6), we
will write g(xj ← x) to denote the guard obtained by first projecting g on the
constraints involving only the variable xj (this is done by deleting the predicates
on the other variables), and then by replacing xj (a clock of N ) with x (the
clock of P ) in the resulting formula. For instance, if g is x1 ≥ 2 ∧ x2 = 4, then
g(x1 ← x) is equal to x ≥ 2 and g(x2 ← x) equals x = 4. For a reset R, we will
write R(xj ← x) for the reset {x} if xj ∈ R, or for ∅ otherwise, i.e., we map a
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qinit

qok κ(qinitctrl )

κ(qinitproc)

true, ??ack, ∅ true, ??ack, ∅ true, ??ack, ∅

true, ??ack, ∅ true, ??ack, ∅ true, ??ack, ∅

true, !!ack, ∅ true, !!ack, ∅ true, !!ack, ∅ true, !!ack, ∅

true, ??int, ∅ true, ??ctrl, ∅ true, !!ctrl, ∅

true, !!leaf, ∅ true, !!int, ∅ x = 0, !!start, ∅

true, ??leaf, ∅

true, ??start, ∅

Figure 3: Initializing the simulation

reset on xj to a reset on the clock variable x of P . For instance, if R = {x1},
then R(x1 ← x) = {x} and R(x2 ← x) = ∅. We are now ready to describe the
simulation protocol. It consists of two phases.

Initialization. Recall that the nodes of a TAHN are identical in the sense
that they execute the same (predefined) protocol. This means that the nodes
are not a priori aware of their positions inside the network. The purpose of the
initialization phase (Fig. 3) is to identify the nodes that play the roles of the
controller and those that play the roles of the different processes.

As shown in Fig. 3, a node starts by broadcasting/receiving an ack message
to/from his neighbours. The messages of type ack are used for the election
phase. The elected node becomes the controller of the TN N . To be elected, a
node has to receive acknowledgements (messages ack) from at least three other
processes. This implies that only the root of our star configuration can be
elected. Indeed, it is the only node that is connected to more than two other
nodes (the internal nodes are connected to two other nodes while the leafs are
connected to only one other node). Notice that a node can become a controller
via several different sequences of receive and send actions, the important points
is that they contain three ??ack actions and one !!ack actions in any possible
order. Sending !!ack after ??ack-actions is necessary to synchronize with the
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other nodes.
Once the root has become the controller, it will make the internal nodes

aware of their positions by sending the broadcast message ctrl. Due to the star
topology, this message is received only by the internal nodes. A node receiving
this broadcast message will initiate a subprotocol defined as follows.

(i) It changes local state to accept the role of internal node.

(ii) It makes the leaf of the ray aware of its position by broadcasting a message
int. Such a message is received only by the leaf of the ray and by the root
(controller). The root ignores the message.

(iii) The leaf broadcasts the acknowledgement message leaf that can only be
received by the internal node of the ray and goes to state qok.

(iv) The internal node changes state when it receives the acknowledgement
and declares itself ready for the next step.

Remark that the internal node and the leaf may choose to ignore performing
steps (ii) or (iv). In such a case we say that the protocol fails for the considered
ray, otherwise we declare the ray to be successful.

In the last step of the initialization, the root will send one more broadcast
where the following step take place:

(i) It changes local state to κ(qinitctrl ) which means that it is now simulating
the initial controller state.

(ii) It checks that its clock is equal to 0 which means that the initialization
phase has been performed instantaneously.

(iii) The internal nodes of the successful rays will change state to κ(qinitproc). The
rest of the nodes will remain passive throughout the rest of the simulation.

Now all the nodes are ready: the root of G in T is in the initial state of the
controller of N ; the internal nodes of the successful rays are in the initial states
of the processes of N ; the leafs are in state qok and all clocks have values equal
to 0.

Simulating Discrete Transitions. Below, we show how T simulates a rule
r of the form  q0

→
q′0

  q1

g1 → R1

q′1

 · · ·

 qn
gn → Rn

q′n


The behaviour of the root, internal, and leaf nodes is detailed respectively in
Fig. 4, Fig. 5, and Fig. 6. At first, the root of G in T is in the state κ(q0) and
executes a transition to reset its clock to 0. The reset is used later to ensure
that a simulation step has taken no time. The simulation consists of different
phases, where in each phase the root tries to identify a ray that can play the
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role of process k for 1 ≤ k ≤ n. To find the first ray, it sends a broadcast
message !!selr1. An (internal) node that receives the message and whose local
state is q1 may either decide to ignore the message or to try to become the node
that simulates the first process in the rule. In the latter case it will enter a
temporary state from which it initiates a sub-protocol whose goal is to confirm
its status as the simulator of the first process. In doing so, the node guesses that
its clocks satisfy the values specified by the guard. If the guess is not correct it
will eventually be excluded from the rest of the simulation (will remain passive
in the rest of the simulation). At the end of this phase, exactly one node will
be chosen among the ones that have correctly guessed that their clocks satisfy
g1. The successful node will be the one that plays the role of the first process.
The sub-protocol proceeds as follows:

(i) The internal node checks whether the value of its clock satisfies the guard
g1. Recall that each node contains one clock. Since the guard g1 only
compares the clocks x1, x2 with constants, the conditions of g1 can be
tested on separate nodes. Namely a node v can deal with the sub-guard
involving x1 and another node w can deal with the sub-guard involving
clock x2. The condition is then satisfied if both v and w acknowledge a
certain request. If the clock of the node does not satisfy g1 (which means
that x1 does not satisfy g1), the node will remain passive from now on
(it has made the wrong guess). Otherwise, the node resets its clock if R1

contains x1, and then broadcasts a message (such a message is received
by the leaf of the ray).

(ii) The leaf checks whether the value of its clock satisfies the guard g1 (i.e.,
if x2 satisfies g1); if yes it resets its clock if x2 is included in R1, and then
broadcasts an acknowledgement.

(iii) Upon receiving the above acknowledgement, the internal node declares
itself ready for the next step by broadcasting an acknowledgement. At
the same time, it moves to new local state and waits for a last acknowl-
edgement from the root (described below) after which it will move to local
state κ(q′1).

(iv) When the root receives the acknowledgement it sends a broadcast declar-
ing that it has successfully found a ray to simulate the first process. All
the nodes in temporary states will now enter local states from which they
remain passive. To prevent multiple nodes from playing the role of the first
process, the root enters an error state on reception of an acknowledgement
from more than one internal node.

The root now proceeds to identify the ray to simulate the second process. This
continues until all n processes have been identified. Then the root makes one
final move where the following events take place: (i) It moves its local state to
κ(q′0). (ii) It sends a final broadcast where the node ready for simulating the
ith process will now move to κ(q′i) for all i : 1 ≤ i ≤ n (notice that there is at
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most one such node for each i). (iii) It checks that its clock is equal to 0 (the
simulation of the rule has not taken any time).

qri

qdeadlock qri+1

qrn+1 κ(q′0)

κ(q0) qr1

true, !!selri , ∅ true, ??ackri , ∅ true, !!checkri , ∅

true, ??ackri , ∅ true, ??readyri , ∅

x = 0, !!doner, ∅

true, τ, {x}

Figure 4: Ray selection: root node

Simulating Timed Transitions. This is done in a straightforward manner
by letting time pass in T by the same amount as in N .

Putting together the different phases, we obtain a complete simulation of
a TN with two clocks per node. Since reachability of a given control location
(from an arbitrary initial configuration) is undecidable for TN, we deduce the
following negative result.

Theorem 3. TAHN−Reach (STAR(2), 1) is undecidable.

4.3. Cliques and Nodes with Two Clocks

We now show that the reachability problem for the clique topology is un-
decidable if each node manipulates two clocks. For this purpose, we build a
protocol P with nbclocks(P ) = 2 which will simulate N on connectivity graphs
belonging to the clique topology. In a similar manner to the case of star topolo-
gies, the simulation consists of two phases.

Initialization Phase. The purpose of the initialization phase it to choose a
node that will simulate the controller. This choice is done non-deterministically
through a protocol that is initialized by a broadcast message. Notice that this
protocol exists in all the nodes since they run the same pre-defined protocol.
The first node which will perform the broadcast will become the controller (from
now on we refer to this node as the controller node). When the controller node
performs the above broadcast it moves to the state κ(qinitctrl ), while all the other
nodes will move to κ(qinitproc).
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κ(qi)

κ(q′i)

true, ??selri , ∅ true, ??checkri , ∅

true, !!ackri , ∅

true, ??checkri , ∅

gi(x1 ← x), !!checkri , Ri(x1 ← x)

true, ??readyri , ∅

true, !!readyri , ∅

true, ??doner, ∅

Figure 5: Ray selection: internal node

qok

gi(x2 ← x), ??checkri , Ri(x2 ← x)

true, !!readyri , ∅
Figure 6: Ray selection: leaf node
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Simulating Discrete Transitions. Below, we show how a rule of the form of
the previous sub-section is simulated. In a similar manner to the case of stars,
the controller node first resets its clock to 0. The simulation again consists of
different phases, where in each phase the controller node tries to identify a node
that can play the role of process i for 1 ≤ i ≤ n. To find the first process it sends
a broadcast. A node that receives the broadcast, whose local state is q1, and
whose clocks (x1 and x2) satisfy the guard g1, may decide to ignore the message
or try to become the node that simulates the first process in the rule. In the
latter case, the node declares itself ready for the next step by broadcasting an
acknowledgement. At the same time, it moves to new local state and waits for a
last acknowledgement from the controller node (described below) after which it
will move to local state κ(q′1). To prevent multiple nodes from playing the role
of the first process, the controller node enters an error state on reception of an
acknowledgement from more than one node. The controller node now proceeds
to identify the node to simulate the second process. This continues until all
n processes have been identified. Then the controller node performs the same
three steps as the ones in the final phase of the simulation described above for
stars.

By exploiting undecidability of control state reachability for Timed Net-
works, we obtain the following theorem.

Theorem 4. TAHN−Reach (CLIQUE, 2) is undecidable.

4.4. Bounded Path Topologies

Using the result of Theorem 3 we now show that the undecidability proof
for the reachability problem can be extended to bounded path topologies. The
result uses a reduction to the two-star case, thus we need to consider topologies
in which the simple paths can have 5 nodes in order to be able to rebuild stars
with rays of depth 2.

For such a reduction, we need a preliminary protocol that discovers a two-
star topology in a graph of arbitrary shape but simple paths of (at most) five
nodes. The discovery protocol first selects root, internal and leaf candidates
and then verifies that they are connected in the desired way by sending all
other nodes in their vicinities to a special null state.

The discovery protocol is defined as P with nbclocks(P ) = 1 with qinit ∈ Q
as initial state. We denote by x the clock used by P . We first define three
transitions labelled with empty event that non-deterministically select the role
of a each node: the root (control state q0), an internal node (control state r0)
or a leaf (control state s0) of the star topology. These three rules have then
following form: (

qinit , x = 0
τ−→ ∅, q0

)(
qinit , x = 0

τ−→ ∅, r0

)(
qinit , x = 0

τ−→ ∅, s0

)
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q0null
true, ??Σ, ∅

x = 0, !!root, ∅

null
true, ??Σ, ∅

x = 0, !!endroot, ∅

qF

x = 0, !!end, ∅

Figure 7: Discovery protocol: node chosen as the root

The behaviour of the root node (state q0) is given in Figure 7. It broadcasts
message root to notify its neighbours that it is the root. A node in state q0

moves to an error state if it receives notifications/requests from other nodes.
This protocol ensures that all the nodes in state q0 connected to the root move
to an error state (remember that communication is synchronous). On reception
of a message of type root, a node in state r0 runs the protocol in Figure 8.
Specifically, it first reacts by sending ackroot. This message is needed to send
all of its neighbours in states derived from r0 in the null error state. In fact
if two adjacent nodes in state r0 receive a message root, the first one sending
ackroot will send the other one in the state null. The ackroot message is also
needed to ensure that an internal node is never connected to two different root
nodes. On reception of a message of type endroot from the root, the considered
node moves to state r′0. By the above described properties, when a node reaches
state r′0, then it is connected to at most one root node, and it is not connected
to any node which was previously in state r0 and which is not in state null. At
this point several leaf nodes can still be connected to nodes in state r′0. The
last part of the protocol deals with this case.

Figures 9 and 10 show the handshaking protocol between leaf and internal
nodes. A node in state s0 sends a message leaf to its adjacent nodes. An
internal node can react to the message only in state r′0, otherwise it goes to an
error state. Furthermore, a leaf node that receives the leaf notification moves
to an error state. By construction, the following properties then hold.
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r0null
true, ??Σ \ {root}, ∅

null
true, ??Σ, ∅

x = 0, ??root, ∅

null
true, ??Σ \ {endroot}, ∅

x = 0, !!ackroot, ∅

r′0

x = 0, ??endroot, ∅

Figure 8: Discovery protocol: node chosen as an internal node (communication with the root)

s0null
true, ??Σ \ {ackroot}, ∅

x = 0, !!leaf, ∅

null
true, ??Σ, ∅

x = 0, ??ackleaf, ∅

sF

x = 0, !!endleaf, ∅

Figure 9: Discovery protocol: node chosen as a leaf
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r′0null
true, ??Σ \ {leaf}, ∅

null
true, ??Σ, ∅

x = 0, ??leaf, ∅

null
true, ??Σ \ {endleaf}, ∅

x = 0, !!ackleaf, ∅

null
true, ??Σ \ {end}, ∅

x = 0, ??endleaf, ∅

rF

x = 0, ??end, ∅

Figure 10: Discovery protocol: node chosen as an internal one (communication with the leaf)

Proposition 1. In a TAHN T = (G,P ) with G ∈ BOUNDED(5), all configura-
tions γ = (G,Q,X ) reachable in T satisfy the following properties:

• for all nodes v ∈ V such that Q(v) = qF , for all v′ ∈ V such that v ∼ v′,
we have Q(v′) = rF or Q(v′) = null,

• for all v ∈ V such that Q(v) = rF , there exists two nodes v1, v2 ∈ V such
that v ∼ v1, v ∼ v2 and Q(v1) = qF and Q(v2) = sF and for all nodes
v′ ∈ V \ {v1, v2}, v′ ∼ v implies Q(v′) = null,

• for all v ∈ V such that Q(v) = sF , there exists at most one vertex v′ ∈ V
such that v ∼ v′ and Q(v′) 6= null and furthermore it is such that Q(v′) =
rF .

In other words if γ is a configuration reachable in a TAHN T = (G,P ) with
G ∈ BOUNDED(5) then all the nodes in the state qF can be seen as the root
node of a star of depth 2 where the internal nodes are in state rF , the leaves
are in state sF , and all the other nodes connected to these nodes are in state
null and will not take part to the further communications. Hence from qF
using the protocol proposed in the proof of Theorem 3, we can now simulate
the behaviour of a TN as if we were in a star of depth 2. Indeed, combining the
above described discovery protocol and the undecidability results for two-star
topology, we obtain the following theorem.

Theorem 5. TAHN−Reach (BOUNDED(5), 1) is undecidable.

Proof. We reduce reachability of a TN N with two clocks. Specifically,
we define a new protocol P ′ with a single clock that combines the discovery
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protocol and the simulation protocol described in the proof of Theorem 3. The
final (non-null) states of the discovery protocol (namely qF , rF , and sF ) become
the initial states of the simulation protocol. The following properties then hold:

• From Theorem 3, we know that there exists a protocol P and a TAHN
T = (G,P ) with G ∈ STAR(2) where it is possible to correctly simulate a
TN N .

• From Proposition 1, we know that any star of depth 2 can be obtained
with our pre-protocol. Furthermore, the protocol which uses a single clock
guarantees the existence of an initial configuration from which we can mark
(using states qF , rF , and sF ) a subgraph in STAR(2) when the graphs of
the initial configurations belongs to BOUNDED(5).

Combining the two properties, we deduce that the there exists a protocol P ′

using a single clock and a TAHN T ′ = (G′, P ′) with G′ ∈ BOUNDED(5) which
can correctly simulate a N with two clocks per node. �

5. Decidability with Dense Time

In the previous sections, we have shown that TAHN−Reach (STAR(2), 1) is
undecidable. We consider here two other topologies for which reachability be-
comes decidable when nodes have a single clock, namely the toplogies STAR(1)
and CLIQUE. For this we mix the technique, proposed in [2], to prove that
the reachability problem is decidable in Timed Networks where each process is
equipped with a single clock (see Theorem 2) and the one, used in [12], to show
that, for TAHN with no clock and restricted to cliques, the reachability problem
is decidable (see Theorem 1).

Our proof will be based on the following steps:

1. Define a symbolic way to represent graphs and their associated configura-
tions.

2. Exhibit a well-quasi-ordering over the symbolic configurations which cor-
responds to the inverse of set inclusion on the associated concrete config-
urations.

3. Show that it is possible to compute symbolically the predecessors of a
symbolic configuration.

4. Give an iterative method to compute all the elements from which a given
symbolic configuration can be reached. Termination is ensured by the
well-quasi-ordering of symbolic configurations.

5.1. Decidability of TAHN−Reach (CLIQUE, 1)

In the sequel, we fix a protocol P =
(
Q,X,Σ,R, qinit

)
.
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5.1.1. Symbolic representation of configurations.

We recall that a TAHN is composed both by a connectivity graph G = (V,E)
and the protocol P and that the configurations of such a TAHN are of the form
(Q,X ) where Q : V 7→ Q and X : V 7→ [X 7→ R≥0] is a function that assigns
to each node a clock valuation. We will now introduce a way to represent
symbolically connectivity graphs and associated configurations. Note that in
this part, we focus on TAHN whose connectivity graphs are cliques, hence we
only need to take into account the number of nodes in the graphs (the edges
can indeed be deduced from this information). The symbolic representation
we propose is very similar to the one from [2] used for the analysis of Timed
Networks, the main differences being that in our model we do not have a special
process playing the role of controller, and the discrete symbolic predecessor
relation is different, since we do not deal with rendez-vous communication but
with broadcast.

In what follows, we denote by max the maximal constant occurring in the
guards of P . Furthermore for a quasi-order v, we use the notation a ≡ b
whenever a v b and b v a (resp. ≡′ for a quasi-order v′, and, ≡i for vi).
A symbolic configuration ϕ for the protocol P is a tuple

(
m,Qsymb,X symb,v

)
where:

• m is a natural number so that {1, . . . ,m} is a set of indices for the processes
present in the network;

• Qsymb : {1, . . . ,m} 7→ Q maps indices to protocol states;

• X symb : {1, . . . ,m} 7→ {0, . . . ,max} maps process indices to a natural
number less or equal than the constant max;

• v is a total preorder on the set {1, . . . ,m} ∪ {⊥,>} such that:

– ⊥ and > are respectively the minimal and maximal elements of v
with ⊥ 6= >;

– for j ∈ {1, . . . ,m}, if X symb(j) = max then j ≡ ⊥ or j ≡ >;

– for j ∈ {1, . . . ,m}, if j ≡ > then X symb(j) = max .

We denote by SP the set of symbolic configurations for P . The intuition be-
hind a symbolic configuration ϕ =

(
m,Qsymb,X symb,v

)
is the following: it

corresponds to a set of clique graphs and associated configurations where at
least m processes are involved, and each of this m process is given an index
j ∈ {1, . . . ,m} such that Qsymb(j) is the state of the process, X symb(j) is either
the integral part of the clock value or max , and, the relation v provides an
ordering for the processes corresponding to the ordering of the fractional part of
their respective clock values. Finally, if j ≡ ⊥, this means that the clock value
of process j is at most max and its fractional part is equal to 0, and, if j ≡ >,
then the clock value of process j is strictly greater than max .

Note that the couple (X symb,v) corresponds exactly to the clock regions for
the m clocks represented in the abstract configuration ϕ. This region construc-
tion was originally introduced in [5] for the analysis of timed automaton since
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it allows to get rid of the precise value of the clocks by keeping an abstraction
over the possible different values. It was then reused in [2] in the context of
timed networks equipped with a single clock. In this latter work, the authors
show how to adapt a quasi order over such abstract configurations, since we
need the same tool, we adopt in this work the same presentation for abstract
configurations.

As done in [2] for the case of Timed Networks, we formalize the previous
intuition by providing a formal definition of the set JϕK of graphs and concrete
configurations represented by the symbolic configuration ϕ. We consider a graph
G = (V,E) in CLIQUE and a configuration γ = (Q,X ) of the TAHN (G,P ) and
a symbolic configuration ϕ =

(
m,Qsymb,X symb,v

)
of P . We have (G, γ) ∈ JϕK

if and only if there exists an injective function h : {1, . . . ,m} 7→ V such that for
all j, j′ ∈ {1, . . . ,m}:

• Q(h(j)) = Qsymb(j);

• min(max , bX (h(j))c) = X symb(j) (where bX (h(j))c denotes the integral
part of X (h(j)));

• j ≡ ⊥ if and only if X (h(j)) ≤ max and frac(X (h(j))) = 0 (where
frac(X (h(j))) denotes the fractional part of X (h(j)));

• j ≡ > if and only if X (h(j)) > max ;

• if j 6≡ > and j′ 6≡ > then frac(X (h(j))) ≤ frac(X (h(j′))) if and only if
j v j′.

When it exists, such an injective function h will be called a mapping associated
to ((G, γ), JϕK). Note that in the above definition, we do not require the number
of nodes in G and the number of processes in ϕ to be the same, but only that
each process of ϕ can be matched with a process of the TAHN (G,P ) in the
configuration γ. For a set of symbolic configurations Φ ⊆ SP , we denote by JΦK
the set

⋃
ϕ∈ΦJϕK.

We will now equip the set of symbolic configurations SP with a quasi-order

�. Given two symbolic configurations ϕ1 =
(
m1,Qsymb1 ,X symb1 ,v1

)
and ϕ2 =(

m2,Qsymb2 ,X symb2 ,v2

)
, we have ϕ1 � ϕ2 if and only if there exists an injective

mapping g : {1, . . . ,m1} 7→ {1, . . . ,m2} such that for all j, j′ ∈ {1, . . . ,m1}:

• Qsymb2 (g(j)) = Qsymb1 (j);

• X symb2 (g(j)) = X symb1 (j);

• g(j) ≡2 ⊥ if and only if j ≡1 ⊥;

• g(j) ≡2 > if and only if j ≡1 >;

• g(j) v2 g(j′) if and only if j v1 j
′.

We have then the following proposition concerning this order.
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Proposition 2.

1. Given ϕ1, ϕ2 ∈ SP , we have ϕ1 � ϕ2 if and only if Jϕ2K ⊆ Jϕ1K.
2. (SP ,�) is a well-quasi-order.

Proof. We will show the first point. Let ϕ1 =
(
m1,Qsymb1 ,X symb1 ,v1

)
and

ϕ2 =
(
m2,Qsymb2 ,X symb2 ,v2

)
be two symbolic configurations in SP .

Suppose that ϕ1 � ϕ2 and let g : {1, . . . ,m1} 7→ {1, . . . ,m2} be the cor-
responding mapping associated to the definition of the quasi-order �. We
then take (G, γ) ∈ Jϕ2K with G = (V,E) in CLIQUE and γ = (Q,X ) and let
h : {1, . . . ,m2} 7→ V be the injective function associated to ((G, γ), Jϕ2K). It is
then clear that the composed function h ◦ g : {1, . . . ,m1} 7→ V is an injective
function matching the condition for (G, γ) ∈ Jϕ1K. From this we deduce that
Jϕ2K ⊆ Jϕ1K.

We assume that Jϕ2K ⊆ Jϕ1K. We consider the graph G = ({v1, . . . , vm2
}, E)

in CLIQUE and we build the configuration γ = (Q,X ) of the TAHN (G,P ) in
order that it verifies Q(vi) = ϕ2(i) for all i ∈ {1, . . . ,m2} and X verifies for all
i, i′ ∈ {1, . . . ,m2} the following points:

• if i ≡2 > then X (vi) = max + 1;

• if i 6≡2 > then bX (vi)c = X symb2 (i);

• if i ≡2 ⊥ then frac(X (vi)) = 0;

• if i 6≡2 ⊥ then frac(X (vi)) > 0;

• if i 6≡2 > and i′ 6≡2 > and i v2 i′ and i ≡2 i′ then frac(X (vi)) =
frac(X (vi′)));

• if i 6≡2 > and i′ 6≡2 > and i v2 i′ and i 6≡2 i′ then frac(X (vi)) <
frac(X (vi′))).

We consider then the bijective function h2 : {1, . . . ,m2} 7→ V such that
h2(i) = vi for all i ∈ {1, . . . ,m2}. It is clear that h2 satisfies the different
conditions of a mapping associated to ((G, γ), Jϕ2K). Hence (G, γ) ∈ Jϕ2K and
since Jϕ2K ⊆ Jϕ1K, we also have (G, γ) ∈ Jϕ1K. Let h1 : {1, . . . ,m1} 7→ V
be the injective mapping associated to ((G, γ), Jϕ1K). We consider now the
composed function h−1

2 ◦ h1 : {1, . . . ,m1} 7→ {1, . . . ,m2}. On the way we build
the pair (G, γ) and the function h2 and by definition of the mapping associated to
((G, γ), Jϕ1K), one can easily deduce that the mapping g = h−1

2 ◦h1 is effectively
injective and satisfies the conditions required in the definition of the quasi-order
� and hence this reasoning allows to obtain ϕ1 � ϕ2.

For what concerns the proof that (SP ,�) is a well-quasi-order, it can be
found in [2], where quasi identical symbolic configurations are used (and the
same quasi-order is defined), the only difference being that, in our case, we do
not have a controller state in the symbolic configurations. �
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5.1.2. Computing the symbolic predecessors.

We describe next how to compute symbolically the set of predecessors of
the graphs and configurations described by a symbolic configuration. For a
symbolic configuration ϕ ∈ SP , we will see how to build a finite set of symbolic
configurations corresponding to the union of the two following sets:

pred(ϕ) = {(G, γ) | G ∈ CLIQUE and γ ∈ C(G,P ) and
∃γ′ ∈ C(G,P ) s.t. (G, γ′) ∈ JϕK and γ =⇒(G,P ),d γ

′}
pret(ϕ) = {(G, γ) | G ∈ CLIQUE and γ ∈ C(G,P ) and

∃γ′ ∈ C(G,P ) s.t. (G, γ′) ∈ JϕK and γ =⇒(G,P ),t γ
′}

Hence pred(ϕ) characterizes the symbolic predecessors for the discrete transition
relation and pret(ϕ) does the same for the timed transition relation. We will
in fact show that it is possible to build a finite set of symbolic configurations Φ
such that

JΦK = pred(ϕ) ∪ pret(ϕ)

First we begin by the predecessors obtained by considering the discrete
transition relation. Following the idea used in [2] for Timed Networks, we
begin with seeing how to test whether a guard is satisfied by the clock value
of a process in the symbolic configuration. For a guard g ∈ G(X) (we recall
that |X| = 1) in which the maximal constant is max , a symbolic configuration
ϕ =

(
m,Qsymb,X symb,v

)
and a natural number j ∈ {1, . . . ,m}, we define the

relation (ϕ, j) |= g inductively as follows:

• (ϕ, j) |= k ≤ x for k ∈ {0, . . . ,max} iff k ≤ X symb(j);

• (ϕ, j) |= k < x for k ∈ {0, . . . ,max} iff either k < X symb(j) or (k =
X symb(j) and ⊥ v j and j 6≡ ⊥);

• (ϕ, j) |= k ≥ x for k ∈ {0, . . . ,max} iff either k > X symb(j) or (k =
X symb(j) and j ≡ ⊥);

• (ϕ, j) |= k > x for k ∈ {0, . . . ,max} iff k > X symb(j);

• (ϕ, j) |= k = x for k ∈ {0, . . . ,max} iff k = X symb(j) and j ≡ ⊥;

• (ϕ, j) |= g1 ∧ g2 iff (ϕ, j) |= g1 and (ϕ, j) |= g1;

• for what concerns the negation, we assume that there are pushed inwards
in the standard way before applying the definition.

Adapting the proof proposed in [2] for a similar result, we can deduce the
following lemma about the satisfiability relation |= on symbolic configurations.

Lemma 1. Let ϕ =
(
m,Qsymb,X symb,v

)
be a symbolic configuration, G ∈

CLIQUE be a connectivity clique and γ = (Q,X ) be a concrete configuration
such that (G, γ) ∈ JϕK and let g be a guard in G(X) (for which the maximal
appearing constant is max). Then for any mapping h associated to ((G, γ), JϕK)
and j ∈ {1, . . . ,m}, we have that (ϕ, j) |= g if and only if X (h(j)) |= g.
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We will now show, for each rule r ∈ R of P and each symbolic configu-
ration ϕ ∈ SP , how to compute the set Pre(r, ϕ) of symbolic configurations
corresponding to the symbolic predecessors of ϕ with respect to the rule r. Let

r =
(
q, g

e−→ R, q′
)

be a rule of the protocol P and ϕ =
(
m,Qsymb,X symb,v

)
be a symbolic configuration. We now provide the conditions for a symbolic con-

figuration ϕ2 =
(
m2,Qsymb2 ,X symb2 ,v2

)
to belong to the set Pre(r, ϕ). This

definition is done by a case analysis on the message labeling the rule r. We
have ϕ2 ∈ Pre(r, ϕ) iff m ≤ m2 ≤ m + 1 and one of the following conditions is
satisfied:

1. e =!!a and there exists j ∈ {1, . . . ,m2} such that, if m2 = m + 1, then

j = m+ 1, and such that Qsymb2 (j) = q and X symb2 (j) |= g and such that
the following conditions are satisfied: :

• if m2 = m, then Qsymb(j) = q′ and

– if R = ∅ then X symb(j) = X symb2 (j) and j ≡ ⊥ iff j ≡2 ⊥, and,
j ≡ > iff j ≡2 >;

– if R 6= ∅ then X symb(j) = 0 and j ≡ ⊥;

• for all i ∈ {1, . . . ,m2} such that i 6= j we have:

– either, there does not exists in R a rule
(
q′′, g′

??a−→ R′, q′′′
)

such

that Qsymb2 (i) = q′′ and X symb2 (i) |= g′, then we have Qsymb2 (i) =

Qsymb(i) and X symb2 (i) = X symb(i), and, i ≡ ⊥ iff i ≡2 ⊥, and,
i ≡ > iff i ≡2 >;

– or, there exists in R a rule of the form
(
q′′, g′

??a−→ R′, q′′′
)

such

that Qsymb2 (i) = q′′ and X symb2 (i) |= g′ and Qsymb(i) = q′′′ and:

∗ either R′ = ∅ and X symb(i) = X symb2 (i) and i ≡ ⊥ iff i ≡2 ⊥,
and, i ≡ > iff i ≡2 >;

∗ or, R′ 6= ∅ and X symb(i) = 0 and i ≡ ⊥.

• for all i, i′ ∈ {1, . . . .m}, if i 6≡ ⊥ and i′ 6≡ ⊥, then i v2 i
′ iff i v i′.

2. e = τ and there exists j ∈ {1, . . . ,m2} such that, if m2 = m + 1, then

j = m+ 1, and such that Qsymb2 (j) = q and X symb2 (j) |= g and such that
the following conditions are satisfied: :

• if m2 = m, then Qsymb(j) = q′ and

– if R = ∅ then X symb(j) = X symb2 (j) and j ≡ ⊥ iff j ≡2 ⊥, and,
j ≡ > iff j ≡2 >;

– if R 6= ∅ then X symb(j) = 0 and j ≡ ⊥;

• for all i ∈ {1, . . . ,m2} such that i 6= j, we have Qsymb2 (i) = Qsymb(i)
and X symb2 (i) = X symb(i), and, i ≡ ⊥ iff i ≡2 ⊥, and, i ≡ > iff
i ≡2 >.

• for all i, i′ ∈ {1, . . . .m}, if i 6≡ ⊥ and i′ 6≡ ⊥, then i v2 i
′ iff i v i′.
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The intuition behind the definition of the set Pre(r, ϕ) is that first we con-
sider only rules performing a broadcast or a local action, because the rules
labelled with receptions are performed together with a broadcast. Then for a

rule
(
q, g

e−→ R, q′
)

we need to ensure that, in the set of predecessors, the con-

trol state q is present, for this reason, either we add a process to the symbolic
configuration (when m2 = m+1) which will perform the broadcast or the inter-
nal action, or, we consider that a process present in ϕ does this action (in that
case m2 = m). It is useless to add additional receiver nodes in the symbolic
representation of configurations. They will produce redundant configurations.

In the case of a broadcast, we have to ensure that all the processes that could
react, have reacted to the broadcast message, whereas in the case of an empty
event, we need to ensure that the state of the other processes stays unchanged
in the symbolic configuration. Finally, in Pre(r, ϕ), we have to include all the
possible symbolic clock mappings which satisfy the conditions of the fired rules,
as well as the associated possible reset of the second clocks.

Note that by definition of symbolic configurations, we know that there exists
a finite set of symbolic configurations of the form

(
m,Qsymb,X symb,v

)
for a

fixedm, this allows us to deduce that Pre(r, ϕ′) can be computed since it is finite.
Furthermore, by definition of pre(ϕ) and by the way we build the set Pre(r, ϕ),
we can show that the symbolic configuration

⋃
r∈R Pre(r, ϕ) represents symbol-

ically all the configuration in pred(ϕ). In fact the previous construction covers
all the possible cases. This allows us to state the next result.

Lemma 2.

• Pre(r, ϕ) is computable for all rules r ∈ R.

• pred(ϕ) = J
⋃
r∈R Pre(r, ϕ)K.

Example. We show an example of computation for the set Pre(r, ϕ). For this
purpose, we use the protocol given in Figure 1 of Section 3. We take the sym-
bolic configuration ϕ = ({1}, {1 7→ qf}, {1 7→ 2},⊥ ≡ 1 v >) with a single pro-
cess whose associated state is qf and its associated symbolic clock value is 2

and we consider the rule r =
(
qinit , (x > 1)

!!m3−→ ∅, q2

)
. Then in Pre(r, ϕ), we

have the symbolic configuration ({1, 2}, {1 7→ q4, 2 7→ qinit}, {1 7→ 2, 2 7→ 2},
⊥ ≡ 1 v 2 v >). In fact, it is possible to have predecessors from the symbolic
configuration ϕ considering the rule r but, for this, we need to add a process
to the symbolic configurations, which will represent the process performing the
broadcast of m3. Note that on the other hand, if we took the following sym-
bolic configuration ϕ′ = ({1}, {1 7→ q4}, {1 7→ 2},⊥ ≡ 1 v >) instead of ϕ, then
the set Pre(r, ϕ′) would have been empty. In fact, it is not possible to have
configurations with processes in state q4 and associated clock value equal to 2
after the transition r has been fired, because the broadcast of the message m3

would have sent all such processes in state qf (since we are considering clique
connectivity graphs exclusively).
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For what concerns the set pret(ϕ), the rules of the systems are not taken
into account and hence in the case of TAHN computing this set is exactly the
same as in Timed Networks, we can consequently reuse the result proved in [2].

Lemma 3. [2] There exists a computable finite set of symbolic configurations
Φ such that JΦK = pret(ϕ).

Sketch of proof We can in fact characterize the symbolic configurations be-
longing to the set Φ. For a configuration ϕ =

(
m,Qsymb,X symb,v

)
a configura-

tion ϕ2 =
(
m2,Qsymb2 ,X symb2 ,v2

)
will belong to the set Φ representing pret(ϕ)

if it has the same number of process (i.e. m = m2), the state mapping is the

same (i.e. Qsymb2 = Qsymb) and for what concerns X symb2 and the relation v2

over fractional part, they can be deduced from X symb and v by iteratively mak-
ing a rotation in the order v and in the same time by decreasing the integral
part of a process whose fractional part is 0 (i.e. the number of this process is
equivalent to ⊥). Since the details of this construction are exactly the same as
in Section 6.2 of [2], we do not provide them here. �

According to the two previous lemmas, for a symbolic configuration ϕ we
can compute a finite set of predecessor symbolic configurations of ϕ. This is
summed up by the next lemma.

Lemma 4. There exists a computable finite set of symbolic configurations Pre(ϕ)
such that JPre(ϕ)K = pred(ϕ) ∪ pret(ϕ).

5.1.3. Solving TAHN−Reach (CLIQUE, 1)

We now show how the facts that we have a well-quasi-order on the set of
symbolic configurations which is related to the inclusion of sets of configuration
(see Proposition 2) and that we can reason symbolically to compute the symbolic
predecessors are enough to solve TAHN−Reach (CLIQUE, 1).

For this purpose, we need one more tool to manipulate sets of symbolic
configurations. Given two sets of symbolic configurations Φ1,Φ2 ⊆ SP , we
define the symbolic union of these two sets Φ1 t Φ2 as follows: ϕ ∈ Φ1 t Φ2 iff
(ϕ ∈ Φ1) or (ϕ ∈ Φ2 and there does not exist ϕ′ ∈ Φ1 such that ϕ′ � ϕ). Note
that there are more than one set respecting these conditions, but each time we
do the symbolic union we choose non-deterministically one of them.

From Proposition 2, we deduce the following lemma.

Lemma 5. JΦ1 t Φ2K = JΦ1K ∪ JΦ2K

Proof. Assume (G, γ) ∈ JΦ1 t Φ2K, then there exists ϕ ∈ Φ1 t Φ2 such that
(G, γ) ∈ JϕK, and since by definition of t we have ϕ ∈ Φ1 ∪Φ2, we deduce that
(G, γ) ∈ JΦ1K ∪ JΦ2K.

Assume now (G, γ) ∈ JΦ1K ∪ JΦ2K, then there exists ϕ ∈ Φ1 ∪ Φ2 such that
(G, γ) ∈ JϕK. We consider then ϕ′ ∈ Φ1 t Φ2 such that ϕ′ � ϕ (by definition of
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t such a ϕ′ exists). Then thanks to the first item of Proposition 2, we deduce
(G, γ) ∈ Jϕ′K. Consequently (G, γ) ∈ JΦ1 t Φ2K. �

We show that if we compute iteratively the symbolic predecessors of a sym-
bolic configuration, then such a computation will converge after a finite number
of iterations. We define, for a symbolic configuration ϕ ∈ SP , the following
sequence of sets of symbolic configurations (Piϕ)i∈N:

• P0
ϕ = {ϕ};

• Pi+1
ϕ = Piϕ t

⊔
ϕ′∈Pi

ϕ
Pre(ϕ′)

The next statement shows that the computation of the Piϕ converges after
a finite number of steps and furthermore that the obtained set characterize all
the configurations from which it is possible to reach a configuration in JϕK. The
second point is quite obvious and the first point is obtained thanks to the fact
that (SP ,�) is a well-quasi-order as said by Proposition 2.

Lemma 6. There exists N ∈ N such that Piϕ = PNϕ for all i ≥ N .

Proof. We reason by contradiction and suppose that for all i ∈ N, we have
Pi+1
ϕ 6= Piϕ. Since Pi+1

ϕ = Piϕt
⊔
ϕ′∈Pi

ϕ
Pre(ϕ′), by definition of the operator t,

this means that for all i ∈ N, there exists ϕi+1 such that ϕi+1 ∈
⊔
ϕ′∈Pi

ϕ
Pre(ϕ′)

and for which there does not exist ϕ′′ ∈ Piϕ such that ϕ′′ � ϕi+1. We consider
then the infinite sequence (ϕi)i∈N\{0} of symbolic configurations in SP . By
construction, this infinite sequence is such that for all j ≥ 1 there does not exist
i ≥ 1 such that i < j and ϕi � ϕj . This is a contradiction with the claim of
Proposition 2 which says that (SP ,�) is a well-quasi-order. �

In the sequel we will denote Pϕ the set PNϕ defined by the previous lemma.
Note that a consequence of this lemma is that such a set is finite and from
Lemma 4, we know it can be effectively computed. Furthermore, we have also
the following result which states the completeness and soundness of the symbolic
reasoning.

Lemma 7.

1. For all (G, γ) ∈ JϕK, if γ is reachable in T = (G,P ) from the initial
configuration γ0 then (G, γ0) ∈ JPϕK.

2. For all (G, γ0) ∈ JPϕK, there exists a reachable configuration γ in T =
(G,P ) such that (G, γ) ∈ JϕK.

Proof. Let (G, γ) ∈ JϕK. Suppose that γ is reachable in T = (G,P ) from the
initial configuration γ0. This means that there exists fromγ0 a finite path of the
form γ0 =⇒T γ1 =⇒T · · · =⇒T γn in T with γn = γ. But thanks to Lemma 4,
fixing ϕn = ϕ,we know that for all i ∈ {0, . . . , n− 1}, there exists ϕi such that
ϕi ∈ Pre(ϕi+1) and (G, γi) ∈ JϕiK. Then using Lemma 5 and the definition of
Pϕ, we deduce that (G, γ0) ∈ JPϕK.
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Similarly, if we suppose (G, γ0) ∈ JPϕK, thanks to Lemma 4 and 5 and by
definition of Pϕ, we know that there exists a finite path of the form γ0 =⇒T
γ1 =⇒T · · · =⇒T γn in T = (G,P ) such that (G, γn) ∈ JϕK. �

For a control state q ∈ Q, we build the (finite) set of symbolic configurations
Φq such that a symbolic configuration ϕ =

(
m,Qsymb,X symb,v

)
belongs to

this set if and only if m = 1 and Qsymb(1) = q. And we define PΦq
as the

set
⋃
ϕ∈Φq

Pϕ. Using the previous lemma, we can deduce that there exists a

TAHN T = (G,P ) with G ∈ CLIQUE such that q is reachable in T iff we have

a symbolic configuration ϕ0 ∈ PΦq
such that ϕ0 =

(
m0,Qsymb0 ,X symb0 ,v0

)
verifies the following points:

• Qsymb0 (i) = qinit for all i ∈ {1, . . . ,m0};

• X symb0 (i) = 0 for all i ∈ {1, . . . ,m0};
• i ≡0 ⊥ for all i ∈ {1, . . . ,m0}.

Note that this last condition can be effectively tested on the set of symbolic
configurations PΦq

which is finite and computable. Hence this allows us to
state the main result of this section.

Theorem 6. TAHN−Reach (CLIQUE, 1) is decidable.

5.2. Decidability of TAHN−Reach (STAR(1), 1)

A similar positive result can be obtained for TAHN with 1 clock restricted to
star connectivity graphs of depth 1. The only difference with the previous result
is that in a star of depth 1 we have to distinguish the root (the central node)
from the leaves. In fact, when the root performs a broadcast, it is transmitted
to all the leaf nodes, but when a leaf performs it, only the root can receive it.
However the previous proof can be easily adapted to this case. The main trick
consists in using symbolic configurations of the form

(
m,Qsymb,X symb,v

)
, as

for the case of cliques, except that this time the index of the processes will go
from 0 to m and 0 will be the index of the central node. The rest of the proof
is then very similar to the previous construction; the bigger difference being in
the computation of symbolic discrete predecessors, where one need to make the
difference with a broadcast from the process 0 and one from the other processes.
This allows us to state our second decidability result for the reachability problem
restricted to protocols equipped with a single clock.

Theorem 7. TAHN−Reach (STAR(1), 1) is decidable.

We point out the fact, that such a reasoning could not be adapted for star
topologies of depth strictly bigger than 1, because in that case we would need to
have a relation in the symbolic configurations to know which process is connected
to which other processes, and such a relation will break the possibility to have
a well-quasi-order on the symbolic configurations (as a matter of fact, we have
seen previously that the reachability problem is undecidable when considering
protocols with a single clocks and star topologies of depth 2).
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6. Decidability with Discrete Time

In this section we consider the state reachability problem for Discrete Time
Ad Hoc Networks (DTAHN). In this model clocks range over the natural num-
bers instead of the reals. When using discrete time, it is enough to consider time
steps that advance the clocks one unit per time. Furthermore, we can restrict
the valuation of clocks to the finite range Ω = {0, . . . , µ} where µ = max+1 and
max is the maximum constant used in the protocol rules. This follows from the
fact that, as soon as the clock associated to variable x reaches a value greater
than or equal to µ, guards of the form x > c [resp. x < c] remain enabled
[resp. disabled] forever. Therefore, beyond µ we need not distinguish between
different values for the same clock [4].

Given a protocol P and a topology G = (V,E), a configuration γ of the
associated DTAHN D is a pair (Q,X ) defined as for TAHN except that the clock
valuation mapping is of the form X : V 7→ [X 7→ Ω]. We denote by CD the set of
configuration of D. Initial configurations are defined as for TAHN. In the sequel,
to simplify the handling of transition guards, without loss of generality we will
assume that guards occurring in rules of a protocol P =

(
Q,X,Σ,R, qinit

)
have

form
∧
x∈X x ≥ agx ∧ x ≤ bgx with ax, bx ∈ {0, . . . ,max} for all x ∈ X. This

normal form is well-defined since clocks have always an explicit lower bound
(which can be 0) and in case they do not have an explicit upper bound we
set it to the constant µ. Since clock values range in {0, . . . , µ}, the previous
restriction on guards does not affect the semantics. Furthermore, it is possible
to encode disjunctions and negations by adding multiple rules between the same
two states.

The semantics of the DTAHN D built over a protocol P is given by the
transition system (CD,=⇒D). The transition relation =⇒D⊆ CD×CD is similar
to the one of TAHN for the discrete transition and by replacing the time step
by a discrete time step. For configurations γ = (Q,X ) and γ′ = (Q′,X ′), we
write γ =⇒D γ′ iff these two configurations are in relation following the local or
broadcast rules defined for TAHN, or via a discrete time step defined as follows:
For all v ∈ V and x ∈ X, the following conditions are satisfied: Q(γ′) = Q(γ),
X ′(v)(x) = X (v)(x) + 1, if X (v)(x) < µ X ′(v)(x) = X (v)(x) = µ, otherwise.

qinit , 0 qinit , 0

qinit , 0qinit , 0

=⇒D
qinit , 2 qinit , 2

qinit , 2qinit , 2

=⇒D
q1, 2 q3, 0

qinit , 2qinit , 2

=⇒D

q1, 3 q3, 2

qinit , 3qinit , 3

=⇒D
q1, 3 q3, 2

q4, 0qinit , 3

Figure 11: An example of discrete time execution
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Example.. On Figure 11, we present the example of a discrete time execution
for the DTAHN composed of the protocol given in Figure 1 and of the graph
represented in the Figure 11. As we will see later, it is often convenient to
represent the graph together with the configuration. Note that we have labelled
the node of the graph with the associated control states and clock value (the
protocol of Figure 1 is equipped of a single clock). This run corresponds to the
following step: a discrete time step of two units, then a broadcast of message
m1 then a discrete time steps of two units and finally a broadcast of message
m2 . Note that we perform the second time step, some clocks get stucked to
the maximal value 3 as described by the operational semantics for DTAHN.

For a topology class Top and K ≥ 0, DTAHN−Reach (Top,K) denotes the
state reachability problem for the new model. We show next that state reach-
ability is decidable when restricting the topology to the class of bounded path
graphs BOUNDED(N) for some N > 1.

In the sequel we consider a DTAHN D built over a protocol P . We first
introduce an ordering between the configurations with connectivity graph. For
this purpose, it is convenient to embed the connectivity graph G in the repre-
sentation of a configuration. Specifically, we consider extended configurations
defined by triples of the form γ = (G,Q,X ). Given two (extended) configura-
tions γ = (G,Q,X ) with G = (V,E) and γ′ = (G′,Q′,X ′) with G′ = (V ′, E′)
in CD, we will write γ � γ′ iff there exists an injective function h : V 7→ V ′

such that: ∀u, u′ ∈ V , (u, u′) ∈ E if and only if (h(u), h(u′)) ∈ E′, and ∀u ∈ V ,
Q(u) = Q′(h(u)) and X (u) = X ′(h(u)).

In the sequel we will restrict ourselves to configurations whose graphs belong
to BOUNDED(N) for some N > 1. We define CND as the set of configurations
{(G,Q,X ) ∈ CD | G ∈ BOUNDED(N)} and (CD,�) as the ordering over the
configurations of D. For a set of configuration S ⊆ CD of the DTAHN D, we
denote Pre(S) the set {γ ∈ CD | γ =⇒D γ′, γ′ ∈ S}. The following properties
then holds.

Proposition 3. The following properties hold:
(1) (CND ,�) is a wqo for all N > 1.
(2) For γ in CD, we can algorithmically compute a finite set B such that ↑ B =
Pre(↑{γ}).
Property (1) follows from the observation that � is the induced subgraph re-
lation for graphs with finitely many labels and from the wqo property of this
relation proved by Ding in [14]. Properties (2) follows from the results for un-
timed AHN in [11]. To extend the algorithm for computing a basis for Pre(↑γ′)
described in [11] to discrete time steps we observe that, since the range of clocks
is restricted to the interval Ω, we just need to collect all configurations obtained
by subtracting in the configuration γ′ the same constant value δ ≥ 0 s.t. the
resulting clock values remain all greater or equal than zero.

Example. Consider a configuration of the protocol of Figure 1 containing a
single node whose associated control state is qf and with clock value equal to 2.

33



q4, 2 qinit , 2 q4, 2 qinit , 3

Figure 12: Example of predecessors

To compute predecessors for this configuration, we assume that we are working
over graph in BOUNDED(2). To reach qf , a process needs to receive a message
m3. Therefor we need to extend the configuration (ensuring we remain in the
topology BOUNDED(2)) with an additional node that corresponds to a process
from which this message has been broadcasted. The resulting configurations
are shown in Figure .

From proposition 3, we can apply the general results in [3] to decide state
reachability via a backward search algorithm working on upward closed sets of
extended configurations represented by their finite basis. The following theorem
then holds.

Theorem 8. DTAHN−Reach (BOUNDED(N),K) is decidable for N ≥ 1,K ≥ 0.

7. Related Work

In [20] German and Sistla propose a general framework for parameterized
verification of concurrent systems based on counting abstractions and reduc-
tions to Petri nets-like formalisms. The German-Sistla model is defined for fully
connected topologies, individual processes modelled via finite-state automata
and communication based on rendez-vous synchronization. Parameterized ver-
ification of concurrent systems in which the underlying communication topol-
ogy is modelled as a special class of graphs, e.g., rings, have been proposed in
[15, 16, 7, 6]. In [15] Emerson and Namjoshi provide small model properties
(cutoff properties) for a token-passing protocols in unidirectional rings that can
be applied to prove fragments of indexed CTL∗ properties. The results have
been extended by Aminof et al. in [6]. Decidability for token passing protocols
for arbitrary graphs have been studied in [7, 6].

Parameterized verification for broadcast communication has been studied
in [15, 17]. A forward, possibly non terminating, reachability algorithm has
been proposed in [15]. In [17] Esparza, Finkel and Mayr give a reduction of
the problem to coverability in an extension of Petri nets with transfer arcs.
Coverability is decidable in this model. The property can be proved by applying
the general results in [3, 19].
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In [11, 12] the authors study decidability issues for parameterized verification
of a concurrent model with broadcast communication and communication topol-
ogy restricted by a graph, called AHN. The model is an untimed abstraction
that can be applied to specify protocols used for Ad Hoc Networks. Variations of
the model with node and link failures, asynchronous communication, and local
mailboxes has been studied in [10, 13, 9]. In [8] Clemente et al. give decidability
results for different classes of topologies for systems defined by communicating
automata with FIFO and bag channels.

Model checking for timed automata has been applied to verify protocols for
ad hoc networks with a fixed number of nodes in [18]. Models with a discrete
global clock and lazy exploration of configurations of fixed size has been consid-
ered in [24]. Formal specification languages for timed models of ad hoc networks
have been proposed, e.g., in [22]. In contrast to these works, we consider here
computability issues for verification of timed ad hoc networks with parametric
initial configurations.

Decidability of some cases is proved by resorting to an extension of Timed
Networks with Transfer. In the untimed case the combination of rendez-vous
and transfer is considered in a model called datanets, an untimed extension of
Petri nets in which processes have data taken from an ordered domain [21].

This paper extends with detailed proofs the preliminary work presented at
FORMATS ’11 [1].

8. Conclusions

We have studied local state reachability for Timed Ad Hoc Networks in
different classes of topologies and considering the number of clocks of each node
as a parameter. Fig. 13 shows a summary of our analysis. We also mention
decidability for DTAHN on cliques since, as for bounded paths, it derives from
an application of the theory of wsts. Undecidability for DTAHN on graphs with
bounded diameter follows instead from the result obtained in the untimed case
in [12].

UNDECIDABLE

DECIDABLE

CLIQUE(2)
CLIQUE(1)

STAR(2,1)

STAR(1,1)

DISCRETE CLIQUE(N) N≥1

DISCRETE BOUNDED(N,K) N≥1 K≥1

DISCRETE BOUNDED DIAMETER(N,1) N≥3

BOUNDED(N,1) N≥5

Figure 13: Decidability and undecidability results for TAHN.
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