
Reachability in Distributed Memory Automata1

Benedikt Bollig2

CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay3

bollig@lsv.fr4

Fedor Ryabinin5

IMDEA Software Institue6

fedor.ryabinin@imdea.org7

Arnaud Sangnier8

IRIF, Universite de Paris, CNRS9

sangnier@irif.fr10

Abstract11

We introduce Distributed Memory Automata, a model of register automata suitable to capture12

some features of distributed algorithms designed for shared memory systems. In this model, each13

participant owns a local register and a shared register and has the ability to change its local value,14

to write it in the global memory and to test atomically the number of occurrences of its value in15

the shared memory, up to some threshold. We show that the control state reachability problem for16

Distributed Memory Automata is Pspace-complete for a fixed number of participants and is in17

Pspace when the number of participants is not fixed a priori.18

2012 ACM Subject Classification Theory of Computation → Models of computation19

Keywords and phrases Distributed algorithms, Atomic snapshot objects, Register automata, Reach-20

ability21

Digital Object Identifier 10.4230/LIPIcs..2020.22

Funding Partly supported by ANR FREDDA (ANR-17-CE40-0013).23

1 Introduction24

Distributed algorithms are nowadays building blocks of modern systems in almost all25

computer-aided areas. One can find them in ad-hoc networks, telecommunication pro-26

tocols, cache-coherence protocols, swarm robotics, or biological models. Such systems often27

consist of small components that solve subtasks such as mutual exclusion, leader election, or28

spanning trees [9, 12].29

One way to classify distributed algorithms is according to how processes communicate30

with each other. Among the most popular classes are message-passing algorithms or shared-31

memory systems. In the latter case, processes write to a global memory that can be read32

by other processes. An important instance of a global memory are atomic snapshot objects,33

where every process has a dedicated global memory cell it can write to and, as the name34

suggests, can “snapshot” the current state of all global memory cells. Snapshot objects are35

exploited in renaming algorithms whose aim is to assign to every process a unique id from36

a small1 namespace [6]. In a snapshot algorithm, every process may choose a value that37

is currently not in the global memory, and write it in its local memory. These two steps38

are non-atomic so that, in principle, other processes may simultaneously choose the same39

value. A process may then examine the snapshot (for example, check whether it contains its40

local value) and decide how to proceed (for example, overwrite its global memory cell by the41

contents of its local memory cell).42

1 but unbounded, as it may depend on the number of processes

© B. Bollig, F. Ryabinin, and A. Sangnier;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bollig@lsv.fr
mailto:fedor.ryabinin@imdea.org
mailto:sangnier@irif.fr
https://doi.org/10.4230/LIPIcs..2020.
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Reachability in Distributed Memory Automata

In view of their widespread use, distributed algorithms are often subject to strong43

correctness requirements. However, they are inherently difficult to verify. One reason is44

that they are usually designed for an unbounded number of participants manipulating data45

from an unbounded domain. That is, we have to deal with two sources of infinity during46

their analysis. In this paper, we take a further step towards the modeling and verification of47

algorithms involving atomic snapshot objects.48

The Model. We introduce distributed memory automata (DMAs), which feature some of49

the above-mentioned communication primitives of snapshot objects. Our model is based50

on register automata, which have been used as a general formal model of systems that51

involve (unbounded or infinite) data. Register automata go back to the work of Kaminski52

and Francez [10] and have recently sparked new interest leading to extensions with various53

applications [2,4,7,13]. In a network of a DMA, every process is equipped with two registers,54

one representing its local memory cell, and one representing its global memory cell that55

every other process can read. Just like register automata, we allow registers to carry data56

values, i.e., values from an infinite domain (such as process identifiers), albeit comparison57

is only possible wrt. equality. Both, write and read operations, are restricted though. A58

process can perform three types of actions, which are all inspired by snapshot algorithms.59

It may (i) write a new value, currently not present in any global register, into its local60

register, (ii) copy the value from its local into its global register, and (iii) test how often61

its local value already occurs in the overall global memory. Note that (i) and (iii) indeed62

correspond to a scan operation followed by a test in atomic-snapshot algorithms. Variants63

of register automata have already been used to model distributed algorithms, but in a64

round-based setting with peer-to-peer communication [1, 5], whereas DMAs can be classified65

as asynchronous shared-memory systems.66

Parameterized Verification. The vast majority of register-automata models impose a bound67

on the number of registers. In the execution of a DMA, on the other hand, the number of68

registers is not fixed in advance: it is parameterized. Indeed, distributed algorithms are often69

characterized by the fact that they run on systems with any number of, a priori identical,70

processes. Since, in many applications, the number of components varies or is unknown,71

these algorithms must be working on an architecture of any size. Such systems are called72

parameterized, where the parameter is the number of processes or components. Just like73

register automata, parameterized verification has had a long history and continues to be an74

active research area. We refer to [3, 8] for overviews.75

In this paper, we consider a simple reachability question for DMAs, which amounts to76

safety verification (is a “bad” control state reachable?). In general, there are (at least) two77

ways to analyze parameterized systems. In the “fixed-process case”, we know in advance how78

many processes are involved. This problem often reduces to solving reachability questions in79

standard models. The parameterized reachability problem, on the other hand, asks whether a80

given control state is reachable in some execution, involving an arbitrary number of processes.81

In general, this requires different techniques. Some systems, however, enjoy cut-off and82

monotonicity properties. In that case, the number of processes that allow for reaching a83

given state can be found by solving finitely many fixed-process instances [3].84

Results for Distributed Memory Automata. In the fixed-process case, a standard argument85

allows us to restrict the problem to a bounded number of data values and to show membership86

in Pspace. We also provide a matching lower bound. The Pspace-complete intersection87

emptiness problem for a collection of finite state automata is an evident starting point [11].88

B. Bollig, F. Ryabinin, and A. Sangnier XX:3

However, the reduction turns out to be subtle due to the fact that all processes in a DMA89

look the same. In particular, we have to use guards in a nested fashion to “separate” these90

processes so that each of them can simulate a different finite automaton.91

In the case of parameterized reachability, we show that control-state reachability is in92

Pspace, too, leaving tightness of this upper bound as an open problem. The proof proceeds93

in two steps. We first show Pspace membership of a “subproblem”, which we name train94

reachability. As a model of shared ressources with a parameterized number of processes,95

it is of independent interest. This algorithm is then called repeatedly within a saturation96

procedure that allows us to gradually compute the set of all reachable control states.97

Outline. The paper is organized as follows. In Section 2, we define our model of DMAs.98

In Section 3, we consider the case of a fixed number of processes, for which control-state99

reachability is Pspace-complete. We then move on to the case of a parameterized number100

of processes. The proof spans over two sections: In Section 4, we introduce and solve101

parameterized train reachability. This is exploited, in Section 5, to show decidability, and102

Pspace membership, for parameterized reachability in DMAs. Missing proof details can be103

found in the appendix.104

2 Reachability in Distributed Memory Automata105

We start with a few preliminary definitions. For n ∈ N, we let [0, n] := {0, . . . , n} and106

[1, n] := {1, . . . , n}. For a set A, a natural number n ≥ 1, a tuple a ∈ An, and i ∈ [1, n], we107

let a[i] refer to the i-th component of a. For d ∈ A, we let |a|d = |{i ∈ [1, n] | a[i] = d}|108

denote the number of occurrences of d in a. Accordingly, we write d ∈ a if |a|d ≥ 1, and109

d 6∈ a if |a|d = 0.110

Suppose we have a system with n ≥ 1 processes. Processes are referred to by their index111

p ∈ [1, n]. In the global memory, every process has a dedicated memory cell, holding a112

natural number (which may be a process identifier, a sequence number, etc.). Thus, the state113

of the global memory is a tuple M ∈ Nn. Similarly, every process has a local memory cell.114

The contents of all local memory cells is also described by a tuple ` ∈ Nn. A process p can115

take a snapshot of the global memory M and examine its contents. More precisely, p can116

test how often its local value `[p] occcurs in M, up to some threshold,117

modify its local memory cell by assigning it some new value that is currently not present118

in the whole of M, or119

modify its global memory cell by assigning it its local value (and thus overwriting the old120

value of M[p]).121

Accordingly, T = {=t, <t, >t | t ∈ N} is the set of tests and Σ = {new,write} ∪ T the set of122

actions. For k ∈ N and ./t ∈ T with ./ ∈ {=, <,>}, we write k |= ./t if k ./ t. We are now123

prepared to define distributed memory automata.124

I Definition 1. A distributed memory automaton (DMA) is a tuple A = (S, ι,∆, F) where125

S is the finite set of states, ι ∈ S is the initial state, ∆ ⊆ S × Σ × S is the finite set of126

transitions, and F is the set of final states.127

For a test ./t ∈ T , we let |./t| = max{1, t}. Moreover, |new| = |write| = 1. The size of A128

is defined as |A| := |S|+
∑

(s,σ,s′)∈∆ |σ|. Note that we assume a unary encoding of tests.129

For n ≥ 1, an n-configuration (shortly a configuration) is a tuple γ = (s, `,M) ∈130

Sn ×Nn ×Nn. Given a process p ∈ [1, n], we consider that s[p] is the current state of p, `[p]131

XX:4 Reachability in Distributed Memory Automata

is the content of its local memory, and M[p] is the entry of p in the global memory. We use132

states(γ) to denote the set {s[p] | p ∈ [1, n]} and |γ| to represent the number of processes n133

of the configuration γ.134

We say that γ is initial if, for all p ∈ [1, |γ|], we have s[p] = ι and `[p] /∈M, and for all135

p, q ∈ [1, |γ|], `[p] = `[q] implies p = q. Hence, in an initial configuration, each process has a136

different value in its local register and none of these values appears in the shared memory.137

Moreover, configuration γ is called final if s[p] ∈ F for some p ∈ [1, |γ|], i.e., if one of its138

processes is in a state of F .139

Let CA,n be the set of n-configurations and CA :=
⋃
n≥1 CA,n be the set of all con-140

figurations. We define a global transition relation =⇒A ⊆ CA × (Σ × N) × CA. Suppose141

γ = (s, `,M) and γ′ = (s′, `′,M′) are two configurations and let σ ∈ Σ and p ∈ [1, |γ|]. We142

let γ (σ,p)===⇒A γ′ if the following hold:143

|γ| = |γ′| and144

(s[p], σ, s′[p]) ∈ ∆,145

s[q] = s′[q] and `[q] = `′[q] and M[q] = M′[q] for all q ∈ [1, |γ|] \ {p},146

if σ = new, then `′[p] 6∈M and M = M′,147

if σ = write, then `[p] = `′[p] = M′[p],148

if σ ∈ T , then ` = `′ and M = M′ and |M|`[p] |= σ.149

We write =⇒A for the union of all relations (σ,p)===⇒A and denote by =⇒∗A the reflexive and150

transitive closure of =⇒A. Note that if γ =⇒A γ′ then there exists n ≥ 1 such that151

γ, γ′ ∈ CA,n. In fact, the transition relation =⇒A does not change the number of involved152

processes. If we have (s, `,M) (new,p)=====⇒A (s′, `′,M′) with `′[p] = d, we will sometimes write153

(s, `,M) (new(d),p)======⇒A (s′, `′,M′) to provide explicitly the new local value. A run ρ of A is a154

finite sequence of the form γ0
(σ0,p0)=====⇒A γ1

(σ1,p1)=====⇒A γ2 · · ·
(σk−1,pk−1)========⇒A γk where γi ∈ CA155

for all i ∈ [0, k] and γ0 is initial. It is said to be final if γk is final.156

ι

s1write

s2
new

s3
=1

s4
write

s5
=5

f
=2

s6

new
s7

=3
s8

write
s9

=4
s10

new
s11

=2
s12

write

s13

=
4

s14
new

s15
write

Figure 1 An example DMA

I Example 2. In the example presented in Figure 1, the final state f is reachable and157

we shall see in the development of the paper how we can prove this, since it is not ob-158

vious at first sight. We present here an execution to reach s9 with four processes. As-159

sume that the initial configuration is
(
[ι, ι, ι, ι], [0, 1, 2, 3], [4, 4, 4, 4]

)
. From this configur-160

ation, if one process performs a write going to s1, then the system will not be able to161

reach s9, because no other processes will be able to choose the same value (with a new)162

B. Bollig, F. Ryabinin, and A. Sangnier XX:5

since the value is written in the global memory and the consecutive test =4 (necessary163

to reach s9) will never be available. Instead, to reach s9, we perform the following step:164 (
[ι, ι, ι, ι], [0, 1, 2, 3], [4, 4, 4, 4]

) (new,2)=====⇒A
(
[ι, s2, ι, ι], [0, 0, 2, 3], [4, 4, 4, 4]

)
. Here the second165

process can choose the same local value as the first one since it is not yet written in166

the memory. Thanks to the sequence (new,3)=====⇒A
(new,4)=====⇒A

(write,1)=====⇒A, we reach the configura-167

tion
(
[s1, s2, s2, s6], [0, 0, 0, 0], [0, 4, 4, 4])

)
, from which we can perform the transition sequence168

(=1,2)====⇒A
(=1,3)====⇒A

(write,2)=====⇒A
(write,3)=====⇒A to reach the configuration

(
[s1, s4, s4, s6], [0, 0, 0, 0], [0, 0,169

0, 4]) from which it is possible to perform (=3,4)====⇒A
(write,4)=====⇒A

(=4,4)====⇒A making the fourth pro-170

cess reach s9. Note that we could build a similar execution with 5 processes to reach the171

configuration
(
[s1, s4, s4, s4, s9], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]) by adding an extra process that172

behaves as process two but writes its value after that the last process reaches s9. We have173

then five times the value 0 in the global memory. But from this configuration, it is not174

possible to reach f since, to pass the sequence of transitions (s4,=5, s5), (s5,=2, f), at least175

three processes have to delete the value 0 from their global memory and this is not possible.176

The main problem we study in the paper is the reachability problem, in which we check177

whether a state of a given DMA can be reached without specifying the number of processes.178

In other words, the number of processes is a parameter that needs to be instantiated.179

Reachability
I: DMA A

Q: γ =⇒∗A γ′ for some initial γ ∈ CA and some final γ′ ∈ CA ?
180

In order to understand the above problem, it is important to also know how to solve the181

respective problem where the number of processes is imposed.182

Fixed-Reachability
I: DMA A and n ≥ 1 (encoded in unary)

Q: γ =⇒∗A γ′ for some initial γ ∈ CA,n and some final γ′ ∈ CA,n ?
183

Hence, Reachability consists in checking the existence of a final run and Fixed-184

Reachability seeks for a final run with an initial n-configuration.185

3 Considering a fixed number of processes186

In this section, we show that Fixed-Reachability is Pspace-complete.187

First we explain how we obtain the upper bound. We consider a DMA A = (S, ι,∆, F)188

and a fixed number of processes n ≥ 1. Note that, for any configuration γ = (s, `,M) ∈189

Sn×Nn×Nn, the number of different values in the local memory ` and in the global memory190

M is at most 2n. Hence, if there is a run γ0
(σ0,p0)=====⇒A γ1

(σ1,p1)=====⇒A γ2 · · ·
(σk−1,pk−1)========⇒A γk191

such that γi ∈ CA,n for all i ∈ [0, k] and γ0 is initial and γk is final, then there is a run192

γ′0
(σ0,p0)=====⇒A γ′1

(σ1,p1)=====⇒A γ′2 · · ·
(σk−1,pk−1)========⇒A γ′k such that γ′i ∈ Sn × [0, 2n]n × [0, 2n]n for193

all i ∈ [0, k] and γ′0 is initial and γ′k is final. In fact, the set of values [0, 2n]n is enough to194

define an initial configuration in CA,n since we can pick 2n different values. Since there are195

2n+ 1 different values in [0, 2n], when performing an action new, it is always possible to pick196

a value in [0, 2n] that appears neither in the local memory nor in the global memory. To197

solve Fixed-Reachability for n processes, we then check whether a final configuration is198

XX:6 Reachability in Distributed Memory Automata

reachable from an initial one in the graph where the set of vertices is Sn × [0, 2n]n × [0, 2n]n199

and the edges are defined by the transition relation =⇒A. This graph having an exponential200

number of vertices, the search can be performed in NPspace, i.e., in Pspace thanks to201

Savitch’s theorem. Note that we could obtain the same upper bound by reducing our problem202

to the non emptiness problem for non-deterministic register automata with 2n registers and203

Sn as a set of states and use then the fact that the non-emptiness problem for such automata204

is in Pspace [7]. The 2n registers will correspond to the local and global memory and the205

different actions of the DMA can be simulated into a register automata.206

I Proposition 3. Fixed-Reachability is in Pspace.207

To show the lower bound, we do a reduction from the intersection emptiness problem of208

many non-deterministic finite state automata. A non-deterministic finite state automaton209

(FSA) A over a finite alphabet Λ is a tuple (Q, qι, δ, F) where Q is a finite set of states, qι ∈ Q210

is an initial state, δ ⊆ Q× Λ×Q is the transition relation and F ⊆ Q is the set of accepting211

states. A finite word w = w0w1 . . . wk−1 in Λ∗ is accepted by A if there exists a sequence212

of states (qi)0≤i≤k such that q0 = qι, qk ∈ F , and (qi, wi, qi+1) ∈ δ for all i ∈ [0, k − 1]. We213

denote by L(A) the language of A, i.e., the set of words {w ∈ Λ∗ | w is accepted by A}. The214

emptiness intersection problem asks, given m FSA A1, . . . , Am over the alphabet Λ, whether215 ⋂
1≤i≤m L(Ai) = ∅. This problem is known to be Pspace-complete [11].216

ι
new =0

=
1

=
2

=
3

write

write

write

write

=4

=4

=4

=4

=1

=2

=3

new

new

new

write

write

write

new

new

new

new

write

q2′write

q3′write

q4′write

q1
=4

q2
=4

q3
=4

q4
=4

Figure 2 Gadget to isolate 4 processes

In order to reduce the intersection emptiness problem for FSA to Fixed-Reachability,217

we first need a gadget to bring different processes to different parts of the DMA so that each218

of these processes can simulate a particular finite automaton. This gadget is necessary since219

in DMA all processes begin in the same initial state. An example of this gadget for four220

processes is depicted in Figure 2. At the beginning, all the processes are in the initial state ι221

and we claim that if a process reaches the state q1 then there is one process in q2 or in q2′222

(because at this stage we cannot force the transition labeled with the test =4 leading to q2 to223

be taken), one process in q3 or in q3′ and one process in q4 or in q4′. In fact, if one process224

is in q1, then it has to first write its local value and the only way to do this is to take the225

upper branch of the DMA and, after writing, wait for the other processes to write their value226

in order to pass the test =4. Because of this test, all the processes have to choose the same227

value with the first new. One way to pass the test =4 for the first process is that all the228

processes take the upper branch as follows: they all choose the same new value, then they all229

pass the test =0 then they all write their value and they all pass the test =4. However this230

execution will then stop because of the following test =1 which could not be taken because,231

at this stage, none of the processes can rewrite its value in the global memory. The same232

B. Bollig, F. Ryabinin, and A. Sangnier XX:7

reasoning can be iterated to show that the only way to pass the test =1 in the upper branch233

is to have one process per branch, the first one writes its value, then the second one can pass234

the first test =1 in the second branch and writes the same value, the third one passes the235

test =2 in the third branch and writes its value and the last one can pass the test =3 in236

the last branch and writes its value. Each process can then pass, in its branch, the test =4237

but only the fourth process can perform a new followed by a write to overwrite its value in238

the global memory (the other ones have to wait because of the tests =3,=2,=1). Hence the239

fourth process overwrites its value, then the third one, then the second one and finally the240

first process can pass the test =1. After that all the processes can again perform a new and241

write to choose the same new value and write it to the memory to allow the first process to242

reach q1.243

We consider now an instance of the intersection emptiness problem with m FSA Ai =244

(Qi, q(i)
ι , δi, Fi) for i ∈ [1,m] working over the finite alphabet Λ = {a1, a2, . . . , ak}. Without245

loss of generality, we can assume that, for each i ∈ [1,m], the set Fi = {q(i)
f } is a singleton246

and furthermore the only way to reach this state is to read the letter ak that is not present in247

any other transitions. Hence all the words accepted by Ai end with ak and if an automaton248

reads a word until its last letter ak, then the automaton accepts this word.249

q new =i new =k−i new write
q′

=k+m

(a) Simulating a transition q ai−→ q′

qlet
new write

new
write

=k+m

(b) Simulating the k letters

Figure 3 Encoding intersection emptiness of finite automata into DMA

To check whether
⋂

1≤i≤m L(Ai) = ∅, we build a DMA and consider m + k processes.250

The first m processes simulate the automata (Ai)1≤i≤m and the k last processes simulate the251

read letters. First we use the gadget presented previously to separate these m+ k processes252

in different parts of the DMA. For i ∈ [1,m], the i-th process will be brought to the initial253

state q(i)
ι of each NFA whereas the last k processes are brought to the state qlet leading to254

the part of the DMA depicted in Figure 3b.255

We show then on Figure 3a how we simulate each transition q ai−→ q′ of the finite state256

automata in the DMA. A process p ∈ [1,m], in order to simulate the transition q ai−→ q′, first257

takes a new value and waits until this value appears i times in the global memory. At this258

stage only the k last processes are able to write, so i of these last processes take the same259

new value and write it to the global memory. There possibly remain at most k − i processes260

that did not take the same new value. But the process p then takes a new value and it has261

to appear k − i times in the global memory, so the k − i processes that did not write their262

value to the memory can do it now. Finally, after this, each process can take a new value and263

write it to the global memory and if they all have taken the same new value, they can all264

pass the test =k+m. This ensures that all the processes simulating the automata have read265

the same letter and, moreover, that the different processes are synchronized. For instance,266

imagine that a process simulating the automaton takes the transitions =1−−→ new−−→ =k−1−−−→ and267

another one at the same stage of the simulation goes through =2−−→ new−−→ =k−2−−−→. This is possible:268

a process p1 simulating a letter writes its value to the memory allowing the test =1, then a269

second process simulating a letter writes the same value to the memory allowing the test =2,270

then the k − 2 remaining last processes take the same new value and so does the process p1271

(by taking the third transition labelled by new in the loop starting in qlet), then the k− 2 last272

XX:8 Reachability in Distributed Memory Automata

processes write their value allowing the test =k−2 and finally the process p1 writes its value273

allowing the test =k−1. But after this, the different processes are blocked because p1 cannot274

take a new value anymore and write it to allow the test =k+m for which all the processes275

need to choose the same new value and write it to the global memory.276

To finalize our reduction we choose {q(1)
f } as the set of final states of the DMA. Since the277

size of the DMA we build is polynomial in the size of the m automata, we can deduce the278

lower bound for Fixed-Reachability.279

I Theorem 4. Fixed-Reachability is Pspace-complete.280

4 The parameterized train problem281

We introduce in this section a simpler parameterized problem whose resolution will help in282

solving the reachability problem in DMA.283

4.1 Definition284

As for DMA, we will use here the set of tests T := {=t, <t, >t | t ∈ N}. Our problem consists285

in modelling a set of passengers who can enter a train and leave it. Each passenger enters286

the train at most once and has the ability to test how many passengers are in the train and287

to change its state accordingly. Furthermore, there is a distinguished passenger, called the288

controller.289

I Definition 5. A train automaton is a tuple TA = (S, ιc, ι, Sout, Sin,∆, sf) where S is290

the finite set of states partitioned into S = Sout] Sin] {sf}, ιc ∈ Sout is the initial state291

for the controller, ι ∈ Sout is the initial state for the passengers, sf is the final state, and292

∆ ⊆ (Sout × T × Sout) ∪ (Sin × T × Sin) ∪ (Sout × {E} × Sin) ∪ (Sin × {Q} × {sf}) is the293

finite set of transitions.294

Intuitively, when a passenger (or the controller) is in a state from Sout or in sf , he stands295

outside the train, and when he is in Sin, he is inside the train. A passenger enters the train296

thanks to the action E. He can leave the train with action Q and, in doing so, enters the297

state sf from which he cannot perform any test or action. We now detail the semantics298

induced by TA.299

For n ≥ 1, an n-train configuration is a pair θ = (s, c) ∈ Sn × N such that s[1] is the300

controller state and c = |{p ∈ [1, n] | s[p] ∈ Sin}|. Note that we identify the controller with301

the first passenger. Formally, we could get rid of the c since we can deduce it from s, but it302

eases the writing of our results to keep it. A train configuration is an n-train configuration303

for some n ≥ 1. For an n-train configuration θ, we denote by |θ| = n its size. We say that θ304

is initial if s[1] = ιc, s[p] = ι for all p ∈ [2, |θ|], and c = 0. We define a transition relation305

−→TA as follows. Let θ = (s, c) and θ′ = (s′, c′) be two train configurations, a ∈ T ∪ {E,Q},306

and p ∈ [1, |θ|]. We let θ (a,p)−−−→TA θ′ if |θ| = |θ′|, s[p′] = s′[p′] for all p′ ∈ [1, |θ|] \ {p},307

(s[p], a, s′[p]) ∈ ∆, and the following hold:308

if a = E then c′ = c+ 1 (passenger p enters the train),309

if a = Q then c′ = c− 1 (passenger p leaves the train), and310

if a ∈ T then c = c′ and c |= a.311

We write θ −→TA θ′ if there exist a ∈ T ∪{E,Q} and p ∈ [1, |θ|] such that θ (a,p)−−−→TA θ′. An312

execution of TA is a finite sequence ρ = θ0
(a0,p0)−−−−→TA θ1

(a1,p1)−−−−→TA θ2 . . .
(ak−1,pk−1)−−−−−−−−→TA θk313

B. Bollig, F. Ryabinin, and A. Sangnier XX:9

(or ρ = θ0 −→TA θ1 −→TA θ2 . . . −→TA θk if we do not need the action and test labellings).314

We denote by −→∗TA the reflexive and transitive closure of −→TA. If θ −→∗TA θ′, then we say315

that there exists an execution from θ to θ′ in TA. Note that the number of passengers does316

not change during an execution, just like the number of processes does not change in an317

execution of a DMA.318

The problem we study in this section can be formalized as follows:319

Train-Reachability
I: A train automaton TA = (S, ιc, ι, Sout, Sin,∆, sf) and a state s ∈ S

Q: Are there an initial train configuration θ and a configuration θ′ = (s′, c′) such that
θ −→∗TA θ′ and s′[p] = s for some p ∈ [1, |θ|] ?

320

We let TrainReach(TA) denote the set of states s ∈ S such the answer to the Train-321

Reachability with TA and s is positive.322

ιc s1
E

ι s2
=0

s3
=1

s4
E

s5
=5

s
=2

s6

=
0

s7
=3

s8
E

s9
=4

sf

Q

Figure 4 An example of train automaton

I Example 6. In Figure 4, we have drawn a train automaton inspired (we shall see the323

connection later) from the DMA given in Figure 1. In this train automaton, the state s is324

not reachable. In fact, to reach it, the controller would have to go to state s1 and at least325

two passengers to s4. But then, there are at least three passengers in the train that cannot326

leave it anymore. Hence, the test =2 can never be satisfied.327

Train automata will help us to simulate part of the executions of DMA where all the328

processes except one (the controller) begin by choosing a new value identical to the one of329

the controller (the idea being that this value corresponds to the identity of the train). Then330

when a process performs a write it corresponds to a passenger entering the train and when331

thanks to a sequence of actions it overwrites its value in the global memory it corresponds332

to a passenger leaving the train. This explains as well why we need a controller in Train333

Automata, this helps to simulate a process which did not perform a new. Since initially all334

the processes have a different value in their global memory their can be for each value d at335

most one process which did not perform a new(d) and has d in its local register .336

4.2 Bounding the number of passengers337

We will see here that in order to solve Train-Reachability, we can bound the number338

of passengers present in the train at any moment. Consider a train automaton TA =339

(S, ιc, ι, Sout, Sin,∆, sf). We let cap ∈ N be the maximal constant appearing in the transitions340

of ∆. Hence we have t ≤ cap for all (s, ./t, s′) ∈ ∆. Given an n-train configuration θ = (s, c)341

and a bound b ∈ N, we say that θ is b-bounded if c ≤ b. An execution θ0 −→TA θ1 −→TA342

θ2 . . . −→TA θk is called b-bounded if θi is b-bounded for all i ∈ [0, k].343

XX:10 Reachability in Distributed Memory Automata

Finally, we introduce a relation � beween two train configurations θ = (s, c) and θ′ =344

(s′, c′) defined as follows: θ � θ′ if |θ| = |θ′| and c = c′ and for all p ∈ [1, |θ|], if s[p] 6= s′[p]345

then s[p] = sf and s′[p] ∈ Sout. In other words, if a passenger is not in the same state in θ346

and in θ′, it means he is in its final state in θ and he is out of the train in θ′. We need a first347

technical result stating that the relation � is a simulation relation for −→TA. The result of348

this lemma is a direct consequence of the definition of � and of the fact that, in TA, when349

the controller or a passenger is in its final state, he cannot do anything anymore.350

I Lemma 7. If θ1 � θ′1 and θ1
(a,p)−−−→TA θ2 then there exists a configuration θ′2 such that351

θ2 � θ′2 and θ′1
(a,p)−−−→TA θ′2.352

The following lemma shows us how to bound locally the capacity of the train. The idea353

is that if the capacity of the train goes above cap + 2, it is not necessary to make more354

passengers enter the train to satisfy the subsequent tests before the capacity goes back to a355

value smaller than cap + 2.356

I Lemma 8. Let M > cap. If there is an execution θ0 −→TA θ1 −→TA . . . −→TA θk with357

θi = (si, ci) for all i ∈ [0, k] and such that c0 = cK = M and ci = M + 1 for all i ∈ [1, k− 1],358

then there is an M -bounded execution from θ0 to some θ′ with θk � θ′.359

Proof. Let ρ = θ0
(a0,p0)−−−−→TA θ1

(a1,p1)−−−−→TA θ2 . . .
(ak−1,pk−1)−−−−−−−−→TA θk be an execution with360

θi = (si, ci) for all i ∈ [0, k] and such that c0 = ck = M and ci = M + 1 for all i ∈ [1, k − 1].361

By definition of the transition relation −→TA and of cap, we have necessarily a0 = E and362

ak−1 = Q and ai = >t with M > cap ≥ t for all i ∈ [1, k − 2]. We distinguish two cases:363

1. Case p0 = pk−1, i.e., it is the same process that enters and leaves the train. In364

that case, we let that process never enter the train and we consider the execution365

θ0 −→TA θ′1 . . . −→TA θ′` = (s′`, c′`), obtained from ρ by deleting all the transitions (a, p)366

with p = p0. During this execution the number of passengers in the train remains the367

same and is equal to c0 = M and, for all p ∈ [1, |θ0|] \ {p0}, we have s′`[p] = sk[p] and368

s′`[p0] = s0[p0]. Since s0[p0] ∈ Sout (because at the first step of ρ the passenger p0 enters369

the train) and sk[p0] = sf (because in the last step of ρ, passenger p0 leaves the train),370

we deduce that θk � θ′`.371

2. Case p0 6= pk−1. In that case, we reorder the execution ρ as follows. First we execute372

all the transitions (a, p) with p = pk−1 leading to a configuration θ′′ = (s′′, c′′) such that373

s′′[p] = s0[p] for all p ∈ [1, |θ0|] \ {pk−1} and s′′[pk−1] = sk[pk−1] = sf and c′′ = M − 1.374

Then from θ′′ we execute, in the same order, the remaining transition of ρ (the first being375

labelled with (E, p0)) which leads exactly to the configuration θk. Hence we obtain an376

M -bounded execution from θ0 to θk. J377

Using iteratively this last lemma allows us to bound the number of passengers in the378

train to reach a specific control state s.379

I Proposition 9. Let s ∈ S. Let θ be an initial configuration and p ∈ [1, |θ|]. If there380

is an execution from θ to some configuration θ′ = (s′, c′) with s′[p] = s, then there is a381

(cap + 2)-bounded execution from θ to some configuration θ′′ = (s′′, c′′) with s′′[p] = s.382

4.3 Solving Train-Reachability383

We shall see now how Proposition 9 allows us to build a finite abstract graph in which the384

reachability problem provides us with a solution for Train-Reachability. We consider385

B. Bollig, F. Ryabinin, and A. Sangnier XX:11

a train automaton TA = (S, ιc, ι, Sout, Sin,∆, sf) and, as in the previous section, we let386

cap ∈ N be the maximal constant appearing in the transitions of ∆. In order to solve our387

reachability problem, we build a graph of abstract configurations which keep track of the388

states of the controller, of the states in Sout that can be reached, and of the number of people389

in the train up to cap + 2. As we shall see, such an abstract graph will suffice to obtain a390

witness for Train-Reachability thanks to the Proposition 9 and to the following Copycat391

Lemma.392

I Lemma 10 (Copycat Lemma). Let s ∈ Sout and M > 0. Assume an M -bounded execution393

from an initial train configuration θ0 to a configuration θ = (s, c) with s[p] = s for some394

p ∈ [2, |θ0|]. Then, for all b ≥ 0, there exists an M -bounded execution from θ′0 to θ′ = (s′, c)395

where θ′0 is the initial train configuration with |θ′0| = |θ0|+ b, s′[p] = s[p] for all p ∈ [1, |θ0|],396

and s′[p] = s for all p ∈ [|θ0|+ 1, |θ0|+ b].397

Proof. Let ρ = θ0
(a0,p0)−−−−→TA θ1

(a1,p1)−−−−→TA θ2 . . .
(ak−1,pk−1)−−−−−−−−→TA θk be an execution with398

θi = (si, ci) for all i ∈ [0, k] and sk[p] ∈ Sout for p ∈ [2, |θ0|]. Since, in TA, a passenger399

can never go to a state in Sout once he has entered the train, pi = p implies ai ∈ T for all400

i ∈ [0, k − 1]. In other words, all the actions performed by passenger p along ρ are tests.401

Hence from θ′0, we can reproduce ρ and each time we have pi = p, passengers |θ0| + 1 to402

|θ0|+ b take the same transition as passenger p. As a consequence, at the end of this run, all403

these passengers will be in the same state as passenger p, and extending ρ in such a way is404

possible because the actions of passenger p never change the capacity of the train, as they405

are just tests. J406

An abstract train configuration ξ of TA is a triple (sc,Out, In) where sc ∈ S, Out ⊆407

Sout ∪ {sf} and In ∈ NSin is a multiset of elements of Sin such that
∑
s∈Sin

In(s) ≤ cap + 1408

if sc ∈ Sin and
∑
s∈Sin

In(s) ≤ cap + 2 otherwise. Given an abstract configuration ξ =409

(sc,Out, In), we define inside(ξ) ∈ [0, cap + 2] describing the number of passengers in the410

train: it is equal to
∑
s∈Sin

In(s) if sc 6∈ Sin and 1 +
∑
s∈Sin

In(s) otherwise. Indeed, by411

definition, we have inside(ξ) ≤ cap + 2 for all abstract train configurations ξ. The initial412

abstract train configuration ξι is then equal to (ιc, {ι}, Inι) with Inι(s) = 0 for all s ∈ Sin.413

We denote by Ξ the set of abstract train configurations of TA. Note that by definition Ξ is414

finite.415

We define now a transition relation between abstract configurations. Let ξ1 =416

(sc1,Out1, In1) and ξ2 = (sc2,Out2, In2) be two abstract train configurations and δ = (s, a, s′) ∈417

∆ and mc = {>,⊥}. The value mc indicates whether the controller moves (>) or another418

passenger (⊥). We have ξ1
δ,mc
 ξ2 if one of the following cases holds:419

1. mc = > and s = sc1 and s′ = sc2 and Out1 = Out2 and In1 = In2 and if a = E then420

inside(ξ1) < cap + 2 and if a ∈ T then inside(ξ1) |= a (move of the controller);421

2. mc = ⊥ and sc1 = sc2 and s ∈ Out and a ∈ T and inside(ξ1) |= a and Out2 = Out1 ∪ {s′}422

and In2 = In1 (move of a passenger outside the train);423

3. mc = ⊥ and sc1 = sc2 and s ∈ Sin and In1(s) > 0 and a ∈ T and inside(ξ1) |= a and424

Out2 = Out1 and425

In2(s) = In1(s)− 1 and In2(s′) = In1(s′) + 1 if s 6= s′,426

In2(s) = In1(s) if s = s′427

and In2(s′′) = In1(s′′) for all s′′ ∈ Sin \ {s, s′} (move of a passenger in the train);428

4. mc = ⊥ and sc1 = sc2 and s ∈ Out and a = E and inside(ξ1) < cap + 2 and Out2 = Out1429

and In2(s′) = In1(s′) + 1 and In2(s′′) = In1(s′′) for all s′′ ∈ Sin \ {s′} (a passenger enters430

the train);431

XX:12 Reachability in Distributed Memory Automata

5. mc = ⊥ and sc1 = sc2 and s ∈ Sin and In1(s) > 0 and a = Q and Out2 = Out1 ∪ {sf}432

and In2(s) = In1(s)− 1 and In2(s′′) = In1(s′′) for all s′′ ∈ Sin \ {s} (a passenger leaves433

the train).434

We write ξ1 ξ2 if there exist δ ∈ ∆ and mc = {>,⊥} such that ξ1
δ,mc
 ξ2, and we435

denote by ∗ the reflexive and transitive closure of .436

We shall now see how we can reduce Train-Reachability to a reachability query in the437

transition system (Ξ,). In other words, we shall prove in which matters our abstraction438

is sound and complete for Train-Reachability. The results of the two next lemmas439

need to be combined with the result of Proposition 9 which states that we can restrict our440

attention to (cap + 2)-bounded executions to solve Train-Reachability. First we give the441

lemma needed to ensure completeness of our abstraction. For this, given an abstract train442

configuration ξ = (sc,Out, In), we define JξK, a set of configurations described by ξ. For a443

train configuration θ = (s, c), we let θ ∈ JξK if the following conditions hold:444

c = inside(ξ),445

s[1] = sc,446

for all p ∈ [2, |θ|], if s[p] ∈ Sout ∪ {sf} then s[p] ∈ Out, and447

In(s) = |{p ∈ [2, |θ|] | s[p] = s}| for all s ∈ Sin.448

In other words, the control state of the controller is the same in θ and ξ, the states of the449

passengers in the train are the same in ξ and θ, and all the states present in θ from passengers450

outside the train are present in Out. This interpretation of abstract configurations allows us451

to state our first property.452

I Lemma 11. Let θ and θ′ be two configurations such that θ is initial. If there is a (cap + 2)-453

bounded execution from θ to θ′ then there exists an abstract train configuration ξ′ such that454

θ′ ∈ Jξ′K and ξι ∗ ξ′.455

To ensure the soundness of our method, for an abstract train configuration ξ = (sc,Out, In),456

we need to identify in JξK the configurations for which all the states in Out are present. We457

say that a configuration θ = (s, c) is a witness for ξ if θ ∈ JξK and, for all s ∈ Out, there458

exists p ∈ [2, |θ|] such that s[p] = s. This new notion combined with the result of the Copycat459

Lemma 10 allows us to state the following property of our abstraction.460

I Lemma 12. Let ξ′ ∈ Ξ. If ξι ∗ ξ′ then there exist an initial configuration θ and θ′ ∈ Jξ′K461

such that there is a (cap + 2)-bounded execution from θ to θ′ and θ′ is a witness for ξ′.462

Now to solve Train-Reachability for the train automaton TA and a state s ∈ S,463

thanks to Proposition 9, we know it is enough to consider only (cap + 2)-bounded executions.464

Lemmas 11 and 12 tell us that we have to seek in the graph (Ξ,) a path between ξι and an465

abstract train configuration ξ = (sc,Out, In) such that s = sc or s ∈ Out or In(s) > 0. Note466

that by definition |Ξ| ≤ |Sc| · 2|Sout|+1 · |Sin|cap+2 hence the size of (Ξ,) is exponential467

in the size of TA and the transition relation can be built on-the fly (as it is done in its468

definition). Using that the reachability problem in a graph can be done in NLOGspace,469

we deduce that we can solve Train-Reachability in NPspace (by solving a reachability470

query in (Ξ,)). Thanks to Savitch’s theorem we deduce our Pspace upper bound.471

I Theorem 13. Train-Reachability is in Pspace.472

B. Bollig, F. Ryabinin, and A. Sangnier XX:13

5 An algorithm for reachability473

In this section, we provide an algorithm to solve Reachability using, as an internal474

procedure, the algorithm proposed in the previous section for Train-Reachability.475

We consider a DMA A = (S, ι,∆, F). Without loss of generality, we assume that in A476

when a process p performs a write action, then it will not do so again until it performs a477

new action. This restriction makes sense, since when it has written its local value once, it478

does not change anything to the behavior of the global system to rewrite it. One can easily479

modify A to respect this property by adding a boolean flag to the states which is set to true480

after a write and set back to false after a new. Moreover, when an edge labelled with write481

leaves a state while the newly introduced boolean is true, then write is replaced by the test482

>0 (which will be necessarily evaluated to true since the global memory contains at least the483

local value of the process). Before presenting our method to solve Reachability, we state484

a technical lemma similar to the Copycat Lemma 10, but this time for DMA instead of train485

automata. The idea here is that we can join two distinct executions of the DMA using the486

fact that in DMA, the precise values of the data written in the global or local memory do487

not really matter but only the occurrences of the same values are important.488

I Lemma 14 (Copycat Lemma II). If there exists an execution γ0 =⇒∗A γ1 with γ0 initial489

and γ1 = (s1, `1,M1) and an execution γ′0 =⇒∗A γ′1 with γ′0 initial and γ′1 = (s′1, `
′
1,M

′
1),490

then there exists an execution γ′′0 =⇒∗A γ′′1 with γ′′0 initial and such that |γ′′1 | = |γ1| + |γ′1|491

and γ′′1 = (s′′1 , `
′′
1 ,M

′′
1) with s′′1 [p] = s1[p] for all p ∈ [1, |γ1|] and s′′1 [|γ1|+ p] = s′1[p] for all492

p ∈ [1, |γ′1|] .493

As a consequence of this lemma, if at some point we reach a configuration γ1 in a DMA,494

we know that any configuration with as many copies as one may desire of the states of γ1 is495

reachable. Our algorithm for Reachability then computes, iteratively, the two following496

subsets of the set of states S:497

New is the set of reachable states s ∈ S from which an action new is feasible. Formally,498

s ∈ New if there exist γ, γ′ ∈ CA such that γ is initial and γ′ and γ =⇒∗A γ′ and499

s ∈ states(γ′) and (s, new, u) ∈ ∆ for some u ∈ S.500

OWrite is the set of states s ∈ S that occur in some execution where the process being501

in s performs new and eventually write (hence the set of states from which a process502

can overwrite its value in the global memory). Formally, s ∈ OWrite if there exist a run503

ρ of A of the form γ0
(σ0,p0)=====⇒A γ1

(σ1,p1)=====⇒A γ2 · · ·
(σ`,p`)====⇒A γ`+1 and p ∈ [1, |γ0|] and504

0 ≤ j < k ≤ ` such that γj = (sj , `j ,Mj) with sj [p] = s and (σj , pj) = (new, p) and505

(σk, pk) = (write, p) and, for all i ∈ [j + 1, `− 1], if pi = p then σi 6∈ {new,write}.506

First, note that OWrite ⊆ New. We will see now how to compute these two sets of states507

and how our method exploits the result of the previous section on the train problem. The508

intuition to link the reachability in DMA with this latter problem is the following: each509

process in a DMA is associated to a train whose number is the value stored in its local510

register. When a process writes its value to the global memory, it enters the corresponding511

train and it stays in it until it overwrites this value by another one (by entering a new train).512

We first explain, given two sets of states N ⊆ New and OW ⊆ OWrite, how to build a513

train automaton TAN(N ,OW) to check whether new states can be added to N . We define514

TAN(N ,OW) = (ST , ιcT , ιT , Sout, Sin,∆T , sf) with:515

ST = (S × {out, in}) ∪ {ιT , sf},516

XX:14 Reachability in Distributed Memory Automata

Sout = (S × {out}) ∪ {ιT },517

Sin = S × {in},518

ιcT = (ι, out),519

∆T is the set of transitions verifying:520

(ιT ,=0, (u, out)) ∈ ∆T for all u ∈ S such that there is (s, new, u) ∈ ∆ with s ∈ N ,521

((s, out),E, (s′, in)) ∈ ∆T for all (s,write, s′) ∈ ∆,522

((s, in),Q, sf) ∈ ∆T for all s ∈ OW,523

((s, out), a, (s′, out)), ((s, in), a, (s′, in)) for all (s, a, s′) ∈ ∆ with a ∈ T .524

In a DMA, when a process performs a new, it is always possible that it chooses the initial525

value of another process that has not been written yet to the global memory. However, for a526

given value, there is at most one such process since, initially, all the processes have pairwise527

different values in their local memory. Such a process is represented in TAN(N ,OW) by the528

distinguished controller. Hence, the initial state of the controller is (ι, out). All the other529

processes have to perform a new and are represented by the other passengers. To participate530

in the train automaton, they have to go through the transitions (ιT ,=0, (u, out)) such that531

there is (s, new, u) ∈ ∆ with s ∈ N . The train automaton TAN(N ,OW) then simulates the532

DMA with the following rules: When a passenger enters the train with E, the associated533

process writes its value to the current memory, and when he leaves the train with Q, the534

associated process has been able to choose a new value and to write it to the global memory,535

so intuitively it was in a state of OW.536

ιT (s6, out)
=0 (s7, out)

=3 (s8, in)E (s9, in)
=4

(s10, out)
=

0
(s11, out)

=2 (s12, in)E (s13, in)
=4

(s2, out)

=
0

(s3, out)
=1 (s4, in)E (s5, in)

=5 (f, in)
=2

sf
Q

Q

(s14, out)=0 (s15, in)E
ιcT (s1, in)E

Figure 5 Train Automaton TAN({ι, s9, s13}, {ι, s9, s13}) for the DMA of Figure 1

I Example 15. Figure 5 depicts the train automaton TAN(N ,OW) associated to the DMA537

of Figure 1 with N = {ι, s9, s13} and OW = {ι, s9, s13}. Thanks to this train automaton,538

we deduce that f is reachable in the DMA because (f, in) ∈ TrainReach(TAN(N ,OW)). We539

have indeed the following execution with five passengers (numbered from 1 to 5, where 1 is540

the controller): First, passengers 2 to 4 move to (s10, out), and passenger 5 moves to (s2, out).541

Then, the controller enters the train and arrives in (s1, in). After that, passenger 5 can go to542

(s4, in) entering the train. There are now two passengers in the train, so passengers 2 to 4543

can go to (s11, out) and passengers 2 to 3 can enter the train and move to (s13, in) since there544

will be four passengers in the train. Finally, passenger 4 enters the train. There are now five545

passengers in the train allowing passenger 5 to move to (s5, in). After that, passenger 2 in546

(s13, in) can leave the train, and passenger 4 can move to (s13, in). Now, passengers 3 and 4547

from (s13, in)) can leave the train bringing the number of passengers to two which allows548

passenger 5 to reach (f, in).549

Thanks to Lemma 14 (Copycat Lemma) and to the semantics of train automata, we550

deduce the following:551

B. Bollig, F. Ryabinin, and A. Sangnier XX:15

I Lemma 16. Let N ⊆ New, OW ⊆ OWrite, and s ∈ S. If we have {(s, in), (s, out)} ∩552

TrainReach(TAN(N ,OW)) 6= ∅ and (s, new, u) ∈ ∆ for some u ∈ S, then s ∈ New.553

Hence this last lemma allows us to add new states from New to N . We will now see how554

to increase the set of states OW. The idea is similar but we give as input a state sn in N555

from which we want to check whether an action write can be reached. In the train automaton,556

we hence have to check which states are reachable from this state sn. For this matter, we557

use an extra symbol, > or ⊥, to track the path coming from sn (this symbol equals > when558

the state is reachable from sn). Given two sets of states N ⊆ New and OW ⊆ OWrite and559

sn ∈ N , we build a train automaton TAOW(N ,OW, sn) to check whether sn can be added560

to OW. We let TAOW(N ,OW, sn) = (ST , ιcT , ιT , Sout, Sin,∆T , sf) with:561

ST = (S × {out, in} × {>,⊥}) ∪ {ιT , sf}562

Sout = (S × {out} × {>,⊥}) ∪ {ιT },563

Sin = S × {in} × {>,⊥},564

ιcT = (ι, out,⊥),565

∆T is the set of transitions verifying:566

(ιT ,=0, (u, out,⊥)) ∈ ∆T for all u ∈ S such that there is (s, new, u) ∈ ∆ with s ∈ N ,567

(ιT ,=0, (u, out,>)) ∈ ∆T for all u ∈ S such that (sn, new, u) ∈ ∆,568

((s, out, v),E, (s′, in, v)) ∈ ∆T for all (s,write, s′) ∈ ∆ and v ∈ {>,⊥},569

((s, in, v),Q, sf) ∈ ∆T for all s ∈ OW and v ∈ {>,⊥},570

((s, out, v), a, (s′, out, v)), ((s, in, v), a, (s′, in, v)) for all (s, a, s′) ∈ ∆ with a ∈ T and571

all v ∈ {>,⊥}.572

Hence in this train automaton, if a state (s, in,>) or (s, out,>) is reached, the passenger573

reaching this state necessarily went through the state (sn, out,>). We have the following574

result whose correcteness can be proved the same way as for Lemma 16.575

I Lemma 17. Let N ⊆ New, OW ⊆ OWrite, and sn ∈ N . If there exists s ∈ S such that576

(s, out,>) ∈ TrainReach(TAOW(N ,OW, sn)) and such that (s,write, u) ∈ ∆ for some u ∈ S,577

then sn ∈ OWrite.578

These two last lemmas give us a technique to compute the sets New and OWrite. We579

present a procedure that computes iteratively two families of sets of states (Ni)i∈N and580

(OWi)i∈N such that Ni ⊆ Ni+1 ⊆ New and OWi ⊆ OWi+1 ⊆ OWrite for all i ∈ N. We set581

N0 = OW0 = ∅ and, for all i ∈ N:582

Ni+1 = Ni ∪
{
s ∈ S

∣∣∣∣ {(s, in), (s, out)} ∩ TrainReach(TAN(Ni,OWi)) 6= ∅ and
(s, new, u) ∈ ∆ for some u ∈ S

}
583

OWi+1 = OWi ∪

sn ∈ Ni+1

∣∣∣∣∣∣
∃s ∈ S.
(s, out,>) ∈ TrainReach(TAOW(Ni+1,OWi, sn)) and

(s,write, u) ∈ ∆ for some u ∈ S

584

Note that, since the set of states S is finite, these computations terminate and, thanks to585

Theorem 13, we know they are in Pspace. We define N =
⋃
i∈NNi and OW =

⋃
i∈NOWi.586

Due to Lemmas 16 and 17, we have N ⊆ New and OW ⊆ OWrite. We can also obtain the587

inclusion in the other directions by reasoning by induction on the length of the executions of588

the DMA and looking at the processes that can create a new value or can overwrite their589

value in the global memory in such executions.590

I Lemma 18. We have N = New and OW = OWrite.591

XX:16 Reachability in Distributed Memory Automata

Now, to conclude, we can assume w.l.o.g. that, from each of the final states s in F , there592

is a transition (s, new, s′) in ∆ (if not we can add one) and hence solving Reachability593

amounts at verifying whether F ∩N 6= ∅. Since, as said earlier, N and OW can be computed594

in PSpace, this allows us to deduce the following theorem:595

I Theorem 19. Reachability is in Pspace.596

6 Conclusion597

We have shown that the control-state reachability problem for DMA is in Pspace when598

the number of processes is a parameter and is Pspace-complete when this number is fixed.599

The upper-bound for the parameterized case is obtained thanks to an algorithm which uses600

as a sub-routine a solution in polynomial space for the control-state reachability in train601

automata. If we could find a better complexity bound as P or NP for Train-Reachability,602

this bound will as well applied to Reachability in DMA. Similarly if we find another603

algorithm to solve Reachability in DMA with a better upper bound, this would lead to a604

better solution for Train-Reachability (which can easily be encoded into Reachability605

for DMA). In fact, we do not have at the moment any lower bound for these two problems606

and the proof to obtain the lower bound for Fixed-Reachability crucially depends on the607

fact that we know the number of involved processes. In the future, we plan to study better608

the Train-Reachability problem and some of its extension and as well to see how the609

reasoning presented here can be applied to verify concrete distributed algorithms.610

References611

1 C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach to the612

verification of distributed algorithms. Inf. Comput., 259(Part 3):305–327, 2018. URL: https:613

//doi.org/10.1016/j.ic.2017.05.006.614

2 Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages. In615

Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors, Fundamentals of Computation Theory, 16th616

International Symposium, FCT 2007, volume 4639 of Lecture Notes in Computer Science,617

pages 88–99. Springer, 2007.618

3 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and619

Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed620

Computing Theory. Morgan & Claypool Publishers, 2015.621

4 M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on622

data words. ACM Transactions on Computational Logic, 12(4):27, 2011.623

5 Benedikt Bollig, Patricia Bouyer, and Fabian Reiter. Identifiers in registers - describing624

network algorithms with logic. In Mikolaj Bojanczyk and Alex Simpson, editors, Foundations625

of Software Science and Computation Structures - 22nd International Conference, FOSSACS626

2019, volume 11425 of Lecture Notes in Computer Science, pages 115–132. Springer, 2019.627

6 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. The renaming problem in shared628

memory systems: An introduction. Comput. Sci. Rev., 5(3):229–251, 2011.629

7 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM630

Trans. Comput. Log., 10(3):16:1–16:30, 2009.631

8 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited632

talk). In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on633

Theoretical Aspects of Computer Science (STACS 2014), volume 25 of LIPIcs, pages 1–10.634

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.635

9 Wan Fokkink. Distributed Algorithms: An Intuitive Approach. MIT Press, 2013.636

https://doi.org/10.1016/j.ic.2017.05.006
https://doi.org/10.1016/j.ic.2017.05.006
https://doi.org/10.1016/j.ic.2017.05.006

B. Bollig, F. Ryabinin, and A. Sangnier XX:17

10 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,637

134(2):329–363, 1994.638

11 Dexter Kozen. Lower bounds for natural proof systems. In FOCS’77, pages 254–266. IEEE639

Computer Society, 1977.640

12 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.641

13 Nikos Tzevelekos. Fresh-register automata. In Thomas Ball and Mooly Sagiv, editors,642

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming643

Languages, POPL 2011, pages 295–306. ACM, 2011.644

XX:18 Reachability in Distributed Memory Automata

A Proofs of Section 4645

A.1 Proof of Proposition 9646

Before to prove this proposition, we need an intermediate lemma which can be obtained by647

iteratively applying Lemma 8.648

I Lemma 20. Let M > cap. Let θ be an initial configuration and θ′ = (s, c) such that649

M ≥ c. If there is an execution from θ to θ′, then there exists an M -bounded execution from650

θ to some θ′′ such that θ′ � θ′′.651

Proof. Let ρ be an execution from θ to θ′. If ρ is M -bounded then we obtain the result652

with θ′ = θ′′. We assume now that ρ is not M -bounded. Assume ρ = θ0
(a0,p0)−−−−→TA653

θ1
(a1,p1)−−−−→TA θ2 . . . θk−1

(ak−1,pk−1)−−−−−−−−→TA θk with θi = (si, ci) and θ0 = θ and θk = θ′. Let654

M ′ = max({ci | i ∈ [1, k − 1]}). Since ρ is not M -bounded we have M ′ > M > cap. Let i, `655

be two indices in [1, k − 1] such that i < ` and ci = M ′ − 1 and c` = M ′ − 1 and cj = M ′656

for all j ∈ [i + 1, ` − 1] (by definition of M ′ and of the transition relation −→TA and since657

the capacity of θ′ is equal to c < M , two such indices necessarily exist). Intuitively, from658

θi the train capacity goes to M ′ and the next time one passenger goes out is just before659

θ`. Note that between θi+1 and θ`, no passenger enters the train, otherwise there will be660

strictly more passengers in the train than M ′. Using Lemma 8, we deduce that there exists661

an (M ′ − 1)-bounded execution from θi to some θ′` such that θ` � θ′`.662

Furthermore, using repeteadly Lemma 7, we deduce that from θ′` we can perform the663

same actions as in ρ after θ` leading to a state θ′k such that θk � θ′k. As a consequence we664

can build a new execution ρ′ from θ to θ′k. If, in this execution, there is still a configuration665

where the capacity of the train is M ′, we can iterate the previous process until we obtain an666

(M ′ − 1)-bounded execution.667

Finally, we can iterate all these operations until we get a M -bounded execution from θ668

to some θ′′ such that θ′ � θ′′. J669

By iterating the last lemma, we obtain the proof of Proposition 9.670

Proof. Let ρ be an execution from θ to θ′. If ρ is (cap + 2)-bounded then we obtain the671

result with θ′ = θ′′. We assume now that ρ is not (cap + 2)-bounded. We need to deal with672

different cases.673

1. Case c′ ≤ cap + 2 and s 6= sf . Lemma 20 tells us there exists a (cap + 2)-bounded674

execution from θ to θ′′ = (s′′, c′′) with θ′ � θ′′. Since s 6= sf , by definition of the relation675

�, we have s′′[p] = s = s′[p].676

2. Case c′ ≤ cap+1 and s = sf . Without loss of generality, we can assume that θ′ is the first677

configuration in ρ where s appears. Hence ρ is of the form θ −→TA . . . −→TA θ̂′
(Q,p)−−−→TA θ′678

with θ̂′ = (ŝ, c′ + 1) and ŝ[p] 6= sf . As for the previous case, there is a (cap + 2)-bounded679

execution from θ to θ̂′′ with θ̂′ � θ̂′′ and from θ̂′′ we can perform the action (Q, p) and680

reach θ′′ with a (cap + 2)-bounded excution.681

3. Case c′ > cap + 2 and s 6= sf . Let θ̂′ = (ŝ, ĉ) be the last configuration in ρ with682

ĉ = cap + 1. Since c′ > cap + 2, all subsequent configurations in ρ have a train capacity683

greater or equal to cap + 2. Hence from θ̂′ in ρ all the performed actions by passenger684

p have the form (a, p) with a = E or a = >t with cap + 1 > t. Using Lemma 20, there685

exists a (cap + 1)-bounded execution from θ to some θ̂′′ such that θ̂′ � θ̂′′, and from θ̂′′686

we can execute the actions of passenger p performed after θ̂′ in ρ. As a consequence we687

obtain a (cap + 2)-bounded execution from θ to θ′′ = (s′′, c′′) with s′′[p] = s.688

B. Bollig, F. Ryabinin, and A. Sangnier XX:19

4. Case c′ > cap +1 and s = sf . As in case two, where we assume without loss of generality689

that θ′ is the first configuration in ρ where s appears, the last action of ρ is (Q, p) and690

using the same construction as in the previous case, we can build a (cap + 2)-bounded691

execution from θ to a configuration where p is in the same state as in the second last692

configuration of ρ and then we can, from this configuration, reach s. J693

A.2 Proof of Lemma 11694

Proof. Let ρ = θ0
(a0,p0)−−−−→TA θ1

(a1,p1)−−−−→TA θ2 . . .
(ak−1,pk−1)−−−−−−−−→TA θk be a (cap + 2)-bounded695

execution with θ0 = θ and θk = θ′ and θi = (si, ci) for all i ∈ [0, k]. Note that since ρ is696

(cap + 2)-bounded we have ci ≤ cap + 2 for all i ∈ [0, k]. For each i ∈ [0, k] we build an697

abstract train configuration ξi = (sci ,Outi, Ini) as follows: sci = si[1], for all s ∈ Sin we have698

Ini(s) = |{p ∈ [2, |θi|] | si[p] = s}| and Out0 = {ι} and Outi = Outi−1 ∪ {s ∈ Sout ∪ {sf} |699

∃p ∈ [2, |θi|].si[p] = s} when i > 0. Note that by definition since θ0 is initial we have θ0 ∈ Jξ0K700

and ξ0 is the initial abstract train configuration ξι. We also have θi ∈ JξiK for all i ∈ [1, k] by701

definition. So we still have to show that for all i ∈ [0, k] we have ξ0 ∗ ξi.702

We can prove that ξi ξi+1 for all i ∈ [0, k − 1] by analysing the transition θi
(ai,pi)−−−−→TA703

θi+1. In fact one can easily verify by a case analysis that we always have ξi
δi,mc
 ξi+1 with704

δi = (si[pi], ai, si+1[pi]) and mc = > iff pi = 1 thanks to the definition of the transition705

relations −→ and and using the fact that ρ is (cap + 2)-bounded. J706

A.3 Proof of Lemma 12707

Proof. Assume there exists a path ξ0
δ0,mc0 ξ1

δ1,mc1 . . .
δK−1,mck−1
 ξk with ξ0 = ξι and708

ξk = ξ′ and ξi = (sci ,Outi, Ini) for all i ∈ [0, k] and δi = (si, ai, s′i) for all i ∈ [0, k − 1]. We709

prove the lemma by induction on the length of this abstract execution. If k = 0, note that710

any initial train configuration θ0 with |θ0| ≥ 2 is a witness for ξι. Now we assume that for711

i ∈ [0, k − 1] there exists a (cap + 2)-bounded execution from an initial train configuration θ712

to θi = (si, ci) and θi is a witness for ξi. We proceed by a case analysis on the shape of the713

transition δi = (si, ai, s′i):714

Suppose mci = >. Then, let θi+1 = (si+1, ci+1) where si+1[1] = s′i, si+1[p] = si[p] for all715

p ∈ [2, |θi|], ci+1 = ci if ai ∈ T , and ci+1 = ci + 1 if ai = E. By definition of the abstract716

transition relation , we can easily verify that θi
ai,1−−→TA θi+1 and θi+1 is witness of ξi+1.717

Moreover, the execution we obtained from θ to θi+1 is (cap + 2)-bounded.718

Suppose mci = ⊥ and si ∈ Sin. Then, there exists p ∈ [2, |θi|] such that si[p] = si. Let719

θi+1 = (si+1, ci+1) where si+1[p] = s′i, si+1[p′] = si[p′] for all p′ ∈ [1, |θi|] \ {p}, ci+1 = ci720

if ai ∈ T , and ci+1 = ci − 1 if ai = Q. By definition of , we have θi
ai,p−−→TA θi+1721

and θi+1 is witness of ξi+1. Moreover, the execution we obtained from θ to θi+1 is722

(cap + 2)-bounded.723

Suppose mci = ⊥ and si ∈ Sout. As θi is a witness for ξi, there exists p ∈ [2, |θi|]724

such that si[p] = si. To still have a witness for ξi+1, we have to keep the state si725

while moving to a new configuration but this is where Lemma 10 (Copycat Lemma)726

plays a role. In fact, we know that there exists an initial train configuration θ′0 with727

|θ′0| = |θ0|+1 and a (cap+2)-bounded execution from θ′0 to θ′i = (s′i, ci) with s′i[p′] = si[p′]728

for all p′ ∈ [1, |θi|] and s′i[|θi| + 1] = si. Then we let θi+1 = (si+1, ci+1) be defined by729

si+1[p] = s′i, si+1[p′] = si[p′] for all p′ ∈ [1, |θ′i|]\{p}, ci+1 = ci if ai ∈ T , and ci+1 = ci+1730

if ai = E. Once more, by definition of the abstract transition relation , we get that731

XX:20 Reachability in Distributed Memory Automata

θ′i
ai,p−−→TA θi+1 and θ′i+1 is witness of ξi+1. Finally, the execution we obtained from θ′ to732

θi+1 is (cap + 2)-bounded. J733

A.4 Proof of Theorem 13734

Proof. Let TA = (S, ιc, ι, Sout, Sin,∆, sf) be a train automaton, s ∈ S and cap ∈ N be the735

maximal constant appearing in ∆. We show that there is an initial train configuration θ736

and a configuration θ′ = (s′, c′) such that s′[p] = s for some p ∈ [1, |θ|] and θ −→∗TA θ′ if and737

only if there is an abstract train configuration ξ = (sc,Out, In) with s = sc or s ∈ Out or738

In(s) > 0 and ξι ∗ ξ.739

First assume that θ −→∗TA θ′. Thanks to Proposition 9, there is a (cap + 2)-bounded740

execution from θ to some θ′′ = (s′′, c′′) such that s′′[p] = s. Now using Lemma 11, there741

exists an abstract train configuration ξ′ such that θ′′ ∈ Jξ′K and ξι ∗ ξ′. Since θ′′ ∈ Jξ′K we742

deduce that s = sc or s ∈ Out or In(s) > 0.743

Assume now that there is an abstract train configuration ξ = (sc,Out, In) with s = sc or744

s ∈ Out or In(s) > 0, and ξι ∗ ξ. By Lemma 12, there exist an initial configuration θ and745

θ′ ∈ Jξ′K such that there is a (cap + 2)-bounded execution from θ to θ′ and θ′ is a witness of746

ξ′. Since θ′ is a witness of ξ′ and s = sc or s ∈ Out or In(s) > 0 , we deduce that θ′ = (s′, c′)747

is such that s′[p] = s for some p ∈ [1, |θ|].748

Now note that to reduce properly Train-Reachability to a reachability query in (Ξ,),749

we can simply add in this latter graph a final state fin and connect any state ξ = (sc,Out, In)750

with s = sc or s ∈ Out or In(s) > 0 to fin. In that case the answer to Train-Reachability751

is positive iff fin is reachable from ξι. This method gives us a Pspace-upper bound using the752

fact that |Ξ| is exponential in the size of TA, that reachability in a graph is NLOGspace753

and that NPspace=Pspace thanks to Savitch’s theorem. J754

B Proofs of Section 5755

B.1 Sketch of proof of Lemma 14756

Sketch of proof. To obtain this result we just execute from γ′′0 the same actions as in the757

execution γ0 =⇒∗A γ1 making move only the processes numbered from 1 to |γ0| (which is758

equal to |γ1|) and then we mimick the execution γ′0 =⇒∗A γ′1 for the processes from |γ0|+ 1 to759

|γ0|+ |γ′0| to finally reach the configuration γ′′1 . In order for this construction to be feasible,760

we should only be careful that none of the new values chosen by the processes 1 to |γ0| is a761

value initially locally stored by one of the processes |γ0 + 1| to |γ0|+ |γ′0| in γ′′0 . Since, in the762

semantics of DMA the value of the stored data is itself not important, we can build such an763

execution. J764

B.2 Sketch of proof of Lemma 16765

Sketch of proof. Let s ∈ S such that (s, in) ∈ TrainReach(TAN(N ,OW)) or (s, out) ∈766

TrainReach(TAN(N ,OW)) and such that (s, new, u) ∈ ∆. We have to prove that there767

exist some γ, γ′ ∈ CA such that γ is initial and γ′ = (s′, `′,M′) and γ =⇒∗A γ′ and768

s ∈ states(γ′) and (s, new, u) ∈ ∆ for some u ∈ S. Assume for instance that (s, in) ∈769

TrainReach(TAN(N ,OW)). In TAN(N ,OW), we then have an execution θ0 −→TAN(N ,OW)770

θ1 −→TAN(N ,OW) θ2 . . . −→TAN(N ,OW) θk where θ0 is an initial configuration and, if n =771

|θ1| = |θ2| = . . . = |θk| and θk = (sk, ck), then sk[p] = (s, in) for some p ∈ [1, n]. We772

recall that in such execution, the first passenger is the controller, hence if θ0 = (s0, c0) then773

s0[1] = ιcT = (ι, out). The idea behind the proof is that, in the execution of the DMA A, the774

B. Bollig, F. Ryabinin, and A. Sangnier XX:21

n first processes will simulate the n passengers of the train but we will need more processes775

in the DMA to perform properly the simulation. For instance, the first transition a passenger776

(which is not the controller) is taking is necessarily of the form (ιT ,=0, (u, out)) ∈ ∆T such777

that there is (s′, new, u) ∈ ∆ with s′ ∈ N and since N ⊆ New, we know that there exists an778

execution in A which allows us to bring a process in s′, so we use extra processes to simulate779

this execution bringing a process in s′ and when it chooses a new value, we assume that it780

chooses the same value as the one from the first process (which simulates the controller).781

We assume w.l.o.g. that this value has not been written in the global memory yet. This is782

possible because during the execution to bring a process in s′ we can ensure we do not use783

this value and furthermore when a passenger goes through (ιT ,=0, (u, out)), it means that784

nobody is on the train, i.e., no process has written its value to the global memory.785

By applying many times the Copycat Lemma 14, we are hence able to bring enough786

processes to mimick the execution of the train automaton. Another key point is what787

happened when a passenger leaves the train by taking a transition ((s′, in),Q, sf) ∈ ∆T with788

s′ ∈ OW. Here again we know, since OW ⊆ OWrite, that it is possible to add processes to789

our simulation in order to allow the process in s′ (which simulates the passenger in (s′, in))790

to write a new value in the global memory simulating the fact that it leaves the train. Then791

the result follows from the semantics of train automata. J792

B.3 Proof of Lemma 18793

Proof. First note that, thanks to Lemmas 16 and 17, and due to the construction of N and794

OW, we have N ⊆ New and OW ⊆ OWrite.795

We now show how to prove the other directions. We consider a run of A of the form796

ρ = γ0
(σ0,p0)=====⇒A γ1

(σ1,p1)=====⇒A γ2 · · ·
(σk,pk)=====⇒A γk+1 where γi = (si, `i,Mi) for all i ∈ [0, k+ 1]797

and γ0 is initial. To this run we associated two sequences (N ρ
i)0≤i≤k+1 and (OWρ

i)0≤i≤k+1798

such that N ρ
i ,OW

ρ
i ⊆ S for all i ∈ [0, k + 1] and:799

N ρ
0 = OWρ

0 = ∅,800

if σi = new then N ρ
i+1 = N ρ

i ∪ {si[pi]} and N
ρ
i+1 = N ρ

i otherwise,801

if σi = write and if there exists j < i such that σj = new and pj = pi and pk = pi implies802

σk ∈ T for all j < k < i, then OWρ
i+1 = OWρ

i ∪ {sj [pj]} and OW
ρ
i+1 = OWρ

i otherwise.803

We can show by induction that N ρ
i ⊆ N and OWρ

i ⊆ OW for all i ∈ [0, k + 1].804

First note that this holds for N ρ
0 and OWρ

0. Then, thanks to the semantics of DMA805

and of train automata, we can show that if s ∈ N ρ
i+1 \ N

ρ
i then {(s, in), (s, out)} ∩806

TrainReach(TAN(N ρ
i ,OW

ρ
i)) 6= ∅. In fact, we simulate in the train automaton the ac-807

tion of the processes which have the same data in their local memory as the process pi in808

γi. Note that by definition of DMA, there can be at most one process with this data that809

did not perform a new and it corresponds to the controller in the train automaton. Since by810

induction hypothesis N ρ
i ⊆ N and OWρ

i ⊆ OW, from the way the train automaton TAN is811

built, we have that {(s, in), (s, out)} ∩ TrainReach(TAN(N ,OW)) 6= ∅. Since s ∈ N ρ
i+1 \ N

ρ
i812

and σi = new we have as well that (si[pi], new, si+1[pi]) ∈ ∆ with s = si[pi]. From the813

definition of N , this allows us to deduce that s ∈ N and consequently N ρ
i+1 ⊆ N .814

Similarly, assume sn ∈ OWρ
i+1 \OW

ρ
i and let s = si[pi]. By definition we know that there815

exists j < i such that σj = new and pj = pi and pk = pi implies σk ∈ T for all j < k < i816

and sj [pj] = sn. Then, thanks to the semantics of DMA and of train automata, we can show817

(s, out,>) ∈ TrainReach(TAOW(N ρ
i ,OW

ρ
i , sn)). Using the same reasoning as for Ni+1, we818

can conclude that sn ∈ OW and consequently OWρ
i+1 ⊆ OW.819

Using the previous proof we can easily conclude that N ⊇ New and OW ⊇ OWrite J820

XX:22 Reachability in Distributed Memory Automata

B.4 Proof of Theorem 19821

Proof. Let A = (S, ι,∆, F) be a DMA such that for each s in F , there is a transition822

(s, new, s′) in ∆. We show that γ =⇒∗A γ′ for some initial γ ∈ CA and some final γ′ ∈ CA iff823

F ∩N 6= ∅.824

First assume F ∩N 6= ∅, and let s ∈ F ∩N 6= ∅. By Lemma 18, we have s ∈ New. Hence825

there exist some γ, γ′ ∈ CA such that γ is initial and γ′ = (s′, `′,M′) and γ =⇒∗A γ′ and826

s ∈ states(γ′). But since s ∈ F , we have that γ′ is final.827

Assume now that γ =⇒∗A γ′ for some initial γ ∈ CA and some final γ′ ∈ CA. Since γ′ is828

final, there exists s ∈ F such that s ∈ states(γ′) and from this last configuration, there is a829

transition (s, new, s′) in ∆. Consequently s satisfies New. Thanks to Lemma 18, we have830

that s ∈ F ∩N .831

Finally thanks to Theorem 13, we know that we can compute N and OW in Pspace. J832

	Introduction
	Reachability in Distributed Memory Automata
	Considering a fixed number of processes
	The parameterized train problem
	Definition
	Bounding the number of passengers
	Solving Train-Reachability

	An algorithm for reachability
	Conclusion
	Proofs of Section 4
	Proof of Proposition 9
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Theorem 13

	Proofs of Section 5
	Sketch of proof of Lemma 14
	Sketch of proof of Lemma 16
	Proof of Lemma 18
	Proof of Theorem 19

