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Abstract. We study the decidability status of model-checking freeze LTL over
various subclasses of counter machines for which the reachability problem is
known to be decidable (reversal-bounded counter machines,vector additions sys-
tems with states, flat counter machines, one-counter machines). In freeze LTL, a
register can store a counter value and at some future position an equality test can
be done between a register and a counter value. Herein, we complete an earlier
work started on one-counter machines by considering other subclasses of counter
machines, and especially the class of reversal-bounded counter machines. This
gives us the opportuniy to provide a systematic classification that distinguishes
determinism vs. nondeterminism and we consider subclassesof formulae by re-
stricting the set of atomic formulae or/and the polarity of the occurrences of the
freeze operators, leading to the flat fragment.

1 Introduction

Counter machines.Counter machines are ubiquitous computational models thatprovide
a natural class of infinite-state transition systems, suitable for modeling various appli-
cations such as embedded systems [3], broadcast protocols [22], time granularities [14]
and programs with pointer variables [8], to quote a few examples. They are also known
to be closely related to data logics for which decision procedures can be designed rely-
ing on those for counter machines, see e.g. remarkable examples in [7,5]. When deal-
ing with this class of models, most interesting reachability problems are undecidable
but subclasses leading to decidability have been designed including reversal-bounded
counter machines [32], one-counter machines [33], flat counter machines [23] and vec-
tor addition systems with states (see e.g. [45]).
Model-checking with Freeze LTL.In order to verify properties on counter machines, we
aim at comparing counter values and we shall use the so-called freezeoperator. The
freeze quantifier in real-time logics has been introduced inthe logic TPTL, see e.g. [1].
The formulax · φ(x) binds the variablex to the timet of the current state:x · φ(x) is
semantically equivalent toφ(t). This variable-binding mechanism, quite natural when
rephrased in first-order logic, is present in various logical formalisms including for ex-
ample hybrid logics [28,2], freeze LTL [20] and predicateλ-abstraction [25,41]. Freeze
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LTL is a powerful extension of LTL that allows to store counter values in registers. In-
finitary satisfiability restricted to one register is already undecidable [20] just as model-
checking for nondeterministic one-counter machines [21],which is quite unexpected
since one-counter machines seem to be harmless operationalmodels. Moreover, there
is some hope that model-checking happens to be more tractable than satisfiability since
more constraints are requested on models viewed as runs.
Our contribution.We carry on with the quest started in [21] to determine which classes
of counter machines admit decidable model-checking with freeze LTL. In the paper, we
consider the above-mentioned classes of counter machines for which the reachability
problem is decidable. We provide an exhaustive analysis completing [21]; some results
are obtained by adequately adapting known results to our framework or by designing
simple reductions. However, at each position, we may have todeal with more than one
counter values. Our main technical contributions allow us to establish the following
results with a special focus on reversal-bounded counter machines.

– Model-checking freeze LTL (writtenMCω(LTL↓)) over deterministic vector ad-
dition systems with states and deterministic reversal-bounded counter machines is
decidable. However,MCω(LTL↓) over reversal-bounded counter machines is un-
decidable, even when restricted to one register.

– MCω(LTL↓) restricted to flat formulae over reversal-bounded counter machines
is decidable as well as the restriction to positively flat formulae over one-counter
machines, partly by taking advantage of recent results about parameterized one-
counter machines from [29].

A complete summary can be found in Section 8. As a nice by-product of the classifica-
tion we made, we show a tight relationship between reachability problems for parame-
terized counter machines and model-checking counter machines over the flat fragment
of freeze LTL (see Section 7.2). Besides, we believe that theprinciples underlying our
undecidability proof forMCω(LTL↓) over reversal-bounded counter machines could
be reused for other problems on such counter machines.

Plan of the paper.Section 2 and Section 3 are preliminary sections about counter ma-
chines, their subclasses, freeze LTL and their fragment. InSection 4, we establish pre-
liminary results or restate known results from the literature recasted in our context.
Undecidability results for VASS and reversal-bounded counter machines are shown in
Section 5 whereas we show decidability for subclasses with deterministic counter ma-
chines in Section 6. Finally, Section 7 deals with the decidability of model-checking
over reversal-bounded counter machines and one-counter machines with flat formulae.
Section 8 contains a summary and concluding remarks.

2 Standard Classes of Counter Machines

In this section, we recall standard definitions about various classes of counter machines.
We writeN [resp.Z] for the set of natural numbers [resp. integers]. Given a dimension
n ≥ 1 andk ∈ Z, we writek to denote the vector with all values equal tok andei to
denote the unit vector fori ∈ {1, . . . , n}. We recall that a semilinear set ofN

n is a finite
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union of linear sets. We often refer to Presburger arithmetic which consists of first-order
logic over the structure〈N, 0,≤,+〉 (and more generally over〈Z, 0,≤,+〉), details can
be found for instance in [44,11]. It is known that a subset ofN

k is semilinear if and only
if it is definable by a formula in Presburger arithmetic withk free variables [26].

2.1 Counter machines

In the rest of the paper, acounter machineM is defined as a tuple(n,Q,∆, q0) where:

– n ≥ 1 is thedimensionof M ,
– Q is a finite set ofcontrol states,
– ∆ ⊆ Q×G×A×Q is a finite set oftransitionswhereG = {zero, true}n is the

finite set ofguardsandA = {−1, 0, 1}n is the finite set ofactions,
– q0 ∈ Q is theinitial control state.

Given a counter machineM , we define thetransition systemTS(M) = (Q× N
n,−→)

whereQ × N
n is the set ofconfigurationsand−→⊆ (Q × N

n) × (Q × N
n) is the

transition relation: for 〈q, v〉, 〈q′, v′〉 ∈ Q × N
n, we have〈q, v〉 −→ 〈q′, v′〉 def

⇔ there
exists a transitiont = (q, g, a, q′) ∈ ∆ such that:

1. v′ = v + a,
2. for 1 ≤ c ≤ n, g(c) = zero impliesv(c) = 0.

We write
∗
−→ to denote the reflexive and transitive closure of−→ and the reachability

set ofM is Reach(M)
def
= {〈q, v〉 | 〈q0, 0〉

∗
−→ 〈q, v〉}. Observe that this reachability

set implicitly depends on the initial configuration〈q0, 0〉: this is all what we need in
the sequel. A finite (resp. infinite)run in TS(M) is a finite (resp. infinite) sequence
ρ = 〈q0, 0〉 −→ 〈q1, v1〉 −→ . . .. A counter machineM is deterministic(also known as
single-path) whenever for each〈q, v〉 ∈ Reach(M), there is at most one configuration
〈q′, v′〉 such that〈q, v〉 −→ 〈q′, v′〉. In the sequel, we shall use Minsky machines [43]
that form a special class of deterministic 2-counter machines.

We present below two types of decision problems whenC is a class of counter
machines. Thereachability problemfor the classC is defined as follows.

instance: a machineM ∈ C and a configuration〈q, v〉.
question: 〈q0, 0〉

∗
−→ 〈q, v〉 ?

Similarly, thegeneralized repeated control-state reachability problemfor the classC is
defined as follows.

instance: a counter machineM ∈ C,N setsF1, . . . , FN of control states.
question: Is there a run ofM such that for1 ≤ i ≤ N , there is a control state inFi

that is repeated infinitely often?

1CM. One-counter machinesare naturally defined as counter machines of dimension
one: they can be used for the verification of cryptographic protocols [39] and to char-
acterize subclasses of context-free languages [4]. They also have nice computational
properties, see for instance complexity results about behavioural equivalences in [36].
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Various logical formalisms have been introduced to specifythe behavior of one-counter
machines, including Freeze LTL [21], EF logic [27] and first-order logic with reach-
ability predicate [49]. Moreover, since one-counter automata are equivalent to push-
down systems with a singleton stack alphabet, the results onthese systems can help to
refine some results about pushdown systems. For instance, the model-checking prob-
lem for one-counter automata with the modalµ-calculus has been shown to be in
PSPACE [47] whereas the model-checking problems for pushdown automata over the
modalµ-calculus and the linearµ-calculus are in EXPTIME. When one-counter ma-
chines are enriched by a finite alphabet (so that transitionsare labelled), the universality
problem is undecidable [33], witnessing that this simple operational model can lead to
natural undecidable problems.
VASS. Vector addition systems with states (a.k.a. VASS)are known to be equivalent to
Petri nets, see e.g. [45], and they correspond to counter machines without zero-tests,
i.e. each guard has no component equal tozero. To be precise, we are a bit less liberal
than the usual definition since we only consider actions in{−1, 0, 1}n (instead ofZn)
but this does not make a real difference for all the developments made in this paper.
Flat counter machines.A directed graphG = 〈V,E〉 (with V ⊆ E×E) is said to beflat
whenever each vertex belongs to at most one simple cycle (path for which the initial and
final vertices coincide and no edge is repeated). A counter machine(n,Q,∆, q0) is flat
whenever (1) between two control states there is at most one transition and (2) the di-
rected graph〈Q, {〈q, q′〉 ∈ Q2 : (q, g, a, q′) ∈ ∆}〉 is flat. Reachability problems have
been considered for flat counter machines in [6,13,23]; for instance it is proved that flat
counter machines have an effectively computable semilinear set [6,23], see also [10].

2.2 Reversal-bounded counter machines

The class ofreversal-boundedcounter machines has been introduced in [32] by con-
sidering the following restriction: each counter performsonly a bounded number of
alternations between increasing and decreasing mode. Thisclass of counter machines
is particularly interesting because it has been shown that each reversal-bounded counter
machine has a semilinear reachability set that can be effectively computed. We present
below a more general class, introduced in [24], for which bounding the number of al-
ternations is only considered above a given bound. This is the notion we adopt in the
rest of the paper. The members of subclass introduced in [32]are calledIbarra reversal-
bounded counter machines.

Given a boundb ∈ N, we consider the number of alternations between increas-
ing and decreasing mode when a counter is aboveb. Given a counter machineM =
(n,Q,∆, q0), let us define themodaltransition system

TSb(M) = (Q× N
n × {DEC, INC}n × N

n,−→b).

Intuitively, a configuration(q, v,mode, ♯alt) records a standard configuration ofTS(M),
modestores the current mode (either decreasing or increasing) for each counter and♯alt
stores the number of alternations aboveb for each counter. The transition relation−→b is
defined as follows:(q, v,mode, ♯alt) −→b (q′, v′,mode′, ♯alt′) def

⇔ the following condi-
tions hold:(q, v) −→ (q′, v′) and for1 ≤ c ≤ n, the relation described by the following
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table is verified:

v(c) − v′(c) mode(c) mode′(c) v(c) ♯alt′(c)

> 0 DEC DEC − ♯alt(c)
> 0 INC DEC ≤ b ♯alt(c)
> 0 INC DEC > b ♯alt(c) + 1
< 0 INC INC − ♯alt(c)
< 0 DEC INC ≤ b ♯alt(c)
< 0 DEC INC > b ♯alt(c) + 1
= 0 DEC DEC − ♯alt(c)
= 0 INC INC − ♯alt(c)

Definition 1. Let b, k ∈ N. A counter machineM is k-reversal-b-bounded
def
⇔ when-

ever(q0, 0, INC, 0)
∗
−→b (q, v,mode, ♯alt), we have♯alt ≤ k.

This definition can be slightly refined: a counter machineM is reversal-boundedif
there existk, b ∈ N such thatM is k-reversal-b-bounded. In the sequel, when reversal-
bounded counter machines are part of the instances of some decision problems, we
assume that they come with theirk and b. As mentioned in [24], the above-defined
class of reversal-bounded counter machines contains thosedefined in [32] and it also
contains the counter machines for which the set of reachableconfigurations is finite.

Theorem 2. [24] Reversal-bounded counter machines have an effectively computable
reachability set.

In [16], it is proved that the generalized repeated control-state reachability problem
is decidable when the instances are made of an Ibarra reversal-bounded counter ma-
chine and one set of control states. This result has been extended to reversal-bounded
counter machines in [46]. Note that we can easily reduce the generalized reachability
problem withN ≥ 1 sets of control states to its restriction to only one set (in the same
generalized Büchi automata can be reduced to Büchi automata).

Corollary 3. The generalized repeated control-state reachability problem for reversal-
bounded counter machines is decidable.

3 LTL with the Freeze Operator

In this section, we present a variant of temporal logic LTL with registers (also known
as Freeze LTL) in order to reason about runs from counter machines. In [21], LTL with
registers is used to specify properties about one-counter machines. The datum stored
in a register is the current counter value and equality testsare performed between a
register value and the current counter value. When dealing with counter machines, a
register can store the value of a counterc and test it later against the value of counter
c′ with possiblyc 6= c′. Below, we present different ways to restrict the equality tests
between registers and counters.

5



Given a finite setQ of control states (possibly empty) andn ≥ 1, the formulae of
the logicLTL↓[Q,n] are defined as follows:

φ ::= q | ↑c
r | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | φRφ | Xφ | ↓c

r φ

whereq ∈ Q, c ∈ {1, . . . , n} andr ∈ (N \ {0}). Intuitively, the modality↓c
r is used

to store the value of the counterc into the registerr; the atomic formula↑c
r holds true

if the value stored in the registerr is equal to the current value of the counterc. An
occurrence of↑c

r within the scope of some freeze quantifier↓c
r is bound by it; otherwise

it is free. A sentence is a formula with no free occurrence of any ↑c
r.

Models of LTL↓[Q,n] are runs of transition systems from counter machines of
dimensionn and with a set of control states containingQ. Given a counter machine
(n,Q′, ∆, q0) with Q ⊆ Q′ and a runρ, we write |ρ| to denote itslength in ω + 1
and theith configuration (0 ≤ i < |ρ|) is denoted by〈qi, vi〉. A register valuationf
is a finite partial map fromN \ {0} to N. Note that wheneverf(r) is undefined, the
atomic formula↑c

r is interpreted as false. Given a runρ and a position0 ≤ i < |ρ|, the
satisfaction relation|= is defined as follows (Boolean clauses are omitted):

ρ, i |=f q
def
⇔ qi = q

ρ, i |=f ↑c
r

def
⇔ r ∈ dom(f) andf(r) = vi(c)

ρ, i |=f Xφ
def
⇔ i+ 1 < |ρ| andρ, i+ 1 |=f φ

ρ, i |=f φ1Uφ2
def
⇔ for somei ≤ j < |ρ|, ρ, j |=f φ2

and for alli ≤ j′ < j, we haveρ, j′ |=f φ1

ρ, i |=f φ1Rφ2
def
⇔ for all i ≤ j < |ρ|, ρ, j |=f φ2

or for somei ≤ j < |ρ|, ρ, j |=f φ1

and for alli ≤ k ≤ j, ρ, k |=f φ2

ρ, i |=f ↓c
r φ

def
⇔ ρ, i |=f [r 7→vi(c)] φ

f [r 7→ vi(c)] denotes the register valuation equal tof except that the registerr is
mapped tovi(c). In the sequel, we omit the subscript “f ” in |=f when sentences are
involved. We use the standard abbreviations for the temporal operators (G, F, . . . ) and
for the Boolean operators and constants (⇒, ⊤, ⊥, . . . ).

We defined below fragments ofLTL↓[Q,n] by restricting the use of the freeze
operators. Thestrict fragment, writtenLTL↓,s[Q,n], consists in associating a unique
counter to each register (to store and to test). More precisely, a formulaφ in LTL↓,s[Q,n]
verifies the following syntactic property: if↓c

r ψ is a subformula ofφ, thenφ has not
subformulae of the form either↑c′

r or ↓c′

r ψ′ with c 6= c′. We also writeLTL[Q] to
denote the fragment ofLTL↓[Q,n] in which the atomic formulae of the form↑c

r are
forbidden (and therefore↓c

r becomes also useless).
Model-checking problems.The infinitary (existential) model-checking problem over
counter machines, writtenMCω(LTL↓[·, ·]), is defined as follows:

instance: A counter machineM = (n,Q′, ∆, q0) and a sentenceφ ∈ LTL↓[Q,n] with
Q ⊆ Q′;

question: Is there an infinite runρ such thatρ, 0 |= φ? If the answer is “yes”, we write
M |=ω φ.

6



The subproblem ofMCω(LTL↓[·, ·]) with formulae restricted toLTL↓,s[Q,n] is writ-
ten MCω(LTL↓,s[·, ·]). Givenn ≥ 1, we writeMCω(LTL↓[·, n]) to denote the sub-
problem ofMCω(LTL↓[·, ·]) with counter machines of dimension at mostn. Simi-
larly, we writeMCω(LTL↓[∅, ·]) to denote the subproblem ofMCω(LTL↓[·, ·]) with
no atomic formula made of control states. Similar notationsare used with other frag-
ments ofLTL↓[Q,n]. In this existential version of model checking, this problem can be
viewed as a variant of satisfiability in which satisfaction of a formula can be only wit-
nessed within a specific class of data words, namely the runs of the counter machine.
Note that results for the universal version of model checking will follow easily from
those for the existential version when considering fragments closed under negation or
deterministic counter machines.
Flat formulae.We say that the occurrence of a subformula in a formula ispositiveif it
occurs under an even number of negations, otherwise it isnegative. LetL be a fragment
of LTL↓[Q,n]. Theflat fragment ofL, written flat-L, is the restriction ofL where, for
any occurrence ofφ1Uφ2 [resp.φ2Rφ1], if it is positive then the freeze operator↓ does
not occur inφ1, and if it is negative then the freeze operator↓ does not occur inφ2. A
formula ispositively flatwhen it is flat and no occurrence of the freeze operator↑ occurs
in the scope of an odd number of negations. For example, the formula below belongs to
the positively flat fragment and it states that sometimes there is a value of the counter
1 such that (1) infinitely often counter 2 takes that value if and only if infinitely often
counter 3 takes that value and (2) from some future position,the counter 4 has always
that value:

F ↓1
1 [(GF ↑2

1⇔ GF ↑3
1) ∧ FG ↑4

1]

Considering flat fragments remains a standard means to regain decidability: for instance
flat fragments of LTL variants have been studied in [15,12] and in the presence of the
freeze operator in [20,9] (see also in [34, Section 5] the design of a flat logical tem-
poral language for model-checking pushdown machines). Section 7 shall illustrate that
flatness can lead to decidability but this is not always the case.

4 Preliminary Results

In this section, we present preliminary results that will behelpful to strenghten forth-
coming results and we present results for flat counter machines and one-counter ma-
chines based on existing works. We shall study the effects ofrestricting the set of atomic
formulae, for instance by allowing only atomic formulae that are control states [resp.
that are of the form↑c

r].

4.1 Purification, or how to get rid of control states

Control states can be viewed as an internal piece of information about the counter
machines and therefore, it is interesting to understand whether the absence of control
states among the set of atomic formulae (called hereinpurification) makes a difference.
Lemma 4 below roughly shows that control states can be alwaysencoded by patterns
for various classes of counter machines.

7



Lemma 4.
Given a counter machineM = (n,Q,∆, q0) and a sentenceφ in LTL↓[Q,n], one
can build in logspace a counter machineMP = (n + 1, QP , ∆P , q0) and a formula
φP ∈ LTL↓[∅, n+ 1] such thatM |=ω φ iff MP |=ω φP . Moreover,

– M is deterministic [resp. reversal-bounded, flat] iffMP is deterministic [resp.
reversal-bounded, flat].

– φ ∈ LTL↓,s[Q,n] iff φP ∈ LTL↓,s[∅, n+ 1].

Proof. LetM = (n,Q,∆, q0) withQ = {q1, . . . , qt} andφ be a formula inLTL↓[Q,n].
We shall build (in logarithmic space) a counter machineMP = (n + 1, QP , ∆P , q0)
and a formulaφP ∈ LTL↓[∅, n+ 1] such thatM |=ω φ iff MP |=ω φP .

Intuitively, the counter machineMP is built fromM by adding an extra counter
whose behavior inMP encodes the control states fromM . More precisely, when we
are in a control stateqi, the value of the countern + 1 is incremented once and then
remains constant during the(i+1) next transitions (without changing the other original
counters) and then is again incremented twice. Figure 1 illustrates the behavior of the
countern + 1 when encoding a transition of the form(qi, g, a, qj). The use of the

qi

q1
i

qi,1 qi,2 qi,i+1

q2
i

q3
i

qj

1

0 0

1

1

0

Fig. 1. Purification: projection on the(n + 1)th counter

freeze quantifiers enables us to identify the control statesqi. Since the additional counter
does only increase, this will guarantee thatM is reversal-bounded iffMP is reversal-
bounded. Furthermore, it should be clear thatMP is deterministic [resp. flat] iffM is
deterministic [resp. flat].

Let us define formally the machineMP .

– QP
def
= Q ⊎Q′ with:

Q′ = {q1i , q
2
i , q

3
i | i ∈ {1, . . . , t}} ∪ {qi,j | i ∈ {1, . . . , t} andj ∈ {1, . . . , i+ 1}}

– ∆P is the smallest relation (with respect to set inclusion) satisfying the following
properties:
• for all i ∈ {1, . . . , t},

∗ (qi, true, en+1, q
1
i ), (q1i , true, 0, qi,1) ∈ ∆P ,
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∗ for all j ∈ {1, . . . , i}, (qi,j , true, 0, qi,j+1) ∈ ∆P ,
∗ (qi,i+1, true, en+1, q

2
i ), (q2i , true, en+1, q

3
i ) ∈ ∆P ,

• for each(qi, g, a, qj) ∈ ∆, (q3i , g
′, a′, qj) ∈ ∆P such that for allc ∈ {1, . . . , n},

a′(c) = a(c), g′(c) = g(c) and,a′(n+ 1) = 0 andg′(n+ 1) = true.

We are now in position to present a formulaφstate that holds true exactly on con-
figurations belonging to some runs ofMP :

φstate =↓n+1
1 X(¬ ↑n+1

1 ∧ ↓n+1
1 X(↑n+1

1 ∧X ↑n+1
1 ))

Whenφ belongs to a strict fragment and if we wish to preserve strictness, in the above
formula we replace the register 1 by a new register not occurring in φ. Hence, for all
runsρ of MP and0 ≤ j < |ρ|, we have thatρ, j |= φstate if and only if ρ, j |= q for
someq ∈ Q andj < |ρ| + 2.

For i ∈ {1, . . . , t}, let us define the formulaφi as follows:

φi = X ↓n+1
1 ((

∧

k∈{1,...,i+1}

X
k ↑n+1

1 ) ∧ X
i+2¬ ↑n+1

1 )

One can check that for all runsρ of MP and0 ≤ j < |ρ|, we have thatρ, j |= φstate ∧
φi if and only if ρ, j |= qj andj < |ρ| + 2. As above, if we have further syntactic
restrictions we may use↓n+1

r wherer is a new register.
Now, let defineφP with the help of a translationT (·) such thatφP = T (φ) and,

T (·) is homomorphic for Boolean operators and↓c
r. Basically,T (·) performs a simple

relativization (we omit the clauses for Boolean connectives and forR):

– T (↑c
r) =↑c

r; T (qi) = φstate ∧ φi; T (Xψ) = X(¬φstateU(φstate ∧ T (ψ))),
– T (ψUψ′) = (φstate ⇒ T (ψ))U(φstate ∧ T (ψ′)).

⊓⊔

The reduction in the proof of Lemma 4 does not preserve the number of counters;
however, a purification lemma can be also established for theclass of one-counter ma-
chines as shown in [21]. By the way, the construction in [21] could be also adapted to
encode control states by patterns however, it does not preserve reversal-boundedness.

4.2 Restricting the atomic formulae to control states

Before considering decidability issues with the freeze operator, it is legitimate to won-
der what happens when the atomic formulae are restricted to control states. We show
below that for all subclasses of counter machines considered in this paper, this restric-
tion leads to decidability (for flat counter machines, the proof is postponed to the next
subsection). Basically, the proof is a consequence of the two following properties: LTL
formulae can be translated into equivalent Büchi automata and repeated reachability
problem is decidable for the concerned subclasses of counter machines.

LetM = (n,Q,∆, q0) be a counter machine andA = (Q′, δ, q0, F ) be a Büchi au-
tomaton over the alphabetQ (δ ⊆ Q′×Q×Q′ andF ⊆ Q′). We writeM⊗A to denote
the counter machine(Q×Q′, ∆′, 〈q0, q′0〉) defined as follows:(〈q, q′〉, g, a, 〈q1, q′1〉) ∈
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∆′ iff there exist(q, g, a, q1) ∈ ∆ and (q′, q, q′1) ∈ δ. Observe thatM is reversal-
bounded [resp. one-counter, VASS] iffM ⊗A is reversal-bounded [resp. one-counter,
VASS]. Given a formulaφ ∈ LTL[Q], one can effectively build a Büchi automaton
Aφ over the alphabetQ such that the language accepted byAφ = (Q′, δ, q0, Fφ) is
precisely the sequence ofω-sequences satisfyingφ, see e.g. [50].

Lemma 5. Given a counter machineM = (n,Q,∆, q0) and a formulaφ ∈ LTL[Q],
M |=ω φ iff there is a run ofM ×Aφ such that a control state inQ × Fφ is repeated
infinitely often.

The proof is by an easy verification by using the properties ofAφ.

Theorem 6. MCω(LTL[·]) restricted to one-counter machines, VASS, and reversal-
bounded counter machines is decidable.

Proof. Given a reversal-bounded counter machineM and a formulaφ ∈ LTL[Q],
checking whether(⋆) M ⊗ Aφ has a run with a control state inQ × Fφ repeated
infinitely can be decided thanks to Corollary 3. Alternatively, whenM is a one-counter
machine, we can decide(⋆), see e.g. [16, Theorem 4] (the repeated reachability problem
for one-counter machines being even in NLOGSPACE, see e.g. [18]). Finally, assuming
thatM is a VASS checking(⋆) can be decided thanks to [37]. It is sufficient to show
that the repeated reachability problem for VASS is decidable, which is the case by [37,
Theorem 7.27] and even in EXPSPACE by [30, Theorem 5.4]. ⊓⊔

4.3 Existing results for two subclasses

In this paper, we wish to provide a complete classification with respect to the above-
mentioned subclasses. The two following results are known results recasted in our con-
text. First, we observe thatLTL↓[Q,n] can be viewed as a fragment of the temporal
logic FOCTL⋆(Pr) [17] which extends the logic CTL⋆ by allowing the use of Presburger
formulae as atomic propositions to describe sets of configurations for a counter ma-
chine. Since model-checking FOCTL⋆(Pr) over flat counter machines is decidable [17],
we establish the following theorem.

Theorem 7. MCω(LTL↓[·, ·]) restricted to flat counter machines is decidable.

Proof. Let M = (n,Q,∆, q0) be a flat counter machine andφ ∈ LTL↓[Q,n]. The
counter machineM is admissiblein the sense of [17, Definition 5] plus the fact that
Presburger formulae used for accelerations can be effectively computed thanks to [23].
Decidability ofMCω(LTL↓[·, ·]) can be then established by translatingφ into a formula
φ′ of FOCTL⋆(Pr) and then using the decidability result in [17, Theorem 4]. The tem-
poral logic FOCTL⋆(Pr) is a variant of CTL⋆ with atomic formulae made of Presburger
formulae on counters and with first-order quantification over counter values. The for-
mulaφ′ is equal toE t(φ; (z1, . . . , zN)) whereE quantifies existentially over runs and
φ contains at mostN registers. The mapt(·) is homomorphic for the Boolean and
temporal operators:

– t(↑c
r, (z1, . . . , zN ))

def
= (zr = xc) wherexc is variable associated to counterc,

10



– t(↓c
r ψ; (z1, . . . , zn))

def
= ∃ z′r (z′r = xc ∧ t(ψ; (z1, . . . , zr−1, z

′
r, zr+1, . . . zn)).

One can show thatM |=ω φ iff M |=ω φ′. ⊓⊔

Moreover, we know the following results concerning the model-checking of LTL with
registers over one-counter machines.

Theorem 8. [21]

(I) MC<ω(LTL↓[·, 1]) andMCω(LTL↓[·, 1]) are undecidable problems.
(II) MC<ω(LTL↓[·, 1]) andMCω(LTL↓[·, 1]) restricted to deterministic one-counter

machines arePSPACE-complete problems.

5 Nondeterministic Counter Machines

Herein, we consider the model-checking problems overLTL↓[Q,n] for nondetermin-
istic counter machines. We have seen that for the class of one-counter machines the
problem is undecidable (see Theorem 8(I)) whereas it is decidable for flat counter ma-
chines (see Theorem 7).

5.1 VASS

First, we observe that zero-tests can be easily encoded inLTL↓[Q,n] by first storing the
initial value of counters in some registerr0 and then performing a zero-test on counter
c with the atomic formula↑c

r0
.

Theorem 9. MCω(LTL↓[·, ·]) restricted to VASS and to positively flat formulae with at
most one register is undecidable.

Proof. Let M be a deterministic Minsky machine (a special form of two-dimensional
counter machine) with final control stateqf and no transition exiting from it. For each
transitiont, we writezerot to denote the set of counters on which are performed the
zero-test. LetM ′ be the VASS obtained fromM by replacing systematicallyzero by
true in guards and by adding a self-loop onqf with guardtrue and action0. One can
show thatM can reach the control stateqf iff

M ′ |=ω
Fqf∧ ↓1

1

∧

t=(q,g,a,q′)∈∆

G(q ∧ Xq′ ⇒
∧

c∈zerot

↑c
1).

⊓⊔

5.2 Reversal-bounded counter machines

As far as reversal-bounded counter machines are concerned,we have the following
result:

Theorem 10. MCω(LTL↓[·, 4]) restricted to reversal-bounded counter machines and
to formulae with at most one register is undecidable.

11



To prove this result, we present a reduction from the haltingproblem for Minsky ma-
chines; note that a similar reduction is used in [35] in orderto prove that in reversal-
bounded counter machines extended with equality tests between distinct counters, the
reachability problem is undecidable. Indeed, assuming that guards of the formc = c′

are allowed, each counterc from the Minsky machine provides two increasing coun-
terscinc andcdec, that counts the number of incrementations onc and the number of
decrementations, respectively. Zero-test forc is simulated by a testcinc = cdec, that is
logically equivalent to↓cdec

1 ↑cinc

1 in LTL↓[·, ·].

Proof. Let M = (2, Q,∆, q0) be a Minsky machine (deterministic counter machine
with two counters) andqF ∈ Q be a final control state with no transition from it.
Without any loss of generality, we can assume that if(q, g, a, q′) ∈ ∆ performs a decre-
mentation, then the transition is of the form(q, true,−ec, q

′) for somec ∈ {1, 2}.
Moreover, forq, q′ ∈ Q, the set{〈g, a〉 : (q, g, a, q′) ∈ ∆} contains at most one el-
ement. Let us build the reversal-bounded counter machineM = (4, Q′, ∆′, (q0)∅) as
follows:

– Q′ = {qX : q ∈ Q, X ⊆ {1, 2}} (X records on which counter ofM zero-test is
needed next),

– ∆′ is the smallest set of transitions satisfying the conditions below:
• for X ⊆ {1, 2}, ((q0)∅, true, 0, (q0)X) ∈ ∆′,
• for all (q, g, a, q′) ∈ ∆, we have(q1, true, a′, q′1) ∈ ∆′ assuming that

∗ q1 = qX with X = {c ∈ {1, 2} : g(c) = zero},
∗ for c ∈ {1, 2},

· a(c) = 1 impliesa′(c) = 1 anda′(c+ 2) = 0,
· a(c) = −1 impliesa′(c) = 0 anda′(c+ 2) = 1,
· a(c) = 0 impliesa′(c) = a′(c+ 2) = 0.

• for X ⊆ {1, 2}, ((qF )X , true, 0, (qF )X) ∈ ∆ (final loops).

By construction, the counter machineM ′ is reversal-bounded since the four coun-
ters only increase. The idea behind this construction is that the first [resp. second] and
the third [resp. fourth] counters ofM ′ respectively count the number of incrementations
and decrementations of the first [resp. second] counter ofM . No zero-test is performed
inM ′; in order to simulate a zero-test inM , we would need to test equality between two
counters, which is not allowed in our models. Consequently,we encode these equality
tests by formulae.

Let us build a formulaφ in LTL↓[Q′, 4] such thatM ′ |=ω φ iff the control stateqF
can be reached from the initial configuration ofM . We consider the following auxiliary
formulae (c ∈ {1, 2}):

φc
def
=

∨

q∈Q

∨

{c}⊆X⊆{1,2}

qX and φq
def
=

∨

X⊆{1,2}

qX .

We are now in position to defineφ:

φ
def
= FφqF

∧
∧

c∈{1,2}

G(φc ⇒↓c
1↑

c+2
1 )∧

∧

c∈{1,2}

G(
∧

(q,true,−ec,q′)∈∆

q∅∧Xφq′ ⇒↓c
1 ¬ ↑c+2

1 )

12



One can show thatM ′ |=ω φ iff the control stateqF can be reached inM . Actually, if
there exists a runρ of M ′ such thatρ |= φ, then whenever a configuration ofρ satisfies
φc, the value of the counterc is equal to the value of the counterc + 2. This allows to
build a corresponding finite runρ′ forM . Moreover, reaching a configuration satisfying
φF in ρ, leads to a configuration satisfyingqF in ρ′.

Lemma 11. M ′ |=ω φ iff the control stateqF can be reached inM .

Proof. Let 〈q0, v0〉, 〈(q0)X0
, v0〉, 〈(q1)X1

, v1〉, 〈(q2)X2
, v2〉, . . . be an infinite run ofM ′

satisfyingφ. We know thatv0 = 0 and for someI ≥ 1 andX ⊆ {1, 2}, for all
j ≥ I, we haveqj = (qF )X . One can easily show that〈q0, v′0〉, 〈q1, v

′
1〉 . . . , 〈qI , v

′
I〉 is

a finite run ofM ending inqF such that forj ∈ {1, . . . , I} andc ∈ {1, 2}, v′j(c) =
vj(c) − vj(c+ 2).

Conversely, let〈q0, v′0〉, . . . , 〈qI , v
′
I〉 be a finite run ofM ending inqF . We can build

an infinite run ofM ′ of the form

〈q0, 0〉, 〈(q0)X0
, v0〉, 〈(q1)X1

, v1〉, . . . , 〈(qI)XI
, vI〉

ω

(with qI = qf ) such that forj ∈ {1, . . . , I} and forc ∈ {1, 2}, v′j(c) = vj(c)−vj(c+2)
and satisfies the formulaφ. ⊓⊔

⊓⊔

The result of Theorem 10 can be refined by showing the undecidability of the strict
fragmentMCω(LTL↓,s[·, 4]) restricted to reversal-bounded counter machines. Observe
that we shall modify the above developments while we are dealing with a strict fragment
for which each register is associated with a unique counter.First, we withdraw fromM ′

the transitions of the form((qF )X , true, 0, (qF )X) and replacezero by true (zero-
tests will be treated after). Then, we complete the counter machineM ′ (in order to
obtainM ′′) with a mechanism that will be useful to test that counters have the same
values. Figure 2 illustrates howM ′′ is built fromM ′; an edge labelled bya corresponds
to a transition with actiona and guardtrue. Similarly, an edge labelled by−e is a
shortcut for four edges labelled respectively by−e1, −e2, −e3 and−e4. Moreover, an
edge labelled byxc = 0? corresponds to a transition with action0 and guard in which
only thecth component has valuezero. Since inM ′ the counters can only increase, the
counter machineM ′′ is 4-reversal-0-bounded.Observe that any reachable configuration
with control stateq1=3 [resp.q2=4] satisfies that the first [resp. second] counter is equal
to the third [resp. fourth] counter. So after reaching a finalcontrol state fromM ′, the
counter machineM ′′ will reach configurations with control states eitherq1=3 or q2=4

corresponding to counter values of previous configurationsof M ′ in which zero-tests
had to be performed. Now, let us build a formulaφ′ ∈ LTL↓,s[Q′′, 4] (assuming that
Q′′ is the set of control states ofM ′′) such thatM ′′ |=ω φ′ if and only if the control
stateqF is reachable inM . We use again the auxiliary formulaeφ1 andφ2:

φ′ = Fq2=4 ∧
∧

c∈{1,2}

G

(

↓c
c↓

c+2
c+2 (φc ⇒ F(qc=c+2∧ ↑c

c ∧ ↑c+2
c+2))

)

∧ φdec ∧ φfair

13



Counter machineM ′

(qF )∅ (qF ){1} (qF ){1,2} (qF ){2}

−e

x1 = 0?
q1=3

x3 = 0?

e1 + e3
e2

e4

−e
x2 = 0?

q2=4

x4 = 0?

e2 + e4

e1

e3

Fig. 2.Counter machineM ′′ built from M ′

with (⇓ ψ stands for↓1
1↓

2
2↓

3
3↓

4
4 ψ)

φfair
def
= G

∧

q∈Q′

(q ⇒ ⇓ (F(q1=3∧ ↑2
2 ∧ ↑4

4 ∧ ↑1
1) ∧ F(q2=4∧ ↑1

1 ∧ ↑3
3 ∧ ↑2

2))))

φdec =
∧

c∈{1,2}

G(
∧

(q,true,−ec,q′)∈∆

q∅ ∧ Xφq′ ⇒ ⇓ ¬F(qc=c+2∧ ↑1
1 ∧ ↑2

2 ∧ ↑3
3 ∧ ↑4

4))

If a runρ′ ofM ′′ satisfiesφ′, then for all the configurations ofρ′ which are in a control
state satisfyingφ1 [resp.φ2], the values of the first [resp. second] and of the third [resp.
fourth] counters are equal. This allows us to build a runρ of M which is ”correct”.
Hence,M ′′ |=ω φ′ iff there exists a runρ of M reaching the control stateqF . Observe
that the correctness of the reduction heavily relies on the fact that all the counters inM ′

only increase, see the proof below.

Lemma 12. M ′′ |=ω φ′ iff the control stateqF can be reached inM .

Proof. Let ρ = 〈q0, v0〉, 〈(q0)X0
, v0〉, 〈(q1)X1

, v1〉, 〈(q2)X2
, v2〉, . . . be an infinite run

ofM ′′ satisfyingφ′. We know thatv0 = 0 and for someI ≥ 1 andX ⊆ {1, 2}, we have
qI = (qF )X . We now prove that the finite sequence〈q0, v′0〉, . . . , 〈qI , v

′
I〉 verifying for

j ∈ {0, . . . , I} and forc ∈ {1, 2}, v′j(c) = vj(c) − vj(c + 2) is a finite run ofM .
The proof is by induction onj. First, note that we have inM ′′ a transition of the form
((qj)Xj

, true, a′, (qj+1)Xj+1
). We then consider the following cases.

Case 1:there isc ∈ {1, 2} such thata′(c+ 2) = 1.
So, there exists a transition inM of the form(qj , true,−ec, qj+1). This transition is
firable from the configuration〈qj , v′j〉 if and only if v′j(c) > 0. Ad absurdum, suppose
v′j(c) = 0. By the induction hypothesis, we get thatvj(c) = vj(c + 2). Supposec =
1 (the casec = 2 can be treated analogously). As observed before the proof, since
ρ |= φfair, there is a configuration〈q1=3, u〉 of ρ (occurring after the positionj) such
that u(1) = u(3) = max(vj(1), vj(3)) = vj(1), u(2) = vj(2) andu(4) = vj(4).
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Sincevj(1) = vj(3), we conclude that forc′ ∈ {1, 2, 3, 4}, vj(c
′) = u(c′), which

leads to a contradiction with the satisfaction ofρ |= φdec. Consequently,v′j(c) > 0. By
construction ofM ′′, it is then obvious that the configuration〈qj+1, v′j+1〉 obtained after
the firing of(qj , true,−ec, qj+1) is such that for allc ∈ {1, 2}, v′j+1(c) = vj+1(c) −
vj+1(c+ 2).
Case 2:Xj = {c} for somec ∈ {1, 2}
So, there exists a transition(qj , g, 0, qj+1) inM such thatg(c) = zero. Hence, we only
need to check thatv′j(c) = 0. By the induction hypothesis, we only need to check that
vj(c) = vj(c+ 2). This is ensured by the satisfaction of the first part of the formulaφ′

and by the fact that all the configurations inReach(M ′′) of the form〈qc=c+2, v〉 verify
v(c) = v(c+ 2).
Case 3:incrementation of counterc with guard0.
This can be easily deduced from the way we build the counter machineM ′′.

Conversely, let〈q0, v′0〉, 〈q1, v
′
1〉 . . . , 〈qI , v

′
I〉 be a finite run ofM ending inqF . We

can build an infinite run ofM ′′ of the form

〈q0, 0〉, 〈(q0)X0
, v0〉, 〈(q1)X1

, v1〉, . . . , 〈(qI)XI
, vI〉, . . . ,

〈q1=3, 0〉, 〈q1=3, u1〉, . . . , 〈q1=3, uI1〉, . . . ,
〈q2=4, 0〉, 〈q2=4,w1〉, . . . , 〈q2=4,wI2〉, . . .

with I1 ≤ I andI2 ≤ I such that:

– qI = qF ,
– for j ∈ {1, . . . , I}, we have:

1. for all c ∈ {1, 2}, v′j(c) = vj(c) − vj(c+ 2),
2. there existsj′ ≤ I1 such thatuj′ (1) = uj′(3) = max(vj(1), vj(3)) = vj(1),

uj′ (2) = vj(2) anduj′(4) = vj(4),
3. there existsj′ ≤ I2 such thatwj′(2) = wj′(4) = max(vj(2), vj(2)) = vj(2),

wj′ (1) = vj(1) andwj′ (3) = vj(3). .

Observe that the satisfaction of the above conditions (2)-(3) is mainly due to the fact
that the four counters can only increase and forj ≤ I, we havevj(1) ≥ vj(3) and
vj(2) ≥ vj(4). It is then easy to check that such a run satisfies the formulaφ′. ⊓⊔

This allows us to deduce the following results (using also Lemma 4).

Theorem 13. MCω(LTL↓,s[·, 4]) restricted to reversal-bounded counter machines are
undecidable as well asMCω(LTL↓,s[∅, 5]) (by using Lemma 4).

6 Deterministic Counter Machines

In this section, we restrict ourselves to classes of deterministic counter machines. A
classC of deterministic counter machines has thePA-property

def
⇔ for each counter

machineM ∈ C, one can effectively build a formulaφM (x0, . . . , xn+1) in Presburger
arithmetic [44] such that for allj0, . . . , jn+1 ∈ N, 〈j0, 〈j1, . . . , jn〉〉 is thejn+1th con-
figuration of the unique run ofM iff 〈j0, . . . , jn+1〉 |= φM (x0, . . . , xn+1) (assuming
thatM has dimensionn and its set of control states is viewed as a finite subset ofN).

We show below that model-checking restricted to counter machines can be some-
times reduced to the decidable satisfiability problem for Presburger arithmetic.
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Lemma 14. LetC be a class of deterministic counter machines. IfC has the PA-property,
then the model-checking problemMCω(LTL↓[·, ·]) over counter machines inC is de-
cidable.

The proof of Theorem 8(II) is partly based on the fact that theclass of determinis-
tic one-counter machines has the PA-property. Similarly, the class of deterministic flat
counter macines has also the PA-property [23] (see Theorem 7).

Proof. Let M ∈ C andφ ∈ LTL↓[Q,n]. We writeφM (t0, . . . , tn+1) to denote the
Presburger formula encoding the unique run ofM . For registerr in φ, we consider
the variableyr in the built Presburger formula. Let us define the mapT (·) that takes
as arguments a formulaψ andn + 2 variablesx0, . . . , xn+1 and returns a Presburger
formula with free variablesx0, . . . , xn+1 internalizing the semantics ofLTL↓[Q,n]
formulae. The mapT (·) is homomorphic for Boolean connectives and is inductively
defined as follows:

– T (q, x0, . . . , xn+1)
def
= x0 = q;

– T (↑c
r, x0, . . . , xn+1)

def
= yr = xc,

– T (Xψ, x0, . . . , xn+1)
def
= ∃x′0, . . . , x

′
n+1(x

′
n+1 = xn+1 + 1∧ φM (x′0, . . . , x

′
n+1) ∧

T (ψ, x′0, . . . , x
′
n+1)) (x′0, . . . , x

′
n+1 are new variables),

– T (ψ1Uφ2, x0, . . . , xn+1) is equal to the formula below:

∃x′0, . . . , x
′
n+1 (xn+1 ≤ x′n+1 ∧ φM (x′0, . . . , x

′
n+1) ∧ T (ψ2, x

′
0, . . . , x

′
n+1))∧

∀x′′0 , . . . , x
′′
n+1((xn+1 ≤ x′′n+1 < x′n+1 ∧ φM (x′′0 , . . . , x

′′
n+1)) ⇒

T (ψ1, x
′′
0 , . . . , x

′′
n+1))

(x′0, . . . , x
′
n+1, x

′′
0 , . . . , x

′′
n+1 are also new variables),

– the clause for the release operatorR is similar,
– T (↓c

r ψ, x0, . . . , xn+1) = ∃yr(yr = xc ∧ T (ψ, x0, . . . , xn+1)).

Let φ′ be the formula

T (φ, x0, . . . , xn+1) ∧ x0 = q0 ∧
∧

i∈{1,...,n+1}

xi = 0 ∧ ϕ∞,

with ϕ∞
def
= ∀ x ∃t1, . . . , tn+1φM (x, t1, . . . , tn+1). Observe that recycling variables

allow to obtain a formula equivalent toφ′ with O(n) variables. One can then show
thatM |=ω φ iff 〈〈q0, 0〉, 0〉 |= φ′. Since the satisfiability problem for Presburger
formulae is decidable [44], we obtain thatMCω(LTL↓[·, ·]) over counter machines in
C is decidable. ⊓⊔

Lemma 15.

(I) The class of deterministic reversal-bounded counter machines has the PA-property.
(II) The class of deterministic VASS has the PA-property.
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Proof. (I) LetM = (n,Q,∆, q0) be a reversal-bounded deterministic counter machine.
We transform it into a counter machineM ′ = (n + 1, Q,∆′, q0) in which we add an
extra counter in order to count the number of steps. Since theadditional counter only
increases and sinceM is reversal-bounded,M ′ is also reversal-bounded. As the reacha-
bility set of reversal-bounded counter machines is a semi-linear set which can be effec-
tively computed [24], there exists a Presburger formulaφM (x0, x1, . . . , xn+1) with free
variablesx0, x1, . . . , xn+1 such that forj0, . . . , jn+1 ∈ N, we have〈j0, . . . , jn+1〉 |=
φM (x0, . . . , xn+1) iff 〈j0, 〈j1, . . . , jn〉〉 is a jn+1th configuration of a run ofM (as-
suming that its set of control states is a finite subset ofN). Furthermore,M being
deterministic, by constructionM ′ is also deterministic.
(II) Let M be a deterministic VASS. The Karp and Miller tree [38] for thedetermin-
istic counter machineM from the initial configuration〈q0, 0〉 is a finite path of the

form 〈q0, u0〉
a0−→ 〈q1, u1〉

a1−→ . . .
aN−1

−−→ 〈qN , uN 〉, where〈q0, u0〉 is the initial con-
figuration; for i ≥ 1, 〈qi, ui〉 ∈ Q × (N ∪ {ω})n andai−1 ∈ {−1, 0, 1}n is an ac-
tion of M . Determinism ofM entails that there is at most onei such that〈qi, ui〉 ∈
Q × N

n and〈qi+1, ui+1〉 ∈ Q × ((N ∪ {ω})n \ N
n). Moreover, by construction of

such a path, either no transition can be fired from〈qN , uN 〉 or there isj < N such
that 〈qj , uj〉 = 〈qN , uN 〉. In that latter case, the unique infinite run ofM is made
of a finite prefix followed by a loop of effects

∑i=N−1
i=j ai ≥ 0. Hence, assuming

thatM has the unique run〈q0, v0〉〈q1, v1〉 . . . 〈qi, vi〉, . . . one can effectively build a
Presburger formulaφ(x0, x1, . . . , xn+1) such that for all tuples〈j0, . . . , jn+1〉, we
have〈j0, . . . , jn+1〉 |= φ(x0, x1, . . . , xn+1) iff there is i such that〈j0, . . . , jn+1〉 =
〈〈qi, vi〉, i〉. ⊓⊔

Corollary 16. MCω(LTL↓[·, ·]) is decidable when restricted to deterministic reversal-
bounded counter machines and deterministic VASS.

Checking whether a VASS is deterministic can be decided by using instances of the
covering problem (the problem is actually PSPACE-complete [31]). Checking whether
a reversal-bounded counter machine is deterministic is also decidable adding a counter
which counts each step and using the fact that the reachability set can be expressed
in Presburger arithmetic. By contrast, checking whether a counter machine is reversal-
bounded is undecidable [24]. Observe that by combining the bounds in [31] and de-
velopments from the long version of [21], one can establish thatMCω(LTL↓[·, ·]) over
deterministic VASS can be solved in EXPSPACE.

7 Flat Freeze LTL

In this section, we consider the restriction of the model-checking problem to flat for-
mulae only. By Theorem 7, we already know thatMCω(flat − LTL↓[·, ·]) restricted to
flat counter machines is decidable and thatMCω(flat − LTL↓[·, ·]) restricted to VASS
is undecidable (the proof of Theorem 9 involves only flat formulae). It is worth ob-
serving that flatLTL↓[Q,n] strictly containsLTL[Q], and therefore we refine below
decidability results from Section 4.2.
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7.1 A detour to counter machines with parameterized tests

We introduce here parameterized counter machines in order to solve later model-che-
cking problems restricted to flat formulae. First, let us fix some definitions. Acounter
machine with parameterized tests(shortly parameterizedcounter machine) is defined
as a counter machineM = (n,Q,∆, q0, Z) extended with a finite setZ of integer vari-
ables such that the guardsg are among({zero, true} ∪ {=(z), 6=(z), >(z), <(z) |
z ∈ Z})n. A concretizationC of M is a mapC : Z → N. Given a parameter-
ized counter machineM and a concretizationC, we introduce the transition system
TS(M,C) = (Q × N

n,−→) where−→⊆ (Q × N
n) × (Q × N

n) is defined as follows:
for 〈q, v〉, 〈q′, v′〉 ∈ Q × N

n, we have〈q, v〉 −→ 〈q′, v′〉
def
⇔ there exists a transition

t = (q, g, a, q′) ∈ ∆ such thatv′ = v + a, and for1 ≤ c ≤ n, g(c) equalszero implies
v(c) = 0, g(c) is equal to=(z) implies v(c) = C(z), g(c) is equal to6=(z) implies
v(c) 6= C(z), g(c) is equal to>(z) implies v(c) > C(z) and,g(c) is equal to<(z)
impliesv(c) < C(z). A finite [resp. infinite]run in TS(M,C) is a finite [resp. infinite]
sequenceρ = 〈q0, 0〉 −→ 〈q1, v1〉 −→ . . .. Theparameterized reachability problemfor
counter machines is defined as follows:

instance: a parameterized counter machineM and a configuration〈q, v〉.
question: is there a concretizationC such that〈q0, 0〉

∗
−→ 〈q, v〉 in TS(M,C)?

Even if the parameterized reachability problem is obviously undecidable, we will see in
this section that some restrictions lead to decidability. We will say that a parameterized
counter machine isIbarra reversal-boundedif the classical counter machine obtained
by replacing each parameterized test bytrue is Ibarra reversal-bounded. We have then
the following result.

Theorem 17. [35] The parameterized reachability problem for Ibarra reversal-boun-
ded parameterized counter machines is decidable.

If a parameterized counter machine has no guard of the form either 6=(z) or<(z),
we say it isrestricted. In [29], parametric one-counter machines are defined as ex-
tensions of one-counter machines extended with actions consisting in incrementing or
decrementing the unique counter with some parameterized integer constants. In [29], it
is shown that the reachability problem for this class of one-counter machines is decid-
able. Here is a corollary.

Lemma 18. The parameterized reachability problem for restricted parameterized one-
counter machines is decidable.

The proof of Lemma 18 consists in substituting each test of the form=(z) by the
following sequence of instructions: decrement byz, perform a zero-test and increment
by z. In order to encode the test>(z), we use the same technique except that we do not
introduce a zero-test between the decrementation (in fact we also add a decrementation
by 1 and an incrementation by1) and the incrementation. Note that this method does
not work if we allow guards of the form either6=(z) or <(z), because the value of
the counter cannot be negative, hence the decidability of the parameterized reachability
problem for one-counter machines remains an open problem.
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We introduce here a new problem which is needed to reduce the considered model-
checking problem. Theparameterized generalized repeated reachability problemfor
parameterized counter machines is defined as follows:

instance: a parameterized counter machineM ,N setsF1, . . . , FN of control states
question: are there a concretizationC and an infinite run ofTS(M,C) such that for

1 ≤ i ≤ N , one control state inFi is repeated infinitely often?

From the previous theorem and lemma, we deduce the followingcorollary.

Corollary 19. The parameterized generalized repeated reachability problem is decid-
able when considering Ibarra reversal-bounded parameterized counter machines and
restricted parameterized one-counter machines.

Proof. Given a parameterized counter machineM = (n,Q,∆, q0, Z) andN sets of
control statesF1, . . . , FN , we shall build a parameterized counter machineM ′ =
(n,Q′, ∆′, q0, Z ⊎ {z′1, . . . , z

′
n}) such that there is a concretizationC and an infinite

run ofTS(M,C) such that for1 ≤ i ≤ N , one control state inFi is repeated infinitely
often if and only if the configuration〈qnew , 0〉 can be reached inM ′.

As done to reduce nonemptiness for generalized Büchi automata to nonemptiness
for Büchi automata, we can build a parameterized counter machineM⊗N = (n,Q ×
{1, . . . , N}, ∆′, 〈q0, 1〉, Z) such thatM⊗N is made ofN copies ofM and whenever
the ith copy visits a control state inFi, it jumps to the(1 + (i mod N))th copy. Con-
sequently, there is a concretizationC and an infinite run ofTS(M,C) such that for
1 ≤ i ≤ N , one control state inFi is repeated infinitely often iff there is a concretiza-
tion C and an infinite run ofTS(M⊗N ,C) such that one control state inF1 × {1} is
repeated infinitely often. Furthermore,M⊗N is Ibarra reversal-bounded if and only if
M is Ibarra reversal-bounded; the counters inM⊗N evolves as inM . So, without any
loss of generality, we can assume thatN = 1.

Let M = (1, Q,∆, q0, Z) be a restricted parameterized one-counter machine and
F1 ⊆ Q. If (⋆) there is a concretization and an infinite run in which there isa control
state inF1 repeated infinitely often, then one of the conditions below is satisfied:

1. a test of the form either “zero” or “ =(z)” is repeated infinitely often;
2. after some position, all the fired transitions have tests of the form either “true” or

“>(z)”.

Consequently,(⋆) iff one of the conditions below holds true:

1. there is a concretization and an infinite run in which thereare two configurations
〈qi, vi〉 = 〈qj , vj〉 with i < j andqi ∈ F1,

2. (by Dickson’s Lemma) there is a concretization and an infinite run in which there
are two configurations〈qi, vi〉, 〈qj , vj〉 with i < j, vi ≤ vj , qi = qj ∈ F1 and no
test of the form either “zero” or “ =(z)” is performed between〈qi, vi〉 and〈qj , vj〉.

Let us build the parameterized counter machine

M ′ = (1, Q′, ∆′, q0, Z ⊎ {z′1})
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such that(⋆) iff there is a concretizationC′ such that〈q0, 0〉
∗
−→ 〈qnew, 0〉 in TS(M ′,C′),

which can be decided thanks to [29]. Basically,M ′ is made of5 × card(F1) copies of
M plus some extra control states such asqnew andq0. Moreover, in the fourth and fifth
copies, transitions with tests of the form either “zero” or “ =(z)” are removed.

The control states of the〈qf , i〉th copy (with〈qf , i〉 ∈ F1 × {1, . . . , 5}) are among

Q×{qf}×{i}. For〈qf , i〉 ∈ F1×{1}, we consider the transitionsq0
true,0
−−−→ 〈q0, qf , i〉.

The〈qf , 1〉th copy ofM inM ′ behaves asM except that nondeterministically we jump
to the second or fourth copy when the control stateqf is visited (and we check that the
counter value is equal toz′1). So, we consider this additional sequence of transitions

〈qf , qf , 1〉
=(z′

1),0−−−−→ 〈qf , qf , 2〉 and〈qf , qf , 1〉
=(z′

1),0−−−−→ 〈qf , qf , 4〉. As soon as a transition
is performed in the〈qf , 2〉th copy (see the above strict inequalityi < j), transitions
jump to the〈qf , 3〉th copy. The〈qf , 3〉th copy ofM in M ′ behaves asM except that
we add the following transitions:

〈qf , qf , 3〉
=(z′

1),0−−−−→ qnew andqnew
true,−1
−−−−→ qnew

As soon as a transition is performed in the〈qf , 4〉th copy (see the above strict in-
equalityi < j), transitions jump to the〈qf , 5〉th copy. The〈qf , 5〉th copy ofM in M ′

behaves asM (remember some transitions have been also removed, those involving
equality tests) except that we add the following transitions:

〈qf , qf , 5〉
=(z′

1),0−−−−→ qnew and〈qf , qf , 5〉
>(z′

1),0−−−−→ qnew.

Let M = (n,Q,∆, q0, Z) be an Ibarra reversal-bounded parameterized counter
machine andF1 ⊆ Q. Without any loss of generality, we can assume that there is no
guard of the form6=(z) since this can be replaced by transitions with guards>(z) and
<(z). This may cause an exponential blow-up since there aren counters. If(⋆) there
is a concretization and an infinite run in which there is a control state inF1 repeated
infinitely often, then there isX ⊆ {1, . . . , n} such that the countersc in X are exactly
those for which in this run, infinitely often there is a transition with guard onc of
the form eitherzero or <(z) or =(z). SinceM is Ibarra reversal-bounded,(⋆) iff
there is a concretization,X ⊆ {1, . . . , n} and an infinite run in which there are two
configurations〈qi, vi〉, 〈qj , vj〉 with i < j, vi ≤ vj , for c ∈ X , vi(c) = vj(c), and
qi = qj ∈ F1. Moreover, between〈qi, vi〉 and〈qj , vj〉, there are tests of the form either
zero or <(z) or =(z) for exactly the counters fromX . Indeed, any counter whose
value is bounded during an infinite run takes a fixed value after some position by Ibarra
reversal-boundedness. For the other counters, Dickson’s Lemma allows us to obtain the
conditionvi ≤ vj .

Let us build the parameterized counter machineM ′ = (n,Q′, ∆′, q0, Z⊎{z
′
1, . . . , z

′
n})

such that(⋆) iff there is a concretizationC′ such that〈q0, 0〉
∗
−→ 〈qnew, 0〉 in TS(M ′,C′),

which is decidable by [35]. Basically,M ′ is made of2n×card(F1)+1 copies ofM plus
some extra control states such asqnew . It includes an initial distinguished copy ofM .
ForX ⊆ {1, . . . , n} andqf ∈ F1, the control states of the〈qf , X〉th copy are among
Q×{qf}×{X}×P(X). ForX ⊆ {1, . . . , n} andqf ∈ F1, we consider the transition

qf
g,0
−→ 〈qf , X, ∅〉: nondeterministically we jump to the〈qf , X〉th copy when the control
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stateqf is visited and for1 ≤ c ≤ n, g(c) is equal to=(z′c). In the 〈qf , X〉th copy,

〈q, qf , X, Y 〉
g,a
−→ 〈q′, qf , X, Y ′〉 is a transition whenever there is a transitionq

g,a
−→ q′ in

M such that forc ∈ {1, . . . , n} \ X , g(c) is not of the form eitherzero or <(z) or
=(z) and

Y ′ = Y ∪ {c : g(c) is either of the form zero or <(z) or =(z)}

As soon as in the〈qf , X〉th copy, all the counters inX have been property tested at
least once, potentially we can jump to the final locationqnew. Hence, in the〈qf , X〉th
copy, we add the following transitions:

〈qf , qf , X,X〉
g,0
−→ qnew andqnew

true,−ec
−−−−→ qnew

with c ∈ {1, . . . , n} and for1 ≤ c′ ≤ n eitherg(c′) is equal to=(z′c′) or (c′ 6∈ X and
g(c′) is equal to>(z′c′)). Note thatM ′ is also an Ibarra reversal-bounded parameterized
counter machine. This is due to the fact that the counters inM ′ evolves as inM .

⊓⊔

7.2 Flat formulae and parameterized counter machines

ForMCω(LTL↓[·, ·]) restricted to flat formulae, we have the following result.

Theorem 20. There is a reduction fromMCω(LTL↓[·, ·]) restricted to flat formulae to
the parameterized generalized repeated reachability problem for counter machines.

Proof. Let M = (n,Q,∆, q0) be a counter machine andφ be a flat sentence belong-
ing to LTL↓[Q,n]. Without any loss of generality, we can assume thatφ is in negation
normal form (which means that all the occurrences of negation appear only in front of
atomic formulae). Moreover, we can assume that if↓c

r ψ and↓c′

r′ ψ are distinct occur-
rences of subformulae inφ, thenr 6= r′ (this may just linearly increase the number of
registers). Consequently, ifψ1Uψ2 [resp.ψ1Rψ2] is a subformula ofφ, then the freeze
operator↓ cannot occur inψ1 [resp.ψ2]. We shall effectively build a parameterized
counter machineM ′ = (n,Q′, ∆′, q0, Z

′) and setsF1, . . . , FN ⊆ Q′ for which there
is a concretizationC and an infinite run ofTS(M ′,C) such that for1 ≤ i ≤ N , one
control state inFi is repeated infinitely often iffM |=ω φ.
Let us fix some notations. As usual, the formulaφ can be encoded as a finite tree whose
leaves are labelled by atomic formulae and internal nodes are labelled by (Boolean,
temporal or freeze) connectives. Each node of the formula tree corresponds naturally
to a subformula and the set of nodes can be viewed as a finite prefix-closed subset
occ(φ) ⊆ (N \ {0})∗ (finite sequence of natural numbers). Each element inocc(φ) cor-
responds to the occurrence of a subformula inφ; hence two occurrences may correspond
to the same subformula since we do not bother herein with structure-sharing. For exam-
ple, Figure 3 presents the formula tree of the flat formula↓1

1 (X ↑1
1 ∨(q′ ∧ (↓1

1 q))). The
use of occurrences instead of subformulae is motivated by the need to provide formal
and clear statements in which occurrences are crucial. For each occurrenceu ∈ occ(φ),
we writeφ(u) to denote the corresponding subformula inφ; for instanceφ(ǫ) = φ.
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ǫ :↓1
1

1 : ∨

1 · 1 : X 1 · 2 : ∧

1 · 1 · 1 :↑1
1 1 · 2 · 1 : q′ 1 · 2 · 2 :↓1

1

1 · 2 · 2 · 1 : q

bind

Fig. 3. Formula tree

Moreover, whenu is a prefix ofu′, written u ≤pre u
′, we know thatφ(u′) is a sub-

formula of φ(u). We write occ↓(φ) [resp.occ↑(φ)] to denote the set of occurrences
corresponding to formulae whose outermost connective is ofthe form↓c

r [resp.↑c
r]. For

instance,occ↓(↓1
1 (X ↑1

1 ∨(q′ ∧ (↓1
1 q)))) = {ǫ, 1 · 2 · 2}. Letm = card(occ↓(φ)). Ob-

serve that ifm = 0, then we are in the case ofMCω(LTL[·]) which has been treated in
Section 4.2. In the sequel, we assume thatm > 0. Givenu ∈ occ↑(φ) with φ(u) =↑c

r,
we write bind(u) to denote the longest prefix ofu (with respect to≤pre) in occ↓(φ)

such thatφ(bind(u)) is of the form↓c′

r ψ (i.e., with the same register). AnatomX is
a subset ofocc(φ) satisfying the conditions below (we abusively use subformulae to
denote occurrences corresponding to formulae with the appropriate outermost connec-
tive):

1. if ψ1 ∧ ψ2 ∈ X , thenψ1, ψ2 ∈ X ,
2. for all atomic formulaeψ ∈ X , {ψ,¬ψ} 6⊆ X ,
3. if ψ1 ∨ ψ2 ∈ X , then eitherψ1 ∈ X orψ2 ∈ X ,
4. if ↓c

r ψ ∈ X , thenψ ∈ X .

The set ofatomsof φ is denoted byAT(φ). A pair of atoms〈X,X ′〉 is said to be
one-step consistentiff the conditions below hold true:

(I) if ψ1Uψ2 ∈ X , then eitherψ2 ∈ X or (ψ1 ∈ X andψ1Uψ2 ∈ X ′),
(II) if ψ1Rψ2 ∈ X , thenψ2 ∈ X and (ψ1 ∈ X orψ1Rψ2 ∈ X ′),
(III) if Xψ ∈ X , thenψ ∈ X ′,
(IV) No atomX ′′ strictly included inX ′ satisfies the conditions (I)–(III) (by replacing

X ′ byX ′′).

We will now describe the construction of the parameterized counter machineM ′ which
will usem integer variablesz1, . . . , zm. Intuitively, each integer variable will be used
to store the value of a register. In order to make explicit this dependency, we shall use
a one-to-one mapreg : occ↓(φ) → {1, . . . ,m}. We define also a functioncounter :
occ↓(φ)∪ occ↑(φ) → {1, . . . , n} that indicates the counter involved in the subformula.
Givenu ∈ occ↓(φ) such thatφ(u) =↓c

r ψ, we havecounter(u) = c and givenu ∈
occ↑(φ) such thatφ(u) =↑c

r, we havecounter(u) = c. The setQ′ of control states is
equal to{q0} ⊎ Q × AT(φ) plus some auxiliary control states that are introduced to
perform tests. The relation∆′ is defined as follows. First,(q0, true, 0, 〈q0, Y 〉) ∈ ∆′

wheneverǫ ∈ Y and no atom strictly included inY containsǫ (init). Then, for each
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transition(q, g, a, q′) ∈ ∆ there is in∆′ the sequence of transitions

〈q, Y 〉 · · · qaux
1 · · · qaux

T

g,a
−→ 〈q′, Y ′〉

assuming that:

1. occ↓(φ) ∩ Y containsT1 elements, sayu1, . . . , uT1
; occ↑(φ) ∩ Y containsT2

elements, sayuT1+1, . . . ,uT1+T2
; {u ∈ Y | u·1 ∈ occ↑(φ) andφ(u) is a negation}

containsT3 elements, sayuT1+T2+1, . . . ,uT1+T2+T3
with T = T1 + T2 + T3,

2. 〈Y, Y ′〉 is a one-step consistent pair,
3. {φ(u) : u ∈ Y } ∩Q ⊆ {q} and¬q 6∈ {φ(u) : u ∈ Y }
4. for i ∈ {1, . . . , T1}, before reachingqaux

i , there is a transition testing equality
between the countercounter(ui) andzk with k = reg(ui),

5. for i ∈ {1, . . . , T2}, before reachingqaux
T1+i, there is a transition testing equality

between the countercounter(uT1+i) andzk with k = reg(bind(uT1+i)),
6. for i ∈ {1, . . . , T3}, before reachingqaux

T1+T2+i, there is a transition testing inequal-
ity between the countercounter(uT1+T2+i) andzk with k = reg(bind(uT1+T2+i)).

Finally, let u1, . . . , uN be the occurrences inocc(φ) such that the outermost tem-
poral connective ofφ(ui) is the until operatorU. Then, for1 ≤ i ≤ N , Fi = {〈q, Y 〉 :
ui 6∈ Y or (ui · 2) ∈ Y }. It remains to show the lemma below (whose proof follows).

Lemma 21. M |=ω φ iff there exist a concretizationC and an infinite run ofTS(M ′,C)
s.t. for1 ≤ i ≤ N , one control state inFi is repeated infinitely often.

Proof. The formulaφ is a flat sentence in negation normal form such that if↓c
r ψ and

↓c′

r′ ψ are distinct occurrences of subformulae inφ, thenr 6= r′ (φ is then said to be
normalized).

Let C : {z1, . . . , zm} → N be a concretization and

〈q0, 0〉, 〈q′1, v
′
1〉, . . . , 〈q

′
i, v

′
i〉, . . .

be an infinite run ofTS(M ′,C) such that for1 ≤ i ≤ N , there is a control state inFi

that is repeated infinitely often. For the analysis below, wedo not want to bother about
the auxiliary control states. That is why, we introduce the mapg below. Letg : N → N

be the function such thatg(0) = 0 and for all i ∈ N \ {0}, q′
g(i) ∈ Q × AT(φ),

g(i) < g(i+ 1) and for allg(i) < j < g(i+ 1), q′j /∈ Q× AT(φ). For alli ∈ N \ {0},
we write〈〈qi, Yi〉, vi〉 to denote theg(i)th configuration〈q′

g(i), v
′
g(i)〉. By construction

of the auxiliary control states, we also have that for1 ≤ i ≤ N , there is a control state
in Fi that is repeated infinitely often in〈q1, v1〉, . . . , 〈qi, vi〉, . . ..

One can show that forj ≥ 1, if u ∈ Yj ∩ occ↓(φ), then fork > j, u 6∈ Yk. In that
way, for i ∈ {1, . . . ,m}, assumingreg−1(i) = u with φ(u) =↓c

r ψ, the valueC(zi)
is interpreted as the value of counterc at the unique positionj (if it exists) for whichu
belongs toYj . This unicity property is a consequence of the facts that conditions (IV)
and (init) imply that the disjunctions in conditions (3) –inthe definitions for atoms–,
(I) and (II) should be read exclusively in order to guaranteethe minimality of the sets
of formulae. The syntactic properties ofφ then entail the desired property.This is the
crucial place where occurrences are easier to manipulate than subformulae.
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By construction ofM ′ andg, theω-sequenceρ = 〈q1, v1〉, . . . , 〈qi, vi〉, . . . is an
infinite run ofM . Remember that for each transition(q, g, a, q′) ∈ ∆ there is in∆′ the
sequence of transitions

〈q, Y 〉 · · · qaux
1 · · · qaux

T

g,a
−→ 〈q′, Y ′〉

i.e., the same guards and actions are used (except for the intermediate and auxiliary
transitions).

One can show that forj > 0 andu ∈ Yj , we haveρ, (j − 1) |=fj−1
φ(u) for

some register valuationfj−1 defined below. Consequently,ρ, 0 |=f0
φ and therefore

M |=ω φ wheref0 is the register valuation with empty domain. This can be shown by
structural induction onφ(u) by using the properties of atoms, one-step consistent pairs
and the sets of final control states (for satisfaction of until subformulae). This part is
standard for plain LTL (we treat only the until subcase below). Let us first explain the
cases with the freeze operators. We also need preliminary notations to explain how to
definefj−1 for j > 0. Given a registerr occurring inφ, we writei(r, j) to denote the
maximal position less thanj for which there isu ∈ Yi(r,j) ∩ occ↓(φ) such thatφ(u) is
of the form↓c

r ψ if it exists (otherwise by conventioni(r, j) = 0). Unicity is guaran-
teed sinceφ is normalized. So, for eachr occurring inφ, the valuefj−1(r) is undefined
wheneveri(r, j) = 0 otherwisefj−1(r) = vi(r,j)(c) for the unique counterc for which
there isu ∈ Yi(r,j) ∩ occ↓(φ) andφ(u) is of the form↓c

r ψ. Let us treat the cases in the
induction that involve register valuations.
Caseφ(u) =↓c

r ψ:
By condition (4) (in the definition of atoms),u · 1 ∈ Yj (sinceφ(u · 1) = ψ) and by
the induction hypothesis, we haveρ, (j − 1) |=fj−1

φ(u · 1). However,i(r, j) = j
sinceu ∈ Yj and thereforefj−1(r) = vj(c) = v′

g(j)(c), whence by definition of the
satisfaction relationρ, (j − 1) |=fj−1

↓c
r φ(u · 1) andφ(u) =↓c

r φ(u · 1).
Caseφ(u) =↑c

r:
By construction of atoms and one-step consistent pairs, we know that fork ≥ 0,
Yk ≤pre Yk+1 whereY ≤pre Y ′ def

⇔ for all u′ ∈ Y ′, there isu ∈ Y such that
u ≤pre u′ (u is a prefix ofu′). Sinceφ is a normalized sentence,i(r, j) 6= 0 and
bind(u) ∈ Yi(r,j) with φ(bind(u)) of the form↓c′

r ψ (i.e., with the same register).
So, fj−1(r) = vi(r,j)(c

′) = v′g(i(r,j))(c
′). By condition (3) in the definition of∆′,

we getv′g(i(r,j))(c
′) = C(zreg(bind(u))) and vj(c) = v′g(j)(c) = C(zreg(bind(u))).

Hence, we deduce thatvj(c) = fj−1(r), consequentlyρ, (j − 1) |=fj−1
↑c

r. The case
with φ(u) of the form¬ ↑c

r is analogous by observing again by condition (3), that
vj(c) 6= C(zreg(bind(u))).
Caseφ(u) = ψ1Uψ2 (standard):
There is a setF of final control states such thatF = {〈q, Y 〉 : u 6∈ Y or (u · 2) ∈ Y }
(rememberφ(u · 2) = ψ2). Ad absurdum, suppose that forj′ ≥ j, u · 2 6∈ Yj′ . By con-
dition (I) in the definition for one-step consistent pairs, for j′ ≥ j, we haveu · 1 ∈ Yj′

(rememberφ(u · 1) = ψ1) andu ∈ Yj′ . This is in contradiction with the fact that for
some〈q, Y 〉 ∈ F , the control state〈q, Y 〉 is repeated infinitely often inρ. So, there is
j′ ≥ j such thatu · 2 ∈ Yj′ and forj ≤ k < j′, u · 2 6∈ Yk. By induction, we can show
that forα ∈ [0, j′ − j − 1], u · 1 ∈ Yj+α andu ∈ Yj+α. Whenj′ = j, this is trivial.
Otherwise, takeα = 0. Sinceu · 2 6∈ Yj , by (I) we getu · 1 ∈ Yj andu ∈ Yj+1. In
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the induction step, suppose thatu ∈ Yj+α andα + 1 < j′ − j. Sinceu ∈ Yj+α and
u ·2 6∈ Yj+α, by (I), we getu ·1 ∈ Yj+α andu ∈ Yj+α+1. So, forj ≤ k < j′, by induc-
tion hypothesis we obtain thatρ, (k − 1) |= ψ1. Moreover, we haveρ, (j′ − 1) |= ψ2,
whenceρ, (j − 1) |= φ(u).

Conversely, letρ = 〈q1, v1〉, . . . , 〈qi, vi〉, . . . be an infinite run ofM such thatρ, 0 |= φ.
One can construct a concretizationC : {z1, . . . , zm} → N, a sequence of register
valuationsf0, f1, f2, . . . and a sequence of atomsY1, Y2, . . . satisfying the conditions
below:

(A) For j ≥ 0, for u ∈ Yj+1, we haveρ, j |=fj
φ(u).

(B) For j ≥ 1, the pair〈Yj , Yj+1〉 is one-step consistent.
(C) ǫ ∈ Y1.
(D) For j ≥ 0, fj+1 is an extension offj .
(E) Forj ≥ 1, for u ∈ Yj with φ(u) =↓c

r ψ, we havefj−1(r) = vj(c).
(F) Fori ∈ {1, . . . ,m}, if reg−1(i) belongs to someYj andφ(reg−1(i)) =↓c

r ψ, then
C(zi) = vj(c), i.e.fj−1(r) = C(zi).

The sequences can be built step by step on the model of the reduction rules introduced
for e.g. in [19, Section 3.4]. This is a tedious and standard construction but its main idea
is the following. We considerω-sequences of the form〈Z0, f

′
0〉, 〈Z1, f

′
1〉, . . . where

⋃

Zi ⊆ occ(φ) and eachf ′
j is a register valuation. We define a natural ordering on

such sequences by checking component-wise set inclusion between sets of occurrences
and extension relation between register valuations. We start by the bottom sequence
〈∅, f∅〉, 〈∅, f∅〉, . . . wheref∅ is the register valuation with empty domain. Whenever
one of the conditions among (B)-(F) is not satisfied or when someYj ’s is not an atom,
we repair thisdefecteither by adding an occurrence in some set (typically to satisfy con-
dition (B)) or by extending some register valuation (typically to satisfy condition (E)).
Repairing of defects is possible because the runρ satisfiesρ, 0 |= φ. By ordering the de-
fects (for instance by ordering the occurrences and by choosing to repair defect at lowest
position), it is possible to define a repair functionh, that is monotonous with respect to
the above-mentioned ordering. By Tarski-Knaster theorem on fixpoints, the maph has
a least fixpoint from which can naturally defineC and the sequencesf0, f1, f2, . . . and
Y1, Y2, . . .. Observe that sometimes, in order to repair a defect,ρ, 0 |= φ and (A) are
used; for instance if a defect is present because condition (3) in the definition for atoms
is not satisfied (disjunction), then the choice of the occurrence to be added in the ade-
quate set of occurrences is made thanks to (A). When both disjuncts can be added, we
use an arbitrary total ordering on occurrences to determinewhich occurrence to choose,
so thath is indeed a function. By the way, (A) cannot cause any defect and is only
useful to repair defects. Condition (D) is guaranteed becauseφ is flat and normalized
whereas flatness guarantees that forj ≥ 1, if u ∈ Yj ∩occ↓(φ), then fork > j, u 6∈ Yk.
So, whenreg−1(i) does not occur in the sequenceY1, Y2, . . . , Yk, . . ., the imageC(zi)
can take an arbitrary value.

We can build an infinite runρ′ of TS(M ′,C), say

〈q0, 0〉, 〈q′1, v
′
1〉, . . . , 〈q

′
i, v

′
i〉, . . .
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such that there is a mapg : N → N with g(0) = 0 and for alli ∈ N \ {0}, q′
g(i) ∈

Q×AT(φ), g(i) < g(i+1) and for allg(i) < j < g(i+1), q′j /∈ Q×AT(φ). Observe
that for1 ≤ i ≤ N , there is also a control state inFi that is repeated infinitely often in
ρ′, which allows to conclude the other direction. In order to bemore precise, a step

〈qj , vj〉
g,a
−→ 〈qj+1, vj+1〉

is replaced by a sequence of steps

〈〈qj , Yj〉, vj〉 · · · 〈q
aux
1 , . . .〉 · · · 〈qaux

T , . . .〉
g,a
−→ 〈〈qj+1, Yi+1〉, vj+1〉

Let us verify that this sequence of steps is valid. It is easy to check that〈Yj , Yj+1〉 is a
one-step consistent pair (by construction of theYk ’s), {φ(u) : u ∈ Y } ∩Q ⊆ {q} and
¬q 6∈ {φ(u) : u ∈ Y }.

Let u ∈ occ↓(φ) ∩ Yj with φ(u) =↓c
r ψ andi = reg(u). By definition ofC, we

haveC(zi) = vi(c) and therefore the equality test betweenzi andc is positive (before
entering some adequateqaux

i ).
Similarly, let u ∈ occ↑(φ) ∩ Yj with φ(u) =↑c

r, u′ = bind(u), φ(u′) =↓c′

r ψ
and i = reg(u′). Supposeu′ ∈ Yj′ for some0 ≤ j′ ≤ j − 1 (rememberφ is a
sentence). Sofj′(r) = fj−1(r) = vj′ (c

′) = C(zi) and by construction of theYk ’s, we
haveρ, (j − 1) |=fj−1

↑c
r, so the equality test betweenzi andc is also positive (before

entering some adequateqaux
i ).

The caseφ(u) is a negation andu · 1 ∈ occ↑(φ) ∩ Yj is treated analogously. ⊓⊔

7.3 Decidability results

Remark that if the counter machineM is Ibarra reversal-bounded, then the parame-
terized counter machineM ′ built from M and the flat formulaφ is Ibarra reversal-
bounded. Using Corollary 19 and Theorem 20, we conclude thatMCω(LTL↓[·, ·]) re-
stricted to Ibarra reversal-bounded counter machines and to flat formulae is decidable.
Furthermore this can be extended to the class of reversal-bounded counter machines,
using Lemma 22 below.

Lemma 22. There is an exponential-time reduction fromMCω(LTL↓[·, ·]) restricted to
reversal-bounded counter machines intoMCω(LTL↓[·, ·]) restricted to Ibarra reversal-
bounded counter machines. Furthermore this reduction preserves flatness of the formu-
lae.

Proof. LetM = (n,Q,∆, q0) be a reversal-bounded counter machine andφ be a for-
mula. We assume thatM is k-reversal-b-bounded (withb > 0). We build an Ibarra
reversal-bounded counter machineM ′ and a formulaφ′ such thatM |=ω φ iff M ′ |=ω

φ′. Before definingM ′, we would like to stress the following point: the result stated in
Theorem 17 does also hold if we allow guards of the form=(a) and>(a) with a ∈ N

understood as a constant (as it is proved in [35]). Hence,MCω(LTL↓[·, ·]) restricted to
Ibarra reversal-bounded counter machines extended with tests to a constant and to flat
formulae is also decidable. In order to improve the readability of this proof, we will
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consequently allow such tests inM ′. In the same vein, we also allowM ′ to increment
or decrement a counter bya units for somea ∈ N.

We now give the construction ofM ′ that is inspired by the one proposed in the proof
of [24, Theorem 3] to establish that the reachability sets for reversal-bounded counter
machines are semilinear. LetM ′ = (n,Q × Bn, ∆′, 〈q0, 0〉) whereB = {0, . . . , b} ⊎
{ωb}. Intuitively, the counter machineM ′ encodes the run ofM and when a counter
value inM is under the boundb, its value is stored into the control state ofM ′. The
corresponding value of the counter inM ′ is 0, but when the value goes aboveb in M
then it is restored in the counter inM ′. The symbolωb is used to denote a value strictly
greater thanb. The transition relation∆′ is the smallest relation satisfying the following
rules. We distinguish two types of transitions: either there is a counter whose value goes
from b+ 1 to b or not.

– for all w ∈ Bn and (q, g, a, q′) ∈ ∆ such that for all1 ≤ c ≤ n, (g(c) =
zero ⇔ w(c) = 0) and (w(c) 6= ωb or a(c) ≥ 0), we include the transition
(〈q,w〉, true, a′, 〈q′,w′〉) in ∆′ where for all1 ≤ c ≤ n:
• if 0 ≤ w(c) < b, thenw′(c) = w(c) + a(c) anda′(c) = 0,
• if w(c) = b anda(c) ≤ 0, thenw′(c) = w(c) + a(c) anda′(c) = 0,
• if w(c) = b anda(c) = 1, thenw′(c) = ωb anda′(c) = b+ 1,
• if w(c) = ωb anda(c) ≥ 0, thenw′(c) = ωb anda′(c) = a(c),

– for all w ∈ Bn and(q, g, a, q′) ∈ ∆ such that for all1 ≤ c ≤ n, (g(c) = zero⇔
w(c) = 0) and there exists1 ≤ c′ ≤ n such thatw(c′) = ωb anda(c′) = −1, then
we include the two transitions(〈q,w〉, g′, a′, 〈q′,w′〉) and(〈q,w〉, g′′, a′′, 〈q′,w′′〉)
in ∆′ where for all1 ≤ c ≤ n:
• if 0 ≤ w(c) < b, theng′(c) = g′′(c) = true, w′(c) = w′′(c) = w(c) + a(c)

anda′(c) = a′′(c) = 0
• if w(c) = b anda(c) ≤ 0, theng′(c) = g′′(c) = true, w′(c) = w′′(c) =

w(c) + a(c) anda′(c) = a′′(c) = 0,
• if w(c) = b anda(c) = 1, theng′(c) = g′′(c) = true, w′(c) = w′′(c) = ωb

anda′(c) = a′′(c) = b+ 1,
• if w(c) = ωb anda(c) ≥ 0, theng′(c) = g′′(c) = true, w′(c) = w′′(c) = ωb

anda′(c) = a(c),
• if w(c) = ωb anda(c) = −1, theng′(c) is equal to>(b + 1), w′(c) = ωb,

a′(c) = a(c), g′′(c) is equal to=(b+ 1), w′′(c) = b anda′′(c) = −(b+ 1).

The machineM ′ is then Ibarra reversal-bounded, because each counter performs
the same number of alternations overb as inM and does not perform any alternation
under this bound. We then define the relation∼⊆ (Q × N

n) × (Q × Bn × N
n) as

follows: 〈q, v〉 ∼ 〈〈q′,w〉, v′〉 if and only if:

– q = q′

– for all 1 ≤ c ≤ n:
• if w(c) ∈ {0, . . . , b} thenw(c) = v(c) andv′(c) = 0,
• if w(c) = ωb thenv′(c) = v(c) andv(c) > b.

Let TS(M) = (Q× N
n,−→) andTS(M ′) = (Q× Bn × N

n,⇒). By construction of
M ′, one can easily prove that the relation∼ enjoys the following property:
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(⋆) Assume〈q, v1〉 ∼ 〈〈q1,w1〉, v′1〉. For all 〈q2, v2〉 ∈ Q × N
n, we have〈q1, v1〉 −→

〈q2, v2〉 if and only if there exists〈〈q2,w2〉, v′2〉 ∈ Q×Bn×N
n such that〈q2, v2〉 ∼

〈〈q2,w2〉, v′2〉 and〈〈q1,w1〉, v′1〉 ⇒ 〈〈q2,w2〉, v′2〉.

We shall now give the construction of the formulaφ′. We define the mapT (·, ·) that
takes as arguments a subformulaψ of φ and a partial functiong from the set of registers
N \ {0} to {0, . . . , b}. We setφ′ = T (φ, g∅) whereg∅ has empty domain. The map
T (·, ·) defined below recursively has a treatment for storing and testing registers that
distinguishes the case when the counter value is belowb:

– T (q, g)
def
=

∨

q′∈{q}×Bn q′,

– T (↑c
r, g)

def
=↑c

r ∨
∨

q′∈{〈q,w〉∈Q×Bn|w(c)=g(r)} q
′,

– T (¬ψ, g)
def
= ¬T (ψ, g),

– T (ψ ∧ ψ′, g)
def
= T (ψ, g) ∧ T (ψ′, g),

– T (ψ ∨ ψ′, g)
def
= T (ψ, g) ∨ T (ψ′, g),

– T (ψUψ′, g)
def
= T (ψ, g)UT (ψ′, g),

– T (ψRψ′, g)
def
= T (ψ, g)RT (ψ′, g),

– T (Xψ, g)
def
= X T (ψ, g),

– T (↓c
r ψ, g)

def
= (

∨

i∈{0,...,b}

∨

q′∈{〈q,w〉∈Q×Bn|w(c)=i} q
′ ∧ T (ψ, g[r 7→ i])∨

(
∨

q′∈{〈q,w〉∈Q×Bn|w(c)=ωb}
q′∧ ↓c

r T (ψ, g)).

By taking advantage of (⋆), we can show by structural induction thatM |=ω φ if and
onlyM ′ |=ω φ′. Observe thatT (·, ·) requires exponential time in|φ| + |M | because of
the clause aboutT (↓c

r ψ, g). This exponential blow-up would persist even if we encode
formulae as DAGs because of the presence ofg in T (ψ, g). ⊓⊔

Corollary 23. MCω(LTL↓[·, ·]) restricted to reversal-bounded counter machines and
to flat formulae is decidable.

Finally, assume the formulaφ is a positively flat formula (see Section 3). For all
atomsY ∈ AT(φ), the set{u ∈ Y | u · 1 ∈ occ↑(φ) andφ(u) is a negation} is empty.
So, in the construction ofM ′ from M andφ, we only use parameterized tests of the
form =(z). Hence, ifM is a one-counter machine andφ is a positively flat formula, we
deduce thatM ′ is a restricted parameterized one-counter machine. Using Corollary 19
and Theorem 20, we get the result below.

Theorem 24. MCω(LTL↓[·, ·]) restricted to one-counter machines and to positively
flat formulae is decidable.

In order to extend Theorem 24 to the full flat fragment, one needs to perform inequality
tests in parameterized one-counter machines, which is so far unclear how to perform
while preserving decidabibility of the corresponding parameterized reachability prob-
lem. This generalization is left as an open problem.
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8 Concluding Remarks

In this paper, we have studied the decidability status of model-checking freeze LTL over
various subclasses of counter machines for which the reachability problem is known to
be decidable. Our most remarkable technical contributionsconcern reversal-bounded
counter machines and flat formulae. Besides, we have established an original link be-
tween reachability problems for parameterized counter machines and model-checking
counter machines over the flat fragment of freeze LTL. Figure4 contains a summary of
the main results (D stands for decidability,U for undecidability) in which the columns
referred to restriction either on the counter machines or onthe formulae. Sometimes,
an additional restriction between parentheses is indicated in order to emphasize that the
result holds true for a stricter fragment. Bibliographicalreferences in the table indicate
that the related result is mainly due to the referred work. Here are a few rules of thumb:

Det. NDet. Flat formulae No ↑c
r

RB D U (strictness) D D

Cor. 16 Theo. 13 Cor. 23 [16]
1CM PSPACE-C. U (1 reg.) open| D for pos. flatness PSPACE-C.

[21] [21] Theo. 24 [48,18]
Flat CM D D D D

Theo. 7
VASS EXPSPACE U (1 reg.) U EXPSPACE-C.

Cor. 16 Theo. 9 Theo. 9 [30]

Fig. 4. Summary

determinism, flat counter machines and no freeze lead to decidability. However, flat
formulae often guarantee decidability (except for VASS) whereas reversal-boundedness
can lead to decidability (but the restriction with a single register leads to undecidabil-
ity). Finally, throwing away the atomic formulae made of control states does not help for
decidability. Even though we have established various decidability results in the paper,
the complexity of the decision problems is far from being known, mainly because we
use reductions to Presburger arithmetic. However, as a consequence of the effectiveness
of our reductions, all the decidable decision problems we have considered, are known
to have an elementary complexity. Similarly, the undecidability borders with respect to
the number of registers in formulae and the number of counters in machines are not
completely known, apart from mentioning the case with one-counter machines and flat
formulae. Besides, we have not investigated the safety fragment as done in [40] (no
until in the scope of an even number of negations).

Finally, other subclasses with decidable reachability problem are worth being stud-
ied; for instanceMCω(LTL[·]) over lossy counter machines (with no freeze operators)
is already known to be undecidable by [42] –see the reductionfrom repeated accessi-
bility. Hence, this class behaves quite differently from the ones considered herein since
we wished to study the effect of including the freeze operator in LTL. Last but not

29



least, parameterized version of problems, in the lines of [29], would be worth being
investigated.
Acknowledgments.We would like to thank the anonymous referees for their comments
and suggestions on a preliminary version.
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