
AVIS 2006 Preliminary Version

From pointer systems to counter systems using
shape analysis

Sébastien Bardin 2 Alain Finkel 2 Étienne Lozes 2

LSV, ENS Cachan & CNRS UMR 8643
61 av. Pdt Wilson, 94235 Cachan Cedex France

Arnaud Sangnier 2

EDF R&D, LSV, ENS Cachan & CNRS UMR 8643
61 av. Pdt Wilson, 94235 Cachan Cedex France

Abstract

We aim at checking safety properties on systems manipulating dynamic linked lists.
First we prove that every pointer system is bisimilar to an effectively constructible
counter system. We then deduce a two-step analysis procedure. We first build
an over-approximation of the reachability set of the pointer system. If this over-
approximation is too coarse to conclude, we then extract from it a bisimilar counter
system which is analyzed via efficient symbolic techniques developed for general
counter systems.

Key words: dynamic allocation, automatic verification, counter
system, pointer system, shape analysis

1 Introduction

Context. The model checking techniques for infinite-state systems are now an
active research area. These techniques allow to verify different kinds of models
like pushdown systems, channel systems, counter systems, pointer systems and
many other models like rewriting systems. For some of these models, there
exist today tools for verifying such systems: Moped (for pushdown systems),
TREX [1] (for channel systems), FAST[6], LASH[16], TREX[1], BRAIN[17]
and ALV (for counter systems), TVLA[13] and PALE[14] (for pointer systems).

1 This work has been partially supported by contract 4300038040 between EDF/LSV and
by the AVERILES project.
2 [bardin|finkel|lozes|sangnier]@lsv.ens-cachan.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bardin, Finkel, Lozes, Sangnier

The model of counter systems is very expressive, it is well-known and it
has been used (alone or with some extensions) for modelling a lot of case
studies (see for instance the recent verification of the embedded protocol TTP
by using the tool FAST[6]).

The problem. Explicit memory management is a common source of
errors in programs. Mechanisms of dynamic allocation are naturally available
in imperative languages such as C, and functional languages often include such
facilitites for efficiency purpose. Explicit memory management is typically
exploited in industrial, real-time or embedded systems. This efficiency has
naturally a price: in such a programming style, the safety of the operations
of allocation, deallocation, and dereferencing relies on a sound conception of
the program. As so, many unsafe behaviors can happen, such as memory
violation, memory leak, unwilled aliasing, etc.

There is currently a great interest for defining automatic methods for the
verification of these systems with pointers. However, there exists different
models of programs with memory which are not compared and, in general,
they are not supported by model checkers: as a matter of fact, TVLA is an
analyser using abstract interpretation and PALE is a prover which needs the
help of the user.

We would like to be able to automatically verify the qualitative and quant-
itative properties. Shape analysis, first introduced by Sagiv and Lev-Ami
[12,13,15], opened a way to a qualitative analysis of the memory manipulated
by the program. Typical questions answered by this method are list-shape
preservation, aliasing detection, etc.

The quantitative analysis [5,11] based on Presburger arithmetics, recently
extended by more powerful decidable arithmetics [9] tries to answer about the
length equality of two lists, the preservation of the memory size, etc.

In this paper we address the problem of verification of both types of proper-
ties for a class of (non-interprocedural) programs manipulating list structures,
possibly with circularity and sharing, called here pointer systems [5]. We
abstract from standard data structures: pointers are the only data type we
consider, and we manipulate abstract heap addresses without pointer arith-
metics.

Our contribution is to propose an automatic translation of any pointer
system SP into a bisimilar counter system SC . This translation is based on
a notion of memory shape. This translation is more intuitiv than the other
translations in logic formula. Another advantage of our translation is that
the input formalism can be easily extended to pointer systems with counters.
We define a general framework for both quantitative and qualitative analysis.
We develop a two-step analysis procedure of pointer systems based on the
counter system generated. (1) A static analysis of the counter system: this
analysis gives an over-approximation of the memory shapes the system may
reach, allowing to derive safety properties efficiently in some cases. (2) If the
first analysis is not tight enough, then a reachability analysis is performed at

2

Bardin, Finkel, Lozes, Sangnier

the counter system level to refine the previous approximation. This analysis
relies on efficient acceleration techniques developed for counters [3,4], and can
discover automatically complex arithmetic relations in the memory heap.

Related Works. Some tools and techniques checking reachability properties
on pointer programs have been already proposed. We list here the main works
we are aware of:

• PALE[14] translates both the program and the memory heap in a decidable
monadic logic. The tool can be used for lists as well as trees, but it requires
annotating the program with loop invariants.

• TVLA [12,13,15] is based on a finite abstraction w.r.t. predicates typically
stating that a memory cell points to another one. The approach works
for lists and trees, but the user has to provide predicates controlling the
preciseness of the abstraction.

• In [8] the authors propose technics based on abstract regular model checking:
the structure of the memory heap is represented by regular expressions, and
an abstract,check and refine procedure is designed to check properties. The
authors present encouraging benchmarks.

• Smallfoot[7] is an automatic verification tool that checks separation logic
specifications of sequential and concurrent programs that manipulate re-
cursive dynamically-allocated (linked) data structures.

• In [9,10] the authors introduce a logic geared towards quantitative shape
analysis.

• In [5] we introduced pointer systems to model the class of programs we
are interested in. We propose a semi-algorithmic method based on sym-
bolic representations of infinite sets of configurations of the pointer system,
called symbolic memory states (SMS). However such an iterative fixpoint
computation must be equiped with some adequat widening (or accelera-
tion) techniques in order to help convergence. This adequat widening was
missing.

• In [11] (not published), Finkel and Nowak proposed a translation of pointer
systems into counter systems. However this translation leads to counter
systems labeled by relations instead of functions. As a matter of fact, it
was not feasible to re-use verification techniques developed for traditional
counter systems.

2 Preliminaries

We present in this section our model of programs (pointer system), our model
of the memory heap (memory graph) (see [5]) and counter systems. In the
following we consider given two finite, disjoint sets, the set V of pointer vari-
ables and the set K of counter variables. To avoid ambiguity, we range over
pointer variables with x, y, ... and over counter variables with k1, k2, ...

3

Bardin, Finkel, Lozes, Sangnier

2.1 Pointer and counter systems

A systems model is a tupleM = (D,G,A) where D is an infinite set of data,
G ⊆ 2D is set of guards, and A ⊆ DD set of actions. We usually note d |= g

for d ∈ g and post(a, d) for a(d). In the frame of a systems model, we may
consider a particular system:

Definition 2.1 (System). A system S in M = (D,G,A) is a pair S =
(Q, δ), where Q is a finite set whose elements are called control states, and δ

is a finite subset of Q× G ×A×Q, called the transition relation.

As usual, we often note q
g?a
−−→ q′ a given transition (q, g, a, q′). The se-

mantics of a system S is given by means of its associated transition system
TS(S) = (Q×D,→) where →⊆ (Q×D)2 is defined as:

(q, d) → (q′, d′) iff ∃ g, a such that (q, g, a, q′) ∈ δ, d |= g and post(a, d) = d′

We note ReachS(q, d) the set {(q′, d′)|(q, d)→∗ (q′, d′)} where →∗ denotes the
reflexive and transitive closure of →.

A standard model of systems is the counter systems modelMc = (NK, Φ,F)
where N

K is the set of counter valuations, Φ is the set of Presburger formulas
over K, and F is the set of linear functions in N

K. We range over with val for
valuations, φ for a Presburger formula, and f for a linear function.

Pointer systems are systems accessing a heap (in [5] they were called
pointer automata). We denote the pointer model Mp = (Dp,Gp,Ap) where
Dp is the set of memory graphs we will define in the next section, and Gp and
Ap are the set of guards g and actions a, respectively defined by the following
grammars:

g ::= True | IsNull(x) | ¬IsNull(x)

a ::= x:=E | x.s:=E | x:=new | free(x) | skip

where E is either null, or x or x.s.

The formal definition of the semantics of guards and actions is sketched in
the next section. Intuitively, null is the null pointer, x denotes the memory
cell nx pointed to by x and x.s denotes the memory cell pointed to by nx.
The actions free and new respectively deallocate and allocate memory cells.
Example. Figure 1 presents a reverse function written in C and the cor-
responding pointer system in both textual and graphical representation. This
example is taken from [13].

2.2 Memory model and semantics

With assumptions made on the class of programs we want to analyze, the
memory heap can be modeled as a finite oriented graph whose nodes are

4

Bardin, Finkel, Lozes, Sangnier

/* reverse.c */

#include ‘‘list.h’’

List reverse(List x) {

List y,t;

y = NULL;

while (x!=NULL) {

t=y;

y=x;

x=x->n;

y->n=t;

t=NULL;

}

return y;

}

(1, True, y:=null, 2),

(2, ¬IsNull(x), t:=y, 3),

(3, True, y:=x, 4),

(4, True, x:=x.s, 5),

(5, True, y.s:=t, 6),

(6, True, t:=null, 2),

(2, IsNull(x), skip, 7)

y:=null

IsNull(x)

x:=x.s

t:=null

y:=x

¬IsNull(x), t:=y

y.s:=t

Figure 1. A C program reversing a list and an equivalent pointer system.

allocated memory cells. An edge from node n1 to node n2 indicates that the
memory cell n1 contains the address of memory cell n2 (n1 points to n2). Each
node is also labeled by the finite set of pointer variables pointing to the cell.
Finally the graph contains three special nodes: z models the null pointer, p
models all the memory cells with illegal address and r represents an illegal
computation (typically, the successor of null is r). The definition of memory
graph directly follows.

Definition 2.2 (Memory graph).[5] A memory graph MG is a tuple (N,

next, var) such that

• N is a finite set of nodes, containing three distinguished elements p, r and
z.

• next is a total function from N to N , called the successor function, such
that next−1(r) = {z, p, r}.

• var : N −→ 2V is a function such that {var(n)}n∈N forms a partition of V.

Each node has exactly one successor since a memory cell points either to a
valid memory cell, or to null or to an invalid memory cell. Edges are defined
by the pairs (n, next(n)) for n ∈ N . Figure 2 shows an example of memory
graph (empty sets of variables are not written). We will denoteMG the sets
of all memory graphs.

We say that a memory graph has a memory violation if var(r) 6= ∅. It
has a memory leakage if N contains at least one node that cannot be accessed
from any node labeled with at least one variable. A memory graph is said
to be unsafe if it has a memory violation or a memory leakage, otherwise it
is said to be safe. As anounced in the previous section, it is possible to give
a semantic to MG |= g and post(a,MG). However, we skip here the formal
definition of these notions. Intuitively, post is defined in terms of adding
and deleting edges, nodes and labels of memory graphs. For example the
instruction x:=new creates a new node n′, moves the x label to it, and set
next(n′)to p.

5

Bardin, Finkel, Lozes, Sangnier

{x} n2 {y} n1

z p {t}

r

N = {n1, n2, z, p, r}

next(n1) = next(n2) = z

var(n1) = {y}, var(n2) = {x},

var(p) = {t}

Figure 2. Example of memory graph.

Remark 2.3 This behaviour is very closed to the one of C. It is easy to
adapt it to various languages and specifications. For example, in Java, the
node created by new would be linked to z rather than p.

We precise that we define our semantics in order to detect on-the-fly
memory violations and memory leaks: when an unsafe memory graph occurs,
the computation stops, because no guard is satisfied by an unsafe memory
graph (even True).

3 Computing with memory shapes

In this section, we present an abstract view of memory states we call memory
shapes. The first section gives a formal definition of this notion, whereas the
second section explains how we may define a symbolic computation on these
objects.

3.1 Memory shapes

We now introduce memory shapes. Before giving our formal definition, we
collect some useful notions on memory graphs. We say that a node n of a
memory graph MG is a core node if either the input degree of n (that is the
number of incoming edges) is different of 1, or n is labeled by at least one
pointer variable, or n is one of the three special nodes. A memory graph is
said to be minimal [5] if it contains only core nodes.

Definition 3.1 (Memory shape). A memory shape is:

• either SegF or MemLeak;

• or a tuple (N,next, var, K, c) where (N,next, var) is a safe, minimal memory
graph, K ⊆ K is a finite set of counter variables and c : N \ {p, z, r} → K

is a bijection.

We will denoteMS the set of all memory shapes. We call valued memory
shape a pair (MS, val) where MS is a memory shape and val : K → N

∗

maps each counter in MS to a strictly positive integer. Intuitively, a valued
memory shape represents, in a more compact way, a memory graph without
memory leak: each c(n) labeling the edge (n, n′) represents the succession of
val(c(n)) edges in the original memory graph. Conversely, any safe memory
graph can be represented by an adequate valued memory shape. This gives
us a function 〈.〉 : MS × N

K → MG that associates to a valued memory

6

Bardin, Finkel, Lozes, Sangnier

shape (MS, val) the corresponding memory graph 〈MS, val〉. This function
is surjective on safe memory graphs, and in practice we turn it into a bijection
adding a counter labeling discipline in memory shapes (but this point is not
relevant for this presentation). We recall below two important properties of
memory shapes [5,9,2].

Theorem 3.2 The two following properties hold for memory shapes with a
set V of pointers variables:

(i) |MS| ≤ (2 · |V|)3·|V|.

(ii) the number of counters in a memory shape is bounded by 2 · |V|:

Remark 3.3 For the sake of simplicity, we do not present here a discipline on
counter labeling. This point is somehow irrelevant in this presentation, except
to gain a bijection as we will mention later on. But it can be noted that the
isomorphism of memory shapes up to counter labeling is decidable in linear
time, which we hardly use in practice.

3.2 Symbolic computation

In this section, we introduce the symbolic computation on memory shapes.
It relies on two functions TEST and POST that lift at the abstract level the
concrete computation. We will now give the intuition on how we can take
advantage of our notion of memory shape to compute these functions.

The TEST function has to decide wether a given memory shape satisfies a
guard, that is all underlying memory graphs satisfy it. Definition 3.1 ensures
that only the z node of the memory shape can be mapped to the z node of the
memory graph. So checking a guard IsNull(x) simply boils down to check if
x labels the z node in the memory shape.

The POST function has to produce, from a given memory shape and a
pointer action, the set {(φi, fi,MSi)} of all possible issues: here the φi’s define
mutual excluding conditions on counters that ensure that a unique memory
shape will be reached in each case. For every guard, the corresponding memory
shape MSi is computed, as the linear function fi updating counters accord-
ingly.

We skip here the formal definition of this function, and rely on a particular
example to clarify our point. The interested reader will find in appendix a
more detailed presentation.

Example 3.4 Consider the memory shape MS1 represented in figure 3 and
the pointer action x.s := y. The POST function will return the set

{(

k3 =
1, f : (k1, k2, k3)→ (k1 + k2, 0, k3),MS2

)

,
(

k3 > 1, idK, MemLeak
)}

in which
MS2 denotes the memory shape represented in figure 3. Intuitively, if the
counter associated to the pointer variable x is strictly greater than 1, the
action x.s := y will lead to a memory leak. Otherwise, the shape MS2 is
reached, the edges labeled with k1 and k2 are collapsed, and one generates the
counter action k1 := k1 + k2.

7

Bardin, Finkel, Lozes, Sangnier

{y} zN

rN

pN

{x} {y}

{x}

zN

rN

pN

MS1

MS2

MemLeak

k1 k2
k3

k1
k3

k3 = 1?

k3 > 1?

Figure 3. Effect of the action x.s:=y on a memory shape MS1

More formally, the symbolic test function TEST : MS × G → {0, 1} and
the symbolic computation function POST : A×MS → 2Φ×F×MS , are defined
such that they enjoy the following properties:

Proposition 3.5 (i) the memory shape holds enough information for decid-
ing the guard, that is TEST(MS, g) = 0 iff for all counter valuation val,
〈MS, val〉 6|= g, and TEST(MS, g) = 1 iff for all counter valuation val,
〈MS, val〉 |= g,

(ii) the symbolic computation mimicks at the abstract level the concrete com-
putation: if POST(a,MS) = {(φi, fi,MSi)}i∈I , then the gi’s form a par-
tition of N

K, and for all valuation, if val |= φi, post(a, 〈MS, val〉) =
〈MSi, fi(val)〉.

4 Translation of pointer systems into counter systems

In this section, we present a translation from pointer systems to counter sys-
tems using the notions of memory shape and symbolic computation we have
just defined. We first state the definition of the counter system and its sound-
ness with respect to the pointer system it is built from. In a second time, we
present an algorithm to construct effectively this counter system.

4.1 Principle

Equipped with the functions TEST and POST previously introduced, the
translation of a pointer system (Qp, δp) into a counter system (Qc, δc) is defined
by Qc = Qp ×MS and δc is defined as follows:

⋃

q
gp?ap
−→ q′∈δp

⋃

MS : TEST(MS,g)=1

〈q,MS〉
gi?ai−→ 〈q′,MSi〉

with POST(a,MS) = {(gi, ai,MSi)}i∈I

Note that δc is a finite part of Qc×Φ×F ×Qc, hence (Qc, δ) actually defines
a counter system.

8

Bardin, Finkel, Lozes, Sangnier

Theorem 4.1 (Soundness of translation) Given a pointer system (Qp, δp),
and (Qc, δc) the counter system defined above, there is a bisimulation between
both underlying transitions systems.

According to Proposition 3.5, the relation

R =
{

(

(q, 〈MS, val〉) , ((q,MS), val)
)∣

∣ q ∈ Qp,MS ∈MS, val ∈ N
K

}

is a bisimulation between both transition systems.

4.2 Translation algorithm

The algorithm works with a set Current of the control states (q,MS) known
to be reachable and for which outgoing transitions have not been computed
yet, and a set Treated of reachable control states that have already been
treated ensuring single-pass translation.

Algorithm 1 From pointer system to counter system
Input : (Qp, δp) a pointer system;
Output : (Qc, δc) a counter system;

for all ∀(q0,MS0) ∈ Qp ×MS do

Current← {(q0,MS0)};
Qc ← {(q0,MS0)};
Treated← ∅;
while Current 6= ∅ do

pick (q,MS) in Current \ Treated;

for all q
g?a
−→ q′ ∈ δp; do

if MS |= gp then

for all (φ, f,MS′) ∈ POST(a,MS) do

δc ← δc ∪ {(q,MS)
φ?f
−→ (q′,MS′)};

Qc ← Qc ∪ {(q
′,MS′)};

Current← Current ∪ {(q′,MS′)};
end for

end if

end for

Treated← Treated ∪ {(q,MS)};
Current← Current \ {(q,MS)}

end while

end for

Theorem 4.2 (Soundness of the algorithm) The algorithm 1 terminates
and it computes the counter system defined in section 4.1.

Remark 4.3 In practice, we use this algorithm for a fixed initial control
state q0 and a fixed initial memory shape MS0. This gives a much smaller
counter system (Q0, δ0) such that Q0 ⊆ Qc and δ0 ⊆ δc, (Q0, δ0) is the strongly
connected component of the control graph of (Qc, δc) containing (q0,MS0). We
explain below why this is sufficient for our analysis.

9

Bardin, Finkel, Lozes, Sangnier

The complexity results of Theorem 3.2 argues for termination and effi-
ciency of the algorithm. Moreover, Theorem 4.1 ensures the soundness of the
algorithm.

Remark 4.4 A first partial translation from pointer systems to counter sys-
tems has been made in [11].

5 Analysis of pointer systems

5.1 Analysis of the counter system

As a consequence of the bisimulation result, the set of memory shapes appear-
ing in the control states of (Q0, δ0) is an over-approximation of the memory
shapes actually reachable in the original pointer system. More formally, we
define the function Abs : Qp×MG → Qp×MS mapping (q, 〈MS, val〉) onto
(q,MS). Then our over-approximation result can be stated as follows:

Theorem 5.1 (Over-approximation) For all q0 ∈ Qp, for all MS0 ∈MS,
and for all val ∈ N

K, Abs(ReachSp
((q, 〈MS0, val〉))) ⊆ Q0.

This result allows us to perform a verification of the pointer system in two
passes. The first step consists in the static analysis of the counter system. We
directly check on Q0 if we produced states (q, SegF) or (q, MemLeak). If not,
we may directly conclude that the pointer system is safe. Otherwise, we have
to check if the unsafe states are actually reachable in the transition system.
For this, we rely on the tool FAST[3] and the techniques of acceleration that
are implemented in it.

5.2 The reverse function example

We illustrate our analysis on the program reversing a list introduced in figure
1 applied on a non empty single-linked list. So we set MS0 to be the corres-
ponding memory shape and generate the counter system (Q0, δ0). We then
observe that no control state contains the memory shape SegF, but one state
contains MemLeak. Hence after this first step we can conclude that there will
not be a memory violation. In order to know if a memory leak might happen,
we analyze the counter system using FAST. This second step tells us that the
control state containing the memory shape MemLeak will not be reached in
the pointer system (for any valuation).

6 Perspectives

We defined a translation from pointer systems to counter systems and used
it to give both a qualitative and quantitative analysis of the pointer system.
While doing this, we believe we defined a general framework for both types
of analysis, which was not so clearly stated in other works. In order to tackle

10

Bardin, Finkel, Lozes, Sangnier

more complex examples, we are currently working on a better integration of
the quantitative analysis at the translation stage.

Acknowledgements We thank David Nowak and Philippe Schnoebelen for
enlighting discussions.

References

[1] A. Annichini, A. Bouajjani and M. Sighireanu TReX: A Tool for Reachability
Analysis of Complex Systems In lncs2102, SV, pp 368-372, 2001.

[2] S. Bardin Vers un Model Checking Avec Accélération Plate des Systèmes
Hétérogènes. PhD Thesis. October 2005.

[3] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of
Symbolic Transition systems. In CAV’03, LNCS 2725. Springer, 2003.

[4] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in symbolic
model checking. In ATVA’05, LNCS 3707. Springer, 2005.

[5] S. Bardin, A. Finkel, and D. Nowak. Toward symbolic verification of programs
handling pointers. In AVIS’04, ENTCS. Elsevier Science Publishers.

[6] S. Bardin, A. Finkel, and J. Leroux. FASTer acceleration of counter automata.
In TACAS’04, LNCS 2988, Springer, 2004.

[7] J. Berdine, C. Calcagno, P.W. O’Hearn Symbolic Execution with Separation
Logic. In APLAS’05, LNCS 3780, pp. 52-68, 2005.

[8] A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with
dynamic 1-selector-linked structures in regular model checking. In TACAS’05,
LNCS 3440. Springer, 2005.

[9] M. Bozga and R. Iosif. On decidability within the arithmetic of addition and
divisibility. In FOSSACS’2005, LNCS 3441. Springer, 2005.

[10] M. Bozga and R. Iosif. Quantitative Verification of Programs with Lists In
VISSAS’05, IOS Press, NATO Science Series, 2005.

[11] A. Finkel and D. Nowak From Pointer Automata to counter Automata. Draft.
April 2005.

[12] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to
work for verification: A case study. ACM SIGSOFT Software Engineering Notes,
25(5):26–38, 2000.

[13] T. Lev-Ami and M. Sagiv. Tvla: A system for implementing static analysis. In
SAS’00, LNCS 1824. Springer, 2000.

[14] A. Møller and M. Schwartzbach. The pointer assertion logic engine. In ACM
PLDI’01), volume 36.5 of ACM SIGPLAN Notices. ACMPress 2001.

11

Bardin, Finkel, Lozes, Sangnier

[15] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3):217–
298, May 2002.

[16] Lash homepage : http://www.montefiore.ulg.ac.be/ boigelot/research/lash/

[17] Brain homepage : http://www.cs.man.ac.uk/ voronkov/BRAIN/index.html

[18] Alv homepage: http://www.cs.ucsb.edu/ bultan/composite/

12

Bardin, Finkel, Lozes, Sangnier

A Translation Technical Points: successors of memory

shape

We describe here the function denoted POST which produces from a given
memory shape and a pointer action a set of triples {(φi, fi,MSi)} describing
all the possible issues; the φi’s define mutual excluding conditions on coun-
ters that ensure that a unique memory shape will be reached in each case.
For every guard, the corresponding memory shape MSi is computed, as the
linear function fi updating counters accordingly. The eight algorithms that
we give correspond to the eight kind of actions which can appear in a pointer
automaton. For each function, we suppose that the given memory shape is
denoted MS = 〈N,next, var,K, c〉.

Algorithm 2 Algorithm of POSTx:=null

Let n ∈ N such that x ∈ var(n);
if n = z then

Return {(True, id,MS)}
else

if n = p or var(n) 6= {x} or deg(n) > 1 then

Return {(True, id,MS′)} where MS′ = 〈N,next, var′,K, c〉 with var′(z) =
var(z) ∪ {x}, var′(n) = var(n) \ {x} and ∀m ∈ N \ {z, n}, var′(m) = var(m);

else

if deg(n) = 0 then

Return {(True, id,MemLeak)};
else

Let n′ be the node such that next(n′) = n, k and k′ the counter variables such
that c(n) = k and c(n′) = k′;
Return {(True, [k′ := k+k′; k = 0],MS′)} where MS′ = 〈N\{n}, next′, var′,K\
{k}, c′〉 with :
• var′(z) = var(z) ∪ {x}, ∀m ∈ N \ {n, z}, var′(m) = var(m),
• next′(n′) = next(n) and ∀m ∈ N \ {n, n′}, next′(m) = next(m),
• ∀m ∈ N \ {n, z, p, r}, c′(m) = c(m);

end if

end if

end if

13

Bardin, Finkel, Lozes, Sangnier

Algorithm 3 Algorithm of POSTx:=y

Let n,m ∈ N such that x ∈ var(n) and y ∈ var(m);
if n = m then

Return {(True, id,MS)};
else

if n = z or n = p or var(n) 6= {x} or deg(n) > 1 then

Return {(True, id,MS′)} where MS′ = 〈N,next, var′,K, c〉 with var′(m) =
var(m) ∪ {x}, var′(n) = var(n) \ {x} and ∀n′ ∈ N \ {m,n}, var′(n′) = var(n′);

else

if deg(n) = 0 then

Return {(True, id,MemLeak)};
else

Let n′ be the node such that next(n′) = n, k and k′ the counter variables such
that c(n) = k and c(n′) = k′;
Return {(True, [k′ := k′ + k; k := 0],MS′)} where MS′ = 〈N \ {n}, s′, var′,K \
{k}, c′〉 with :
• var′(m) = var(m) ∪ {x}, ∀p ∈ N \ {n,m}, var′(p) = var(p),
• next′(n′) = next(n) and ∀p ∈ N \ {n, n′}, next′(p) = next(p),
• ∀p ∈ N \ {n, z, p, r}, c(p) = c(p);

end if

end if

end if

Algorithm 4 Algorithm of POSTx.s:=null

Let n, n′ ∈ N such that x ∈ var(n) and n′ = next(n);
if n = p or n = z then

Return {(True, id, SegF)};
else

if deg(n′) = 2 and var(n′) = ∅ and n′ /∈ {z, p, r} then

Let n′′ be the node such that next(n′′) = n′ and k, k′, k′′ be the counter variables
such that c(n) = k, c(n′) = k′ and c(n′′) = k′′;
Return {(k = 1, [k′′ = k′ + k′′; k′ = 0],MS′); (k > 1, id,MemLeak)} where MS′ =
〈N \ {n′}, next′, var′,K \ {k′}, c′〉 with :
• ∀p ∈ N \ {n′}, var′(p) = var(p),
• next′(n′′) = next(n′), next′(n) = z, ∀p ∈ N \ {n′′, n, n′}, next′(p) = next(p),
• ∀p ∈ N \ {n′, z, p, r}, c′(p) = c(p);

else

Let k be the counter variable such that c(n) = k;
Return {(k = 1, id,MS′); (k > 1, id,MemLeak)} where MS′ =
〈N,next′, var,K, c〉 with :
• next′(n) = z and ∀p ∈ N \ {n}, next′(p) = next(p);

end if

end if

14

Bardin, Finkel, Lozes, Sangnier

Algorithm 5 Algorithm of POSTx.s:=y

Let n,m, n′ ∈ N such that x ∈ var(n), y ∈ var(m) and n′ = next(n);
if n = p or n = z then

Return {(True, id, SegF)};
else

if deg(n′) = 2 and var(n′) = ∅ and n′ /∈ {z, p, r} then

Let n′′ be the node such that next(n′′) = n′ and k, k′, k′′ be the counter variables
such that c(n) = k, c(n′) = k′ and c(n′′) = k′′;
Return {(k = 1, [k′′ = k′ + k′′; k′ = 0],MS′); (k > 1, id,MemLeak)} where MS′ =
〈N \ {n′}, next′, var′,K \ {k′}, c′〉 with :
• ∀p ∈ N \ {n′}, var′(p) = var(p),
• next′(n′′) = next(n′), next′(n) = m, ∀p ∈ N \ {n′′, n, n′}, next′(p) = next(p),
• ∀p ∈ N \ {n′, z, p, r}, c′(p) = c(p);

else

Let k be the counter variable such that c(n) = k;
Return {(k = 1, id,MS′); (k > 1, id,MemLeak)} where MS′ =
〈N,next′, var,K, c〉 with :
• next′(n) = m and ∀p ∈ N \ {n}, next′(p) = next(p);

end if

end if

15

Bardin, Finkel, Lozes, Sangnier

Algorithm 6 Algorithm of POSTx.s:=y.s

Let n,m, n′,m′ ∈ N such that x ∈ var(n), y ∈ var(m) , n′ = next(n) and m′ = next(m);
if n = p or n = z or m = p or m = z then

Return {(True, id, SegF)};
else

if n′ = m′ then

Return {(True, id,MS)}
else

if deg(n′) = 2 and var(n′) = ∅ and n′ /∈ {z, p, r} then

Let n′′ be the node such that next(n′′) = n′ and k, k′, k′′, l be the counter variables
such that c(n) = k, c(n′) = k′,c(n′′) = k′′ and c(m) = l;
Return {(k = 1 ∧ l = 1, [k′′ = k′ + k′′; k′ = 0],MS′); (k > 1, id,MemLeak); (k =
1 ∧ l > 1, [k′′ = k′ + k′′; k′ = 1; l := l − 1],MS′′)} where MS′ = 〈N \
{n′}, next′, var′,K \ {k′}, c′〉 with :
• ∀p ∈ N \ {n′}, var′(p) = var(p),
• next′(n′′) = next(n′), next′(n) = m′, ∀p ∈ N \ {n′′, n, n′}, next′(p) = next(p),
• ∀p ∈ N \ {n′, z, p, r}, c′(p) = c(p);
and MS′′ = 〈N,next′′, var,K, c〉 with :
• next′′(m) = n′, next′′(n′) = m′ and ∀p ∈ N \ {m,n′}, next′′(p) = next(p);

else

Let k, l be the counter variables such that c(n) = k and c(m) = l;
Return {(k = 1∧l = 1, id,MS′); (k > 1, id,MemLeak); (k = 1∧l > 1, [new_k :=
1; l := l − 1],MS′′)} where MS′ = 〈N,next′, var,K, c〉 with :
• next′(n) = m′ and ∀p ∈ N \ {n}, next′(p) = next(p);
and MS′′ = 〈N ∪ {new_n}, next′′, var′′,K ∪ {new_k}, c′′〉 with :
• new_n /∈ N ,
• new_k /∈ K,
• var′′(new_n) = ∅ and ∀p ∈ N ,var′′(p) = var(p),
• next′′(n) = new_n, next′′(m) = new_n, next′′(new_n) = next(m) and ∀p ∈
N \ {n,m}, next′′(p) = next(p),
• c′′(new_n) = l, c′′(m) = new_k and ∀p ∈ N \ {m, z, p, r}, c′′(p) = c(p).

end if

end if

end if

16

Bardin, Finkel, Lozes, Sangnier

Algorithm 7 Algorithm of POSTx:=y.s

Let n,m,m′ ∈ N such that x ∈ var(n), y ∈ var(m) and m′ = next(m);
if m = p or m = z then

Return {(True, id, SegF)};
else

Let l be the counter variable such that c(m) = l;
if n = z or n = p or var(n) > 1 or deg(n) > 1 then

Return {(l = 1, id,MS′); (l > 1, [new_k := 1; l := l − 1],MS′′)} where MS′ =
〈N,next, var′,K, c〉 with :
• var′(m′) := var(m′)∪{x}, var′(n) = var(n)\{x} and ∀p ∈ N \{n,m′}, var′(p) =
var(p);
and MS′′ = 〈N ∪ {new_n}, next′′, var′′,K ∪ {new_k}, c′′〉 with :
• new_n /∈ N ,
• new_k /∈ K,
• next′′(new_n) = m′, next′′(m) = new_n, ∀p ∈ N \ {m}, next′′(p) = next(p),
• var′′(new_n) = {x}, var′′(n) = var(n) \ {x} and ∀p ∈ N \ {n}, var′′(p) = var(p),
• c′′(new_n) = l, c′′(m) = new_k and ∀p ∈ N \ {m, z, p, r}, c′′(p) = count(p);

else

if deg(n) = 0 then

Return {(True, id,MemLeak)};
else

Let n′ be the node such that next(n′) = n and let k′ be the counter variable such
that c(n′) = k′;
if x = y then

if n = m′ then

Return {(True, id,MS)}
else

Return {(l = 1, [k′ := k′+1; l := 0],MS′); (l > 1, [k′ = k′+1; l := l−1],MS)}
where MS′ = 〈N \ {n}, next′, var′,K \ {l}, c′〉 with
• next′(n′) = m′ and ∀p ∈ N \ {n, n′}, next′(p) = next(p),
• var′(m′) = var(m′) ∪ {x} and ∀p ∈ N \ {n,m′}, var′(p) = var(p),
• ∀p ∈ N \ {n, z, p, r}, c′(p) = c(p)

end if

else

Let k be the counter variable such that c(n) = k;
if n = m′ then

Return {(True, [l := 1; k := k + l − 1],MS)};
else

Return {(l = 1, [k′ := k′ + k; k := 0],MS′); (l > 1, [k′ := k′ + k; k := 1; l :=
l − 1],MS′′)} where MS′ = 〈N \ {n}, next′, var′,K \ {k}, c′〉 with ;
• next′(n′) = next(n) and ∀p ∈ N \ {n, n′}, next′(p) = next(p),
• var′(m′) = var(m′) ∪ {x} and ∀p ∈ N \ {m′, n}, var′(p) = var(p),
• ∀p ∈ N \ {n}, c′(p) = c(p);
and MS′′ = 〈N,next′′, var,K, c′′〉 with :
• next′′(n′) = next(n), next′′(m) = n, next(n) = m′ and ∀p ∈ N \{n′,m′, n},
next′′(p) = next(p),
• c′′(m) = k, c′′(n) = l and ∀p ∈ N \ {n,m, z, p, r}, c′′(p) = count(p)

end if

end if

end if

end if

end if

17

Bardin, Finkel, Lozes, Sangnier

Algorithm 8 Algorithm of POSTNew(x)

Let n ∈ N such that x ∈ var(n);
if n = z or n = p or var(n) 6= {x} or deg(n) > 1 then

Return {(True, [new_k := 1],MS′)} where MS′ = 〈N ∪ {new_n}, next′, var′,K ∪
{new_k}, c′〉 with :
• new_n /∈ N ,
• new_k /∈ C,
• next′(new_n) = p and ∀p ∈ N , next′(p) = next(p),
• var′(new_n) = {x}, var′(n) = var(n) \ {x} and ∀p ∈ N \ {n}, var′(p) = var(p),
• c′(new_n) = new_k and ∀p ∈ N \ {z, p, r}, c′(p) = c(p);

else

if deg(n) = 0 then

Return {(True, id,MemLeak)};
else

Let n′ be the node such that next(n′) = n, k and k′ the counter variables such that
c(n) = k and c(n′) = k′;
Return {(True, [k′ := k′ +k; k := 1],MS′)} where MS′ = 〈N,next′, var,K, c〉 with
:
• next′(n′) = next(n), next′(n) = z and ∀p ∈ N \ {n, n′}, next′(p) = next(p),

end if

end if

Algorithm 9 Algorithm of POSTFree(x)

Let n ∈ N such that x ∈ var(n);
if n = z then

Return {(True, id,MS)};
else

if n = p then

Return {(True, id, SegF)};
else

Let k be the counter variable sucht that c(n) = k;
Return {(k = 1, [k := 0],MS′), (k > 1, id,MemLeak)} where MS′ = 〈N \
{n}, next′, var′,K \ {k}, c′〉 with :
• ∀p ∈ N \ {n} such that next(p) = n, next′(p) = p and ∀p ∈ N \ {n} such that
next(p) 6= n, next′(p) = next(p),
• var′(p) = var(p) ∪ var(n) and ∀p ∈ N \ {p, n}, var′(p) = var(p),
• ∀p ∈ N \ {n, z, p, r}, c′(p) = c(p);

end if

end if

18

	Introduction
	Preliminaries
	Pointer and counter systems
	Memory model and semantics

	Computing with memory shapes
	Memory shapes
	Symbolic computation

	Translation of pointer systems into counter systems
	Principle
	Translation algorithm

	Analysis of pointer systems
	Analysis of the counter system
	The reverse function example

	Perspectives
	References
	Translation Technical Points: successors of memory shape

