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Abstract. We consider parity games on infinite graphs where configurations

are represented by control-states and integer vectors. This framework subsumes

two classic game problems: parity games on vector addition systems with states

(VASS) and multidimensional energy parity games. We show that the multidimen-

sional energy parity game problem is inter-reducible with a subclass of single-

sided parity games on VASS where just one player can modify the integer coun-

ters and the opponent can only change control-states. Our main result is that the

minimal elements of the upward-closed winning set of these single-sided parity

games on VASS are computable. This implies that the Pareto frontier of the min-

imal initial credit needed to win multidimensional energy parity games is also

computable, solving an open question from the literature. Moreover, our main

result implies the decidability of weak simulation preorder/equivalence between

finite-state systems and VASS, and the decidability of model checking VASS with

a large fragment of the modal µ-calculus.

1 Introduction

In this paper, we consider integer games: two-player turn-based games where a color

(natural number) is associated to each state, and where the transitions allow increment-

ing and decrementing the values of a finite set of integer-valued counters by constants.

We refer to the players as Player 0 and Player 1.

We consider the classical parity condition, together with two different semantics for

integer games: the energy semantics and the VASS semantics. The former corresponds

to multidimensional energy parity games [7], and the latter to parity games on VASS (a

model essentially equivalent to Petri nets [8]). In energy parity games, the winning ob-

jective for Player 0 combines a qualitative property, the classical parity condition, with

a quantitative property, namely the energy condition. The latter means that the values

of all counters stay above a finite threshold during the entire run of the game. In VASS

parity games, the counter values are restricted to natural numbers, and in particular

any transition that may decrease the value of a counter below zero is disabled (unlike

in energy games where such a transition would be immediately winning for Player 1).

So for VASS games, the objective consists only of a parity condition, since the energy

condition is trivially satisfied.
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We formulate and solve our problems using a generalized notion of game config-

urations, namely partial configurations, in which only a subset C of the counters may

be defined. A partial configuration γ denotes a (possibly infinite) set of concrete con-

figurations that are called instantiations of γ. A configuration γ′ is an instantiation of γ
if γ′ agrees with γ on the values of the counters in C while the values of counters out-

side C can be chosen freely in γ′. We declare a partial configuration to be winning (for

Player 0) if it has an instantiation that is winning. For each decision problem and each

set of counters C, we will consider the C-version of the problem where we reason about

configurations in which the counters in C are defined.

Previous Work. Two special cases of the general C-version are the abstract version

in which no counters are defined, and the concrete version in which all counters are

defined. In the energy semantics, the abstract version corresponds to the unknown ini-

tial credit problem for multidimensional energy parity games, which is coNP-complete

[6, 7]. The concrete version corresponds to the fixed initial credit problem. For energy

games without the parity condition, the fixed initial credit problem was solved in [4] (al-

though it does not explicitly mention energy games but instead formulates the problem

as a zero-reachability objective for Player 1). It follows from [4] that the fixed initial

credit problem for d-dimensional energy games can be solved in d-EXPTIME (resp.

(d− 1)-EXPTIME for offsets encoded in unary) and even the upward-closed winning

sets can be computed. An EXPSPACE lower bound is derived by a reduction from Petri

net coverability. The subcase of one-dimensional energy parity games was considered

in [5], where both the unknown and fixed initial credit problems are decidable, and the

winning sets (i.e., the minimal required initial energy) can be computed. The assump-

tion of having just one dimension is an important restriction that significantly simplifies

the problem. This case is solved using an algorithm which is a generalization of the

classical algorithms of McNaughton [13] and Zielonka [16].

However, for general multidimensional energy parity games, computing the win-

ning sets was an open problem, mentioned, e.g., in [6].

In contrast, under the VASS semantics, all these integer game problems are shown to

be undecidable for dimensions≥ 2 in [1], even for simple safety/coverability objectives.

(The one-dimensional case is a special case of parity games on one-counter machines,

which is PSPACE-complete). A special subcase are single-sided VASS games, where

just Player 0 can modify counters while Player 1 can only change control-states. This

restriction makes the winning set for Player 0 upward-closed, unlike in general VASS

games. The paper [14] shows decidability of coverability objectives for single-sided

VASS games, using a standard backward fixpoint computation.

Our Contribution. First we show how instances of the single-sided VASS parity game

can be reduced to the multidimensional energy parity game, and vice-versa. I.e., energy

games correspond to the single-sided subcase of VASS games. Notice that, since parity

conditions are closed under complement, it is merely a convention that Player 0 (and

not Player 1) is the one that can change the counters.

Our main result is the decidability of single-sided VASS parity games for general

partial configurations, and thus in particular for the concrete and abstract versions de-

scribed above. The winning set for Player 0 is upward-closed (wrt. the natural multiset
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ordering on configurations), and it can be computed (i.e., its finitely many minimal ele-

ments). Our algorithm uses the Valk-Jantzen construction [15] and a technique similar

to Karp-Miller graphs, and finally reduces the problem to instances of the abstract par-

ity problem under the energy semantics, i.e., to the unknown initial credit problem in

multidimensional energy parity games, which is decidable by [7].

From the above connection between single-sided VASS parity games and multidi-

mensional energy parity games, it follows that the winning sets of multidimensional

energy parity games are also computable. I.e., one can compute the Pareto frontier of

the minimal initial energy credit vectors required to win the energy parity game. This

solves the problem left open in [6, 7].

Our results imply further decidability results in the following two areas: semantic

equivalence checking and model-checking. Weak simulation preorder between a finite-

state system and a general VASS can be reduced to a parity game on a single-sided

VASS, and is therefore decidable. Combined with the previously known decidability of

the reverse direction [2], this implies decidability of weak simulation equivalence. This

contrasts with the undecidability of weak bisimulation equivalence between VASS and

finite-state systems [11]. The model-checking problem for VASS is decidable for many

linear-time temporal logics [10], but undecidable even for very restricted branching-

time logics [8]. We show the decidability of model-checking for a restricted class of

VASS with a large fragment of the modal µ-calculus. Namely we consider VASS where

some states do not perform any updates on the counters, and these states are used to

guard the for-all-successors modal operators in this fragment of the µ-calculus, allowing

us to reduce the model-checking problem to a parity game on single-sided VASS.

2 Integer Games

Preliminaries. We use N and Z to denote the sets of natural numbers (including 0)

and integers respectively. For a set A, we define |A| to be the cardinality of A. For a

function f : A 7→ B from a set A to a set B, we use f [a← b] to denote the function f ′

such that f (a) = b and f ′(a′) = f (a′) if a′ 6= a. If f is partial, then f (a) =⊥means that

f is undefined for a. In particular f [a←⊥] makes the value of a undefined. We define

dom( f ) := {a| f (a) 6=⊥}.

Model. We assume a finite set C of counters. An integer game is a tuple G = 〈Q,T,κ〉
where Q is a finite set of states, T is a finite set of transitions, and κ : Q 7→ {0,1,2, . . . ,k}
is a coloring function that assigns to each q ∈ Q a natural number in the interval [0..k]
for some pre-defined k. The set Q is partitioned into two sets Q0 (states of Player 0)

and Q1 (states of Player 1). A transition t ∈ T is a triple 〈q1,op,q2〉 where q1,q2 ∈ Q

are states and op is an operation of one of the following three forms (where c ∈ C is

a counter): (i) c++ increments the value of c by one; (ii) c- - decrements the value of c

by one; (iii) nop does not change the value of any counter. We define source(t) = q1,

target(t) = q2, and op(t) = op. We say that G is single-sided in case op = nop for all

transitions t ∈ T with source(t) ∈ Q1. In other words, in a single-sided game, Player

1 is not allowed to changes the values of the counters, but only the state.

Partial Configurations. A partial counter valuation ϑ : C 7→Z is a partial function from

the set of counters to Z. We also write ϑ(c) =⊥ if c /∈ dom(ϑ). A partial configuration
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γ is a pair 〈q,ϑ〉 where q ∈ Q is a state and ϑ is a partial counter valuation. We will

also consider nonnegative partial configurations, where the partial counter valuation

takes values in N instead of Z. We define state(γ) := q, val(γ) := ϑ, and κ(γ) :=
κ(state(γ)). We generalize assignments from counter valuations to configurations by

defining 〈q,ϑ〉 [c← x] = 〈q,ϑ[c← x]〉. Similarly, for a configuration γ and c ∈ C we let

γ(c) := val(γ) (c), dom(γ) := dom(val(γ)) and |γ| := |dom(γ)|. For a set of counters

C ⊆ C , we define ΘC := {γ| dom(γ) =C}, i.e., it is the set of configurations in which

the defined counters are exactly those in C. We use ΓC to denote the restriction of ΘC

to nonnegative partial configurations. We partition ΘC into two sets ΘC
0 (configurations

belonging to Player 0) and ΘC
1 (configurations belonging to Player 1), such that γ ∈

ΘC
i iff dom(γ) = C and state(γ) ∈ Qi for i ∈ {0,1}. A configuration is concrete if

dom(γ) = C , i.e., γ ∈ ΘC (the counter valuation val(γ) is defined for all counters); and

it is abstract if dom(γ) = /0, i.e., γ ∈Θ /0 (the counter valuation val(γ) is not defined for

any counter). In the sequel, we occasionally write Θ instead of ΘC , and Θi instead of ΘC
i

for i ∈ {0,1}. The same notations are defined over nonnegative partial configurations

with Γ, and ΓC
i and Γi for i∈ {0,1}. For a nonnegative partial configuration γ = 〈q,ϑ〉 ∈

Γ, and set of counters C ⊆ C we define the restriction of γ to C by γ′ = γ|C = 〈q′,ϑ′〉
where q′ = q and ϑ′(c) = ϑ(c) if c ∈C and ϑ′(c) =⊥ otherwise.

Energy Semantics. Under the energy semantics, an integer game induces a transition

relation −→E on the set of partial configurations as follows. For partial configurations

γ1 = 〈q1,ϑ1〉, γ2 = 〈q2,ϑ2〉, and a transition t = 〈q1,op,q2〉 ∈ T , we have γ1
t
−→E γ2

if one of the following three cases is satisfied: (i) op = c++ and either both ϑ1(c) = ⊥
and ϑ2(c) = ⊥ or ϑ1(c) 6= ⊥, ϑ2(c) 6= ⊥ and ϑ2 = ϑ1[c← ϑ1(c)+ 1]; (ii) op = c- -,

and either both ϑ1(c) = ⊥ and ϑ2(c) = ⊥ or ϑ1(c) 6= ⊥, ϑ2(c) 6= ⊥ and ϑ2 = ϑ1[c←
ϑ1(c)− 1]; (iii) op = nop and ϑ2 = ϑ1. Hence we apply the operation of the transition

only if the relevant counter value is defined (otherwise, the counter remains undefined).

Notice that, for a partial configuration γ1 and a transition t, there is at most one γ2 with

γ1
t
−→E γ2. If such a γ2 exists, we define t(γ1) := γ2; otherwise we define t(γ1) :=⊥. We

say that t is enabled at γ if t(γ) 6=⊥. We observe that, in the case of energy semantics, t

is not enabled only if state(γ) 6= source(t).

VASS Semantics. The difference between the energy and VASS semantics is that coun-

ters in the case of VASS range over the natural numbers (rather than the integers), i.e.

the VASS semantics will be interpreted over nonnegative partial configurations. Thus,

the transition relation −→V induced by an integer game G = 〈Q,T,κ〉 under the VASS

semantics differs from the one induced by the energy semantics in the sense that coun-

ters are not allowed to assume negative values. Hence −→V is the restriction of −→E

to nonnegative partial configurations. Here, a transition t = 〈q1,c- -,q2〉 ∈ T is enabled

from γ1 = 〈q1,ϑ1〉 only if ϑ1(c)> 0 or ϑ1(c) = ⊥. We assume without restriction that

at least one transition is enabled from each partial configuration (i.e., there are no dead-

locks) in the VASS semantics (and hence also in the energy semantics). Below, we use

sem ∈
{

E ,V
}

to distinguish the energy and VASS semantics.

Runs. A run ρ in semantics sem is an infinite sequence γ0
t1−→sem γ1

t2−→sem · · · of

transitions between concrete configurations. A path π in sem is a finite sequence

γ0
t1−→sem γ1

t2−→sem · · ·γn of transitions between concrete configurations. We say that
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ρ (resp. π) is a γ-run (resp. γ-path) if γ0 = γ. We define ρ(i) := γi and π(i) := γi. We as-

sume familiarity with the logic LTL. For an LTL formula φ we write ρ |=G φ to denote

that the run ρ in G satisfies φ. For instance, given a set β of concrete configurations, we

write ρ |=G ✸β to denote that there is an i with γi ∈ β (i.e., a member of β eventually

occurs along ρ); and write ρ |=G ✷✸β to denote that there are infinitely many i with

γi ∈ β (i.e., members of β occur infinitely often along ρ).

Strategies. A strategy of Player i ∈ {0,1} in sem (or simply an i-strategy in sem) σi is

a mapping that assigns to each path π = γ0
t1−→sem γ1

t2−→sem · · ·γn with state(γn) ∈
Qi, a transition t = σi(π) with t(γn) 6= ⊥ in sem. We use Σsem

i to denote the sets of

i-strategies in sem. Given a concrete configuration γ, σ0 ∈ Σsem
0 , and σ1 ∈ Σsem

1 , we

define run(γ,σ0,σ1) to be the unique run γ0
t1−→sem γ1

t2−→sem · · · such that (i) γ0 = γ,

(ii) ti+1 = σ0(γ0
t1−→sem γ1

t2−→sem · · ·γi) if state(γi)∈Q0, and (iii) ti+1 = σ1(γ0
t1−→sem

γ1
t2−→sem · · ·γi) if state(γi)∈Q1. For σi ∈ Σsem

i , we write [i,σi,sem] : γ |=G φ to denote

that run(γ,σi,σ1−i) |=G φ for all σ1−i ∈ Σsem
1−i. In other words, Player i has a winning

strategy, namely σi, which ensures that φ will be satisfied regardless of the strategy

chosen by Player 1− i. We write [i,sem] : γ |=G φ to denote that [i,σi,sem] : γ |=G φ for

some σi ∈ Σsem
i .

Instantiations. Two nonnegative partial configurations γ1,γ2 are said to be disjoint if

(i) state(γ1) = state(γ2), and (ii) dom(γ1)∩ dom(γ2) = /0 (notice that we require

the states to be equal). For a set of counters C ⊆ C , and disjoint partial configura-

tions γ1,γ2, we say that γ2 is a C-complement of γ1 if dom(γ1)∪ dom(γ2) = C, i.e.,

dom(γ1) and dom(γ2) form a partitioning of the set C. If γ1 and γ2 are disjoint then

we define γ1⊕ γ2 to be the nonnegative partial configuration γ := 〈q,ϑ〉 such that q :=
state(γ1) = state(γ2), ϑ(c) := val(γ1) (c) if val(γ1)(c) 6=⊥, ϑ(c) := val(γ2) (c)
if val(γ2) (c) 6= ⊥, and ϑ(c) := ⊥ if both val(γ1) (c) = ⊥ and val(γ2) (c) = ⊥. In

such a case, we say that γ is a C-instantiation of γ1. For a nonnegative partial config-

uration γ we write JγKC to denote the set of C-instantiations of γ. We will consider the

special case where C = C . In particular, we say that γ2 is a complement of γ1 if γ2 is

a C -complement of γ1, i.e., state(γ2) = state(γ1) and dom(γ1) = C − dom(γ2). We

use γ to denote the set of complements of γ. If γ2 ∈ γ1, we say that γ = γ1⊕ γ2 is an

instantiation of γ1. Notice that γ in such a case is concrete. For a nonnegative partial

configuration γ we write JγK to denote the set of instantiations of γ. We observe that

JγK = JγKC and that JγK = {γ} for any concrete nonnegative configuration γ.

Ordering. For nonnegative partial configurations γ1,γ2, we write γ1∼ γ2 if state(γ1)=
state(γ2) and dom(γ1) = dom(γ2). We write γ1 ⊑ γ2 if state(γ1) = state(γ2)
and dom(γ1) ⊆ dom(γ2). For nonnegative partial configurations γ1 ∼ γ2, we write

γ1 � γ2 to denote that state(γ1) = state(γ2) and val(γ1) (c) ≤ val(γ2)(c) for all

c ∈ dom(γ1) = dom(γ2). For a nonnegative partial configuration γ, we define γ ↑:=
{γ′| γ� γ′} to be the upward closure of γ, and define γ↓:= {γ′| γ′ � γ} to be the down-

ward closure of γ. Notice that γ↑= γ↓= {γ} for any abstract configuration γ. For a set

β⊆ ΓC of nonnegative partial configurations, let β↑:=∪γ∈βγ↑. We say that β is upward-

closed if β ↑= β. For an upward-closed set β ⊆ ΓC, we use min(β) to denote the (by

Dickson’s Lemma unique and finite) set of minimal elements of β.
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Winning Sets of Partial Configurations. For a nonnegative partial configuration

γ, we write [i,sem] : γ |=G φ to denote that ∃γ′ ∈ JγK .[i,sem] : γ′ |=G φ, i.e.,

Player i is winning from some instantiation γ′ of γ. For a set C ⊆ C of coun-

ters, we define W [G ,sem, i,C](φ) :=
{

γ ∈ ΓC| [sem, i] : γ |=G φ
}

. If W [G ,sem, i,C](φ)
is upward-closed, we define the Pareto frontier as Pareto[G ,sem, i,C](φ) :=
min(W [G ,sem, i,C](φ)).

Properties. We show some useful properties of the ordering on nonnegative partial

configurations. Note that for nonnegative partial configurations, we will not make dis-

tinctions between the energy semantics and the VASS semantics; this is due to the fact

that in nonnegative partial configurations and in their instantiations we only consider

positive values for the counters. For the energy semantics, as we shall see, this will not

be a problem since we will consider winning runs where the counter never goes below 0.

We now show monotonicity and (under some conditions) “reverse monotonicity” of the

transition relation wrt. �. We write γ1 −→sem γ2 if there exists t such that γ1
t
−→sem γ2.

Lemma 1. Let γ1, γ2, and γ3 be nonnegative partial configurations. If (i) γ1 −→V γ2,

and (ii) γ1 � γ3, then there is a γ4 such that γ3 −→V γ4 and γ2 � γ4. Furthermore, if (i)

γ1 −→V γ2, and (ii) γ3 � γ1, and (iii) G is single-sided and (iv) γ1 ∈ Γ1, then there is a

γ4 such that γ3 −→V γ4 and γ4 � γ2.

We consider a version of the Valk-Jantzen lemma [15], expressed in our terminology.

Lemma 2. [15] Let C ⊆ C and let U ⊆ ΓC be upward-closed. Then, min(U) is com-

putable if and only if, for any nonnegative partial configuration γ with dom(γ)⊆C, we

can decide whether JγKC ∩U 6= /0.

3 Game Problems

Here we consider the parity winning condition for the integer games defined in the

previous section. First we establish a correspondence between the VASS semantics when

the underlying integer game is single-sided, and the energy semantics in the general

case. We will show how instances of the single-sided VASS parity game can be reduced

to the energy parity game, and vice-versa. Figure 1 depicts a summary of our results. For

either semantics, an instance of the problem consists of an integer game G and a partial

configuration γ. For a given set of counters C⊆ C , we will consider the C-version of the

problem where we assume that dom(γ) =C. In particular, we will consider two special

cases: (i) the abstract version in which we assume that γ is abstract (i.e., dom(γ) = /0),

and (ii) the concrete version in which we assume that γ is concrete (i.e., dom(γ) = C ).

The abstract version of a problem corresponds to the unknown initial credit problem [6,

7], while the concrete one corresponds to deciding if a given initial credit is sufficient

or, more generally, computing the Pareto frontier (left open in [6, 7]).

Winning Conditions. Assume an integer game G = 〈Q,T,κ〉 where κ : Q 7→
{0,1,2, . . . ,k}. For a partial configuration γ and i : 0 ≤ i ≤ k, the relation γ |=G

(color = i) holds if κ(state(γ)) = i. The formula simply checks the color of

the state of γ. The formula γ |=G neg holds if val(γ)(c) ≥ 0 for all c ∈ dom(γ).
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The formula states that the values of all counters are nonnegative in γ. For i : 0 ≤
i ≤ k, the predicate even(i) holds if i is even. Define the path formula Parity :=
∨

(0≤i≤k)∧even(i)

(

(✷✸(color= i))∧
(∧

i< j≤k✸✷¬(color= j)
))

. The formula states

that the highest color that appears infinitely often along the path is even.

Abstract Energy

decidable [7]

C-version

Single-Sided VASS

decidable, Corollary 2

Concrete

Single-Sided VASS

decidable

C-version Energy

decidable, Corollary 3
Concrete Energy

decidable

Pareto

Single-Sided VASS

computable, Theorem 3

Pareto Energy

computable, Theorem 4

Algorithm 1

Lemma 5Lemma 4

Trivial

Trivial

Sectio
n 4

Section 4

Lemma 5

Fig. 1. Problems considered in the paper and their

relations. For each property, we state the lemma

that show its decidability/computability. The arrows

show the reductions of problem instances that we

show in the paper.

Energy Parity. Given an inte-

ger game G and a partial con-

figuration γ, we ask whether

[0,E ] : γ |=G Parity∧ (✷neg),
i.e., whether Player 0 can force

a run in the energy semantics

where the parity condition is

satisfied and at the same time

the counters remain nonnega-

tive. The abstract version of this

problem is equivalent to the un-

known initial credit problem in

classical energy parity games [6,

7], since it amounts to asking for

the existence of a threshold for

the initial counter values from

which Player 0 can win. The

nonnegativity objective (✷neg)
justifies our restriction to non-

negative partial configurations in our definition of the instantiations and hence of the

winning sets.

Theorem 1. [7] The abstract energy parity problem is decidable.

The winning set W [G ,E ,0,C](Parity∧✷neg) is upward-closed for C ⊆ C . In-

tuitively, if Player 0 can win the game with a certain value for the counters, then any

higher value for these counters also allows him to win the game with the same strategy.

This is because both the possible moves of Player 1 and the colors of configurations

depend only on the control-states.

Lemma 3. For any C ⊆ C , the set W [G ,E ,0,C](Parity∧✷neg) is upward-closed.

Since this winning set is upward-closed, it follows from Dickson’s Lemma

that it has finitely many minimal elements. These minimal elements describe the

Pareto frontier of the minimal initial credit needed to win the game. In the se-

quel we will show how to compute this set Pareto[G ,E ,0,C](Parity∧✷neg)) :=
min(W [G ,E ,0,C](Parity∧✷neg)); cf. Theorem 4.

VASS Parity. Given an integer game G and a nonnegative partial configuration γ, we

ask whether [0,V ] : γ |=G Parity, i.e., whether Player 0 can force a run in the VASS

semantics where the parity condition is satisfied. (The condition ✷neg is always triv-

ially satisfied in VASS.) In general, this problem is undecidable as shown in [1], even

for simple coverability objectives instead of parity objectives.
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Theorem 2. [1] The VASS Parity Problem is undecidable.

We will show that decidability of the VASS parity problem is regained under the

assumption that G is single-sided. In [14] it was already shown that, for a single-sided

VASS game with reachability objectives, it is possible to compute the set of winning

configurations. However, the proof for parity objectives is much more involved.

Correspondence of Single-Sided VASS Games and Energy Games. We show that single-

sided VASS parity games can be reduced to energy parity games, and vice-versa. The

following lemma shows the direction from VASS to energy.

Lemma 4. Let G be a single-sided integer game and let γ be a nonnegative partial

configuration. Then [0,V ] : γ |=G Parity iff [0,E ] : γ |=G Parity∧✷neg.

Hence for a single-sided G and any set C ⊆ C , we have W [G ,V ,0,C](Parity) =
W [G ,E ,0,C](Parity∧✷neg). Consequently, using Lemma 3 and Theorem 1, we ob-

tain the following corollary.

Corollary 1. Let G be single-sided and C ⊆ C .

1. W [G ,V ,0,C](Parity) is upward-closed.

2. The C-version single-sided VASS parity problem is reducible to the C-version en-

ergy parity problem.

3. The abstract single-sided VASS parity problem (i.e., where C = /0) is decidable.

The following lemma shows the reverse reduction from energy parity games to

single-sided VASS parity games.

Lemma 5. Given an integer game G = 〈Q,T,κ〉, one can construct a single-sided in-

teger game G ′ = 〈Q′,T ′,κ′〉 with Q ⊆ Q′ such that [0,E ] : γ |=G Parity∧✷neg iff

[0,V ] : γ |=G ′ Parity for every nonnegative partial configuration γ of G .

Proof sketch. Since G ′ needs to be single-sided, Player 1 cannot change the counters.

Thus the construction forces Player 0 to simulate the moves of Player 1. Whenever a

counter drops below zero in G (and thus Player 0 loses), Player 0 cannot perform this

simulation in G ′ and is forced to go to a losing state instead. ⊓⊔

Computability Results. The following theorem (shown in Section 4) states our main

computability result. For single-sided VASS parity games, the minimal elements of the

winning set W [G ,V ,0,C](Parity) (i.e., the Pareto frontier) are computable.

Theorem 3. If G is single-sided then Pareto[G ,V ,0,C](Parity) is computable.

In particular, this implies decidability.

Corollary 2. For any set of counters C ⊆ C , the C-version single-sided VASS parity

problem is decidable.

From Theorem 3 and Lemma 5 we obtain the computability of the Pareto frontier

of the minimal initial credit needed to win general energy parity games.

Theorem 4. Pareto[G ,E ,0,C](Parity∧✷neg) is computable for any game G .

Corollary 3. The C-version energy parity problem is decidable.
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4 Solving Single-Sided VASS Parity Games (Proof of Theorem 3)

Consider a single-sided integer game G = 〈Q,T,κ〉 and a set C ⊆ C of counters. We

will show how to compute the set Pareto[G ,V ,0,C](Parity). We reduce the problem

of computing the Pareto frontier in the single-sided VASS parity game to solving the

abstract energy parity game problem, which is decidable by Theorem 1.

We use induction on k = |C|. As we shall see, the base case is straightforward. We

perform the induction step in two phases. First we show that, under the induction hy-

pothesis, we can reduce the problem of computing the Pareto frontier to the problem of

solving the C-version single-sided VASS parity problem (i.e., we need only to consider

individual nonnegative partial configurations in ΓC). In the second phase, we introduce

an algorithm that translates the latter problem to the abstract energy parity problem.

Base Case. Assume that C = /0. In this case we are considering the ab-

stract single-sided VASS parity problem. Recall that γ ↑= {γ} for any γ

with dom(γ) = /0. Since C = /0, it follows that Pareto[G ,V ,0,C](Parity) =
{

γ| (dom(γ) = /0)∧
(

[0,V ] : γ |=G Parity
)}

. In other words, computing the Pareto

frontier in this case reduces to solving the abstract single-sided VASS parity problem,

which is decidable by Corollary 1.

From Pareto Sets to VASS Parity. Assuming the induction hypothesis, we reduce the

problem of computing the set Pareto[G ,V ,0,C](Parity) to the C-version single-

sided VASS parity problem, i.e., the problem of checking whether [0,V ] : γ |=G Parity

for some γ ∈ ΓC when the underlying integer game is single-sided. To do that, we will

instantiate the Valk-Jantzen lemma as follows. We instantiate U ⊆ ΓC in Lemma 2 to

be W [G ,V ,0,C](Parity) (this set is upward-closed by Corollary 1 since G is single-

sided). Take any nonnegative partial configuration γ with dom(γ) ⊆ C. We consider

two cases. First, if dom(γ) = C, then we are dealing with the C-version single-sided

VASS parity game which will show how to solve in the sequel. Second, consider the

case where dom(γ) =C′ ⊂C. By the induction hypothesis, we can compute the (finite)

set Pareto[G ,V ,0,C′](Parity) = min(W [G ,V ,0,C′](Parity)). Then to solve this

case, we use the following lemma.

Lemma 6. For all nonnegative partial configurations γ such that dom(γ) =C′ ⊂C, we

have JγKC∩W [G ,V ,0,C](Parity) 6= /0 iff γ ∈W [G ,V ,0,C′](Parity).

Hence checking JγKC ∩W [G ,V ,0,C](Parity) 6= /0 amounts to simply compar-

ing γ with the elements of the finite set Pareto[G ,V ,0,C′](Parity), because

W [G ,V ,0,C′](Parity) is upward-closed by Corollary 1.

From VASS Parity to Abstract Energy Parity. We introduce an algorithm that uses the

induction hypothesis to translate an instance of the C-version single-sided VASS parity

problem to an equivalent instance of the abstract energy parity problem.

The following definition and lemma formalize some consequences of the induction

hypothesis. First we define a relation that allows us to directly classify some nonnega-

tive partial configurations as winning for Player 1 (resp. Player 0).

Definition 1. Consider a nonnegative partial configuration γ and a set of nonnegative

partial configurations β. We write β✁ γ if: (i) for each γ̂ ∈ β, dom(γ̂) ⊆ C and |γ| =
|γ̂|+ 1, and (ii) for each c ∈ dom(γ) there is a γ̂ ∈ β such that γ̂� γ[c←⊥].

9



Lemma 7. Let β=
⋃

C′⊆C,|C′|=|C|−1 Pareto[G ,V ,0,C′](Parity) be the Pareto frontier

of minimal Player 0 winning nonnegative partial configurations with one counter in C

undefined. Let {ci, . . . ,c j}= C −C be the counters outside C.

1. For every γ̂ ∈ β with {c} = C− dom(γ̂) there exists a minimal finite number v(γ̂)
s.t. Jγ̂[c← v(γ̂)]K∩W [G ,V ,0,C ](Parity) 6= /0.

2. For every γ̂ ∈ β there is a number u(γ̂) s.t. γ̂[c← v(γ̂)][ci← u(γ̂), . . . ,c j ← u(γ̂)] ∈
W [G ,V ,0,C ](Parity), i.e., assigning value u(γ̂) to counters outside C is suffi-

cient to make the nonnegative configuration winning for Player 0.

3. If γ ∈ ΓC is a Player 0 winning nonnegative partial configuration, i.e., JγK ∩
W [G ,V ,0,C ](Parity) 6= /0, then β✁ γ.

The third part of this lemma implies that if ¬(β✁ γ) then we can directly conclude

that γ is not winning for Player 0 (and thus winning for Player 1) in the parity game.

Now we are ready to present the algorithm (Algorithm 1).

Input and output of the algorithm. The algorithm inputs a single-sided integer game

G = 〈Q,T,κ〉, and a nonnegative partial configuration γ where dom(γ) = C. To check

whether [0,V ] : γ |=G Parity, it constructs an instance of the abstract energy par-

ity problem. This instance is defined by a new integer game Gout = 〈Qout,Tout,κout〉
with counters in C −C, and a nonnegative partial configuration γout. Since we are

considering the abstract version of the problem, the configuration γout is of the form

γout = 〈qout,ϑout〉 where dom(ϑout) = /0. The latter property means that γout is uniquely

determined by the state qout (all counter values are undefined). Lemma 9 relates G with

the newly constructed Gout.

Algorithm 1: Building an instance of the abstract energy parity problem.

Input: G = 〈Q,T,κ〉: Single-Sided Integer Game; γ ∈ ΓC with |C|= k > 0.

Output: Gout = 〈Qout,T out,κout〉: integer game;

qout ∈Qout; γout = 〈qout,ϑout〉 where dom (ϑout) = /0; λ : Qout ∪Tout 7→ ΓC ∪T

1 β←
⋃

(C′⊆C)∧|C′|=|C|−1Pareto[G ,V ,0,C ′ ](Parity) ;

2 T out ← /0; new(qout); κ(qout)← κ(γ); λ(qout)← γ; Qout ←{q
out};

3 if λ(qout) ∈ Γ0 then Qout
0 ←{q

out}; Qout
1 ← /0 else Qout

1 ←{q
out}; Qout

0 ← /0 ;

4 ToExplore←{qout} ;

5 while ToExplore 6= /0 do

6 Pick and remove a q ∈ ToExplore;

7 if ¬(β✁λ(q)) then

8 κout (q)← 1; T out ← T out ∪{〈q,nop,q〉}

9 else if ∃q′.(q′,q) ∈ (T out)∗ ∧ (λ(q′)≺ λ(q)) then

10 κout (q)← 0; T out ← T out ∪{〈q,nop,q〉}

11 else for each t ∈ T with t(λ(q)) 6=⊥ do

12 if ∃q′.(q′,q) ∈ (T out)∗ .λ(q′) = t(λ(q)) then

13 T out ← T out ∪{〈q,op (t) ,q′〉}; λ(〈q,op (t) ,q′〉)← t

14 else

15 new(q′); κ(q′)← κ(t(λ(q))); λ(q′)← t(λ(q));
16 if λ(q′) ∈ Γ0 then Qout

0 ← Qout
0 ∪{q

′} else Qout
1 ← Qout

1 ∪{q
′} ;

17 T out ← T out ∪{〈q,op (t) ,q′〉}; λ(〈q,op(t) ,q′〉)← t;

18 ToExplore← ToExplore∪{q′};
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Operation of the algorithm. The algorithm performs a forward analysis similar to the

classical Karp-Miller algorithm for Petri nets. We start with a given nonnegative par-

tial configuration, explore its successors, create loops when previously visited config-

urations are repeated and define a special operation for the case when configurations

strictly increase. The algorithm builds the graph of the game Gout successively (i.e., the

set of states Qout, the set of transitions T out, and the coloring of states κ). Additionally,

for bookkeeping purposes inside the algorithm and for reasoning about the correctness

of the algorithm, we define a labeling function λ on the set of states and transitions in

Gout such that each state in Gout is labeled by a nonnegative partial configuration in ΓC,

and each transition in Gout is labeled by a transition in G .

The algorithm first computes the Pareto frontier Pareto[G ,V ,0,C′](Parity) for

all counter sets C′ ⊆ C with |C′|= |C|−1. This is possible by the induction hypothesis.

It stores the union of all these sets in β (line 1). At line 2, the algorithms initializes the

set of transitions T out to be empty, creates the first state qout, defines its coloring to be

the same as that of the state of the input nonnegative partial configuration γ, labels it by

γ, and then adds it to the set of states Qout. At line 3 it adds qout to the set of states of

Player 0 or Player 1 (depending on where γ belongs), and at line 4 it adds qout to the

set ToExplore. The latter contains the set of states that have been created but not yet

analyzed by the algorithm.

After the initialization phase, the algorithm starts iterating the while-loop starting at

line 5. During each iteration, it picks and removes a new state q from the set ToExplore

(line 6). First, it checks two special conditions under which the game is made immedi-

ately losing (resp. winning) for Player 0.

Condition 1: If ¬(β✁λ(q)) (line 7), then we know by Lemma 7 (item 3) that the

nonnegative partial configuration λ(q) is not winning for Player 0 in G .

Therefore, we make the state q losing for Player 0 in Gout. To do that, we change

the color of q to 1 (any odd color will do), and add a self-loop to q. Any continuation

of a run from q is then losing for Player 0 in Gout.

Condition 2: If Condition 1 did not hold then the algorithm checks (at line 9)

whether there is a predecessor q′ of q in Gout with a label λ(q′) that is strictly smaller

than the label λ(q) of q, i.e., λ(q′) ≺ λ(q). (Note that we are not comparing q to arbi-

trary other states in Gout, but only to predecessors.) If that is the case, then the state q is

made winning for Player 0 in Gout. To do that, we change the color of q to 0 (any even

color will do), and add a self-loop to q. The intuition for making q winning for Player 0

is as follows. Since λ(q′)≺ λ(q), the path from λ(q′) to λ(q) increases the value of at

least one of the defined counters (those in C), and will not decrease the other counters in

C (though it might have a negative effect on the undefined counters in C −C). Thus, if a

run in G iterates this path sufficiently many times, the value of at least one counter in C

will be pumped and becomes sufficiently high to allow Player 0 to win the parity game

on G , provided that the counters in C −C are initially instantiated with sufficiently high

values. This follows from the property β✁λ(q) and Lemma 7 (items 1 and 2).

If none of the tests for Condition1/Condition2 at lines 7 and 9 succeeds, the algo-

rithm continues expanding the graph of Gout from q. It generates all successors of q by

applying each transition t ∈ T in G to the label λ(q) of q (line 11). If the result t(λ(q))
is defined then there are two possible cases. The first case occurs if we have previously
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encountered (and added to Qout) a state q′ whose label equals t(λ(q)) (line 12). Then

we add a transition from q back to q′ in Gout, where the operation of the new transition

is the same operation as that of t, and define the label of the new transition to be t. Oth-

erwise (line 15), we create a new state q′, label it with the nonnegative configuration

t(λ(q)) and assign it the same color as t(λ(q)). At line 16 qout is added to the set of

states of Player 0 or Player 1 (depending on where γ belongs). We add a new transition

between q and q′ with the same operation as t. The new transition is labeled with t.

Finally, we add the new state q′ to the set of states to be explored.

Lemma 8. Algorithm 1 will always terminate.

Lemma 8 implies that the integer game Gout is finite (and hence well-defined). The

following lemma shows the relation between the input and output games G ,Gout.

Lemma 9. [0,V ] : γ |=G Parity iff [0,E ] : γout |=Gout Parity∧✷neg .

Proof sketch. The left to right implication is easy. Given a Player 0 winning strategy in

G , one can construct a winning strategy in Gout that uses the same transitions, modulo

the labeling function λ(). The condition ✷neg in Gout is satisfied since the configura-

tions in G are always nonnegative and the parity condition is satisfied since the colors

seen in corresponding plays in Gout and G are the same.

For the right to left implication we consider a Player 0 winning strategy σ0 in Gout

and construct a winning strategy σ′0 in G . The idea is that a play π in G induces a

play π′ in Gout by using the same sequence of transitions, but removing all so-called

pumping sequences, which are subsequences that end in Condition 2. Then σ′0 acts on

history π like σ0 on history π′. For a play according to σ′0 there are two cases. Either it

will eventually reach a configuration that is sufficiently large (relative to β) such that a

winning strategy is known by induction hypothesis. Otherwise it contains only finitely

many pumping sequences and an infinite suffix of it coincides with an infinite suffix of

a play according to σ0 in Gout. Thus it sees the same colors and satisfies Parity. ⊓⊔
Since γout is abstract and the abstract energy parity problem is decidable (Theo-

rem 1) we obtain Theorem 3.

The termination proof in Lemma 8 relies on Dickson’s Lemma, and thus there is

no elementary upper bound on the complexity of Algorithm 1 or on the size of the

constructed energy game Gout. The algorithm in [4] for the fixed initial credit problem

in pure energy games without the parity condition runs in d-exponential time (resp.

(d− 1)-exponential time for offsets encoded in unary) for dimension d, and is thus not

elementary either. As noted in [4], the best known lower bound is EXPSPACE hardness,

easily obtained via a reduction from the control-state reachability (i.e., coverability)

problem for Petri nets.

5 Applications to Other Problems

5.1 Weak simulation preorder between VASS and finite-state systems

Weak simulation preorder [9] is a semantic preorder on the states of labeled transition

graphs, which can be characterized by weak simulation games. A configuration of the
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game is given by a pair of states (q1,q0). In every round of the game, Player 1 chooses a

labeled step q1
a
−→ q′1 for some label a. Then Player 0 must respond by a move which is

either of the form q0
τ∗aτ∗
−→ q′0 if a 6= τ, or of the form q0

τ∗
−→ q′0 if a= τ (the special label τ

is used to model internal transitions). The game continues from configuration (q′1,q
′
0).

A player wins if the other player cannot move and Player 0 wins every infinite play.

One says that q0 weakly simulates q1 iff Player 0 has a winning strategy in the weak

simulation game from (q1,q0). States in different transition systems can be compared

by putting them side-by-side and considering them as a single transition system.

We use 〈Q,T,Σ,λ〉 to denote a labeled VASS where the states and transitions are de-

fined as in Section 2, Σ is a finite set of labels and λ : T 7→ Σ assigns labels to transitions.

It was shown in [2] that it is decidable whether a finite-state labeled transition sys-

tem weakly simulates a labeled VASS. However, the decidability of the reverse direction

was open. (The problem is that the weak
τ∗aτ∗
−→ moves in the VASS make the weak sim-

ulation game infinitely branching.) We now show that it is also decidable whether a

labeled VASS weakly simulates a finite-state labeled transition system. In particular this

implies that weak simulation equivalence between a labeled VASS and a finite-state la-

beled transition system is decidable. This is in contrast to the undecidability of weak

bisimulation equivalence between VASS and finite-state systems [11].

Theorem 5. It is decidable whether a labeled VASS weakly simulates a finite-state la-

beled transition system.

Proof sketch. Given a labeled VASS and a finite-state labeled transition system, one

constructs a single-sided VASS parity game s.t. the VASS weakly simulates the finite

system iff Player 0 wins the parity game. The idea is to take a controlled product of the

finite system and the VASS s.t. every round of the weak simulation game is encoded by

a single move of Player 1 followed by an arbitrarily long sequence of moves by Player

0. The move of Player 1 does not change the counters, since it encodes a move in

the finite system, and thus the game is single-sided. Moreover, one enforces that every

sequence of consecutive moves by Player 0 is finite (though it can be arbitrarily long),

by assigning an odd color to Player 0 states and a higher even color to Player 1 states.

5.2 µ-Calculus model checking VASS

While model checking VASS with linear-time temporal logics (like LTL and linear-time

µ-calculus) is decidable [8, 10], model checking VASS with most branching-time logics

(like EF, EG, CTL and the modal µ-calculus) is undecidable [8]. However, we show

that Theorem 3 yields the decidability of model checking single-sided VASS with a

guarded fragment of the modal µ-calculus. We consider a VASS 〈Q,T 〉 where the states,

transitions and semantics are defined as in Section 2, and reuse the notion of partial

configurations and the transition relation defined for the VASS semantics on integer

games. We specify properties on such VASS in the positive µ-calculus L
pos
µ whose atomic

propositions q refer to control-states q ∈ Q of the input VASS.

The syntax of the positive µ-calculus L
pos
µ is given by the following grammar: φ ::=

q | X | φ∧ φ | φ∨ φ | ✸φ | ✷φ | µX .φ | νX .φ where q ∈ Q and X belongs to
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a countable set of variables X . The semantics of L
pos
µ is defined as usual (see [3]). To

each closed formula φ in L
pos
µ (i.e., without free variables) it assigns a subset of concrete

configurations JφK.

The model-checking problem of VASS with L
pos
µ can then be defined as follows.

Given a VASS S = 〈Q,T 〉, a closed formula φ of L
pos
µ and an initial configuration γ0 of

S , do we have γ0 ∈ JφK? If the answer is yes, we will write S ,γ0 |= φ. The more general

global model-checking problem is to compute the set JφK of configurations that satisfy

the formula. The general unrestricted version of this problem is undecidable.

Theorem 6. [8] The model-checking problem of VASS with L
pos
µ is undecidable.

One way to solve the µ-calculus model-checking problem for a given Kripke structure

is to encode the problem into a parity game [12]. The idea is to construct a parity

game whose states are pairs, where the first component is a state of the structure and

the second component is a subformula of the given µ-calculus formula. States of the

form 〈q,✷φ〉 or 〈q,φ∧ψ〉 belong to Player 1 and the remainder belong to Player 0. The

colors are assigned to reflect the nesting of least and greatest fixpoints. We can adapt

this construction to our context by building an integer game from a formula in L
pos
µ and

a VASS S , as stated by the next lemma.

Lemma 10. Let S be a VASS, γ0 a concrete configuration of S and φ a closed formula in

L
pos
µ . One can construct an integer game G(S ,φ) and an initial concrete configuration

γ′0 such that [0,V ] : γ′0 |=G(S ,φ) Parity if and only if S ,γ0 |= φ.

Now we show that, under certain restrictions on the considered VASS and on the

formula from L
pos
µ , the constructed integer game G(S ,φ) is single-sided, and hence we

obtain the decidability of the model-checking problem from Theorem 3. First, we reuse

the notion of single-sided games from Section 2 in the context of VASS, by saying that

a VASS S = 〈Q,T 〉 is single-sided iff there is a partition of the set of states Q into two

sets Q0 and Q1 such that op = nop for all transitions t ∈ T with source(t) ∈ Q1. The

guarded fragment Lsv
µ of L

pos
µ for single-sided VASS is then defined by guarding the ✷

operator with a predicate that enforces control-states in Q1. Formally, the syntax of

Lsv
µ is given by the following grammar: φ ::= q | X | φ∧ φ | φ∨ φ | ✸φ | Q1 ∧

✷φ | µX .φ | νX .φ, where Q1 stands for the formula
∨

q∈Q1
q. By analyzing the con-

struction of Lemma 10 in this restricted case, we obtain the following lemma.

Lemma 11. If S is a single-sided VASS and φ∈ Lsv
µ then the game G(S ,φ) is equivalent

to a single-sided game.

By combining the results of the last two lemmas with Corollary 1, Theorem 3 and

Corollary 2, we get the following result on model checking single-sided VASS.

Theorem 7.

1. Model checking Lsv
µ over single-sided VASS is decidable.

2. If S is a single-sided VASS and φ is a formula of Lsv
µ then JφK is upward-closed and

its set of minimal elements is computable.
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6 Conclusion and Outlook

We have established a connection between multidimensional energy games and single-

sided VASS games. Thus our algorithm to compute winning sets in VASS parity games

can also be used to compute the minimal initial credit needed to win multidimensional

energy parity games, i.e., the Pareto frontier.

It is possible to extend our results to integer parity games with a mixed semantics,

where a subset of the counters follow the energy semantics and the rest follow the VASS

semantics. If such a mixed parity game is single-sided w.r.t. the VASS counters (but not

necessarily w.r.t. the energy counters) then it can be reduced to a single-sided VASS

parity game by our construction in Section 3. The winning set of the derived single-

sided VASS parity game can then be computed with the algorithm in Section 4.
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