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—— Abstract

We study the almost-sure reachability problem in a distributed system obtained as the asyn-
chronous composition of N copies (called processes) of the same automaton (called protocol),
that can communicate via a shared register with finite domain. The automaton has two types of
transitions: write-transitions update the value of the register, while read-transitions move to a
new state depending on the content of the register. Non-determinism is resolved by a stochastic
scheduler. Given a protocol, we focus on almost-sure reachability of a target state by one of the
processes. The answer to this problem naturally depends on the number N of processes. How-
ever, we prove that our setting has a cut-off property: the answer to the almost-sure reachability
problem is constant when N is large enough; we then develop an EXPSPACE algorithm deciding
whether this constant answer is positive or negative.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs, C.2.2 Network Protocols

Keywords and phrases Networks of Processes, Parametrized Systems, Stochastic Scheduler,
Almost-sure Reachability, Cut-Off Property

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Verification of systems with many identical processes. It is a classical pattern in distributed
systems to have a large number of identical components running concurrently (a.k.a. networks
of processes). In order to verify the correctness of such systems, a naive option consists
in fixing an upper bound on the number of processes, and applying classical verification
techniques on the resulting system. This has several drawbacks, and in particular it gives
no information whatsoever about larger systems. Another option is to use parameterized-
verification techniques, taking as a parameter the number of copies of the protocol in the
system being considered. In such a setting, the natural question is to find and characterize,
if it exists, an infinite set of parameter values for which the system is correct. Not only the
latter approach is more general, but it might also turn out to be easier and more efficient,
since it involves orthogonal techniques.
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Different means of communication lead to different models. A seminal paper on para-
meterized verification of such distributed systems is the work of German and Sistla [17].
In this work, the authors consider networks of processes all following the same finite-state
automaton; the communication between processes is performed thanks to rendez-vous com-
munication. Various related settings have been proposed and studied since then, which
mainly differ by the way the processes communicate. Among those, let us mention broadcast
communication [15, 10], token-passing [8, 2], message passing [6], shared register with ring
topologies [1], or shared memory [16]. In his nice survey on such parameterized models [14],
Esparza shows that minor changes in the setting, such as the presence of a controller in the
system, might drastically change the complexity of the verification problems. The relative
expressiveness of some of those models has been studied recently in [3], yielding several
reductions of the verification problems for some of those classes of models.

Asynchronous shared-memory systems. We consider a communication model where the
processes asynchronously access a shared register, and where read and write operations on this
register are performed non-atomically. A similar model has been proposed by Hague in [18],
where the behavior of processes is defined by a pushdown automaton. The complexity of some
reachability and liveness problems for shared-memory models have then been established
in [16] and [11], respectively. These works consider networks in which a specific process, called
the leader, runs a different program, and address the problem whether, for some number
of processes, the leader can satisfy a given reachability or liveness property. In the case
where there is no leader, and where processes are finite-state, the parameterized control-state
reachability problem (asking whether one of the processes can reach a given control state) can
be solved in polynomial time, by adapting the approach of [9] for lossy broadcast protocols.

Fairness and cut-off properties. In this work, we further insert fairness assumptions in the
model of parameterized networks with asynchronous shared memory, and consider reachability
problems in this setting. There are different ways to include fairness in parameterized models.
One approach is to enforce fairness expressed as a temporal-logic properties on the executions
(e.g., any action that is available infinitely often must be performed infinitely often); this is
the option chosen for parameterized networks with rendez-vous [17] and for systems with
disjunctive guards (where processes can query the states of other processes) in [4]. We follow
another choice, by equipping our networks with a stochastic scheduler that, at each step of the
execution, assigns the same probability to the available actions of all the processes. From a
high-level perspective, both forms of fairness are similar. However, expressing fairness via
temporal logic allows for very regular patterns (e.g., round-robin execution of the processes),
whereas the stochastic approach leads to consider all possible interleavings with probability 1.
Under this stochastic scheduler assumption, we focus on almost-sure reachability of a given
control state by any of the processes of the system. More specifically, as in [4], we are
interested in determining the existence of a cut-off, i.e., an integer k such that networks
with more than k processes almost-surely reach the target state. Deciding the existence
and computing such cut-offs is important for at least two aspects: first, it ensures that the
system is correct for arbitrarily large networks; second, if we are able to derive a bound on
the cut-off, then using classical verification techniques we can find the exact value of the
cut-off and exactly characterize the sizes of the networks for which the behavior is correct.

Our contributions. We prove that for finite-state asynchronous shared-memory protocols
with a stochastic scheduler, and for almost-sure reachability of some control state by some
process of the network, there always exists a positive or negative cut-off; positive cut-offs are
those above which the target state is reached with probability 1, while negative cut-offs are
those above which the target state is reached with probability strictly less than 1. Notice
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that both cut-offs are not complement of one another, so that our result is not trivial.

We then prove that the “sign” (positive or negative) of a cut-off can be decided in
EXPSPACE, and that this problem is PSPACE-hard. Finally, we provide lower and upper
bounds on the values of the cut-offs, exhibiting in particular protocols with exponential
(negative) cut-off. Notice how these results contrast with classical results in related areas: in
the absence of fairness, reachability can be decided in polynomial time, and in most settings,
when cut-offs exist, they generally have polynomial size [4, 13, 12].

2  Presentation of the model and of the considered problem

2.1 Preliminaries.

Let S be a finite set. A multiset over S is a mapping u: S — N. The cardinality of a
multiset p is |pu| = > g p(s). The support 7z of p is the subset v C S s.t. for all s € S,
it holds s € v if, and only if, u(s) > 0. For k € N, we write N¥ for the set of multisets of
cardinality k over S, and N° for the set of all multisets over S. For any s € S and k € N,
we write s* for the multiset where s*(s) = k and s¥(s’) = 0 for all s’ # 5. We may write s
instead of s! when no ambiguity may arise. A multiset p is included in a multiset p/, written
w /s if u(s) < p/(s) for all s € . Given two multisets p and g/, their union pu ® p’ is
still a multiset s.t. (u @ p')(s) = u(s) + p'(s) for all s € S. Assuming p C g/, the difference
' © pis still a multiset s.t. (p' © p)(s) = p'(s) — p(s).

A quasi-order (A, <) is a well quasi-order (wqo for short) if for every infinite sequence
of elements ai,as,... in A, there exist two indices ¢ < j such that a; < a;. For instance,
for n > 0, (N™ <) (with lexicographic order) is a wqo. Given a set A with an ordering =<
and a subset B C A, the set B is said to be upward closed in A if for all a; € B and
ag € A, in case a1 = ag, then as € B. The upward-closure of a set B (for the ordering <),
denoted by 1< (B) (or sometimes 1(B) when the ordering is clear from the context), is the
set {a € A|3be Bst. b=a}. If (A, =) is a wqo and B is an upward closed set in A, there
exists a finite set of minimal elements {by,...,bx} such that B = 1{by,...,bg}.

2.2 Register protocols and associated distributed system.

We focus on systems that are defined as the (asynchronous) product of several copies of the
same protocol. Each copy communicates with the others through a single register that can
store values from a finite alphabet.

» Definition 1. A register protocol is given by P = (Q, D, qo, T)

@ is a finite set of control locations;

D is a finite alphabet of data for the shared register;

go € @ is an initial location;

TCQx{R,W} x D x (Q is the set of transitions of the protocol. Here R means read

the content of the shared register, while W means write in the register.
In order to avoid deadlocks, it is required that each location has at least one outgoing
transition. We also require that whenever some R-transition (¢, R, d, ¢") appears in T, then
for all d € D, there exists at least one g4 € @ such that (¢, R,d,qq) € T. The size of the
protocol P is given by |Q| + |T.

» Example l.a. Figure 1 displays a small register protocol with four locations, over an
alphabet of data D = {0,1,2}. In this figure (and in the sequel), omitted R-transitions
(e.g., transitions R(1) and R(2) from qo) are assumed to be self-loops. When the register
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contains 0, this protocol may move from initial location qg to location q1. From there it can
write 1 in the register, and then move to qa. From qo, as long as the register contains 1, the
process can either stay in qo (with the omitted self-loop R(1)), or write 2 in the register and
Jump back to qi. It is easily seen that if this process executes alone, it cannot reach state qy.

We now present the semantics of distributed systems associated with our register protocols.
We consider the asynchronous composition of several copies of the protocol (the number
of copies is not fixed a priori and can be seen as a parameter). We are interested in the
behavior of such a composition under a fair scheduler. Such distributed systems involve two
sources of non-determinism: first, register protocols may be non-deterministic; second, in
any configuration, all protocols have at least one available transition, and non-determinism
arises from the asynchronous semantics. In the semantics associated with a register protocol,
non-determinism will be solved by a randomized scheduler, whose role is to select at each
step which process will perform a transition, and which transition it will perform among the
available ones. Because we will consider qualitative objectives (almost-sure reachability),
the exact probability distributions will not really matter, and we will pick the uniform one
(arbitrary choice). Note that we assume non-atomic read/write operations on the register, as
in [18, 16, 11]. More precisely, when one process performs a transition, then all the processes
that are in the same state are allowed to also perform the same transition just after, in fact
write are always possible, and if a process performs a read of a specific value, since this read
does not alter the value of the register, all processes in the same state can perform the same
read (until one process performs a write). We will see later that dropping this hypothesis
has a consequence on our results. We now give the formal definition of such a system.

The configurations of the distributed system built on register protocol P = (Q, D,
qo, T) belong to the set I' = N? x D. The first component of a configuration is a multiset
characterizing the number of processes in each state of (), whereas the second component
provides the content of the register. For a configuration v = (u, d), we denote by st(y) the
multiset y in N9 and by data(y) the data d in D. We overload the operators defined over
multisets; in particular, for a multiset 0 over @), we write v @ ¢ for the configuration (u® 0, d).
Similarly, we write % for the support of st(7).

A configuration v = (i, d') is a successor of a configuration v = (u,d) if, and only if,
there is a transition (g, op,d”,q’) € T such that u(q) >0, ' = p© q¢® ¢ and either op = R
and d=d =d",orop=W and d' = d”. In that case, we write v — 7'. Note that since
u(q) > 0and ¢/ = p & q® ¢, we have necessarily |p| = |¢/|. In our system, we assume
that there is no creation or deletion of processes during an execution, hence the size of
configurations (i.e., |st(y)|) remains constant along transitions. We write I'y, for the set of
configurations of size k. For any configuration v € Iy, we denote by Post(y) C I'y the set of
successors of v, and point out that such a set is finite and non-empty.

Now, the distributed system Sp associated with a register protocol P is a discrete-time
Markov chain (I', Pr) where Pr: I' x I" — [0, 1] is the transition probability matrix defined
as follows: for all v and +' € T', we have Pr(v,v') = WT}J(’YH if y =+, and Pr(v,7') =0
otherwise. Note that Pr is well defined: by the restriction imposed on the transition

w(1) w(2) W(2)

VRN
». R(0) @ R, P2 R(2) @

Figure 1 Example of a register protocol with D = {0, 1,2}.
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relation T of the protocol, we have 0 < |Post(y)| < oo for all configuration v, and hence we
also get X cr Pr(7,7') = 1. For a fixed integer k, we define the distributed system of size k
associated with P as the finite-state discrete-time Markov chain 87’% = (T'k, Pry), where Pry,
is the restriction of Pr to I'y, x T'y.

We are interested in analyzing the behavior of the distributed system for a large number of
participants. More precisely, we are interested in determining whether almost-sure reachability
of a specific control state holds when the number of processes involved is large. We are
therefore seeking a cut-off property, which we formalize in the following.

A finite path in the system Sp is a finite sequence of configurations v9 — v1... = V.
In such a case, we say that the path starts in 7y and ends in 7;. We furthermore write
v —* 4" if, and only if, there exists a path that starts in  and ends in 4. Given a location ¢y,
we denote by [Ogy] the set of paths of the form vy — ;... — v, for which there is i € [0; k]
such that st(v;)(gs) > 0. Given a configuration v, we denote by P(v, [Ogy]) the probability
that some paths starting in v belong to [0gs] in Sp. This probability is well-defined since
the set of such paths is measurable (see e.g., [5]). Given a register protocol P = (Q, D,
o, T'), an initial register value dy, and a target location ¢y € @, we say that g is almost-surely
reachable for k processes if P((g, do), [Oqs]) = 1.

» Example 1.b. Consider again the protocol depicted in Fig. 1, with initial register content 0.
As we explained already, for k = 1, the final state is not reachable at all, for any scheduler
(here as k =1, the scheduler only has to solve non-determinism in the protocol).

When k = 2, one easily sees that the final state is reachable: it suffices that both processes
go to qo together, from where one process may write value 2 in the register, which the
other process can read and go to qr. Notice that this does not ensure that gy is reachable
almost-surely for this k (and actually, it is not; see Example 1.c).

We aim here at finding cut-offs for almost-sure reachability, i.e., we seek the existence of
a threshold such that almost-sure reachability (or its negation) holds for all larger values.

» Definition 2. Fix a protocol P = (Q, D, qo,T), do € D, and g5 € Q). An integer k € Nisa
cut-off for almost-sure reachability (shortly a cut-off) for P, dy and ¢ if one of the following
two properties holds:

for all h > k, we have P((qf, do), [0gs]) = 1. In this case k is a positive cut-off;

for all h > k, we have P((qf, do), [0gqs]) < 1. Then k is a negative cut-off.
An integer k is a tight cut-off if it is a cut-off and k& — 1 is not.

Notice that from the definition, cut-offs need not exist for a given distributed system.
Our main result precisely states that cut-offs do always exist, and that we can decide their
nature.

» Theorem 3. For any protocol P, any initial register value do and any target location gy,
there always exists a cut-off for almost-sure reachability, whose value is at most doubly-
exponential in the size of P. Whether it is a positive or a negative cut-off can be decided in
EXPSPACE, and is PSPACE-hard.

» Remark. When dropping the condition on non-atomic read/write operations , and allowing
transitions with atomic read/write operations (i.e. one process is ensured to perform a read
and a write operation without to be interrupted by another process), the existence of a
cut-off (Theorem 3) is not ensured. This is demonstrated with the protocol of Fig. 2 : one
easily checks (e.g., inductively on the number of processes, since processes that end up in go
play no role anymore) that state ¢ is reached with probability 1 if, and only if, the number
of processes is odd.
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R(0) ) R(1)
w(1) W/V

(0)
R(2);W (0

Figure 2 Example of a register protocol with atomic read/write operations.

-
-

’ W(Q) )

R(l (n— 2) (n— 1)

Figure 3 A “filter” protocol F,, for n > 0.

3 Properties of register protocols

3.1 Example of a register protocol

We illustrate our model with a family of register protocols (F7),,~q, depicted in Fig. 3. For a
fixed n, protocol F, has n + 1 states and n different data; intuitively, in order to move
from s; to s;41, two processes are needed: one writes ¢ in the register and goes back to sg,
and the second process can proceed to s; 11 by reading 7. Since backward transitions to sy are
always possible and since states can always exit sg by writing a 0 and reading it afterwards,
no deadlock can ever occur so the main question remains to determine if s,, is reachable by
one of the processes as we increase the number of initial processes. As shown in Lemma 4,
the answer is positive: F,, has a tight linear positive cut-off; it actually behaves like a “filter”,
that can test if at least n processes are running together. We exploit this property later in
Section 4.4.

» Lemma 4. Fizn € N. The “filter” protocol F,,, depicted in Fig. 3, with initial register
value 0 and target location s,, has a tight positive cut-off equal to n.

3.2 Basic results

In this section, we consider a register protocol P = (Q, D, qo, T'), its associated distributed
system Sp = (I', Pr), an initial register value dy € D and a target state g5 € Q. We define a
partial order < over the set T' of configurations as follows: (u,d) < (¢/,d’) if, and only if,
d=d and p =/ and pu C /. Note that with respect to the classical order over multisets,
we require here that the supports of p and u' be the same (we add in fact a finite information
to hold for the comparison). We know from Dickson’s lemma that (N, C) is a wqo and since
Q, D and the supports of multisets in N? are finite, we can deduce the following lemma.

» Lemma 5. (T', <) is a wqo.

We will give some properties of register protocols, but first we introduce some further
notations. Given a set of configuration A CT', we define Pre*(A) and Post™(A) as follows:

Pre"(A)={yeT | € Ay —=>*+} Post*(A)={+ €T |Iy e Ay =* 4}
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We also define the set [gf] of configurations we aim to reach as {y € I" | st(y)(qs) > 0}.
It holds that v € Pre*([¢s]) if, and only if, there exists a path in [Qgs] starting in ~.

As already mentioned, when (i, d) — (¢, d’) in Sp, then |u| = ||, i.e., the multisets u
and g/ have the same cardinality. This implies that given k > 0, the set Post™({(¢¥,do)}) is
finite (remember that @ and D are finite). As a consequence, for a fixed k, checking whether
P({gk,do),[0gs]) = 1 can be easily achieved by analyzing the finite-state discrete-time
Markov chain S [5].

» Lemma 6. Let k > 0. We have P((g},do), [Ogr]) = 1 if, and only if, Post™({{qk,do)}) C
Pre”([gy])-

The difficulty here precisely lies in finding such a k£ and in proving that, once we
have found one correct value for k, all larger values are correct as well (to get the cut-off
property). Characteristics of register protocols provide us with some tools to solve this
problem. We base our analysis on reasoning on the set of configurations reachable from
initial configurations in 1t{{go,do)} (the upward closure of {({qo,do)} w.r.t. <), remember
that since the order (I', <) requires equality of support for elements to be comparable, we
have that 1{(qo,do)} = UkeN\{O}{@(’f, dp)}. We begin by showing that this set of reachable
configurations and the set of configurations from which [g¢;] is reachable are both upward-
closed. Thanks to Lemma 5, they can be represented as upward closures of finite sets.
To show that Post™(1{{(qo,do)}) is upward-closed, we prove that register protocols enjoy the
following monotonicity property. A similar property is given in [11] and derives from the
non-atomicity of operations.

» Lemma 7. Let v1, 2, and 74 be configurations in T'. If v1 —* v2 and vo < v, then there
exists v; € T such that v; —* v and v1 < ;.

We point out that Pre*([gr]) is clearly upward-closed, since if [g¢] can be reached from
some configuration ~, it can also be reached by a larger configuration by keeping the extra
copies idle. As a corollary:

» Lemma 8. Post™(1{(qo,do)}) and Pre*([q¢]) are upward-closed sets in (I', <).

3.3 Existence of a cut-off

From Lemma 8, and from the fact that (T, <) is a wqo, there must exist two finite sequences
of configurations (0;)1<i<n and (1;)1<i<m such that Post* (1{(go,do)}) = 1{61, ..., 60, } and
Pre*([gr]) = M{m,--..nm}. By analyzing these two sequences, we now prove that any
register protocol has a cut-off (for any initial register value and any target location).

We let A; A’ C T be two upward-closed sets (for <). We say that A is included in A’
modulo single-state incrementation whenever for every v € A, for every g € 7, there is some
k € N such that v@®¢* € A’. Note that this condition can be checked using only comparisons
between minimal elements of A and A’. In particular, we have the following lemma.

» Lemma 9. Post™(1{(qo,do)}) is included in Pre*([qf]) modulo single-state incrementation
if, and only if, for all i € [1;n], and for all q¢ € 0;, there exists j € [1;m] such that
data(0;) = data(n;) and 0; = n; and st(n;)(¢') < st(0:;)(¢') for all ¢ € Q\ {q}.

Using the previous characterization of inclusion modulo single-state incrementation for
Post™ (1{(qo, do) }) and Pre*([qs]) together with the result of Lemma 6, we are able to provide
a first characterization of the existence of a negative cut-off.
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» Lemma 10. If Post™(1{(qo,do)}) is not included in Pre*([qs]) modulo single-state incre-
mentation, then maxi<;<n(|st(6;)]) is a negative cut-off.

We now prove that if the condition of Lemma 10 fails to hold, then there is a positive
cut-off.In order to make our claim precise, for every i € [1;n] and for any ¢ € 0;, we let

di,q = max{(|st(n;)(q) — st(0:)(q)]) | 1 < j < m and 0; =7}

» Lemma 11. If Post™(1{(qo,do)}) is included in Pre*([qs]) modulo single-state increment-
ation, then maxi<i<n(|st(6:)| + X_ 5 di,q) 15 a positive cut-off.

The last two lemmas entail our first result:

» Theorem 12. Any register protocol admits a cut-off (for any given initial register value
and target state).

4 Detecting negative cut-offs

We develop an algorithm for deciding whether a distributed system associated with a register
protocol has a negative cut-off. Thanks to Theorem 12, this can also be used to detect
the existence of a positive cut-off. Our algorithm relies on the construction and study of
a symbolic graph, as we define below: for any given protocol P, the symbolic graph has
bounded size, but can be used to reason about arbitrarily large distributed systems built
from P. It will store sufficient information to decide the existence of a negative cut-off.

4.1 k-bounded symbolic graph

In this section, we consider a register protocol P = (Q, D, qo,T), its associated distributed
system Sp = (I, Pr), an initial register value dy € D, and a target location g5 € @Q of P.
With P, we associate a finite-state graph, called symbolic graph of indez k, which for k large
enough contains enough information to decide the existence of a negative cut-off.

» Definition 13. Let k& be an integer. The symbolic graph of index k associated with P and
dp is the transition system G = (V, v, E) where
V= Ng x 29 x D contains triples made of a multiset of states of Q of size k, a subset
of @, and the content of the register; the multiset (called concrete part hereafter) is used
to exactly keep track of a fixed set of k processes, while the subset of @ (the abstract
part) encodes the support of the arbitrarily many remaining processes;

vo = (a5, {q0}, {do});
transitions are of two types, depending whether they involve a process in the concrete part
or a process in the abstract part. Formally, there is a transition (u,S,d) — (¢, S’,d’)
whenever there is a transition (¢,0,d”,¢’) € T such that d = d = d"” if O = R and
d =d" if O =W, and one of the following two conditions holds:

either S = S and ¢ C p (that is, u(q) > 0) and 4/ = p© ¢ & ¢';

or p=yp' and g€ Sand S € {S\{qtU{d},SU{d}}.

The symbolic graph of index k can be used as an abstraction of distributed systems made
of at least k + 1 copies of P: it keeps full information of the states of k£ processes, and only
gives the support of the states of the other processes. In particular, the symbolic graph of
index 0 provides only the states appearing in each configuration of the system.
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» Example 1.c. Consider the protocol depicted in Fig. 1. Its symbolic graph of index 0 is
depicted in Fig. 4 (where self-loops have been omitted). Notice that the final state (representing
all configurations containing qr) is reachable from any state of this symbolic graph. However,
our original protocol P of Fig. 1 does not have a positive cut-off (assuming initial register
value 0): indeed, with positive probability, a single process will go to g1 and immediately
writes 1 in the register, thus preventing any other process to leave qq; then one may check
that the process in q1 alone cannot reach qy, so that the probability of reaching qy from qé’ 18
strictly less than 1, for any k > 0. This livelock is not taken into account in the symbolic
graph of index 0, because from any configuration with support {qo,q1} and register data equal
to 1, the symbolic graph has a transition to the configuration with support {qo,q1,q2}, which
only exists in the concrete system when there are at least two processes in q1. As we prove in
the following, analyzing the symbolic graph for a sufficiently large index guarantees to detect
such a situation.

/—>

D

{90, 91}, 1 {90, q1,q2},1 {90, 41, q2},2 all sets
{90 containing
{Q1 }7 2 af

e By

Figure 4 Symbolic graph (of index 0) of the protocol of Fig. 1 (self-loops omitted).

For any index k, the symbolic graph achieves the following correspondence:

» Lemma 14. Given two states (i, S,d) and (', S",d’), there is a transition from (p, S, d)
to (u',S",d’) in the symbolic graph G of index k if, and only if, there exist multisets & and &'
with respective supports S and S’, and such that {(u ® 6,d) — (' ® ', d') in Sp.

4.2 Deciding the existence of a negative cut-off

We now explain how the symbolic graph can be used to decide the existence of a negative
cut-off. As said in Lemma 8, the set Pre*([¢r]) is upward-closed in (I', <) and there is a finite
set of configurations {n; = (u;,d;) | 1 < i < m} such that Pre*([qr]) = {n: | 1 <@ < m}.
We let K = max{st(n;)(q) | ¢ € @, 1 <i < m}. We show in this part that for our purpose,
it is enough to consider the symbolic graph of index K - |@| and in the next section, we
provide a bound on K.

» Lemma 15. There is a negative cut-off for P, do and q; if, and only if, there is a node in
the symbolic graph of index K -|Q| that is reachable from (qé('lQl, {qo},do) but from which
no configuration involving qs is reachable.

Proof. We begin with the converse implication, assuming that there is a state (u, S, d) in the
symbolic graph of index K - |Q] that is reachable from (qf "Q‘, {qo},dp) and from which no
configuration in [g] is reachable. Applying Lemma 14, there exist multisets §y = ¢{’ and 4,
with respective supports {go} and S, such that (i @ d,d) is reachable from (qéﬂQ‘ @ 0g, do)-
If location gy was reachable from (u @ d,d) in the distributed system, then there would exist
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a path from (u, S, d) to a state involving ¢y in the symbolic graph, which contradicts our
hypothesis. By Lemma 7, it follows that such a configuration (1 @ ¢’,d) — which cannot
reach ¢s — can be reached from (qé('lQ| ® qév/7 dp) for any N’ > N: hence it cannot be the
case that ¢y is reachable almost-surely for any N’ > N. Therefore there cannot be a positive
cut-off, which implies that there is a negative one (from Theorem 12).

Conversely, assume that there is a negative cut-off: then for some N > K -|Q)|, the dis-
tributed system Sg with N processes has probability less than 1 of reaching [g¢] from a’.
This system being finite, there must exist a reachable configuration (u,d) from which gy
is not reachable [5]. Hence (u,d) ¢ Pre*([gs]), entailing that for all i < m, there is a
location ¢* such that u(q*) < u;(¢*) < K. Then there must exist a reachable state (x,.S,d)
of the symbolic graph of index K - |Q| for which x(q") = u(q") and ¢ ¢ S, for all 1 < i < m:
it indeed suffices to follow the path from (g}, do) to (u, d) while keeping track of the processes
that end up in some ¢* in the concrete part; this is possible because the concrete part has
size at least K - |Q)|.

It remains to be proved that no state involving ¢ is reachable from (k, S, d) in the symbolic
graph. If it were the case, then by Lemma 14, there would exist 6 with support S such that
[gf] is reachable from (k @ d,d) in the distributed system. Then (k @ d6,d) € Pre*([¢r]),
so that for some 1 <i < m, (k® )(q") > u;(q*), which is not possible as k(q) < u;(q*) and
¢ is not in the support S of §. This contradiction concludes the proof. |

» Remark. Besides the existence of a negative cut-off, this proof also provides us with an
upper bound on the tight cut-off, as we shall see in Section 5.

4.3 Complexity of the algorithm

We now consider the complexity of the algorithm that can be deduced from Lemma 15.
Using results by Rackoff on the coverability problem in Vector Addition Systems [19],
we can bound K —and consequently the size of the needed symbolic graph—by a double-
exponential in the size of the protocol. Therefore, it suffices to solve a reachability problem
in NLOGSPACE [20] on this doubly-exponential graph: this boils down to NEXPSPACE with
regard to the protocol’s size, hence EXPSPACE by Savitch’s theorem [20].

» Theorem 16. Deciding the existence of a negative cut-off is in EXPSPACE.

4.4 PSPACE-hardness for deciding cut-offs

Our proof is based on the encoding of a linear-bounded Turing machine [20]: we build a
register protocol for which there is a negative cut-off if, and only if, the machine reaches its
final state ghar with the tape head reading the last cell of the tape.

» Theorem 17. Deciding the existence of a negative cut-off is PSPACE-hard.

Write n for the size of the tape of the Turing machine. We assume (without loss of
generality) that the machine is deterministic, and that it accepts only if it ends in its halting
state gpqr while reading the last cell of the tape. Our reduction works as follows: some
processes of our network will first be assigned an index ¢ in [1; n] indicating the cell of the
tape they shall encode during the simulation. The other processes are stuck in the initial
location, and will play no role. The state ¢ and position j of the head of the Turing machine
are stored in the register. During the simulation phase, when a process is scheduled to play,
it checks in the register whether the tape head is on the cell it encodes, and in that case it
performs the transition of the Turing machine. If the tape head is not on the cell it encodes,
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the process moves to the target location (which we consider as the target for the almost-sure
reachability problem). Finally, upon seeing (gpqi, n) in the register, all processes move to
a (n + 1)-filter protocol F,4+1 (similar to that of Fig. 3) whose last location s,4+1 is the
aforementioned target location.

If the Turing machine halts, then the corresponding run can be mimicked with exactly one
process per cell, thus giving rise to a finite run of the distributed system where n processes
end up in the (n + 1)-filter (and the other processes are stuck in the initial location); from
there s,11 cannot be reached. If the Turing machine does not halt, then assume that there is
an infinite run of the distributed system never reaching the target location. This run cannot
get stuck in the simulation phase forever, because it would end up in a strongly connected
component from which the target location is reachable. Thus this run eventually reaches
the (n + 1)-filter, which requires that at least n 4+ 1 processes participate in the simulation
(because with n processes it would simulate the exact run of the machine, and would not
reach gpqir, while with fewer processes the tape head could not go over cells that are not
handled by a process). Thus at least n + 1 processes would end up in the (n + 1)-filter, and
with probability 1 the target location should be reached.

5 Bounds on cut-offs

5.1 Existence of exponential tight negative cut-offs

We exhibit a family of register protocols that admits negative cut-off exponential in the
size of the protocol. The construction reuses ideas from the PSPACE-hardness proof. Our
register protocol has two parts: one part simulates a counter over n bits, and requires a token
(a special value in the register) to perform each step of the simulation. The second part is

used to generate the tokens (i.e., writing 1 in the register). Figure 5 depicts our construction.

We claim that this protocol, with # as initial register value and gy as target location, admits
a negative tight cut-off larger than 2™: in other terms, there exists N > 2™ such that the
final state will be reached with probability strictly less than 1 in the distributed system made
of at least N processes (starting with # in the register), while the distributed system with
2™ processes will reach the final state almost-surely. In order to justify this claim, we explain
now the intuition behind this protocol.

We first focus on the first part of the protocol, containing nodes named a;, b;, ¢;, d;
and s;. This part can be divided into three phases: the initialization phase lasts as long as
the register contains #; the counting phase starts when the register first contains halt; the
simulation phase is the intermediate phase.

During the initialization phase, processes move to locations a; and tok, until some process
in tokwrites 1 in the register (or until some process reaches ¢y, using a transition from a;
to gy while reading #).

Write v for the configuration reached when entering the simulation phase (i.e., when 1
is written in the register for the first time). We assume that st(vp)(a;) > 0 for some i, as
otherwise all the processes are in tok, and they all will eventually reach q;. Now, we notice
that if st(v9)(a;) = 0 for some 4, then location d,, cannot be reached, so that no process
can reach the counting phase. In that case, some process (and actually all of them) will
eventually reach ¢;. We now consider the case where st(vy)(a;) > 1 for all 5. One can prove
(inductively) that d; is reachable when st(vo)(tok) > 2!. Hence d,,, and thus also sg, can
be reached when st(vyo)(tok) > 2™. Assuming gy is not reached, the counting phase must
never contain more than n processes, hence we actually have that st(yo)(a;) = 1. With this
new condition, sg is reached if, and only if, st(yo)(tok) > 2. When the latter condition
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Figure b Simulating an exponential counter: grey boxes contain the nodes used to encode the
bits of the counter; yellow nodes at the bottom correspond to the filter module from Fig. 3; purple
nodes tok, sentand sinkcorrespond to the second part of the protocol, and are used to produce
tokens. Missing read edges are assumed to be self-loops.

is not true, ¢y will be reached almost-surely, which proves the second part of our claim:
the final location is reached almost-surely in systems with strictly less than n + 2™ copies of
the protocol.

We now consider the case of systems with at least n + 2" processes. We exhibit a finite
execution of those systems from which no continuation can reach g¢, thus proving that g is
reached with probability strictly less than 1 in those systems. The execution is as follows:
during initialization, for each i, one process enters a;; all other processes move to tok, and
one of them write 1 in the register. The n processes in the simulation phase then simulate
the consecutive incrementations of the counter, consuming one token at each step, until
reaching d,. At that time, all the processes in tokmove to sent, and the process in d,,
writes halt in the register and enters sg. The processes in the simulation phase can then
enter sg, and those in sent can move to sink. We now have n processes in sg, and the other
ones in sink. According to Lemma 4, location gy cannot be reached from this configuration,
which concludes our proof.

» Theorem 18. There exists a family of register protocols which, equipped with an initial
register value and a target location, admit negative tight cut-offs whose size are exponential
in the size of the protocol.

» Remark. The question whether there exists protocols with exponential positive cut-offs
remains open. The family of filter protocols described at Section 3.1 is an example of
protocols with a linear positive cut-off.



Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

5.2 Upper bounds on tight cut-offs

The results (and proofs) of Section 4 can be used to derive upper bounds on tight cut-offs.
We make this explicit in the following theorem.

» Theorem 19. For a protocol P = (Q, D, qo, T') equipped with an initial register value dy € D
and a target location qy € Q, the tight cut-off is at most doubly-exponential in |P|.

6 Conclusions and future works

We have shown that in networks of identical finite-state automata communicating (non-
atomically) through a single register and equipped with a fair stochastic scheduler, there
always exists a cut-off on the number of processes which either witnesses almost-sure
reachability of a specific control-state (positive cut-off) or its negation (negative cut-off).
This cut-off determinacy essentially relies on the monotonicity induced by our model, which
allows to use well-quasi order techniques. By analyzing a well-chosen symbolic graph, one can
decide in EXPSPACE whether that cut-off is positive, or negative, and we proved this decision
problem to be PSPACE-hard. This approach allows us to deduce some doubly-exponential
bounds on the value of the cut-offs. Finally, we gave an example of a network in which
there is a negative cut-off, which is exponential in the size of the underlying protocol. Note
however that no such lower-bound is known yet for positive cut-offs.

We have several further directions of research. First, it would be nice to fill the gap
between the PSPACE lower bound and the EXPSPACE upper bound for deciding the nature
of the cut-off. We would like also to investigate further atomic read/write operations, which
generate non-monotonic transition systems, but for which we would like to decide whether
there is a cut-off or not. Finally, we believe that our techniques could be extended to more
general classes of properties, for instance, universal reachability (all processes should enter a
distinguished state), or liveness properties.
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