
Taming Past LTL and Flat Counter Systems⋆

Stéphane Demri1, Amit Kumar Dhar2, and Arnaud Sangnier2

1 LSV, CNRS, ENS Cachan, INRIA, France
2 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France

Abstract. Reachability and LTL model-checking problems for flat coun-
ter systems are known to be decidable but whereas the reachability prob-
lem can be shown in NP, the best known complexity upper bound for the
latter problem is made of a tower of several exponentials. Herein, we show
that the problem is only NP-complete even if LTL admits past-time op-
erators and arithmetical constraints on counters. Actually, the NP upper
bound is shown by adequately combining a new stuttering theorem for
Past LTL and the property of small integer solutions for quantifier-free
Presburger formulae. Other complexity results are proved, for instance
for restricted classes of flat counter systems.

1 Introduction

Flat counter systems. Counter systems are finite-state automata equipped with
program variables (counters) interpreted over non-negative integers. They are
used in many places like, broadcast protocols [8] and programs with pointers [11]
to quote a few examples. But, alongwith their large scope of usability, many
problems on general counter systems are known to be undecidable. Indeed, this
computational model can simulate Turing machines. Decidability of reachability
problems or model-checking problems based on temporal logics, can be regained
by considering subclasses of counter systems, see e.g. [13]. An important and
natural class of counter systems, in which various practical cases of infinite-state
systems (e.g. broadcast protocols [10]) can be modelled, are those with a flat
control graph, i.e, those where no control state occurs in more than one simple
cycle, see e.g. [1,5,10,19]. Decidability results on verifying safety and reachability
properties on flat counter systems have been obtained in [5,10,3]. However, so far,
such properties have been rarely considered in the framework of any formal spec-
ification language (see an exception in [4]). In [6], a class of Presburger counter
systems is identified for which the local model checking problem for Presburger-
CTL⋆ is shown decidable. These are Presburger counter systems defined over flat
control graphs with arcs labelled by adequate Presburger formulae. Even though
flatness is clearly a substantial restriction, it is shown in [19] that many classes
of counter systems with computable Presburger-definable reachability sets are
flattable, i.e. there exists a flat unfolding of the counter system with identical
reachability sets. Hence, the possibility of flattening a counter system is strongly

⋆ Supported by ANR project REACHARD ANR-11-BS02-001.

related to semilinearity of its reachability set. Moreover, in [4] model-checking
relational counter systems over LTL formulae is shown decidable when restricted
to flat formulae (their translation into automata leads to flat structures).
Towards the complexity of temporal model-checking flat counter systems. In [6], it
is shown that CTL⋆ model-checking over the class of so-called admissible counter
systems is decidable by reduction into the satisfiability problem for Presburger
arithmetic, the decidable first-order theory of natural numbers with addition.
Obviously CTL⋆ properties are more expressive than reachability properties but
this has a cost. However, for the class of counter systems considered in this paper,
this provides a very rough complexity upper bound in 4ExpTime. Herein, our
goal is to revisit standard decidability results for subclasses of counter systems
obtained by translation into Presburger arithmetic in order to obtain optimal
complexity upper bounds.
Our contributions. In the paper, we establish several computational complexity
characterizations of model-checking problems restricted to flat counter systems
in the presence of a rich LTL-like specification language with arithmetical con-
straints and past-time operators. Not only we provide an optimal complexity
but also, we believe that our proof technique could be reused for further exten-
sions. Indeed, we combine three proof techniques: the general stuttering theo-
rem [16], the property of small integer solutions of equation systems [2] (this
latter technique is used since [23]) and the elimination of disjunctions in guards
(see Section 5.2). Let us be a bit more precise.

We extend the stuttering principle established in [16] for LTL (without past-
time operators) to Past LTL. The stuttering theorem from [16] for LTL without
past-time operators has been used to show that LTL model-checking over weak
Kripke structures is in NP [15] (weakness corresponds to flatness). It is worth
noting that another way to show a similar result would be to eliminate past-
time operators thanks to Gabbay’s Separation Theorem [12] (preserving initial
equivalence) but the temporal depth of formulae might increase at least expo-
nentially, which is a crucial parameter in our complexity analysis. We show that
the model-checking problem restricted to flat counter systems in the presence of
LTL with past-time operators is in NP (Theorem 17) by combining the above-
mentioned proof techniques. Apart from the use of the general stuttering theorem
(Theorem 3), we take advantage of the other properties stated for instance in
Lemma 12 (characterization of runs by quantifier-free Presburger formulae) and
Theorem 14 (elimination of disjunctions in guards preserving flatness). In the
paper, complexity results for fragments/subproblems are also considered. For
instance, we get a sharp lower bound since we establish that the model-checking
problem on path schemas (a fundamental structure in flat counter systems) with
only 2 loops is already NP-hard (see Lemma 11). A summary table can be found
in Section 6.

Omitted proofs can be found in the technical appendix.

2

2 Flat Counter Systems and its LTL Dialect

We write N [resp. Z] to denote the set of natural numbers [resp. integers] and
[i, j] to denote {k ∈ Z : i ≤ k and k ≤ j}. For v ∈ Z

n, v[i] denotes the ith

element of v for every i ∈ [1, n]. For some n-ary tuple t, we write πj(t) to denote
the jth element of t (j ≤ n). In the sequel, integers are encoded with a binary
representation. For a finite alphabet Σ, Σ∗ represents the set of finite words over
Σ, Σ+ the set of finite non-empty words over Σ and Σω the set of ω-words over
Σ. For a finite word w = a1 . . . ak over Σ, we write len(w) to denote its length k.
For 0 ≤ i < len(w), w(i) represents the (i+ 1)-th letter of the word, here ai+1.

2.1 Counter Systems

Let C = {x1, x2, . . .} be a countably infinite set of counters (variables interpreted
over non-negative integers) and AT = {p1, p2, . . .} be a countable infinite set
of propositional variables (abstract properties about program points). We write
Cn to denote {x1, x2, . . . , xn}. The set G(Cn) of guards (arithmetical constraints
on counters in Cn) is defined inductively as follows: t ::= a.x | t + t and
g ::= t ∼ b | g∧g | g∨g, where x ∈ Cn, a ∈ Z, b ∈ Z and ∼∈ {=,≤,≥, <,>}.
Such guards are closed under negations (but negation is not part of the logical
connectives) and the truth constants ⊤ and ⊥ can be easily defined too. Given
g ∈ G(Cn) and a vector v ∈ N

n, we say that v satisfies g, written v |= g, if the
formula obtained by replacing each xi by v[i] holds.

Definition 1 (Counter system). For n ≥ 1, a counter system S is a tuple
〈Q, Cn, ∆, l〉 where Q is a finite set of control states, l : Q → 2AT is a labelling
function and ∆ ⊆ Q × G(Cn)× Z

n ×Q is a finite set of edges labeled by guards
and updates of the counter values (transitions).

For δ = (q, g,u, q′) in∆, we use the following notations source(δ) = q, target(δ) =
q′, guard(δ) = g and update(δ) = u. As usual, to a counter system S =
〈Q, Cn, ∆, l〉, we associate a labeled transition system TS(S) = 〈C,→〉 where
C = Q × N

n is the set of configurations and →⊆ C × ∆ × C is the transi-

tion relation defined by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→ (also written 〈q,v〉
δ
−→ 〈q′,v′〉) iff

q = source(δ), q′ = target(δ), v |= guard(δ) and v′ = v + update(δ). In such
a transition system, the counter values are non-negative since C = Q × N

n.
We extend the transition relation → to finite words of transitions in ∆+ as
follows. For each w = δ1δ2 . . . δα ∈ ∆+, we have 〈q,v〉

w
−→ 〈q′,v′〉 if there are

c0, c1, . . . , cα+1 ∈ C such that ci
δi−→ ci+1 for all i ∈ [0, α], c0 = 〈q,v〉 and

cα+1 = 〈q′,v′〉. We say that an ω-word w ∈ ∆ω is fireable in S from a configu-
ration c0 ∈ Q × N

n if for all finite prefixes w′ of w there exists a configuration

c ∈ Q × N
n such that c0

w′

−→ c. We write lab(c0) to denote the set of ω-words
(labels) which are fireable from c0 in S.

Given a configuration c0 ∈ Q × N
n, a run ρ starting from c0 in S is an

infinite path in the associated transition system TS(S) denoted as: ρ := c0
δ0−→

3

· · ·
δα−1

−−−→ cα
δα−→ · · · where ci ∈ Q × N

n and δi ∈ ∆ for all i ∈ N. Let lab(ρ)
be the ω-word δ0δ1 . . . associated to the run ρ. Note that by definition we have
lab(ρ) ∈ lab(c0). When E is an ω-regular expression over the finite alphabet
∆ and c0 is an initial configuration, lab(E, c0) is defined as the set of labels of
infinite runs ρ starting at c0 such that lab(ρ) belongs to the language defined by
E. So lab(E, c0) ⊆ lab(c0).

We say that a counter system is flat if every node in the underlying graph
belongs to at most one simple cycle (a cycle being simple if no edge is repeated
twice in it) [5]. In a flat counter system, simple cycles can be organized as a
DAG where two simple cycles are in the relation whenever there is path between
a node of the first cycle and a node of the second cycle. We denote by CFS the
class of flat counter systems.

q1

q2

q3

q4

q5

q6

On the left, we present the control graph of a flat
counter system (guards and updates are omitted). A
Kripke structure S is a tuple 〈Q,∆, l〉 where∆ ⊆ Q×Q
and l is labelling. It can be viewed as a degenerate
form of counter systems without counters (in the se-
quel, we take the freedom to see them as counter sys-
tems). All standard notions on counter systems nat-
urally apply to Kripke structures too (configuration,
run, flatness, etc.). In the sequel, we shall also investi-
gate the complexity of model-checking problems on flat
Kripke structures (such a class is denoted by KFS).

2.2 Linear Temporal Logic with Past and Arithmetical Constraints

Model-checking problem for Past LTL over finite state systems is known to be
PSpace-complete. In spite of this nice feature, a propositional variable p only
represents an abstract property about the current configuration of the system.
A more satisfactory solution is to include in the logical language the possibility
to express directly constraints between variables of the program, whence giving
up the standard abstraction made with propositional variables. We define below
a version of LTL dedicated to counter systems in which the atomic formulae are
linear constraints; this is analogous to the use of concrete domains in description
logics [20]. Note that capacity constraints from [7] are arithmetical constraints
different from those defined below. Formulae of PLTL[C] are defined from φ ::=
p | g | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ where p ∈ AT
and g ∈ G(Cn) for some n. We may use the standard abbreviations F, G, G−1 etc.
For instance, the formula GF(x1+2 ≥ x2) states that infinitely often the value of
counter 1 plus 2 is greater than the value of counter 2. The past-time operators
S and X−1 do not add expressive power to the logic itself, but it is known that
it helps a lot to express properties succinctly, see e.g. [18,17]. The temporal
depth of φ, written td(φ), is defined as the maximal number of imbrications
of temporal operators in φ. Restriction of PLTL[C] to atomic formulae from
AT only is written PLTL[∅], standard version of LTL with past-time operators.
Models of PLTL[C] are essentially abstractions of runs from counter systems,

4

i.e. ω-sequences σ : N → 2AT × N
C. Given a model σ and a position i ∈ N,

the satisfaction relation |= for PLTL[C] is defined as follows (other cases can be
defined similarly, see e.g. [17]):

– σ, i |= p
def
⇔ p ∈ π1(σ(i)), σ, i |= g

def
⇔ vi |= g where vi[j]

def

= π2(σ(i))(xj),

– σ, i |= Xφ
def
⇔ σ, i + 1 |= φ,

– σ, i |= φ1Sφ2
def
⇔ σ, j |= φ2 for some 0 ≤ j ≤ i s.t. σ, k |= φ1, ∀j < k ≤ i.

Given 〈Q, Cn, ∆, l〉 and a run ρ := 〈q0,v0〉
δ0−→ · · ·

δp−1

−−−→ 〈qp,vp〉
δp
−→ · · · ,

we consider the model σρ : N → 2AT × N
C such that π1(σρ(i))

def

= l(qi) and

π2(σρ(i))(xj)
def

= vi[j] for all j ∈ [1, n] and all i ∈ N. Note that π2(σρ(i))(xj) is
arbitrary for j 6∈ [1, n]. As expected, we extend the satisfaction relation to runs

so that ρ, i |= φ
def

⇔ σρ, i |= φ whenever φ is built from counters in Cn.
Given a fragment L of PLTL[C] and a class C of counter systems, we write

MC(L, C) to denote the existential model checking problem: given S ∈ C, a con-
figuration c0 and φ ∈ L, does there exist ρ starting from c0 such that ρ, 0 |= φ?
In that case, we write S, c0 |= φ. It is known that for the full class of counter sys-
tems, the model-checking problem is undecidable, see e.g. [21]. Some restrictions,
such as flatness, can lead to decidability as shown in [6] but the decision proce-
dure there involves an exponential reduction to Presburger Arithmetic, whence
the high complexity.

Theorem 2. [6,15] MC(PLTL[C], CFS) can be solved in 4ExpTime.
MC(PLTL[∅],KFS) restricted to formulae with temporal operators U,X is NP-
complete.

Our main goal is to characterize the complexity of MC(PLTL[C], CFS).

3 Stuttering Theorem for PLTL[∅]

Stuttering of finite words or single letters has been instrumental to show results
about the expressive power of PLTL[∅] fragments, see e.g. [22,16]; for instance,
PLTL[∅] restricted to the temporal operator U characterizes the class of formu-
lae defining classes of models invariant under stuttering. This is refined in [16]
for PLTL[∅] restricted to U and X, by taking into account not only the U-depth
but also the X-depth of formulae and by introducing a principle of stuttering
that involves both letter stuttering and word stuttering. In this section, we es-
tablish another substantial generalization that involves PLTL[∅] with past-time
temporal operators. Roughly speaking, we show that if σ1s

Mσ2, 0 |= φ where
σ1s

Mσ2 is a PLTL[∅] model (σ1, s being finite words), φ ∈ PLTL[∅], td(φ) ≤ N

and M ≥ 2N + 1, then σ1s
2N+1σ2, 0 |= φ (and other related properties). This

extends a result without past-time operators [15]. Moreover, this turns out to
be a key property (Theorem 3) to establish the NP upper bound even in the
presence of counters. Note that Theorem 3 below is interesting for its own sake,
independently of our investigation on flat counter systems. By lack of space, we
state below the main definitions and result.

5

Given M,M ′, N ∈ N, we write M ≈N M ′ iff Min(M,N) = Min(M ′, N).

Given w = w1u
Mw2, w

′ = w1u
M ′

w2 ∈ Σω and i, i′ ∈ N, we define an equivalence
relation 〈w, i〉 ≈N 〈w′, i′〉 (implicitly parameterized by w1, w2 and u) such that
〈w, i〉 ≈N 〈w′, i′〉 means that the number of copies of u before position i and the
number of copies of u before position i′ are related by ≈N and the same applies
for the number of copies after the positions. Moreover, if i and i′ occur in the
part where u is repeated, then they correspond to identical positions in u. More

formally, 〈w, i〉 ≈N 〈w′, i′〉
def

⇔ M ≈2N M ′ and one of the following conditions
holds true: (1) i, i′ < len(w1) + N · len(u) and i = i′, (2) i ≥ len(w1) + (M −
N) · len(u), i′ ≥ len(w1)+ (M ′ −N) · len(u) and (i− i′) = (M −M ′) · len(u), (3)
len(w1)+N · len(u) ≤ i < len(w1)+ (M −N) · len(u), len(w1)+N · len(u) ≤ i′ <

len(w1)+ (M ′ −N) · len(u) and |i− i′| = 0 mod len(u). We state our stuttering
theorem for PLTL[∅] that is tailored for our future needs.

Theorem 3 (Stuttering). Let σ = σ1s
Mσ2, σ

′ = σ1s
M ′

σ2 ∈ (2AT)ω and i, i′ ∈
N such that N ≥ 2, M,M ′ ≥ 2N + 1 and 〈σ, i〉 ≈N 〈σ′, i′〉. Then, for every
PLTL[∅] formula φ with td(φ) ≤ N , we have σ, i |= φ iff σ′, i |= φ.

Proof. (sketch) The proof is by structural induction on the formula but first we
need to establish properties whose proofs can be found in Appendix A. Let w =
w1u

Mw2, w
′ = w1u

M ′

w2 ∈ Σω, i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1
and 〈w, i〉 ≈N 〈w′, i′〉. We can show the following properties:

(Claim 1) 〈w, i〉 ≈N−1 〈w′, i′〉 and w(i) = w′(i′).
(Claim 2) 〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉 and i, i′ > 0 implies 〈w, i − 1〉 ≈N−1

〈w′, i′ − 1〉.
(Claim 3) For all j ≥ i, there is j′ ≥ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for

all k′ ∈ [i′, j′ − 1], there is k ∈ [i, j − 1] such that 〈w, k〉 ≈N−1 〈w′, k′〉.
(Claim 4) For all j ≤ i, there is j′ ≤ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for

all k′ ∈ [j′ − 1, i′], there is k ∈ [j − 1, i] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

By way of example, let us present the induction step for subformulae of the form
ψ1Uψ2. We show that σ, i |= ψ1Uψ2 implies σ′, i′ |= ψ1Uψ2. Suppose there is
j ≥ i such that σ, j |= ψ2 and for every k ∈ [i, j − 1], we have σ, k |= ψ1. There
is j′ ≥ i′ satisfying (Claim 3). Since td(ψ1), td(ψ2) ≤ N − 1, by (IH), we have
σ′, j′ |= ψ2. Moreover, for every k′ ∈ [i′, j′ − 1], there is k ∈ [i, j − 1] such that
〈w, k〉 ≈N−1 〈w′, k′〉 and by (IH), we have σ′, k′ |= ψ1 for every k′ ∈ [i′, j′ − 1].
Hence, σ′, i′ |= ψ1Uψ2. ⊓⊔

An alternative proof consists in using Ehrenfeucht-Fraïssé games [9].

4 Fundamental Structures: Minimal Path Schemas

In this section, we introduce the notion of a fundamental structure for flat
counter systems, namely a path schema. Indeed, every flat counter system can be
decomposed into a finite set of minimal path schemas and there are only an expo-
nential number of them. So, all our nondeterministic algorithms on flat counter
systems have a preliminary step that first guesses a minimal path schema.

6

4.1 Minimal Path Schemas

Let S = 〈Q, Cn, ∆, l〉 be a flat counter system. A path segment p of S is a finite
sequence of transitions from ∆ such that target(p(i)) = source(p(i + 1)) for all
0 ≤ i < len(p) − 1. We write first(p) [resp. last(p)] to denote the first [resp.
last] control state of a path segment, in other words first(p) = source(p(0)) and
last(p) = target(p(len(p)− 1)). We also write effect(p) to denote the sum vector∑

0≤i<len(p) update(p(i)) representing the total effect of the updates along the

path segment. A path segment p is said to be simple if len(p) > 0 and for all
0 ≤ i, j < len(p), p(i) = p(j) implies i = j (no repetition of transitions). A
loop is a simple path segment p such that first(p) = last(p). A path schema
P is an ω-regular expression built over ∆ such that its language represents an
overapproximation of the set of labels obtained from infinite runs following the
transitions of P . A path schema P is of the form p1l

+
1 p2l

+
2 . . . pkl

ω
k where (1) l1,

. . . , lk are loops and (2) p1l1p2l2 . . . pklk is a path segment.
We write len(P) to denote len(p1l1p2l2 . . . pklk) and nbloops(P) as its num-

ber k of loops. Let L(P) denote the set of infinite words in ∆ω which be-
long to the language defined by P . Note that some elements of L(P) may
not correspond to any run because of constraints on counter values. Given
w ∈ L(P), we write iterP (w) to denote the unique tuple in (N \ {0})k−1 such

that w = p1l
iterP (w)[1]
1 p2l

iterP (w)[2]
2 . . . pkl

ω
k . So, for every i ∈ [1, k−1], iterP (w)[i]

is the number of times the loop li is taken. Then, for a configuration c0, the set
iterP (c0) is the set of vectors {iterP (w) ∈ (N\{0})k−1 | w ∈ lab(P, c0)}. Finally,
we say that a run ρ starting in a configuration c0 respects a path schema P if
lab(ρ) ∈ lab(P, c0) and for such a run, we write iterP (ρ) to denote iterP (lab(ρ)).
Note that by definition, if ρ respects P , then each loop li is visited at least once,
and the last one infinitely.

So far, a flat counter system may have an infinite set of path schemas. How-
ever, we can impose minimality conditions on path schemas without sacrifying
completeness. A path schema p1l

+
1 p2l

+
2 . . . pkl

ω
k is minimal whenever p1 · · · pk is

either the empty word or a simple non-loop segment, and l1, . . . , lk are loops
with disjoint sets of transitions.

Lemma 4. Given a flat counter system S = 〈Q, Cn, ∆, l〉, the total number of
minimal path schemas of S is finite and is smaller than card(∆)(2×card(∆)).

This is a simple consequence of the fact that in a minimal path schema, each
transition occurs at most twice. In Figure 1, we present a flat counter system
S with a unique counter and one of its minimal path schemas. Each transition
δi labelled by +i corresponds to a transition with the guard ⊤ and the update
value +i. The minimal path schema shown in Figure 1 corresponds to the ω-
regular expression δ1(δ2δ3)

+δ4δ5(δ6δ5)
ω. Note that in the representation of path

schemas, a state may occur several times, as it is the case for q3 (this cannot
occur in the representation of counter systems). Minimal path schemas play a
crucial role in the sequel. Indeed, given a path schema P , there is a minimal path
schema P ′ such that every run respecting P respects P ′ too. This can be easily

7

q0 q1

q2

q3

q4

q0 q1

q2

q3 q4

q3

≥ 1 ω

+1

+2 +3

+4

+5 +6

+1

+2 +3

+4 +5

+5 +6

Fig. 1. A flat counter system and one of its minimal path schemas

shown since whenever a maximal number of copies of a simple loop is identified
as a factor of p1l1 · · · pklk, this factor is replaced by the simple loop unless it is
already present in the path schema.

Finally, the conditions imposed on the structure of path schemas implies the
following corollary which states that the number of minimal path schemas for a
given flat counter system is at most exponential in the size of the system (see
similar statements in [19]).

Corollary 5. Given a flat counter system S and a configuration c0, there is a
finite set of minimal path schemas X of cardinality at most card(∆)(2×card(∆))

such that lab(c0) = lab(
⋃

P∈X P, c0).

4.2 Complexity Results

We write CPS [resp. KPS] to denote the class of path schemas from counter
systems [resp. the class of path schemas from Kripke structures]. As a preliminary
step, we consider the problem MC(PLTL[∅],KPS) that takes as inputs a path
schema P in KPS, and φ ∈ PLTL[∅] and asks whether there is a run respecting
P that satisfies φ. Let ρ and ρ′ be runs respecting P . For α ≥ 0, we write

ρ ≡α ρ′
def

⇔ for every i ∈ [1, nbloops(P) − 1], we have Min(iterP (ρ)[i], α) =
Min(iterP (ρ

′)[i], α). We state below a result concerning the runs of flat counter
systems when respecting the same path schema.

Proposition 6. Let S be a flat counter system, P be a path schema, and φ ∈
PLTL[∅]. For all runs ρ and ρ′ respecting P such that ρ ≡2td(φ)+5 ρ

′, we have
ρ, 0 |= φ iff ρ′, 0 |= φ.

This property can be proved by applying Theorem 3 repeatedly in order to get rid
of the unwanted iterations of the loops. Our algorithm for MC(PLTL[∅],KPS)
takes advantage of a result from [17] for model-checking ultimately periodic
models with formulae from Past LTL. An ultimately periodic path is an infi-
nite word in ∆ω of the form uvω were uv is a path segment and consequently
first(v) = last(v). According to [17], given an ultimately periodic path w, and
a formula φ ∈ PLTL[∅], the problem of checking whether there exists a run ρ

such that lab(ρ) = w and ρ, 0 |= φ is in PTime (a tighter bound of NC can be
obtained by combining results from [14] and Theorem 3).

Lemma 7. MC(PLTL[∅],KPS) is in NP.

8

The proof is a consequence of Proposition 6 and [17]. Indeed, given φ ∈ PLTL[∅]
and P = p1l

+
1 p2l

+
2 . . . pkl

ω
k , first guess m ∈ [1, 2td(φ) + 5]k−1 and check whether

ρ, 0 |= φ where ρ is the obvious ultimately periodic word such that lab(ρ) =

p1l
m[1]
1 p2l

m[2]
2 . . . pkl

ω
k . Since m is of polynomial size and ρ, 0 |= φ can be checked

in polynomial time by [17], we get the NP upper bound.
From [15], we have the lower bound for MC(PLTL[∅],KPS).

Lemma 8. [15] MC(PLTL[∅],KPS) is NP-hard even if restricted to X and F.

For a fixed n ∈ N, we write MC(PLTL[∅],KPS(n)) to denote the restriction
of MC(PLTL[∅],KPS) to path schemas with at most n loops. When n is fixed,
the number of ultimately periodic paths w in L(P) such that each loop (except
the last one) is visited is at most 2td(φ) + 5 times is bounded by (2td(φ) + 5)n,
which is polynomial in the size of the input (because n is fixed).

Theorem 9. MC(PLTL[∅],KPS) is NP-complete.
Given a fixed n ∈ N, MC(PLTL[∅],KPS(n)) is in PTime.

Note that it can be proved that MC(PLTL[∅],KPS(n)) is in NC, hence giving a
tighter upper bound for the problem. This can be obtained by observing that we
can run the NC algorithm for model checking PLTL[∅] over ultimately periodic
paths parallelly on (2td(φ) + 5)n (polynomially many) different paths.

Now, we present how to solve MC(PLTL[∅],KFS) using Lemma 7. From
Lemma 4, we know that the number of minimal path schemas in a flat Kripke
structure S = 〈Q,∆, l〉 is finite and the length of a minimal path schema is at
most 2 × card(∆). Hence, for solving the model-checking problem for a state
q and a PLTL[∅] formula φ, a possible algorithm consists in choosing non-
deterministically a minimal path schema P starting at q and then apply the
algorithm used to establish Lemma 7. This new algorithm would be in NP. Fur-
thermore, thanks to Corollary 5, we know that if there exists a run ρ of S such
that ρ, 0 |= φ then there exists a minimal path schema P such that ρ respects
P . Consequently there is an algorithm in NP to solve MC(PLTL[∅],KFS).

Theorem 10. MC(PLTL[∅],KFS) is NP-complete.

NP-hardness can be established as a variant of the proof of Lemma 8.
Similarly, CPS(k) denotes the class of path schemas obtained from flat counter

systems with number of loops bounded by k.

Lemma 11. For k ≥ 2, MC(PLTL[C], CPS(k)) is NP-hard.

The proof by reduction from SAT and it is less straightforward than the proof
for Lemma 8 or the reduction presented in [15] when path schemas are involved.
Indeed, we cannot encode the nondeterminism in the structure itself and the
structure has only a constant number of loops. Actually, we cannot use a separate
loop for each counter; the reduction is done by encoding the nondeterminism in
the (possibly exponential) number of times a single loop is taken, and then using
its binary encoding as an assignment for the propositional variables (see C for
details). Hence, the reduction uses in an essential way the counter values and
the arithmetical constraints in the formula. By contrast, MC(PLTL[C], CPS(1))
can be shown in PTime(see Appendix H).

9

5 Model-checking PLTL[C] over Flat Counter Systems

In this section, we provide a nondeterministic polynomial-time algorithm to solve
MC(PLTL[C], CFS) (see Algorithm 1). To do so, we combine Theorem 3 with
small solutions of constraint systems.

5.1 Characterizing Runs by System of Equations

In this section, we show how to build a system of equations from a path schema
P and a configuration c0 such that the system of equations encodes the set
of all runs respecting P from c0. This can be done for path schemas without
disjunctions in guards that satisfy an additional validity property. A path schema
P = p1l

+
1 p2l

+
2 . . . pkl

ω
k is valid whenever effect(lk)[i] ≥ 0 for every i ∈ [1, n] (see

Section 4 for the definition of effect(lk)) and if all the guards in transitions
in lk are conjunctions of atomic guards, then for each guard occurring in the
loop lk of the form

∑
i aixi ∼ b with ∼∈ {≤, <} [resp. with ∼∈ {=}, with

∼∈ {≥, >}] , we have
∑

i ai × effect(lk)[i] ≤ 0 [resp.
∑

i ai × effect(lk)[i] = 0,∑
i ai × effect(lk)[i] ≥ 0]. It is easy to check that these conditions are necessary

to visit the last loop lk infinitely. More specifically, if a path schema is not valid,
then no infinite run can respect it. Moreover, given a path schema, one can
decide in polynomial time whether it is valid.

Now, let us consider a (not necessarily minimal) valid path schema P =
p1l

+
1 p2l

+
2 . . . pkl

ω
k (k ≥ 1) obtained from a flat counter system S such that all the

guards on transitions are conjunctions of atomic guards of the form
∑

i aixi ∼ b

where ai ∈ Z, b ∈ Z and ∼∈ {=,≤,≥, <,>}. Hence, disjunctions are disallowed
in guards. The goal of this section (see Lemma 12 below) is to characterize the set
iterP (c0) ⊆ N

k−1 for some configuration c0 as the set of solutions of a constraint
system. For each loop li, we introduce a variable yi, whence the number of
variables of the system/formula is precisely k − 1. A constraint system E over
the set of variables {y1, . . . , yn} is a quantifier-free Presburger formula built over
{y1, . . . , yn} as a conjunction of atomic constraints of the form

∑
i aiyi ∼ b where

ai, b ∈ Z and ∼∈ {=,≤,≥, <,>}. Conjunctions of atomic counter constraints
and constraint systems are essentially the same objects but the distinction allows
to emphasize the different purposes: guard on counters in operational models and
symbolic representation of sets of tuples.

Lemma 12. Let S = 〈Q, Cn, ∆, l〉 be a flat counter system without disjunctions
in guards, P be a valid path schema and c0 be a configuration. One can compute
in polynomial time a constraint system E such that the set of solutions of E
is equal to iterP (c0), E has nbloops(P) − 1 variables, E has at most len(P) ×
2 × size(S)2 conjuncts and the greatest absolute value from constants in E is
bounded by n×nbloops(P)×K4× len(P)3 where K is the greatest absolute value
for constants occurring in S.

5.2 Elimination of Arithmetical Constraints and Disjunctions

As stated in Lemma 12, the procedure for characterizing infinite runs in a counter
system by a system of equations works only for a flat counter system with no

10

disjunction in guards (convexity of guards is essential). In this section, we show
how to obtain such a system from a general flat counter system. Given a flat
counter system S = 〈Q, Cn, ∆, l〉, a configuration c0 = 〈q0,v0〉 and a minimal
path schema P starting from the configuration c0, we show that it is possible to
build a finite set YP of path schemas such that (1) each path schema in YP has
transitions without disjunctions in guards, (2) existence of a run ρ respecting P
is equivalent to the existence of a path schema in YP having a run similar to ρ
respecting it and (3) each path schema in YP is obtained from P by unfolding
loops so that the terms in each loop satisfy the same atomic guards. Note that
disjunctions could be easily eliminated at the cost of adding new transitions
between states but this type of transformation may easily destroy flatness. Hence,
the necessity to present a more sophisticated elimination procedure

We first introduce a few definitions. A (syntactic) resource R is a triple
〈X,T,B〉 such that X is a finite set of propositional variables, T is a finite
set of terms t appearing in some guards of the form t ∼ b (with b ∈ Z) and B

is a finite set of integers. We say that a resource R = 〈X,T,B〉 is coherent with
a counter system S [resp. with a path schema P] if B contains all the constants
b occurring in guards of S [resp. of P] of the form t ∼ b and T contains all the
terms t occurring in guards of S [resp. of P] of the form t ∼ b. The resource
R is coherent with a formula φ ∈ PLTL[C], whenever the atomic formulae of φ
are either of the form p ∈ X or t ∼ b with t ∈ T and b ∈ B. In the sequel, we
assume that the considered resource is always coherent with S.

Assuming that B = {b1, . . . , bm} with b1 < · · · < bm, we write I to de-
note the finite set of intervals I = {(−∞, b1 − 1], [b1, b1], [b1 + 1, b2 − 1], [b2, b2],
· · · , [bm, bm], [bm+1,∞)}. Note that I contains exactly 2m+1 intervals. A term
map m is a map m : T → I that abstracts term values. A footprint is an ab-
straction of a model for PLTL[C] restricted to elements from the resource R: it
is of the form ft : N → 2X × IT where I is the set of intervals built from B. The
satisfaction relation |= involving models or runs can be adapted to footprints as
follows (formulae and footprints are from the same resource):

– ft, i |=symb p
def

⇔ p ∈ π1(ft(i)); ft, i |=symb t ≥ b
def

⇔ π2(ft(i))(t) ⊆ [b,+∞),

– ft, i |=symb t ≤ b
def

⇔ π2(ft(i))(t) ⊆ (−∞,+b],

– ft, i |=symb Xφ
def

⇔ ft, i+ 1 |=symb φ,

– ft, i |=symb φUψ
def

⇔ ∃j ≥ i s.t. ft, j |=symb ψ and ∀j′ ∈ [i, j− 1], ft, j′ |=symb φ.

We omit the other obvious clauses. |=symb is the satisfaction relation for Past
LTL when arithmetical constraints are understood as abstract propositions. Let
R = 〈X,T,B〉 be a resource and ρ = 〈q0,v0〉, 〈q1,v1〉 · · · be an infinite run of S.
The footprint of ρ with respect to R is the footprint ft(ρ) such that for i ≥ 0, we

have ft(ρ)(i)
def

= 〈l(qi) ∩X,mi〉 where for every term t =
∑

j ajxj ∈ T , we have∑
j ajvi[j] ∈ mi(t). Note that

∑
j ajvi[j] belongs to a unique element of I since

I is a partition of Z. Hence, this definition makes sense. Lemma 13 below roughly
states that satisfaction of a formula on a run can be checked symbolically from
the footprint (this is useful for the correctness of forthcoming Algorithm 1).

11

Lemma 13. Let φ be in PLTL[C], R = 〈X,T,B〉 be coherent with φ, ρ =
〈q0,v0〉, 〈q1,v1〉 · · · be an infinite run and i ≥ 0. (I) Then ρ, i |= φ iff ft(ρ), i |=symb

φ. (II) If ρ′ is an infinite run s.t. ft(ρ) = ft(ρ′), then ρ, i |= φ iff ρ′, i |= φ.

In Appendix D, we explain in details how to build a set YP of path schemas
without disjunctions from a minimal path schema P , an initial configuration
〈q0,v0〉 and a resource R. The main idea of this construction consists in adding
to the control states of path schemas some information on the intervals to
which belongs each term of T . In fact, in the transitions appearing in path
schemas of YP the states belong to Q′ = Q × IT . Before stating the properties
of YP , we introduce some notations. Given t =

∑
j ajxj ∈ T , u ∈ Z

n and a
term map m, we write ψ(t,u,m(t)) to denote the formula below (b, b′ ∈ B):

ψ(t,u, (−∞, b])
def

=
∑

j aj(xj+u(j)) ≤ b; ψ(t,u, [b,+∞))
def

=
∑

j aj(xj+u(j)) ≥ b

and ψ(t,u, [b, b′]) = ((
∑

j aj(xj + u(j)) ≤ b′) ∧ ((
∑

j aj(xj + u(j)) ≥ b). We
write G⋆(T,B, U) to denote the set of guards of the form ψ(t,u,m(t)) where
t ∈ T , U is the finite set of updates from P and m : T → I. Each guard in
G⋆(T,B, U) is of linear size in the size of P . We denote ∆̃ the set of transitions
Q′ × G⋆(T,B, U)×U ×Q′. Note that the transitions in ∆̃ do not contain guards
with disjunctions and ∆̃ is finite. We also define a function proj which associates
to w ∈ ∆̃ω the ω-sequence proj(w) : N → 2X × IT such that for all i ∈ N, if

w(i) = 〈〈q,m〉, g,u, 〈q′,m′〉〉 and l(q) ∩X = L then proj(w)(i)
def

= 〈L,m〉.
We show that it is possible to build a finite set YP of path schemas over ∆̃

such that if P ′ = p′1(l
′
1)

+p′2(l
′
2)

+ . . . p′k′(l′k′)ω is a path schema in YP and ρ is a
run 〈〈q0,m0〉,v0〉 −→ 〈〈q1,m1〉,v1〉 −→ 〈〈q2,m2〉,v2〉 · · · respecting P ′ we have
that proj(lab(ρ)) = ft(ρ). This point will be useful for Algorithm 1. The following
theorem lists the main properties of the set YP .

Theorem 14. Given a flat counter system S, a minimal path schema P , a
resource R = 〈X,T,B〉 coherent with P and a configuration 〈q0,v0〉, there is a
finite set of path schemas YP over ∆̃ satisfying (1)–(6) below.

1. No path schema in YP contains guards with disjunctions in it.
2. There exists a polynomial q⋆(·) such that for every P ′ ∈ YP , len(P ′) ≤

q⋆(len(P) + card(T) + card(B)).
3. Checking whether a path schema P ′ over ∆̃ belongs to YP can be done in

polynomial time in size(P) + card(T) + card(B).
4. For every run ρ respecting P and starting at 〈q0,v0〉, we can find a run ρ′

respecting some P ′ ∈ YP such that ρ |= φ iff ρ′ |= φ for every φ built over R.
5. For every run ρ′ respecting some P ′ ∈ YP with initial values v0, we can find

a run ρ respecting P such that ρ |= φ iff ρ′ |= φ for every φ built over R.
6. For every ultimately periodic word w · uω ∈ L(P ′), for every φ built over R

checking whether proj(w · uω), 0 |=symb φ can be done in polynomial time in
the size of w · u and in the size of φ.

5.3 Main Algorithm

In Algorithm 1 below, a polynomial p⋆(·) is used. In Appendix F, we explain
how p⋆(·) is defined (this is the place where Lemma 12 and small solutions for

12

constraint systems [2] are used). Note that y′ is a refinement of y (for all i, we
have y′[i] ≈2td(φ)+5 y[i]) in which counter values are taken into account.

Algorithm 1 The main algorithm in NP with inputs S, c0 = 〈q,v0〉, φ

1: guess a minimal path schema P of S
2: build a resource R = 〈X,T, B〉 coherent with P and φ
3: guess a valid schema P ′ = p1l

+
1 p2l

+
2 . . . pkl

ω
k such that len(P ′) ≤ q⋆(len(P) +

card(T) + card(B))
4: guess y ∈ [1, 2td(φ) + 5]k−1; guess y

′ ∈ [1, 2p
⋆(size(S)+size(c0)+size(φ))]k−1

5: check that P ′ belongs to YP

6: check that proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ

7: build E over y1, . . . , yk−1 for P ′ with initial values v0 (obtained from Lemma 12)
8: for i = 1→ k − 1 do

9: if y[i] = 2td(φ) + 5 then ψi ← “yi ≥ 2td(φ) + 5” else ψi ← “yi = y[i]”
10: end for

11: check that y
′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1

Algorithm 1 starts by guessing a path schema P (line 1) and an unfolded
path schema P ′ = p1l

+
1 p2l

+
2 . . . pkl

ω
k (line 3) and check whether P ′ belongs to

YP (line 5). It remains to check whether there is a run ρ respecting P ′ such
that ρ |= φ. Suppose there is such a run ρ; let y be the unique tuple in
[1, 2td(φ) + 5]k−1 such that y ≈2td(φ)+5 iterP ′(ρ). By Proposition 6, we have

proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ. Since the set of tuples of the form

iterP ′(ρ) is characterized by a system of equations, by the existence of small so-
lutions from [2], we can assume that iterP ′(ρ) contains only small values. Hence
line 4 guesses y and y′ (corresponding to iterP ′(ρ) with small values). Line 6 pre-

cisely checks proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ whereas line 11 checks

whether y′ encodes a run respecting P ′ with y′ ≈2td(φ)+5 y.

Lemma 15. Algorithm 1 runs in nondeterministic polynomial time.

It remains to check that Algorithm 1 is correct.

Lemma 16. S, c0 |= φ iff Algorithm 1 on inputs S, c0, φ has an accepting run.

In the proof of Lemma 16, we take advantage of all our preliminary results.

Proof. By way of example, we show that if Algorithm 1 on inputs S, c0 = 〈q0,v0〉,
φ has an accepting computation, then S, c0 |= φ. This means that there are P ,

P ′, y, y′ that satisfy all the checks. Let w = p1l
y′[1]
1 · · · pk−1l

y′[k−1]
k−1 pkl

ω
k and ρ =

〈〈q0,m0〉,v0〉〈〈q1,m1〉,x1〉〈〈q2,m2〉,x2〉 · · · ∈ (Q′ ×Z
n)ω be defined as follows:

for every i ≥ 0, qi
def

= π1(source(w(i))), and for every i ≥ 1, we have xi
def

= xi−1+
update(w(i)). By Lemma 12, since y′ |= E ∧ψ1∧· · ·∧ψk−1, ρ is a run respecting
P ′ starting at the configuration 〈〈q0,m0〉,v0〉. Since y′ |= ψ1∧· · ·∧ψk−1 and y |=

ψ1∧· · ·∧ψk−1, by Proposition 6, (z) proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ,

iff (zz) proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k), 0 |=symb φ. Algorithm 1 guarantees

that proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ, whence we have (zz). Since

proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k) = ft(ρ), by Lemma 13, we deduce that ρ, 0 |=

13

φ. By Theorem 14(5), there is an infinite run ρ′, starting at the configuration
〈q0,v0〉 and respecting P , such that ρ′, 0 |= φ.

Now, suppose that S, c0 |= φ. We shall show that there exist P , P ′, y, y′ that
allow to build an accepting computation of Algorithm 1. There is a run ρ starting
at c0 such that ρ, 0 |= φ. By Corollary 5, ρ respects some minimal path schema of
S, say P . By Theorem 14(4), there is a path schema P ′ = p1l

+
1 p2l

+
2 . . . pkl

ω
k in YP

for which there is a run ρ′ satisfying φ. Furthermore, since P ′ ∈ YP , len(P ′) ≤
q⋆(len(P) + card(T) + card(B)). From iterP ′(ρ′) ∈ (N \ {0})k−1, for every i ∈
[1, k−1], we consider ψi such that ψi is equal to yi = iterP ′(ρ′)[i] if iterP ′(ρ′)[i] ≤
2td(φ)+ 5, otherwise ψi is equal to yi ≥ 2td(φ)+ 5. Since P ′ admits at least one
infinite run ρ′ such that iterP ′(ρ′) satisfies ψ1∧· · ·∧ψk−1, the constraint system
E obtained from P ′ (thanks to Lemma 12) but augmented with ψ1 ∧ · · · ∧ ψk−1

admits at least one solution. Let us define y′ ∈ [1, 2p
⋆(size(S)+size(c0)+size(φ))]k−1

as a small solution of E∧ψ1∧· · ·∧ψk−1 and y ∈ [1, 2td(φ)+5]k−1 be defined such
that for i ∈ [1, k − 1], y[i] = max(y′[i], 2td(φ) + 5). As shown in Appendix F,
2p

⋆(size(S)+size(c0)+size(φ)) is sufficient if there is a solution. Clearly, y′ |= E ∧

ψ1 ∧ · · · ∧ ψk−1. So p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k generates a genuine run. Since

ft(ρ′) = proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k) and since by Lemma 13, we have

ft(ρ′) |=symb φ, we get that proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k), 0 |=symb φ. This

also implies that P ′ is valid. Hence proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ

thanks to Proposition 6. Consequently, we have everything to build an accepting
computation for Algorithm 1 on inputs S, c0, φ. ⊓⊔

As a corollary, we can state the main result of the paper.

Theorem 17. MC(PLTL[C], CFS) is NP-complete.

6 Conclusion

Classes of Systems PLTL[∅] PLTL[C] Reachability

KPS NP-complete —– PTime

See [15] for X and U

CPS NP-complete NP-complete (Theo. 17) NP-complete

KPS(n) PTime (Theo. 9) —– PTime

CPS(n), n > 1 ?? NP-complete (Lem. 11) ??

CPS(1) PTime PTime PTime

KFS NP-complete —– PTime

See [15] for X and U

CFS NP-complete NP-complete (Theo. 17) NP-complete

We have investigated the computational complexity of the model-checking
problem for flat counter systems with formulae from an enriched version of LTL.
Our main result is the NP-completeness of MC(PLTL[C], CFS), significantly
improving the complexity upper bound from [6]. This also improves the results
about the effective semilinearity of the reachability relations for such flat counter
systems from [5,10] and it extends the recent result on the NP-completeness of

14

model-checking flat Kripke structures with LTL from [15] by adding counters
and past-time operators. Our main results are presented above and compared to
the reachability problem (complementary proofs can be found in Appendix I).
As far as the proof technique is concerned, the NP upper bound is obtained as
a combination of a general stuttering property for LTL with past-time operators
(a result extending what is done in [16] with past-time operators) and the use
of small integer solutions for quantifier-free Presburger formulae [2]. There are
several related problems which are not addressed in the paper. For instance, the
extension of the model-checking problem to full CTL⋆ is known to be decid-
able [6] but the characterization of its exact complexity is open.

References

1. B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD thesis,
Université de Liège, 1998.

2. I. Borosh and L. Treybig. Bounds on positive integral solutions of linear Diophan-
tine equations. American Mathematical Society, 55:299–304, 1976.

3. M. Bozga, R. Iosif, and F. Konecný. Fast acceleration of ultimately periodic rela-
tions. In CAV’10, volume 6174 of LNCS, pages 227–242. Springer, 2009.

4. H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00, volume 1862 of
LNCS, pages 262–276. Springer, 2000.

5. H. Comon and Y. Jurski. Multiple counter automata, safety analysis and PA. In
CAV’98, volume 1427 of LNCS, pages 268–279. Springer, 1998.

6. S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checking CTL
∗

over flat Presburger counter systems. JANCL, 20(4):313–344, 2010.
7. C. Dixon, M. Fisher, and B. Konev. Temporal logic with capacity constraints. In

FROCOS’07, volume 4720 of LNCS, pages 163–177. Springer, 2007.
8. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In

LICS’99, pages 352–359, 1999.
9. K. Etessami and T. Wilke. An until hierarchy and other applications of an

Ehrenfeucht-Fraïssé game for temporal logic. I&C, 160(1–2):88–108, 2000.
10. A. Finkel and J. Leroux. How to compose Presburger accelerations: Applications

to broadcast protocols. In FST&TCS’02, volume 2256 of LNCS, pages 145–156.
Springer, 2002.

11. A. Finkel, E. Lozes, and A. Sangnier. Towards model-checking programs with lists.
In Infinity in Logic & Computation, volume 5489 of LNAI, pages 56–82. Springer,
2009.

12. D. Gabbay. The declarative past and imperative future. In Temporal Logic in

Specification, Altrincham, UK, volume 398 of LNCS, pages 409–448. Springer, 1987.
13. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and

parametric one-counter automata. In CONCUR’09, volume 5710 of LNCS, pages
369–383. Springer, 2009.

14. L. Kuhtz. Model Checking Finite Paths and Trees. PhD thesis, Universität des
Saarlandes, 2010.

15. L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In CONCUR’11,
volume 6901 of LNCS, pages 419–433. Springer, 2011.

16. A. Kučera and J. Strejček. The stuttering principle revisited. Acta Informatica,
41(7–8):415–434, 2005.

15

17. F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable
past. In LICS’02, pages 383–392. IEEE, 2002.

18. F. Laroussinie and P. Schnoebelen. Specification in CTL + past for verification in
CTL. I&C, 156:236–263, 2000.

19. J. Leroux and G. Sutre. Flat counter systems are everywhere! In ATVA’05, volume
3707 of LNCS, pages 489–503. Springer, 2005.

20. C. Lutz. NEXPTIME-complete description logics with concrete domains. In IJ-

CAR’01, volume 2083 of LNCS, pages 46–60. Springer, 2001.
21. M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
22. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-

out the next-time operator. IPL, 63:243–246, 1997.
23. C. Rackoff. The covering and boundedness problems for vector addition systems.

TCS, 6(2):223–231, 1978.

16

A Proofs of Section 3 on the Stuttering Theorem

The proof by structural induction is by an easy verification once (Claim 1)–
(Claim 4) are proved, see e.g. the case when the outermost connective is U

presented in the paper. Below, we recall the main definitions and statements,
possibly illustrated by figures, and then we prove the four claims.

We recall the definition of the relation ≈N over pairs of words and positions

in Σω × N. Given w = w1u
Mw2, w

′ = w1u
M ′

w2 ∈ Σω and i, i′ ∈ N, 〈w, i〉 ≈N

〈w′, i′〉
def

⇔ M ≈2N M ′ and one of the conditions holds true:

1. i, i′ < len(w1) +N · len(u) and i = i′.
2. i ≥ len(w1)+(M −N) · len(u), i′ ≥ len(w1)+(M ′−N) · len(u) and (i− i′) =

(M −M ′) · len(u).
3. len(w1)+N · len(u) ≤ i < len(w1)+ (M −N) · len(u), len(w1)+N · len(u) ≤
i′ < len(w1) + (M ′ −N) · len(u) and |i − i′| = 0 mod len(u).

Figure 2 presents two words w and w′ over the alphabet Σ = {�,�} such
that w is of the form w1(��)7w2 and w′ is of the form w1(��)8w2. The relation
≈3 is represented by edges between positions: each edge from positions i of w to
positions i′ of w′ represents the fact that 〈w, i〉 ≈3 〈w′, i′〉.

w1
| | |

w2

w1
| | |

w2

Fig. 2. Two words w, w′ with u = �� and the relation ≈3

A.1 A Zone Classification for Proving (Claim 1) – (Claim 4)

For the proofs of (Claim 1) – (Claim 4), the positions of each word w of the
form w = w1u

Mw2 ∈ Σω (w1 ∈ Σ∗, u ∈ Σ+ and w2 ∈ Σω) with M > 2N are
partitionned into five zones (A, B, C, D and E). We also assume that N ≥ 2.
Indeed, given that 〈w, i〉 ≈N 〈w′, i′〉, we shall proceed by a case analysis on the
positions i and i′ depending on which zones i and i′ belong to. The definition of
zones is illustrated on Figure 3 and here is the formal characterization:

– Zone A corresponds to the set of positions i ∈ N such that 0 ≤ i < len(w1)+
(N − 1) · len(u).

– Zone B corresponds to the set of positions i ∈ N such that len(w1) + (N −
1) · len(u) ≤ i < len(w1) +N · len(u).

17

– Zone C corresponds to the set of positions i ∈ N such that len(w1) + N ·
len(u) ≤ i < len(w1) + (M −N) · len(u).

– Zone D corresponds to the set of positions i ∈ N such that len(w1) + (M −
N) · len(u) ≤ i < len(w1) + (M − (N − 1)) · len(u).

– Zone E corresponds to the set of positions i ∈ N such that len(w1) + (M −
(N − 1)) · len(u) ≤ i.

A B C D E

| | |

Fig. 3. The five zones for w1(��)8w2 with N = 3 and u = ��

Note that the definition of zones depends on the value N (taken from ≈N)
and also on u, w1 and w2. In the sequel, we may index the zones by N (AN , BN

etc.) when it is useful to make explicit from which relation ≈N the definition of
zones is made. Moreover, we may use a prime (A′

N , B′
N etc.) to refer to zones

for w′. So, the relation ≈N can be redefined as follows when M,M ′ > 2N :

〈w, i〉 ≈N 〈w′, i′〉
def

⇔ (M ≈2N M ′ and) one of the conditions holds true:

1. i = i′ and either (i ∈ AN and i′ ∈ A′
N) or (i ∈ BN and i′ ∈ B′

N).
2. (i− i′) = (M −M ′) · len(u) and either (i ∈ DN and i′ ∈ D′

N) or (i ∈ EN and
i′ ∈ E′

N).
3. i ∈ CN , i′ ∈ C′

N and |i− i′| = 0 mod len(u).

A.2 Proof of (Claim 1)

Before the proof, let us recall what is (Claim 1). Let w = w1u
Mw2, w

′ =
w1u

M ′

w2 ∈ Σω, i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N

〈w′, i′〉.

(Claim 1) 〈w, i〉 ≈N−1 〈w′, i′〉; w(i) = w′(i′).

Proof. Let us first prove that 〈w, i〉 ≈N−1 〈w′, i′〉. Since N > N−1, it is obvious
that M ≈2(N−1) M

′.

– If i < len(w1) + (N − 1) · len(u) [i is Zone AN], then i = i′. Hence either
(i ∈ AN−1, i

′ ∈ A′
N−1 and i = i′) or (i ∈ BN−1, i

′ ∈ B′
N−1 and i = i′).

Hence, 〈w, i〉 ≈N−1 〈w
′, i′〉.

– If i ≥ len(w1)+ (M − (N − 1)) · len(u) [i is in zone EN] then i = i′ +(M −
M ′) · len(u) and i′ ≥ len(w1) + (M ′ − (N − 1)) · len(u) [i′ is in zone E′

N].
So, either (i is in zone EN−1 and i′ is in zone E′

N−1) or (i is in zone DN−1

and i′ is in zone D′
N−1). Since i = i′ + (M −M ′) · len(u), we conclude that

〈w, i〉 ≈N−1 〈w′, i′〉.

18

– If len(w1) + (N − 1) · len(u) ≤ i < len(w1) + N · len(u) [i is in Zone BN]
then i = i′. Hence, i ∈ CN−1, i

′ ∈ C′
N−1 and |i− i′| = 0 mod len(u). Hence,

〈w, i〉 ≈N−1 〈w′, i′〉.
– If len(w1)+N · len(u) ≤ i < len(w1)+(M−N) · len(u) [i in Zone CN], then

len(w1) +N · len(u) ≤ i′ < len(w1) + (M ′ −N) · len(u) [i′ is in Zone C′
N]

and |i − i′| = 0 mod len(u). Consequently, i is in Zone CN−1, i
′ is in Zone

C′
N−1 and |i− i′| = 0 mod len(u). This entails that 〈w, i〉 ≈N−1 〈w

′, i′〉.
– If len(w1)+(M−N)· len(u) ≤ i < len(w1)+(M−(N−1))· len(u) [i in Zone

DN], then i is in Zone D′
N and i = i′ + (M −M ′) · len(u). Consequently, i

is in Zone CN−1, i
′ is in Zone C′

N−1 and |i − i′| = 0 mod len(u). This also
entails that 〈w, i〉 ≈N−1 〈w

′, i′〉.

As far as the second property is concerned, it is also clear that w(i) = w′(i′),
because either i and i′ are at the same position in the word w1 or w2 either they
are pointing some positions in the portions of the word which belong to u+ and
since their difference will be such that |i − i′| = 0 mod len(u), it is easy to see
that i and i′ will point at the same position in u. ⊓⊔

A.3 Proof of (Claim 2)

Before the proof, let us recall what is (Claim 2). Let w = w1u
Mw2, w

′ =
w1u

M ′

w2 ∈ Σω, i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N

〈w′, i′〉.

(Claim 2) 〈w, i+1〉 ≈N−1 〈w
′, i′+1〉; i, i′ > 0 implies 〈w, i−1〉 ≈N−1 〈w′, i′−1〉.

Proof. Let us first prove that 〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉. Since N > N − 1, it
is obvious that M ≈2(N−1) M

′.

– If i < len(w1) + (N − 1) · len(u) [i is Zone AN], then i = i′. Hence either
(i+1 ∈ AN−1, i

′+1 ∈ A′
N−1 and i+1 = i′+1) or (i+1 ∈ BN−1, i

′+1 ∈ B′
N−1

and i + 1 = i′ + 1) or (i + 1 ∈ CN−1, i
′ + 1 ∈ C′

N−1 and i− i′ = 0). Hence,
〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉.

– If i ≥ len(w1)+ (M − (N − 1)) · len(u) [i is in zone EN] then i = i′ +(M −
M ′) · len(u) and i′ ≥ len(w1)+(M ′− (N−1)) · len(u) [i′ is in zone E′

N]. So,
either (i+ 1 is in zone EN−1 and i′ + 1 is in zone E′

N−1) or (i+ 1 is in zone
DN−1 and i′ + 1 is in zone D′

N−1). Since i+ 1 = i′ + 1 + (M −M ′) · len(u),
we conclude that 〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉.

– If len(w1) + (N − 1) · len(u) ≤ i < len(w1) + N · len(u) [i is in Zone BN]
then i = i′. Hence, i+ 1 ∈ CN−1, i

′ + 1 ∈ C′
N−1 and |(i + 1)− (i′ + 1)| = 0

mod len(u). Hence, 〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉.
– If len(w1) + N · len(u) ≤ i < len(w1) + (M − N) · len(u) [i in Zone CN],

then len(w1) +N · len(u) ≤ i′ < len(w1) + (M ′ −N) · len(u) [i′ is in Zone
C′

N] and |i− i′| = 0 mod len(u). Consequently, i+1 is in Zone CN−1, i
′+1

is in Zone C′
N−1 and |(i + 1) − (i′ + 1)| = 0 mod len(u). This entails that

〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉.

19

– If len(w1)+(M−N)· len(u) ≤ i < len(w1)+(M−(N−1))· len(u) [i in Zone
DN], then i is in Zone D′

N and i = i′ + (M −M ′) · len(u). Consequently,
either (i+1 is in Zone CN−1, i

′+1 is in Zone C′
N−1 and |(i+1)−(i′+1)| = 0

mod len(u)) or (i + 1 is in Zone DN−1, i
′ + 1 is in Zone D′

N−1 and i + 1 =
i′+1+(M −M ′) · len(u)). This also entails that 〈w, i+1〉 ≈N−1 〈w′, i′+1〉.

Now, let us prove that i, i′ > 0 implies 〈w, i − 1〉 ≈N−1 〈w′, i′ − 1〉. Since
N > N − 1, it is obvious that M ≈2(N−1) M

′.

– If i < len(w1) + (N − 1) · len(u) [i is Zone AN], then i = i′. Hence,
i−1 ∈ AN−1, i

′−1 ∈ A′
N−1 and i−1 = i′−1. So, 〈w, i−1〉 ≈N−1 〈w′, i′−1〉.

– If i ≥ len(w1) + (M − (N − 1)) · len(u) [i is in zone EN] then i = i′ +
(M − M ′) · len(u) and i′ ≥ len(w1) + (M ′ − (N − 1)) · len(u) [i′ is in
zone E′

N]. So, either (i − 1 is in zone EN−1, i
′ − 1 is in zone E′

N−1 and
i − 1 = i′ − 1 + (M −M ′) · len(u)) or (i − 1 is in zone DN−1 and i′ − 1 is
in zone D′

N−1 and i − 1 = i′ − 1 + (M −M ′) · len(u)) or (i − 1 is in zone
CN−1 and i′ − 1 is in zone C′

N−1 and |(i − 1) − (i′ − 1)| = 0 mod len(u)).
We conclude that 〈w, i − 1〉 ≈N−1 〈w′, i′ − 1〉.

– If len(w1)+(N−1) · len(u) ≤ i < len(w1)+N · len(u) [i is in Zone BN] then
i = i′. Hence, either (i− 1 ∈ CN−1, i

′ − 1 ∈ C′
N−1 and |(i− 1)− (i′ − 1)| = 0

mod len(u)) or (i − 1 ∈ BN−1, i
′ − 1 ∈ B′

N−1 and i − 1 = i′ − 1). Hence,
〈w, i − 1〉 ≈N−1 〈w′, i′ − 1〉.

– If len(w1) + N · len(u) ≤ i < len(w1) + (M − N) · len(u) [i in Zone CN],
then len(w1) +N · len(u) ≤ i′ < len(w1) + (M ′ −N) · len(u) [i′ is in Zone
C′

N] and |i− i′| = 0 mod len(u). Consequently, i− 1 is in Zone CN−1, i
′− 1

is in Zone C′
N−1 and |(i − 1) − (i′ − 1)| = 0 mod len(u). This entails that

〈w, i − 1〉 ≈N−1 〈w′, i′ − 1〉.
– If len(w1)+(M−N)· len(u) ≤ i < len(w1)+(M−(N−1))· len(u) [i in Zone

DN], then i′ is in Zone D′
N and i = i′ + (M −M ′) · len(u). Consequently,

i − 1 is in Zone CN−1, i
′ − 1 is in Zone C′

N−1 and |(i − 1) − (i′ − 1)| = 0
mod len(u). This entails that 〈w, i − 1〉 ≈N−1 〈w′, i′ − 1〉.

⊓⊔

A.4 Proof of (Claim 3)

Before providing the detailed proof, we give a concrete example on Figure 4.
On this example, we assume that the top word w and the bottom word w′ and
their respective positions i and i′ are such that 〈w, i〉 ≈3 〈w′, i′〉. We want to
illustrate (Claim 3) and for this matter, we choose a position j in w. Now observe
that according to the zone classification, j is in the Zone C of the word w and
furthermore it is not possible to find a j′ > i′ in the Zone C of the word w′

such that j and j′ points on the same position of the word u. That is why we
need to consider at this stage not the relation ≈3 but instead ≈2. In fact, as
shown on the bottom of Figure 4, we can find for j, a position j′ in w′ such that
〈w, j〉 ≈2 〈w′, j′〉 (take j = j′) and this figure also shows that for all i′ ≤ k ≤ j′,
〈w, k〉 ≈2 〈w′, k〉.

20

w1
| i j | |

w2

w1
| i′ | |

w2

w1
| i j | |

w2

w1
| i′ j′ | |

w2

〈w, i〉 ≈N 〈w
′, i′〉

〈w,k〉≈N−1〈w
′,k′〉

for i ≤ k ≤ j

w

w

w′

w′

Two letter word u =

Fig. 4. Relation between ≈N and ≈N−1

Before the proof, let us recall what is (Claim 3). Let w = w1u
Mw2, w

′ =
w1u

M ′

w2 ∈ Σω, i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N

〈w′, i′〉. We can show the following properties:

(Claim 3) For all j ≥ i, there is j′ ≥ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for
all k′ ∈ [i′, j′ − 1], there is k ∈ [i, j − 1] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

Proof. We proceed by a case analysis on the positions i and j:

– If i ≥ len(w1) + (M −N) · len(u) [i is in Zone D or E] then j ≥ len(w1) +
(M−N)·len(u) [j is in Zone D or E] and i′ ≥ len(w1)+(M ′−N)·len(u) [i′

is Zone D or E] and i = i′+(M−M ′)· len(u). We define j′ = j−(M−M ′)·
len(u). Then it is clear that j′ ≥ i′ and 〈w, j〉 ≈N 〈w′, j′〉. By (Claim 1), we
get 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [i′, j′−1] and let k = k′+(M−M ′)· len(u),
then we have that k ∈ [i, j − 1] and also 〈w, k〉 ≈N 〈w′, k′〉, hence by (Claim
1), 〈w, k〉 ≈N−1 〈w

′, k′〉.
– If i < len(w1)+N ·len(u) [i is in Zone A or B] then i′ < len(w1)+N ·len(u)

[i′ is in Zone A or B] and i = i′ and we have the following possibilities
for the position j ≥ i:
• If j < len(w1) + N · len(u) [j is in Zone A or B], then let j′ =
j. Consequently we have 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1) we get
〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [i′, j′ − 1] and k = k′. Then we have that
k ∈ [i, j − 1] and also 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1

〈w′, k′〉.
• If len(w1) +N · len(u) ≤ j < len(w1) + (M −N) · len(u) [j is in Zone

C], then let ℓ = (j − (len(w1) +N · len(u))) mod len(u) (ℓ the relative

21

position of j in the word u it belongs to). Consequently 0 ≤ ℓ < len(u).
Let j′ = len(w1)+N ·len(u)+ℓ (we choose j′ at the same relative position
of j in the first word u of the Zone C). Then len(w1) +N · len(u) ≤ j′ <

len(w1)+(M ′−N)·len(u) [j′ is in Zone C] (because (M ′−N) > 0) and
|j−j′| = 0 mod len(u). We deduce that 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim
1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈ [i′, j′ − 1] and let k = k′.
Then we have that k ∈ [i, j−1]. Furthermore, if k′ < len(w1)+N · len(u)
[k′ is in Zone A or B] we obtain 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim
1), 〈w, k〉 ≈N−1 〈w′, k′〉. Moreover, if len(w1) +N · len(u) ≤ k′ [k′ is in
Zone C] then k is in Zone C and |k − k′| = 0 mod len(u) since k = k′.
So, 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

• If len(w1)+(M−N)·len(u) ≤ j [j is in Zone E or D], let j′ = j−(M−
M ′)·len(u). Then, we have len(w1)+(M ′−N)·len(u) ≤ j′ [j′ is in Zone
D or E] and we deduce that 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1) we get
〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈ [i′, j′− 1]. If k′ < len(w1)+N · len(u)
[k′ is in Zone A or B], for k = k′, we obtain 〈w, k〉 ≈N 〈w′, k′〉 and by
(Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉. If k′ ≥ len(w1)+ (M ′−N) · len(u) [k′ is
in Zone D or E], we choose k = k′ + (M −M ′) · len(u) and here also
we deduce 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉. If
w1+N · len(u) ≤ k′ < len(w1)+ (M ′−N) · len(u) [k′ is in Zone C], let
ℓ = (k′− (len(w1)+N · len(u))) mod len(u) (ℓ is the relative position of
k′ in the word u it belongs to) and let k = len(w1) +N · len(u) + ℓ (k is
placed at the same relative position of k′ in the first word u of the Zone
C). Then we have w1 +N · len(u) ≤ k < len(w1) + (M −N) · len(u) and
|k − k′| = 0 mod len(u) which allows to deduce that 〈w, k〉 ≈N 〈w′, k′〉
and by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

– If len(w1) +N · len(u) ≤ i < len(w1) + (M −N) · len(u) [i is Zone C] then
len(w1) + N · len(u) ≤ i′ < len(w1) + (M ′ − N) · len(u) [i′ is in Zone C]
and |i− i′| = 0 mod len(u). Let ℓ = (i− (len(w1)+N · len(u))) mod len(u)
(the relative position of i in the word u). We have the following possibilities
for the position j ≥ i:
• If j− i < len(u)− ℓ+len(u) (j is either in the same word u as i or in the

next word u), then j < len(w1)+ (M − (N − 1)) · len(u) [j is in Zone C
or D]. We define j′ = i′+(j− i) and we have that len(w1)+N · len(u) ≤
j′ < len(w1) + (M ′ − (N − 1)) · len(u) [j′ is in Zone C or D] and since
|i−i′| = 0 mod len(u), we deduce |j−j′| = 0 mod len(u). From this we
obtain 〈w, j〉 ≈N−1 〈w

′, j′〉. Let k′ ∈ [i′, j′−1] and k = i+k′−i′. We have
then that k ∈ [i, j−1] and len(w1)+N ·len(u) ≤ k′ < len(w1)+(M ′−(N−
1))· len(u) and len(w1)+N · len(u) ≤ k < len(w1)+(M−(N−1))· len(u).
Since |i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u).
Consequently 〈w, k〉 ≈N−1 〈w′, k′〉.

• If j − i ≥ len(u)− ℓ+ len(u) (j is neither in the same word u as i nor in
the next word u) and j ≥ len(w1)+ (M −N) · len(u) [j is in Zone E or
D]. Let j′ = j − (M −M ′) · len(u) then j′ ≥ len(w1) + (M ′ −N) · len(u)
[j′ is in Zone E or D] and consequently 〈w, j〉 ≈N 〈w′, j′〉 and by
(Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈ [i′, j′ − 1]. If k′ ≥

22

len(w1)+(M ′−N)·len(u) [k′ is in Zone D or E], then let k = k′+(M−
M ′) · len(u); we have in this case that k ≥ len(w1) + (M − N) · len(u)
and this allows us to deduce that 〈w, k〉 ≈N−1 〈w′, k′〉. Now assume
k′ < len(w1)+(M ′−N) · len(u) [k′ is in Zone C] and k′−i′ < len(u)−ℓ
(k′ and i′ are in the same word u), then let k = i + k′ − i′. In this case
we have k < len(w1) + (M − N) · len(u) [k is in Zone C] and since
|i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u), whence
〈w, k〉 ≈N−1 〈w′, k′〉. Now assume k′ < len(w1) + (M ′ − N) · len(u) [k′

is in Zone C] and k′ − i′ ≥ len(u) − ℓ (k′ and i′ are not in the same
word u). We denote by ℓ′ = (k′− (len(w1)+N · len(u))) mod len(u) the
relative position of k′ in u and let k = i + (len(u) − ℓ) + ℓ′ (k and k′

occur in the same position in u but k occurs in the word u just after the
word u in which i belongs to) Then k ∈ [i, j − 1] (because ℓ′ < len(u)
and j− i ≥ len(u)− ℓ+ len(u)) and k < len(w1)+ (M − (N − 1)) · len(u)
(because i+ (len(u)− ℓ) < len(w1) + (M −N) · len(u) and ℓ′ < len(u))
and |k − k′| = 0 mod len(u) (k and k′ are both pointing on the ℓ′-th
position in word u). This allows us to deduce that 〈w, k〉 ≈N−1 〈w

′, k′〉.
• If j − i ≥ len(u)− ℓ+ len(u) (j is neither in the same word u as i nor in

the next word u) and j < len(w1) + (M −N) · len(u) [j is in Zone C].
Then let ℓ′ = (j−(len(w1)+N ·len(u))) mod len(u) the relative position
of j in u. We choose j′ = i′+(len(u)− ℓ)+ ℓ′ (j and j′ occur in the same
position in u but j′ occurs in the word u just after the word u in which i′

belongs to) We have then that j′ < len(w1)+(M ′−(N−1)) · len(u) [j′ is
in Zone C or D] (because i′+(len(u)− ℓ) < len(w1)+(M −N) · len(u)
and ℓ′ < len(u)) and |j− j′| = 0 mod len(u) (j and j′ are both pointing
on the ℓ′-th position in word u), hence 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈
[i′, j′ − 1]. If k′ − i′ < len(u)− ℓ (k′ and i′ are in the same word u), then
let k = i+k′−i′. In this case we have k < len(w1)+(M−N)· len(u) [k is
in Zone C] and since |i− i′| = 0 mod len(u), we also have |k− k′| = 0
mod len(u), hence 〈w, k〉 ≈N−1 〈w′, k′〉. If k′ − i′ ≥ len(u)− ℓ (k′ and i′

are not in the same word u), then j′ − k′ < ℓ′ and let k = j − j′ − k′.
In this case we have k < len(w1) + (M − N) · len(u) [k is in Zone C]
and since |j− j′| = 0 mod len(u), we also have |k−k′| = 0 mod len(u),
hence 〈w, k〉 ≈N−1 〈w

′, k′〉.
⊓⊔

A.5 Proof of (Claim 4)

Before the proof, let us recall what is (Claim 4). Let w = w1u
Mw2, w

′ =
w1u

M ′

w2 ∈ Σω, i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N

〈w′, i′〉.

(Claim 4) for all j ≤ i, there is j′ ≤ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for
all k′ ∈ [j′ − 1, i′], there is k ∈ [j − 1, i] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

Proof. The proof is similar to the proof for (Claim 3) by looking backward in-
stead of looking forward (still there are slight differences because past is finite).

23

Nevertheless, full proof is provided below for the sake of completeness. We pro-
ceed by a case analysis on the positions i and j:

– If i < len(w1)+N ·len(u) [i is in Zone A or B] then j < len(w1)+N ·len(u)
[j is in Zone A or B] and i′ < len(w1) + N · len(u) [i′ is in Zone A or
B] and i = i′. We define j′ = j. Then it is clear that j′ < i′ and 〈w, j〉 ≈N

〈w′, j′〉. By (Claim 1), we get 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [j′ − 1, i′] and
let k = k′, then we have that k ∈ [j − 1, i] and also 〈w, k〉 ≈N 〈w′, k′〉, hence
by (Claim 1), 〈w, k〉 ≈N−1 〈w

′, k′〉.
– If i ≥ len(w1) + (M − N) · len(u) [i is Zone D or E] then i′ ≥ len(w1) +

(M ′ −N) · len(u) [i′ is in Zone D or E] and i = i′+(M −M ′) · len(u) and
we have the following possibilities for the position j ≤ i:

• If j ≥ len(w1) + (M − N) · len(u) [j is in Zone D or E], then let
j′ = j − (M −M ′) · len(u). Consequently, we have 〈w, j〉 ≈N 〈w′, j′〉
and by (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [j′ − 1, i′] and
k = k′ + (M −M ′) · len(u). Then we have that k ∈ [j − 1, i] and also
〈w, k〉 ≈N 〈w′, k′〉. By (Claim 1), 〈w, k〉 ≈N−1 〈w

′, k′〉.
• If len(w1) +N · len(u) ≤ j < len(w1) + (M −N) · len(u) [j is in Zone

C], then let ℓ = (j− (len(w1)+N · len(u))) mod len(u) (ℓ is the relative
position of j in the word u it belongs to). Consequently 0 ≤ ℓ < len(u).
Let j′ = len(w1)+(M ′−N)·len(u)−(len(u)−ℓ) (j′ is at the same position
as j in the last word u of the Zone C). Then len(w1) +N · len(u) ≤ j′ <

len(w1)+(M ′−N)·len(u) [j′ is in Zone C] (because (M ′ ≥ 2N+1) and
|j − j′| = 0 mod len(u) (they are at the same position in the word u).
We deduce that 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1) we get 〈w, j〉 ≈N−1

〈w′, j′〉. Then let k′ ∈ [j′− 1, i′] and let k = k′+(M −M ′) · len(u). Then
we have that k ∈ [j−1, i]. Furthermore, if k′ ≥ len(w1)+(M ′−N)·len(u)
[k′ is in Zone D or E] then k ≥ len(w1) + (M − N) · len(u) [k is in
Zone D or E] and we obtain 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1),
〈w, k〉 ≈N−1 〈w′, k′〉. Moreover, if k′ < len(w1) + (M ′ −N) · len(u) then
necessarily len(w1)+N · len(u) ≤ k′ [k′ is in Zone C] (because j′ < k′)
and |k − k′| = 0 mod len(u) (because k = k′ + (M − M ′) · len(u)).
Whence, k is in Zone C and 〈w, k〉 ≈N 〈w′, k′〉. By (Claim 1), we obtain
〈w, k〉 ≈N−1 〈w′, k′〉.

• If j < len(w1) +N · len(u) [j is in Zone A or B], let j′ = j. We have
then j′ < len(w1) +N · len(u) [j′ is in Zone A or B]. We deduce that
〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let
k′ ∈ [j′− 1, i′]. If k′ < len(w1)+N · len(u) [k′ is in Zone A], for k = k′,
we obtain 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉. If
k′ ≥ len(w1) + (M ′ − N) · len(u) [k′ is in Zone D or E], we choose
k = k′+(M−M ′)· len(u) and here also we deduce 〈w, k〉 ≈N 〈w′, k′〉 and
by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉. If w1 +N · len(u) ≤ k′ < len(w1) +
(M ′ −N) · len(u) [k′ is in Zone C], let ℓ = (k′ − (len(w1)+N · len(u)))
mod len(u) (ℓ is the relative position of k′ in the word u it belongs
to) and let k = len(w1) + N · len(u) + ℓ (k is at the same position of
k′ in the first word of the zone C). Then we have w1 + N · len(u) ≤

24

k < len(w1) + (M −N) · len(u) [k is in the Zone C] and |k − k′| = 0
mod len(u) which allows to deduce that 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim
1), 〈w, k〉 ≈N−1 〈w

′, k′〉.
– If len(w1) +N · len(u) ≤ i < len(w1) + (M −N) · len(u) [i in Zone C] then

len(w1) +N · len(u) ≤ i′ < len(w1) + (M ′ −N) · len(u) [i′ in Zone C] and
|i− i′| = 0 mod len(u). Let ℓ = (i− (len(w1)+N · len(u))) mod len(u) (the
relation position of i in the word u it belongs to). We have the following
possibilities for the position j ≤ i:
• If i − j < ℓ + len(u) (j is in the same word u as i or in the previous

word u) then j ≥ len(w1) + (N − 1) · len(u) [j is in Zone B or C]. We
define j′ = i′ − (i − j) and we have that len(w1) + (N − 1) · len(u) ≤
j′ < len(w1) + (M ′ − N) · len(u) [j′ is in Zone B or C] and since
|i − i′| = 0 mod len(u), we deduce |j − j′| = 0 mod len(u). From this,
we obtain 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [j′ − 1, i′] and k = i− (i′ − k′).
We have then that k ∈ [j − 1, i] and len(w1) + (N − 1) · len(u) ≤ k′ <

len(w1) + (M ′ −N) · len(u) [k′ is in Zone B or C] and len(w1) + (N −
1) · len(u) ≤ k < len(w1) + (M − N) · len(u) [k is in Zone B or C]
and since |i− i′| = 0 mod len(u), we also have |k− k′| = 0 mod len(u).
Consequently 〈w, k〉 ≈N−1 〈w′, k′〉.

• If i − j ≥ ℓ + len(u) (j is neither in the same word u as i nor in the
previous word u) and j < len(w1) + N · len(u) [j is in zone A or B].
Let j′ = j. So, j′ < len(w1) + N · len(u) and 〈w, j〉 ≈N 〈w′, j′〉. By
using (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈ [j′ − 1, i′]. If
k′ < len(w1)+N ·len(u) [k′ is in Zone A or B], then let k = k′; we have
in this case that k < len(w1) + N · len(u) and this allows us to deduce
that 〈w, k〉 ≈N−1 〈w′, k′〉. Now assume k′ ≥ len(w1)+N · len(u) [k′ is in
Zone C] and i′− k′ ≤ ℓ (k′ and i′ are in the same word u), then let k =
i−(i′−k′). In this case we have k ≥ len(w1)+N ·len(u) [k is in Zone C]
and since |i− i′| = 0 mod len(u), we also have |k− k′| = 0 mod len(u),
hence (w, k) ≈N−1 (w′, k′). Now assume k′ ≥ len(w1) + N · len(u) [k′

is in Zone C] and i′ − k′ > ℓ (k′ and i′ are not in the same word u).
We denote by ℓ′ = (k′ − (len(w1) +N · len(u))) mod len(u) the relation
position of k′ in u and let k = i − ℓ − (len(u) − ℓ′) (k is at the same
position as k′ of k in the word u preceding the word u i belongs to).
Then k ∈ [j − 1, i] (because len(u)− ℓ′ < len(u) and i− j ≥ ℓ+ len(u))
and k ≥ len(w1) + (N − 1) · len(u) (because i+ (len(u)− ℓ) ≥ len(w1) +
(M −N) · len(u) and len(u) − ℓ < len(u)) and |k − k′| = 0 mod len(u)
(k and k′ are both pointing on the ℓ′-th position in word u). This allows
us to deduce that 〈w, k〉 ≈N−1 〈w

′, k′〉.
• If j − i ≥ ℓ + len(u) (j is neither in the same word u as i nor in the

previous word u) and j ≥ len(w1) +N · len(u) [j is in zone C]. Then
let ℓ′ = (j − (len(w1) +N · len(u))) mod len(u) the relative position of
j ∈ u. We choose j′ = i′ − ℓ − (len(u) − ℓ′) (j′ and j are on the same
position of u but in the word u precedent in the one to which i belongs
to). We have then that j′ ≥ len(w1) + (N − 1) · len(u) [j′ is zone B
or C] (because i′ − ℓ ≥ len(w1) + N) · len(u) and len(u) − ℓ′ ≤ len(u))

25

and |j − j′| = 0 mod len(u) (j and j′ are both pointing on the ℓ′-th
position in word u), hence 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [j′ − 1, i′]. If
i′ − k′ ≤ ℓ (k′ and i′ are in the same word u), then let k = i− (i′ − k′).
In this case we have k ≥ len(w1)+N · len(u) [k is in Zone C] and since
|i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u), hence
〈w, k〉 ≈N−1 〈w′, k′〉. If i′ − k′ > ℓ (k′ and i′ are not in the same word
u), then k′ − j′ < len(u)− ℓ′ and let k = j+ k′ − j′. In this case we have
len(w1) +N · len(u) ≤ k < len(w1) + (M −N) · len(u) [k is in Zone C]
and since |j− j′| = 0 mod len(u), we also have |k−k′| = 0 mod len(u),
hence 〈w, k〉 ≈N−1 〈w

′, k′〉.

⊓⊔

B Proof of Lemma 8

Proof. The proof is by reduction from the SAT problem. Let φ be a Boolean
formula built over the propositional variables AP = {p1, · · · , pn}. We build
a path schema P and a formula ψ such that φ is satisfiable iff there is a run
respecting P and satisfying ψ. The path schema P is the one described in Figure 5
so that the truth of the propositional variable pi is encoded by the fact that the
loop containing qi is visited twice, otherwise it is visited once. The formula ψ is

≥ 1 ≥ 1 ≥ 1

q1 q2 q3

≥ 1

qn

ω

Fig. 5. A simple path schema P

defined as a conjunction ψ1∨2∧ψtruth where ψ1∨2 states that each loop is visited
at most twice and ψtruth establishes the correspondence between the truth of pi
and the number of times the loop containing qi is visited. Formula ψ1∨2 is equal
to [

∧
i(G(qi ∧ XXqi ⇒ XXXG¬qi))] whereas ψtruth is defined from φ by replacing

each occurrence of pi by F(qi ∧ XXqi).

Let us check the correctness of the reduction. Let v : AP → {⊤,⊥} be
a valuation satisfying φ. Let us consider the run ρ respecting P such that

iterP (ρ)[i]
def

= 2 if v(pi) = ⊤, otherwise iterP (ρ)[i]
def

= 1 for all i ∈ [1, n]. It is
easy to check that ρ, 0 |= ψ. Conversely, if there is a run ρ respecting P such
that ρ, 0 |= φ, the valuation v satisfies φ where for all i ∈ [1, n], we have v(pi) = ⊤
def

⇔ iterP (ρ)[i] = 2. ⊓⊔

26

C Proof of Lemma 11

Proof. The proof is by reduction from the problem SAT. Let φ be a Boolean
formula built over the propositional variables in {p1, · · · , pn}. We build a path
schema P ∈ CPS(2), an initial configuration (all counters will be equal to zero)
and a formula ψ such that φ is satisfiable iff there is a run respecting P and
starting at the initial configuration such that it satisfies ψ. The path schema P
is the one described in Figure 6; it has one internal loop and a second loop that
is visited infinitely. The guard x1 ≤ 2n enforces that the first loop is visited α

times with α ∈ [1, 2n], which corresponds to guess a propositional valuation such
that the truth value of the propositional variable pi is ⊤ whenever the ith bit of
α− 1 is equal to 1. When α− 1 is encoded in binary with n bits, we assume the
first bit is the most significant bit. Note that the internal loop has to be visited
at least once since P is a path schema.

q0 q1

x1 ≤ 2n,















1

1

.

.

.

1















≥ 1
⊤,















0

0

.

.

.

0















⊤,















2n

2n−1

.

.

.

21















ω

Fig. 6. Path schema P

Since the logical language does not allow to access to the ith bit of a counter
value, we simulate the test by arithmetical constraints in the formula when
the second loop of the path schema is visited. For every α ∈ [1, 2n] and every
i ∈ [1, n], we write αi

u to denote the value in [0, 2i− 1] corresponding to the i− 1
first bits of α − 1. Similarly, we write αi

d to denote the value in [0, 2n+1−i − 1]
corresponding to the (n + 1 − i) last bits of α − 1. Observe that α − 1 = αi

u ×
2n−i+1+αi

d. One can show that (1.) the ith bit of α−1 is 1 iff (2.) there is some
k ≥ 0 such that k×2n+1−i+(α−1) ∈ [2n+2n−i, 2n+2n+1−i−1]. Actually, we shall
show that k is unique and the only possible value is 2i−1 − αi

u. Before showing
the equivalence between (1.) and (2.), we can observe that condition (2.) can be
expressed by the formula F(q1∧((xi−1) ≥ 2n+2n−i)∧((xi−1) ≤ 2n+2n−i+1−1)).

First, note that [2n+2n−i, 2n+2n+1−i− 1] contains 2n−i distinct values and
therefore satisfaction of (2.) implies unicity of k since 2n+1−i > 2n−i. Second,
ith bit of α − 1 is equal to 1 iff αi

d ∈ [2n−i, 2n+1−i − 1]. Now, observe that
(2i−1 − αi

u)2
n+1−i + (α− 1) = 2n + αi

d. So, if (1.), then αi
d ∈ [2n−i, 2n+1−i − 1]

and consequently 2n +αi
d ∈ [2n +2n−i, 2n +2n+1−i− 1]. So, there is some k ≥ 0

such that k×2n+1−i+(α−1) ∈ [2n+2n−i, 2n+2n+1−i−1] (take k = 2i−1−αi
u).

27

Now, suppose that (2.) holds true. There is k ≥ 0 such that k×2n+1−i+(α−1) ∈
[2n + 2n−i, 2n + 2n+1−i − 1]. So, k × 2n+1−i + (α− 1)− 2n ∈ [2n−i, 2n+1−i − 1]
and therefore k× 2n+1−i+αi

d − (2i−1 −αi
u)× 2n+1−i ∈ [2n−i, 2n+1−i − 1]. Since

the expression denotes a non-negative value, we have k ≥ (2i−1 − αi
u) (indeed

αi
d < 2n+1−i) and since it denotes a value less or equal to 2n+1−i−1, we have k ≤

(2i−1 − αi
u). Consequently, k = 2i−1 − αi

u and therefore αi
d ∈ [2n−i, 2n+1−i − 1],

which is precisely equivalent to the fact that the ith bit of α− 1 is equal to 1.
The formula ψ is defined from φ by replacing each occurrence of pi by F(q1 ∧

((xi − 1) ≥ 2n + 2n−i) ∧ ((xi − 1) ≤ 2n + 2n−i+1 − 1)). Intuitively, P contains
one counter by propositional variable and all the counters hold the same value
after the first loop. Next, in the second loop, we check that the ith bit of α− 1
is one by incrementing xi by 2n+1−i. We had to consider n counters since the
increments differ. In order to check whether the ith bit of counter xi is one,
we add repeatedly 2n+1−i to the counter. Note that this ensures that the bits
at positions i to n remains the same for the counter whereas the counter is
incremented till its value is greater or equal to 2n. Eventually, we may deduce
that the counter value will belong to [2n+2n−i, 2n+2n−i+1−1]. This is explained
Table 1 with n = 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

p1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

p2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

p3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

p4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Table 1. Table showing the effect of last loop for 4 variables

Let us check the correctness of the reduction. Let v : {p1, . . . , pn} → {⊤,⊥}. be
a valuation satisfying φ. Let us consider the run ρ respecting P such that the
first loop is taken α = (v(p1)v(p2) · · · v(pn))2 + 1 times and the initial counter
values are all equal to zero. ⊤ is read as 1, ⊥ as 0 and (v(p1)v(p2) · · · v(pn))2
denotes the value of the natural number made of n bits in binary encoding.
Hence, for every i ∈ [1, n], the counter xi contains the value α after the first
loop. As noted earlier, v(pi) = 1 implies that adding 2n−i+1 repeatedly to xi
in the last loop, we will hit [2n + 2n−i, 2n + 2n−i+1 − 1]. Hence, the formula
F(q1 ∧ ((xi − 1) ≥ 2n+2n−i)∧ ((xi − 1) ≤ 2n+2n−i+1− 1)) will be satisfied by ρ
iff v(pi) = 1. It is easy to check thus, that ρ, 0 |= ψ. Conversely, if there is a run
ρ respecting P such that ρ, 0 |= φ and the initial counter values are all equal to
zero, the valuation v satisfies φ where for all i ∈ [1, n], we have v(pi) iff the ith

bit in the binary encoding of α− 1 is 1, where α is the number of times the first
loop is taken. ⊓⊔

28

D How to unfold path schemas to get rid of disjunctions

or how to prove Theorem 14

D.1 Preliminary results on term maps

Definition 18. Given a loop effect u ∈ Z
n, we define the relation �u on term

maps such that m �u m′ def

⇔ for every term t =
∑

i aixi ∈ T , we have m(t) ≤
m′(t) if

∑
i aiu[i] ≥ 0, m(t) ≥ m′(t) if

∑
i aiu[i] ≤ 0 and m(t) = m′(t) if∑

i aiu[i] = 0. We write m ≺u m′ whenever m �u m′ and m 6= m′.

Sequences of strictly increasing term maps have bounded length.

Lemma 19. Let u ∈ Z
n and m1 ≺u m2 ≺u · · · ≺u mL. Then, L ≤ 2 ×

card(T)× card(B) + card(T).

Proof. For any loop effect u 6= 0, each term t can be mapped by a m to card(I)
different intervals as by definition for any two maps m and m′, it can be either
m(t) ≤ m′(t) or m(t) ≥ m′(t) but not both. Also, there are card(T) number
of terms. Hence, the number of different maps that are either decreasing or
increasing can be card(T)×card(I). Again, we know that card(I) = 2×card(B)+
1. Hence, L, the number of different term maps in a sequence which is either
increasing or decreasing, can be at most 2× card(T)× card(B) + card(T). ⊓⊔

Given a guard g using the syntactic resources from T and B, and a term map
m, we write m ⊢ g with the following inductive definition:

– m ⊢ t = b
def

⇔ m(t) = [b, b];

– m ⊢ t ≤ b
def

⇔ m(t) ⊆ (−∞, b]; m ⊢ t ≥ b
def

⇔ m(t) ⊆ [b,+∞),

– m ⊢ t < b
def

⇔ m(t) ⊆ (−∞, b); m ⊢ t > b
def

⇔ m(t) ⊆ (b,+∞),

– m ⊢ g1 ∧ g2
def

⇔ m ⊢ g1 and m ⊢ g2; m ⊢ g1 ∨ g2
def

⇔ m ⊢ g1 or m ⊢ g2.

Lemma 20(I) below states that the relation ⊢ is easy to check whereas
Lemma 20(II) states that ⊢ is complete with respect to the adequate notion
of validity.

Lemma 20. (I) m ⊢ g can be checked in PTime in size(m) + size(g).
(II) m ⊢ g iff for all v : {x1, x2, · · · , xn} → N, (for all t ∈ T , v(t) ∈ m(t))

implies v |= g.

It is worth noting that size(m) is in O(card(I)× card(T)).

Proof. (I) For the PTime algorithm we follow the following steps. First, for each
constraint t ∼ b appearing in g, we replace it either ⊤ (true) or ⊥ (false)
depending whether m ⊢ t ∼ b or not. After replacing all constraints, we
are left with a positive Boolean formula whose atomic formulae are either
⊤ or ⊥. It can be evaluated in logarithmic space in the size of the resulting
formula (less than size(g)).
Note that given a term map m and a constraint t ∼ b, checking m ⊢ t ∼ b

amounts to checking the containement of interval m(t) in a specified interval

29

depending on ∼. This can be achieved by comparing the end-points of the
intervals, which can be done in polynomial time in size(t)+ size(m). As the
number of constraints is also bounded by size(g), the replacement of atomic
constraints can be performed in polynomial time in size(m)+ size(g). Thus,
the procedure completes in time polynomial in size(m) + size(g).

(II) Consider that m ⊢ g and some v : {x1, x2, · · · , xn} → N such that v(t) lies
in the interval m(t) for each term t ∈ T . Now will prove inductively on the
structure of g that v |= g.
• Base Case: As base case we have aritmetical constraints of the guard.

Consider the constraint is of the form t ≤ b. Since, m ⊢ g, we have that
m(t) ⊆ (−∞, b]. Since, v(t) lies in the interval m(t), v(t) ∈ (−∞, b].
Note that, in this case v |= t ≤ b. Similarly, for other type of constraints
t ∼ b, observe that if v(t) ∈ m(t) then v(t) lies in the interval specified
in the definition of ⊢ and thus, v |= t ∼ b.

• Inductive step: The induction step for ∧ and ∨, follows easily.
On the other hand, consider some valuation v with v(t) ∈ m(t) for each
t ∈ T and v |= g. Similar to above, we will use inductive argument to show
that m ⊢ g

• Base Case: Again consider arithmetical constraints of the guard. Specif-
ically, we consider constraints of the form t ≥ b. As v |= t ≥ b, we know
that v(t) ∈ [b,∞). Since, v(t) ∈ m(t), we have that, m(t) ⊆ [b,∞).
Hence, m ⊢ t ≥ b. Similarly, for constraints of other forms t ∼ b, v(t) lies
in the interval exactly specified in the definition of ⊢. Thus, m ⊢ t ∼ b.

• Inductive step: Again, the induction step for ∧ and ∨ follows easily.
⊓⊔

D.2 Proof of Lemma 13

Proof. The proof is by structural induction.

– Base Case 1 (p ∈ X): we have the following equivalences:
• ρ, i |= p,
• p ∈ l(qi) (by definition of |=),
• p ∈ π1(ft(i)) (by definition of ft(ρ)),
• ft(ρ), i |=symb p (by definition of |=symb).

– Base Case 2 (
∑

j ajxj ≤ b with
∑

j ajxj ∈ T and b ∈ B): we have the
following equivalences:
• ρ, i |=

∑
j ajxj ≤ b,

•
∑

j ajvi[j] ≤ b (by definition of |=),
• π2(ft(i))(mi(

∑
j ajxj)) ⊆ (−∞, b] (by definition of ft(ρ)),

• ft(ρ), i |=symb

∑
j ajxj ≤ b (by definition of |=symb).

The base cases for the other arithmetical constraints can be shown similarly.
– For the induction step, by way of example we deal with the case φ = Xψ

(the cases for the Boolean operators or for the other temporal operators are
analogous). We have the following equivalences:
• ρ, i |= Xψ,

30

• ρ, i+ 1 |= ψ (by definition of |=),
• ft(ρ), i+ 1 |=symb ψ (by induction hypothesis),
• ft(ρ), i |=symb Xψ (by definition |=symb).

Then, it is immediate that if ρ′ is an infinite run such that ft(ρ) = ft(ρ′),
then ρ, i |= φ iff ρ′, i |= φ. ⊓⊔

D.3 Building the set YP

Unfolding a path schema Let R = 〈X,T,B〉 be a resource and

P = p1l
+
1 p2l

+
2 . . . pkl

ω
k

be a minimal path schema. Let ∆P be the set of transitions occurring in P and
Q′ be Q × IT . Given t =

∑
j ajxj ∈ T , u ∈ Z

n and a term map m, we write
ψ(t,u,m(t)) to denote the formula below (b, b′ ∈ B):

– ψ(t,u, (−∞, b])
def

=
∑

j aj(xj + u(j)) ≤ b,

– ψ(t,u, [b,+∞))
def

=
∑

j aj(xj + u(j)) ≥ b,

– ψ(t,u, [b, b′])
def

= ((
∑

j aj(xj + u(j)) ≤ b′) ∧ ((
∑

j aj(xj + u(j)) ≥ b).

We write G⋆(T,B, U) to denote the set of guards of the form ψ(t,u,m(t)) where
t ∈ T , U is the finite set of updates from P and m : T → I. Each guard in
G⋆(T,B, U) is of linear size in the size of P .

We define ∆′ as a finite subset of Q′ ×∆P × G⋆(T,B, U)×U ×Q′ such that:

for 〈q,m〉
δ,〈g

m
′ ,u〉

−−−−−→ 〈q′,m′〉 ∈ ∆′, the conditions below are satisfied:
def

⇔

– q = source(δ) and q′ = target(δ),
– gm′ is a guard that states that after the update u, for each t ∈ T , its value

belongs to m′(t). gm′ is equal to
∧

t∈T ψ(t,u,m(t))
– Term values belong to intervals that make true guard(δ), i.e. m ⊢ guard(δ).
– u = update(δ).

We extend the definition of source(δ) to δ′ = 〈q,m〉
δ,〈g

m
′ ,u〉

−−−−−→ 〈q′,m′〉 ∈
∆′. We define source(δ′) = 〈q,m〉 and target(δ′) = 〈q′,m′〉. Similarly, for a
finite word w ∈ (∆′)∗, we define source(w) = source(w(1)) and target(w) =
target(w(len(w))).

A skeleton (compatible with P and 〈q0,v0〉) sk, say 〈q1,m1〉
δ1,〈g

1

m
′ ,u1〉

−−−−−−→

〈q2,m2〉
δ2,〈g

2

m
′ ,u2〉

−−−−−−→ 〈q3,m3〉 · · ·
δK ,〈gK

m
′ ,uK〉

−−−−−−−→ 〈qK+1,mK+1〉, is a finite word over
∆′ such that

(init) For every term t =
∑

j ajxj ∈ T , we have
∑

j ajv0[j] ∈ m1(t) where v0

is the initial vector.
(schema) Let f : (∆′)∗ → ∆∗ be the map such that f(ε) = ε, f(w · w′) =

f(w) · f(w′) and f(〈q,m〉
δ,〈g

m
′ ,u〉

−−−−−→ 〈q′,m′〉) = δ. We require that f(sk) ∈
p1l

+
1 p2l

+
2 . . . pkl

+
k .

31

(minimality) For every factor

w = 〈qI ,mI〉
δI ,〈g

I

m
′ ,uI〉

−−−−−−→ 〈qI+1,mI+1〉 · · ·
δJ−1,〈g

J−1

m
′ ,uJ−1〉

−−−−−−−−−−→ 〈qJ ,mJ〉

of sk such that f(w) = (l)3 for some loop l of P (therefore J = I+3×len(l)),
there is α ∈ [1, len(l)] such that mI+α ≺effect(l) mI+α+2×len(l).

(last-loop) For the unique suffix w of sk of length len(lk), we have f(w) = lk
and source(w) = target(w).

Lemma 21. For a skeleton sk, len(sk) ≤ (len(p1) + · · · + len(pk)) + 2 × (2 ×
card(T)× card(B) + card(T))× (len(l1) + · · ·+ len(lk))

Proof. Since f(sk) ∈ p1l
+
1 p2l

+
2 . . . pkl

+
k , let f(sk) = p1l

n1

1 p2l
n2

2 . . . pkl
nk

k for some
n1, . . . , nk ≥ 1. We have len(sk) ≤ (len(p1)+ · · ·+len(pk))+max(ni)×(len(l1)+
· · ·+ len(lk)). It remains to bound the values among n1, . . . , nk. For each factor
w of sk such that f(w) = (li)

ni with i ∈ [1, k], by the (minimality) condition
and Lemma 19, we conclude that ni ≤ 2 × (2 × card(T) × card(B) + card(T)).
Consequently, len(sk) ≤ (len(p1)+ · · ·+ len(pk)) + 2× (2× card(T)× card(B)+
card(T))× (len(l1) + · · ·+ len(lk)). ⊓⊔

We have furthermore the following Lemma concerning skeletons.

Lemma 22. Checking whether a word w ∈ (Q′ × ∆ × G⋆(T,B, U) × U × Q′)∗

is a skeleton compatible with P and 〈q0,v0〉 assuming len(w) ≤ (len(p1) + · · ·+
len(pk)) + 2(2× card(T)× card(B) + card(T))× (len(l1) + · · ·+ len(lk)) can be
done in polynomial time in the size of 〈q0,v0〉, P , T and B.

Proof. Let w be a word over Q′ × ∆P × G⋆(T,B, U) × U × Q′ whose length is
bounded by (len(p1) + · · · + len(pk)) + 2(2 × card(T) × card(B) + card(T)) ×
(len(l1) + · · ·+ len(lk)). Let N be the sum of the respective sizes of 〈q0,v0〉, P ,
T and K. Since the length of w is bounded, its size is also polynomial in N .

Checking whether an element in Q′×∆P ×G⋆(T,B, U)×U×Q′ belongs to ∆′

can be done in polynomial time in N thanks to Lemma 20(I). Hence, checking
whether w belongs to (∆′)∗ can be done in polynomial time in N too since its
length is also polynomial in N . It remains to check the conditions for skeletons.

– Condition (schema) can be checked by building first f(w) (requires linear
time in N) and then by checking whether it belongs to p1l

+
1 p2l

+
2 . . . pkl

+
k

(requires also linear time in N).
– Condition (last-loop) can be checked by extracting the suffix of w of length

len(lk).
– Condition (minimality) can be checked by considering all the factors w′ of
w (there are less than len(w)2 of them) and whenever f(w′) = l3 for some
loop l, we verify that the condition is satisfied. All these operations can be
done in polynomial time in N .

– Finally, condition (init) is also easy to check in polynomial time in N .
⊓⊔

32

From skeletons, we shall define path schemas built over the alphabet ∆̃ =
Q′ × G⋆(T,B, U) × U × Q′ (transitions are not anymore formally labelled by
elements in ∆P ; sometimes we keep these labels for convenience). As for the
definition of f , let h : (∆′)∗ → (∆̃)∗ be the map such that h(ε) = ε, h(w ·w′) =

h(w) · h(w′) and h(〈q,m〉
δ,〈g

m
′ ,u〉

−−−−−→ 〈q′,m′〉) = 〈q,m〉
〈g

m
′ ,u〉

−−−−→ 〈q′,m′〉. This time,
elements of ∆P are removed instead of being kept as for f . Given a skeleton
sk, we shall define a path schema Psk = p′1(l

′
1)

+p′2(l
′
2)

+ . . . p′k′(l′k′)ω such that
h(sk) = p′1l

′
1p

′
2l

′
2 . . . p

′
k′ l′k′ . Hence, skeletons slightly differ from the path schemas.

It remains to specify how the loops in Psk are identified.

For every factor w = 〈qI ,mI〉
δI ,〈g

I
m

′ ,uI〉
−−−−−−→ 〈qI+1,mI+1〉 · · ·

δJ−1,〈g
J−1

m
′ ,uJ−1〉

−−−−−−−−−−→
〈qJ ,mJ 〉 of sk such that

1. f(w) = l for some loop l of P ,
2. w is not the suffix of sk of length len(lk),
3. the sequence of the len(l) next elements after w is also equal to w,

we replace w2 (the two consecutive repetitions of w) by (h(w))+. Finally, l′k′ is
equal to h(w) where w is the unique suffix of sk of length len(lk). Note that the
path schema Psk is unique by the condition (minimality). Indeed, there is no
factor of sk of the form w3 such that f(w) = l for some loop l of P . As far as
the labelling function is concerned, the labels of q and 〈q,m〉 are identical as far

as X is concerned, i.e. l′(〈q,m〉)
def

= l(q) ∩X . Hence,

1. k′ ≤ k × (2 × card(T)× card(B) + card(T)),
2. len(Psk) ≤ (len(p1)+ · · ·+len(pk))+2× (2× card(T)× card(B)+card(T))×

(len(l1) + · · ·+ len(lk)),
3. Psk has no guards with disjunctions.

We define the set YP as the following set of path schemas over the transitions
∆̃: YP = {Psk | sk is a skeleton compatible with P and 〈q0,v0〉}; it corresponds
to the set of unfolded path schemas obtained from P .

As an example in Figure 7, we consider the path schema P and two of its
unfoldings P ′ and P ′′ such that both belong to YP (the initial counter value
is zero). Even though both P ′ and P ′′ are path schemas, there is no valid run
respecting P ′ whereas there is one respecting P ′′.

D.4 Properties of the set YP

Note that in the sequel we assume that the labelling function l associated to a
run respecting a path schema in YP is such that for any 〈q,m〉 ∈ Q′, l(q,m) is
equal to l(q). This allows us to compare the footprints of the runs respecting P
with the footprints of runs respecting a path schema in YP .

The main property about YP is stated below.

Proposition 23. (I) Let ρ be an infinite run respecting P and starting at
〈q0,v0〉. Then, there are a path schema P ′ in YP and an infinite run ρ′

respecting P ′ such that ft(ρ) = ft(ρ′).

33

q0 q1 q2
⊤,+1 ⊤,+1

⊤,+1

≥ 1 ω

P

q0, [0] q1, [1]

≥ 1

q1, [2]

≥ 1

q1, [3,∞)

≥ 1

q2, [3,∞)

ω

x + 1 = 1,+1 x + 1 = 2,+1

x+1=1,+1

x + 1 ≥ 3,+1

x+1=2,+1

x + 1 ≥ 3,+1

x+1>2,+1

P ′

q0, [0] q1, [1] q1, [2] q1, [3,∞)

≥ 1

q2, [3,∞)

ω

x + 1 = 1,+1 x + 1 = 2,+1 x + 1 ≥ 3,+1 x + 1 ≥ 3,+1

x+1>2,+1

P ′′

Fig. 7. Apath schema P with two path schemas in YP

34

(II) Let ρ be an infinite run respecting P ′ for some P ′ ∈ YP . Then, there is an
infinite run ρ′ respecting P such that ft(ρ) = ft(ρ′).

Proof.

(I) Let ρ = 〈q0,v0〉
δ0−→ 〈q1,v1〉

δ1−→ · · · be an infinite run respecting P with
footprint ft(ρ) : N → 2AT × IT . We write 〈Zi,mi〉 to denote ft(ρ)(i). In order to
build ρ′ and P ′, first we enrich the structure ρ and then we define a skeleton from
the enriched structure that allows us to define P ′. The run ρ′ is then defined from
ρ so that the sequences of counter values are identical. From ρ, we consider the

infinite sequence w = 〈q0,m0〉
δ0,〈gm1

,update(δ0)〉
−−−−−−−−−−−−→ 〈q1,m1〉

δ1,〈gm2
,update(δ1)〉

−−−−−−−−−−−−→ · · · .
It is easy to check that w can be viewed as an element of (∆′)ω where ∆′ is
defined as a finite subset of Q′ × ∆P × G⋆(T,B, U) × U × Q′ where U is the
finite set of updates from P = p1(l1)

+p2(l2)
+ · · · (lk−1)

+pk(lk)
ω . Moreover, we

have f(w) ∈ L(P), that is f(w) = p1(l1)
n1p2(l2)

n2 · · · (lk−1)
nk−1pk(lk)

ω for some
n1, . . . , nk−1 ≥ 1. From w, one can build a skeleton sk compatible with P and
〈q0,v0〉. sk is formally a subword of w such that

f(sk) = p1(l1)
n′
1p2(l2)

n′
2 · · · (lk−1)

n′
k−1pk(lk)

n′
k

with 1 ≤ n′
i ≤ min(ni, 2 × (2 × card(T) × card(B) + card(T)) for i ∈ [1, k − 1]

and 1 ≤ n′
k ≤ 2 × (2 × card(T) × card(B) + card(T)). There exists I ≥ 1 such

that w = w′ · w0 · w0 · (w0)
ω with f(w0) = lk. The skeleton sk is obtained from

w′ ·w0 ·w0 by deleting copies of loops as soon as two copies are consecutive. More
precisely, every maximal factor of w′ · w0 · w0 of the form (w⋆)N with N > 2
such that f(w⋆) = li for some loop li of P , is replaced by (w⋆)2. This type of
replacement can be done at most k × (2 × (2 × card(T)× card(B) + card(T)))
times. One can check thay sk is indeed a skeleton compatible with P and 〈q0,v0〉.
Let us consider that sk can be written as

〈q1,m1〉
δ1,〈g

1

m
′ ,u1〉

−−−−−−→ 〈q2,m2〉
δ2,〈g

2

m
′ ,u2〉

−−−−−−→ 〈q3,m3〉 · · ·
δK ,〈gK

m
′ ,uK〉

−−−−−−−→ 〈qK+1,mK+1〉

Considering the path schema Psk built from sk, one can show that the sequence
ρ′ below is an infinite run respecting Psk:

〈〈q0,m0〉,v0〉
〈gm1

,update(δ0)〉
−−−−−−−−−−→ 〈〈q1,m1〉,v1〉

〈gm2
,update(δ1)〉

−−−−−−−−−−→ 〈〈q2,m2〉,v2〉 · · ·

so that ft(ρ) = ft(ρ′). When entering in the last loop of Psk, counter values still
evolve but the sequence of control states forms a periodic word made of the
len(lk) last control states of sk. By construction of sk and Psk, it is clear that ρ
and ρ′ have the same sequences of counter values (they have actually the same
sequences of updates) and by definition of the labellings, they have also the same
sequences of sets of atomic propositions. It remains to check that ρ′ is indeed a
run, which amounts to verify that guards are satisfied but this is guaranteed by
the way guards are defined and by the completeness result in Lemma 20(II).

(II) Let ρ be some run respecting some P ′ ∈ YP of the form below:

〈〈q0,m0〉,v0〉
δ0,〈gm1

,update(δ0)〉
−−−−−−−−−−−−→ 〈〈q1,m1〉,v1〉

δ1,〈gm2
,update(δ1)〉

−−−−−−−−−−−−→ 〈〈q2,m2〉,v2〉 · · ·

35

In the above run, we have decorated the steps by transitions from P as P ′ is
defined from a skeleton in which transitions are decorated by such transitions.

After a tedious verification, one can show that ρ = 〈q0,v0〉
δ0−→ 〈q1,v1〉

δ1−→ · · · is a
run respecting P such that ft(ρ) = ft(ρ′). Satisfaction of guards is guaranteed by
the way ∆′ is defined. The fact that ρ respects P is even easier to justify since
all the path schemas in YP can be viewed as specific instances of P that differ
in the way the term maps evolve. Details are omitted.

⊓⊔

We define the function proj over infinite words of the alphabet of transitions
∆̃ = Q′×G⋆(T,B, U)×U×Q′ as follows: for each w ∈ ∆̃ω, proj(w) : N → 2AT×IT

satisfies that for all i ∈ N, if w(i) = 〈〈q,m〉, g,u, 〈q′,m′〉〉 and l(q) ∩ X = L

then proj(w)(i)
def

= 〈L,m〉. We have then the following lemma:

Lemma 24. If P ′ = p′1(l
′
1)

+p′2(l
′
2)

+ . . . p′k′(l′k′)ω is a path schema in YP and ρ is

a run 〈〈q0,m0〉,v0〉
〈gm1

,update(δ0)〉
−−−−−−−−−−→ 〈〈q1,m1〉,v1〉

〈gm2
,update(δ1)〉

−−−−−−−−−−→ 〈〈q2,m2〉,v2〉 · · ·
respecting P ′ we have that proj(lab(ρ)) = ft(ρ).

Proof. We will prove that for all i ∈ N, we have ft(ρ)(i) = proj(lab(ρ))(i). For
i = 0, we have ft(ρ)(0) = 〈l(q0) ∩ X,m〉 and using the definition of a skeleton,
the (init) case tells us that necessarily, m = m0. Hence we have ft(ρ)(0) =
proj(lab(ρ))(0). We will now prove the property holds for i + 1 with i ∈ N. By
definition of the function ft(·), we have ft(ρ)(i + 1) = 〈l(qi) ∩ X,m〉 and in

the run ρ we have 〈〈qi,mi〉,vi〉
〈gmi

,update(δi)〉
−−−−−−−−−−→ 〈〈qi+1,mi+1〉,vi+1〉. We know

than from how we build YP that there exists a transition in ∆′ of the form

〈qi,mi〉
δ,〈gmi

,update(δi)〉
−−−−−−−−−−−→ 〈qi+1,mi+1〉, and by definition of the set ∆′, gmi

is a
guard that states that after the update update(δi), for each t ∈ T , its value
belongs to mi+1(t). Hence we can deduce that m = mi+1 and consequently
ft(ρ)(i + 1) = proj(lab(ρ))(i + 1). ⊓⊔

D.5 Proof of Theorem 14

Proof. Let YP be the set of path schemas defined from the minimal path schema
P .

1. For every path schema in YP , the guards on transitions are of the form∧
t∈T ψ(t,u,m(t)) and each guard ψ(t,u,m(t)) is itself an atomic guard

and a conjunction of two atomic guards. Hence, no path schema in YP con-
tains guards with disjunctions in it.

2. By Lemma 21, every skeleton defining a path schema in YP has polynomial
length in len(P) + card(T) + card(B). Each path schema in YP has a linear
length in the length of its corresponding skeleton. Consequently, for P ′ ∈ YP ,
its length len(P ′) is polynomial in len(P) + card(T) + card(B).

3. Given a path schema P ′ in YP , one can easily identify its underlying skeleton
sk by removing iteration operators such as + and ω (easy at the cost of

36

keeping track of transitions from ∆P). By Lemma 22, checking whether
sk is compatible with P and 〈q0,v0〉 can be done in polynomial time in
size(P) + card(T) + card(B). In particular, if sk is too long, this can be
checked in polynomial time too.

4. By Proposition 23(I), for every run ρ respecting P and starting at 〈q0,v0〉,
there are P ′ ∈ YP and a run ρ′ respecting P ′ such that ft(ρ) = ft(ρ′). By
Lemma 13, ρ |= φ iff ρ′ |= φ.

5. Similar to (4.) by using Proposition 23(II).
6. We consider an ultimately periodic word w · uω ∈ L(P ′). From it we can

build in linear time the ultimately periodic word w′ · u′ω = proj(w · uω) over
the alphabet 2X × IT and the size of the word w′ [resp. u′] is linear in the
size of the word w [resp. w′]. By [17], we know that w′ · u′ω, 0 |=symb φ can
be checked in time O(size(φ)2 × len(w′ · u′)). Indeed, |=symb is analogous to
the satisfiability relation for plain Past LTL.

⊓⊔

E Proof of Lemma 12

Proof. Let us build a constraint system E defined from P that characterizes the
set iterP (c0) included in N

k−1 for some initial configuration c0 = 〈q0,v0〉. For
α ∈ [1, k] and i ∈ [1, n], we write effect

<(lα)[i] to denote the term below:

v0[i] + (effect(p1)+ · · ·+ effect(pα))[i] + effect(l1)[i]y1 + . . .+ effect(lα−1)[i]yα−1

It corresponds to the value of the counter i just before entering in the loop lα.
Similarly, for α ∈ [1, k] and i ∈ [1, n], we write effect<(pα)[i] to denote

v0[i]+(effect(p1)+ · · ·+effect(pα−1))[i]+effect(l1)[i]y1+ . . .+effect(lα−1)[i]yα−1

It corresponds to the value of the counter i just before entering in the segment
pα. In this way, for each segment p in P and each β ∈ [0, len(p) − 1] the term
below refers to the value of counter i just before entering for the first time in
the (β + 1)th transition of p:

effect
<(p)[i] + effect(p[0] · · · p[β − 1])[i]

Similarly, the value of counter i just before entering for the last time in the
(β + 1)th transition of lα is represented by the term below:

effect<(p)[i] + effect(lα)[i](yα − 1) + effect(lα[0] · · · lα[β − 1])[i]

The set of conjuncts in E is defined as follows. Each conjunct corresponds to a
specific constraint in runs respecting P .

E1: Each loop is visited at least once:

y1 ≥ 1 ∧ · · · ∧ yk−1 ≥ 1

37

E2: Counter values are non-negative. Let us consider the following constraints.
– For each segment p and each β ∈ [0, len(p) − 1], the value of counter i

just before entering for the first time in the (β + 1)th transition of p is
non-negative:

effect<(p)[i] + effect(p[0] · · · p[β − 1])[i] ≥ 0

– For each α ∈ [1, k− 1] and each β ∈ [0, len(lα)− 1], the value of counter
i just before entering for the last time in the (β+1)th transition of lα is
non-negative:

effect<(lα)[i] + effect(lα)[i](yα − 1) + effect(lα[0] · · · lα[β − 1])[i] ≥ 0

Convexity guarantees that this is sufficient to non-negativity.
E3: Counter values should satisfy the guards the first time when a transition is

visited. For each segment p in P , each β ∈ [0, len(p) − 1] and each atomic
guard

∑
i aixi ∼ b ∈ guard(p(β)), we add the atomic constraint:

∑

i

ai(effect
<(p)[i] + effect(p[0] · · · p[β − 1])[i]) ∼ b

E4: Counter values should satisfy the guards the last time when a transition
is visited. This applies to loops only. For each α ∈ [1, k − 1], each β ∈
[0, len(lα) − 1] and each atomic guard

∑
i aixi ∼ b ∈ guard(lα(β)), we add

the atomic constraint:

∑

i

ai(effect
<(lα)[i] + effect(lα)[i](yα − 1) + effect(lα[0] · · · lα[β − 1])[i]) ∼ b

No condition is needed for the last loop since the path schema P is valid.

Now, let us bound the number of equalities or inequalities above. To do so,
we write N1 to denote the number of atomic guards in S.

– The number of conjuncts in E1 is k.
– The number of conjuncts in E2 is bounded by

len(P)× n+ len(P)× n = 2n× len(P).

– The number of conjuncts in E3 [resp. E4] is bounded by len(P)×N1 × n.

So, the number of conjuncts in E is bounded by 2 × len(P) × n(1 +N1). Since
n, 1+N1 ≤ size(S), we get that this number is bounded by len(P)×2×size(S)2.

Let K be the maximal absolute value of constants occurring in S and v0.
Let us bound the maximal absolute value of constants in E . To do so, we start
by a few observations.

– A path segment p has at most len(P) transitions and therefore the maximal
absolute value occurring in effect(p) is at most K × len(P).

38

– The maximal absolute value occurring in effect<(p) is at most (K×len(P))×
(K + k ×K).

Consequently, the maximal absolute value of constants in E is bounded by n×
(K × (K × len(P))× (K + k×K)), which is bounded by n× k×K4 × len(P)3.
When P is a minimal path schema, note that len(P) ≤ 2×card(∆) ≤ 2×size(S)
and k ≤ card(Q) ≤ size(S).

(⋆) Let ρ = 〈q0,v0〉〈q1,v1〉〈q2,v2〉 · · · be an infinite run respecting the path
schema P with c0 = 〈q0,v0〉. We write V : {y1, . . . , yk−1} → N to denote the
valuation such that for α ∈ [1, k−1], we have V (yα) = iterP (ρ)[α]. V is extended
naturally to terms built over variables in {y1, . . . , yk−1}, the range becoming Z.
Let us check that V |= E .

1. Since ρ respects P , each loop li is visited at least once and therefore V |= E1.
2. We have seen that the value below

V (effect<(p)[i] + effect(p[0] · · · p[β − 1])[i])

is equal to the value of counter i just before entering for the first time in the
(β + 1)th transition of p. Similarly, the value below

V (effect<(lα)[i] + effect(lα)[i](yα − 1) + effect(lα[0] · · · lα[β − 1])[i])

is equal to the value of counter i before entering for the last time in the
(β + 1)th transition of lα . Since ρ is a run, these values are non-negative,
whence V |= E2.

3. Since ρ is a run, whenever a transition is fired, all its guards are satisfied.
Hence, for each segment p in P , each β ∈ [0, len(p) − 1] and each atomic
guard

∑
i aixi ∼ b ∈ guard(p(j)), we have

∑

i

aiV (effect<(p)[i] + effect(p[0] · · · p[β − 1])[i]) ∼ b

Similarly, for each α ∈ [1, k − 1], each β ∈ [0, len(lα) − 1] and each atomic
guard

∑
i aixi ∼ b ∈ guard(lα(β)), we have

∑

i

aiV (effect<(lα)[i]+ effect(lα)[i](yα − 1)+ effect(lα[0] · · · lα[β− 1])[i]) ∼ b

Consequently, V |= E3 ∧ E4.

(⋆⋆) It remains to show the property in the other direction.
Let V : {y1, . . . , yk−1} → N be a solution of E . Let

w = p1l
V (y1)
1 · · · pk−1l

V (yk−1)
1 pkl

ω
k ∈ ∆ω

and let us build an ω-sequence ρ′ = 〈q0,x0〉〈q1,x1〉〈q2,x2〉 · · · ∈ (Q × Z
n)ω,

that will be later shown to be an infinite run respecting the path schema P with
c0 = 〈q0,v0〉. Here is how ρ′ is defined:

39

– For every i ≥ 0, qi
def

= source(w(i)),

– x0
def

= v0 and for every i ≥ 1, we have xi
def

= xi−1 + update(w(i)).

In order to show that ρ′ is an infinite run respecting P , we have to check three
main properties.

1. Since V |= E2, for each segment p in P and each β ∈ [0, len(p)− 1], counter
values just before entering for the first time in the (β + 1)th transition of p
are non-negative. Moreover, for each α ∈ [1, k− 1] and each β ∈ [0, len(lα)−
1], counter values just before entering for the last time in the (β + 1)th
transition of lα are non-negative too. We have also to guarantee that for
j ∈ [2, V (yα) − 1], counter values just before entering for the jth time in
the (β + 1)th transition of lα are non-negative. This is a consequence of the
fact that if z, z + V (yα)effect(lα) ≥ 0, then for j ∈ [2, V (yα) − 1], we have
z + j × effect(lα) ≥ 0 (convexity). Consequently, for i ≥ 0, we have xi ≥ 0.

2. Similarly, counter values should satisfy the guards for each fired transition.
Since V |= E3, for each segment p in P , each β ∈ [0, len(p) − 1] and each
atomic guard

∑
i aixi ∼ b ∈ guard(p(j)), counter values satisfy it the first

time the transition is visited. Moreover, since V |= E3, for each α ∈ [1, k−1],
each β ∈ [0, len(lα) − 1] and each atomic guard

∑
i aixi ∼ b ∈ guard(lα(β))

occurs, counter values satisfy it the first time the transition is visited. How-
ever, we have also to guarantee that for j ∈ [2, V (yα) − 1], counter values
just before entering for the jth time in the (β +1)th transition of lα, all the
guards are satisfied. This is a consequence of the fact that if

∑
i aiz[i] ∼ b

and
∑

i ai(z + V (yα)effect(lα))[i] ∼ b, then for j ∈ [2, V (yα) − 1], we have∑
i ai(z + jeffect(lα))[i] ∼ b (convexity). Hence, ρ′ is a run starting at c0.

3. It remains to show that ρ′ respects P . Since ρ′ is a run (see (1) and (2)
above), by construction of ρ′, it respects P thanks to V |= E1. Indeed, by
definition, each loop has to be visited at least once.

⊓⊔

F How p⋆(·) is defined

Let us explain below how p⋆(·) is defined. Let S be a flat counter system,
c0 = 〈q0,v0〉 be an initial configuration and φ ∈ PLTL[C]. Let N = size(S) +
size(〈q0,v0〉) + size(φ). Let P be a minimal path schema of S. We have:

– len(P) ≤ 2× card(∆) ≤ 2N ,

– nbloops(P) ≤ card(Q) ≤ N .

Let T be the set of terms t occurring in S and φ in guards of the form t ∼ b. We
have card(T) ≤ size(S) + size(φ) ≤ N . Let B be the set of constants b occurring
in S and φ in guards of the form t ∼ b. We have card(B) ≤ size(S)+size(φ) ≤ N .
Let R = 〈X,T,B〉 be the resource such that X is the finite set of propositional
variables occurring in φ.

40

Let MAX be the maximal absolute value of a constant occurring in S, φ, v0

(either as an element of B or as a coefficient in front of a counter as a value in
v0). We have MAX ≤ 2N .

Now, let P ′ be a path schema in YP with P ′ = p1(l1)
+p2(l2)

+ · · · pk(lk)ω.
Since len(P ′) ≤ (len(p1)+ · · ·+len(pk))+2×(2×card(T)×card(B)+card(T))×
(len(l1)+ · · ·+len(lk)), we have len(P ′) ≤ 5×card(T)×card(B)× len(P) ≤ 5N3.
Similarly, nbloops(P ′) ≤ 5N3. The number of guards occurring in P ′ is bounded
by len(P ′)× 2× card(T) ≤ 10×N4. The maximal constant MAX ′ occurring in
P ′ is bounded by MAX +n×MAX2 which is bounded by N × 22×N . Let E be
the constraint system defined from P ′.

– The number of variables is equal to nbloops(P ′) which is bounded by 5N3.
– The number of conjuncts is bounded by 2 × len(P ′) × n × (1 + N1) where
N1 is the number of atomic guards in P ′. Hence, this number is bounded by
2× 5N3 ×N × (1 + 10×N4) ≤ 110N8.

– The greatest absolute value from constants in E is bounded by n×nbloops(P ′)×
(MAX ′)4 × len(P ′)3, which is bounded by N(5N3)(N × 22×N)4 × 53N9 ≤
625×N17 × 28×N .

Let us show that E∧ψ1∧· · ·∧ψk−1 admits a small solution using the theorem
below for any ψ1 ∧ · · · ∧ ψk−1 built from Algorithm 1.

Theorem 25. [2] Let M ∈ [−M,M]U×V and b ∈ [−M,M]U , where U, V,M ∈
N. If there is x ∈ N

V such that Mx ≥ b, then there is y ∈ [0, (max{V,M})CU]V

such that My ≥ b, where C is some constant.

By Theorem 25, E ∧ψ1 ∧ · · · ∧ψk−1 has a solution iff E ∧ψ1 ∧ · · · ∧ψk−1 has
a solution whose counter values are bounded by

(625×N17 × 28×N)C×2×(110×N8+5×N3)

which can be easily shown to be bounded by 2p
⋆(N) for some polynomial p⋆(·) (of

degree 9). This is precisely, the polynomial p⋆(·) that is used in Algorithm 1 (for
obvious reasons). In order to justify the coefficient 2 before 110, note that any
constraint of the form

∑
i aiyi ∼ b with ∼∈ {=,≤,≥, <,>} can be equivalently

replaced by 1 or 2 atomic constraints of the form
∑

i aiyi ≥ b.

G Proof of Lemma 15

Proof. First, let us check that all the guesses can be done in polynomial time.

– A minimal path schema P of S is of polynomial size with respect to the size
of S.

– The path schema P ′ is of polynomial size with respect to the size of P , φ
and c0 (Theorem 14(2)).

– y and y′ are obviously of polynomial size since their components have values
bounded by some exponential expression (values in y can be much smaller
than the values in y′).

41

Now, let us verify that all the checks can be in done in polynomial time too.

– Both P and P ′ are in polynomial size with respect to the size of the inputs
and checking compatibility amounts to verify that P ′ is an unfolding of P ,
which can be done in polynomial time (see Lemma 22).

– Checking whether proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k), 0 |=symb φ can be done

in polynomial time using Theorem 14(6) since p1l
y(1)
1 p2l

y(2)
2 . . . l

y(k−1)
k−1 pklk is

of polynomial size with respect to the size of P ′ and φ.
– Building E ∧ ψ1 ∧ · · · ∧ ψk−1 can be done in polynomial time since E can be

built in polynomial time with respect to the size of P ′ and ψ1∧· · ·∧ψk−1 can
be built in polynomial time with respect to the size of φ (td(φ) ≤ size(φ)).

– y′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1 can be finally checked in polynomial time since
the values in y′ are of exponential magnitude and the combined constraint
system is of polynomial size.

⊓⊔

H MC(PLTL[C], CPS(1)) is in PTime

Proof. Consider a path schema P = p.lω in a counter system with only one
loop l. Due to the structure of P there exists at most one run ρ respecting P
and starting from a given initial configuration c0. ft(ρ) (defined in Section 5.2)
is of the form u.vω, which is an ultimately periodic word. Since, the only loop
l is to be taken an infinite number of times, we have, len(v) = len(l) which is
polynomial in size of the input, but len(u) can be exponential. But, note that
lab(ρ(0)ρ(1) · · · ρ(len(u))) ∈ p · l+ where the number of repetitions of l may be an
exponential number of times. The algorithm computes the number of different
possible sets of term maps (defined in Section 5.2), that the nodes of l can have.
At most, this can be polynomially many times due to the monotonocity of guards
and counter constraints. Next, for each such assignment i of term maps to the
nodes of l, the algorithm calculates the number of iterations nli of l, for which
the terms remain in their respective term map. Note that each of these nli can be
exponentially large. Now, the formula is symbolically verified over the ultimately
periodic path where the nodes of the path schema are augmented with the term
maps.

Before defining the algorithm formally, we need to define some notions to
be used in the algorithm. For a path segment p = δ1δ2 · · · δlen(p), we define
p[i, j] = δiδi+1 · · · δj for 1 ≤ i ≤ j ≤ |p|. Also, for a loop segment l, we say a tuple
of term maps (m1,m2, · · · ,mlen(l)) is final iff for every term t =

∑
j ajxj ∈ T

and for all 1 ≤ i ≤ len(l),

–
∑

j ajeffect(l)[j] > 0 implies mi(t) is maximal in I.
–

∑
j ajeffect(l)[j] < 0 implies mi(t) is minimal in I.

where effect(l) is as defined in Section 4.
Since the unique run respecting P must contain p and copies of l, we can spec-

ify the term maps for w = p·l. Consider the function finit : {0, 1, 2, . . . , len(w)} →
IT for a given configuration c = 〈q0,v0〉, defined as:

42

– finit(0) = m0 iff for each term t =
∑

j ajxj ∈ T , we have that,
∑

j aj .v0[j] ∈
m0(t) and m0 ⊢ guard(w(0)).

– for 1 ≤ i ≤ len(w) as finit(i) = mi iff, for each term t =
∑

j ajxj ∈ T , we
have that,

∑
j aj .(effect(w[1, i])[j] + v0[j]) ∈ mi(t) and mi ⊢ guard(w(i)).

– Otherwise, if the term maps do not satisfy the guards, then there does not
exist any run and hence finit(i) is undefined.

Also, we consider the function curr : T → Z which, in the algorithm, gives the
value of the terms at specific positions of the run. The function valcurr : ∆

+ →
IT , is defined as valcurr(w) = m where for all t =

∑
j ajxj ∈ T, curr(t) +∑

j aj .(effect(w)[j]) ∈ m(t). For a path segment p = δ1δ2 · · · δlen(p) with δi =
(qi, gi,ui, qi+1) ∈ ∆ for i ∈ [1, len(p)] and a tuple of term maps a = (m1,m2, · · · ,
mlen(p)), we define p×a = δ′1δ

′
2 · · · δ

′
len(p) where δ′i = (〈qi,mi〉, gi,ui, 〈qi+1,mi+1〉).

Given an initial configuration c, we calculate the term maps for each position
of p and the first iteration of l, using finit. Subsequently, we calculate new tuples
of term maps (m1,m2 · · ·mlen(l)) for l and the number of iterations nl of l for
which the terms remain in their respective term map from the tuple. We store
the tuple of term maps in an array A and the number of iterations corresponding
to tuple i in nli. In case, at any position, we reach some term maps that does
not satisfy some guard, the procedure is aborted as it signifies that there does
not exist any run. Note that there are polynomially many entries in A but each
of the nli can be exponential. We perform symbolic model checking over a path
schema augmented with the calculated term maps. The augmented path schema
is obtained by performing l × A[i] for each i. But the number of times l × A[i]
is repeated, nli can be exponential. Thus, instead of taking l × A[i], nli times,
we take it Min(nli, 2td(φ) + 5) times. By Theorem 3, we have that the two
path schemas are equivalent in terms of satisfiability of φ. The polynomial-time
algorithm is described in Algorithm 2.

It now remains to prove that the algorithm completes in PTime and is correct.

Lemma 26. Algorithm 2 terminates in time which is at most a polynomial in
the size of the input.

Proof. We will verify that each step of the algorithm can be performed in poly-
nomial time.

– Building a resource and a set of intervals can be done by scanning the input
once.

– Since the updates of P is part of the input, we can compute finit for all
positions in p · l in polynomial time.

– Calculation of curr depends on the previous value of curr and the coefficients
appearing in the guards of P . Hence, it involves addition and multiplication
of at most polynomial number of bits. Thus, this can be performed in poly-
nomial time.

– The maximum possible value for h is bounded by a polynomial given by
Lemma 21. Indeed, the process described in the while loop is the same as
the creation of unfolded path schema set YP . The only difference being that
there exists only one possible run, if any and hence YP is a singleton set.

43

Algorithm 2 The PTime algorithm with inputs P = p · lω, c = 〈q0,v0〉, φ

1: Build a resource R = 〈X,T,B〉 and a set of intervals I coherent with P and φ.
2: Compute finit(i) for all i ∈ [0, len(p.l)− 1].
3: if for some i ∈ [0, len(p · l)− 1], finit(i) is undefined then abort

4: For each term t =
∑

j
ajxj ∈ T , curr(t) :=

∑
j
aj .(effect(p · l)[j] + v0[j]).

5: h := 1; A[1] := (finit(len(p)), finit(len(p) + 1) · · · finit(len(p.l)− 1))
6: while A[h] is not final do

7: Compute, nlh = min{nl|i ∈ [1, len(l)], t ∈ T, valcurr(l
nl ·l[1, i])(t) 6= A[h](i)(t)}.

8: h := h+ 1
9: A[h] := (m1,m2 · · ·mlen(l)), such that at all positions i in l we have that

valcurr(l
nlh · l[1, i]) = mi.

10: For every term t =
∑

j
aj · xj ∈ T , set curr(t) = curr(t) +∑

j
aj .(nlh.effect(l)[j]).

11: if there is i ∈ [1, len(l)] such that A[h](i) 0 guard(l(i)) then abort

12: end while

13: For j ∈ [1, h− 1], T [j] := Min(nlj , 2td(φ) + 5)
14: Check that proj((p×(finit(0), . . . , finit(len(p)−1)).(l×A[1])T [1].(l×A[2])T [2] . . . (l×

A[h− 1])T [h−1](l ×A[h])ω), 0 |=symb φ

– Calculation of each nlh requires computing valcurr which again involves
arithmetical operations on polynomially many bits. Thus, this requires poly-
nomial time only.

– Checking (p × (finit(0), . . . , finit(len(p) − 1)).(l × A[1])T [1](l × A[2])T [2] . . .

(l×A[h− 1])T [h−1](l×A[h])ω, 0 |=symb φ can be done in polynomial time for
the following reasons.

• By definition of T [h], size of (p × (finit(0), . . . , finit(len(p) − 1)).(l ×
A[1])T [1](l × A[2])T [2] . . . (l × A[h − 1])T [h−1](l × A[h])ω is polynomial
in the size of the input.

• By [17], (p × (finit(0), . . . , finit(len(p) − 1)).(l × A[1])T [1](l × A[2])T [2]

. . . (l × A[h − 1])T [h−1](l × A[h])ω , 0 |=symb φ can be checked in time
O(size(φ)2 × len(p · lT [1]lT [2] · · · lT [h−1]l)). Indeed, |=symb is analogous to
the satisfaction relation for plain Past LTL.

⊓⊔

Lemma 27. P, c |= φ iff Algorithm 2 on inputs P, c, φ has an accepting run.

Proof. Let us first assume that P, c |= φ. We will show that there exists a vector
of positive integers nL = (nl1, nl2 . . . nlh) for some h ∈ N such that Algorithm
2 has an accepting run. Clearly, the transitions taken by a run ρ respecting
P and satisfying φ is of the form, plω. This can be decomposed in the form
plnl1 lnl2 . . . lnlh lω, depending on the portion of P traversed, such that for each
consecutive copy of l, the term maps associated with the nodes change. It is
easy to see that this decomposition is same as the one calculated by the algo-
rithm. Now, the elements of nL can be exponential. But due to Lemma 13 and
Stuttering theorem (Theorem 3), we know that, (p× (finit(0), . . . , finit(len(p)−
1)).(l × A[1])nl1(l × A[2])nl2 . . . (l ×A[h− 1])nlh−1(l ×A[h])ω , 0 |=symb φ iff (p×

44

(finit(0), . . . , finit(len(p) − 1)).(l × A[1])T [1](l × A[2])T [2] . . . (l × A[h − 1])T [h−1]

(l ×A[h])ω , 0 |=symb φ. Hence, the algorithm has an accepting run.
Now, we suppose that the algorithm has an accepting run on inputs P, c and

φ. We will prove that P, c |= φ. Since the algorithm has an accepting run, we as-
sume the integers calculated by it are nl1, nl2, · · · , nlh. Let w = plnl1 lnl2 . . . lnlh lω

and ρ = 〈〈q0,m0〉,x0〉〈〈q1,m1〉,x1〉〈〈q2,m2〉,x2〉 · · · ∈ (Q′ × Z
n)ω be defined

as follows: for every i ≥ 0, qi
def

= π1(source(w(i))), x0
def

= v0 and for every i ≥ 1,

we have xi
def

= xi−1 + update(w(i)). By the calculation of lj , 1 ≤ j ≤ n, in the
algorithm, it is easy to check that 〈q0,x0〉〈q1,x1〉〈q2,x2〉 · · · ∈ (Q×Z

n)ω is a run
respecting P . Algorithm 2 guarantees that (p×(finit(0), . . . , finit(len(p)−1)).(l×
A[1])T [1](l×A[2])T [2] . . . (l×A[h− 1])T [h−1](l×A[h])ω , 0 |=symb φ. And thus, by
Lemma 13 and Theorem 3, we have, 〈q0,x0〉〈q1,x1〉〈q2,x2〉 · · · , 0 |=symb φ. ⊓⊔

I NP-hardness of reachability problem for CPS

Proof. First we note that, a path schema in CPS can also be seen as a flat counter
system with the additional condition of taking each loop at least once. For any
state q, we write conf0(q) to denote the configuration 〈q, 〈0, · · · , 0〉〉 (all counter
values are equal to zero). The reachability problem REACH(C) for a class of
counter system C is defined as: Given S ∈ C and two states q0 and qf , does there
exist a finite run from conf0(q0) to conf0(qf)? Below, we prove the NP-hardness
for both REACH(CPS) and REACH(CFS). The proofs are by reduction from
the SAT problem. Using the fact that CPS is a special and constrained CFS, we
will only prove NP-hardness of REACH(CPS) and hence, as a corollary, have the
result for REACH(CFS). Let φ be a Boolean formula built over the propositional
variables AP = {p1, · · · , pn}. We build a path schema P such that φ is satisfiable
iff there is a run respecting P starting with the configuration conf0(q0) visits
the configuration conf0(qf). The path schema P is the one described in Figure 8
so that the truth of the propositional variable pi is encoded by the fact that
the loop incrementing xi is visited at least twice. The guard g is defined as a

q0 qf

≥ 1















1

0

.

.

.

0















≥ 1















0

1

.

.

.

0















≥ 1















0

0

.

.

.

1















g,















0

0

.

.

.

0















≥ 1















−1

0

.

.

.

0















≥ 1















0

−1

.

.

.

0















≥ 1















0

0

.

.

.

−1















ω

Fig. 8. A simple path schema

45

formula that establishes the correspondence between the truth value of pi and
the number of times the loop incrementing xi is visited. It is defined from φ by
replacing each occurrence of pi by xi ≥ 2. Note that, since the ith and (n+ i)th

loops perform the complementary operation on the same counters, both of the
loops can be taken equal number of times.

Let us check the correctness of the reduction. Let v : AP → {⊤,⊥} be
a valuation satisfying φ. Let us consider the run ρ respecting P such that
iterP (ρ)[i] = k and iterP (ρ)[n + i] = k for some k ≥ 2, if v(pi) = ⊤, other-
wise iterP (ρ)[i] = 1 and iterP (ρ)[n + i] = 1 for all i ∈ [1, n]. It is easy to check
that the guard g is satisfied by the run and taking ith loop and (n + i)th loop
equal number times ensures resetting the counter values to zero. Hence the con-
figuration conf0(qf) is reachable. Conversely, if there is a run ρ respecting P

and starting with configuration conf0(q0) such that the configuration conf0(qf)
is reachable, then the guard g ensures that the valuation v satisfies φ where for

all i ∈ [1, n], we have v(pi) = ⊤
def

⇔ iterP (ρ)[i] ≥ 2. ⊓⊔

46

