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Abstract. We study the decidability status of model-checking freezk aver
various subclasses of counter machines for which the réditihgroblem is
known to be decidable (reversal-bounded counter machiretr additions sys-
tems with states, flat counter machines, one-counter meghim freeze LTL, a
register can store a counter value and at some future positiequality test can
be done between a register and a counter value. Herein, welemman earlier
work started on one-counter machines by considering otlmiasses of counter
machines, and especially the class of reversal-boundesteromachines. This
gives us the opportuniy to provide a systematic classificatiat distinguishes
determinism vs. nondeterminism and we consider subclagdesmulae by re-
stricting the set of atomic formulae or/and the polarityted bccurrences of the
freeze operators, leading to the flat fragment.

1 Introduction

Counter machine€ounter machines are ubiquitous computational modelgtioatde

a natural class of infinite-state transition systems, blétéor modeling various appli-
cations such as embedded systems [3], broadcast prot@@plsifne granularities [14]
and programs with pointer variables [8], to quote a few eXasm@ hey are also known
to be closely related to data logics for which decision pdoares can be designed rely-
ing on those for counter machines, see e.g. remarkable égammy7,5]. When deal-
ing with this class of models, most interesting reachabpitoblems are undecidable
but subclasses leading to decidability have been desigredading reversal-bounded
counter machines [32], one-counter machines [33], flat yumachines [23] and vec-
tor addition systems with states (see e.g. [45]).

Model-checking with Freeze LTLn order to verify properties on counter machines, we
aim at comparing counter values and we shall use the sodda#lezeoperator. The
freeze quantifier in real-time logics has been introducetériogic TPTL, see e.g. [1].
The formulaz - ¢(z) binds the variable: to the timet of the current stater - ¢(x) is
semantically equivalent to(¢). This variable-binding mechanism, quite natural when
rephrased in first-order logic, is present in various logicanalisms including for ex-
ample hybrid logics [28,2], freeze LTL [20] and predicatabstraction [25,41]. Freeze
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LTL is a powerful extension of LTL that allows to store countalues in registers. In-
finitary satisfiability restricted to one register is alrgathdecidable [20] just as model-
checking for nondeterministic one-counter machines [#Hich is quite unexpected
since one-counter machines seem to be harmless operatiodals. Moreover, there
is some hope that model-checking happens to be more tradte satisfiability since
more constraints are requested on models viewed as runs.

Our contribution.We carry on with the quest started in [21] to determine whialsses
of counter machines admit decidable model-checking wébZe LTL. In the paper, we
consider the above-mentioned classes of counter machoneghich the reachability
problem is decidable. We provide an exhaustive analysipteting [21]; some results
are obtained by adequately adapting known results to oardwaork or by designing
simple reductions. However, at each position, we may hade&bwith more than one
counter values. Our main technical contributions allow aigstablish the following
results with a special focus on reversal-bounded countehmes.

— Model-checking freeze LTL (writtedIC«(LTL')) over deterministic vector ad-
dition systems with states and deterministic reversalklbded counter machines is
decidable. HowevelIC* (LTL') over reversal-bounded counter machines is un-
decidable, even when restricted to one register.

— MC¥(LTL') restricted to flat formulae over reversal-bounded countachines
is decidable as well as the restriction to positively flanfafae over one-counter
machines, partly by taking advantage of recent results tapaameterized one-
counter machines from [29].

A complete summary can be found in Section 8. As a nice by+aroaf the classifica-
tion we made, we show a tight relationship between readhapitoblems for parame-
terized counter machines and model-checking counter mestuver the flat fragment
of freeze LTL (see Section 7.2). Besides, we believe thaptimeiples underlying our
undecidability proof foMC« (LTL') over reversal-bounded counter machines could
be reused for other problems on such counter machines.

Plan of the paper.Section 2 and Section 3 are preliminary sections about eouma-
chines, their subclasses, freeze LTL and their fragmer&eletion 4, we establish pre-
liminary results or restate known results from the literateecasted in our context.
Undecidability results for VASS and reversal-bounded ¢eumachines are shown in
Section 5 whereas we show decidability for subclasses veitérchinistic counter ma-
chines in Section 6. Finally, Section 7 deals with the dduilidy of model-checking
over reversal-bounded counter machines and one-countdrimes with flat formulae.
Section 8 contains a summary and concluding remarks.

2 Standard Classes of Counter Machines

In this section, we recall standard definitions about varidasses of counter machines.
We write N [resp.Z] for the set of natural numbers [resp. integers]. Given aettigion
n > 1 andk € Z, we writek to denote the vector with all values equalit@ande; to
denote the unit vector fare {1,...,n}. We recall that a semilinear setif* is a finite



union of linear sets. We often refer to Presburger arithervetiich consists of first-order
logic over the structuréN, 0, <, +) (and more generally ovéZ, 0, <, +)), details can

be found for instance in [44,11]. Itis known that a subséibis semilinear if and only

if it is definable by a formula in Presburger arithmetic witlfree variables [26].

2.1 Counter machines
In the rest of the paper,@unter machiné/ is defined as a tuplg:, Q, A, qo) where:

— n > 1is thedimensiorof M,

— @ is afinite set otontrol states

- ACQxGxAxQisafinite set ofransitionswhereG = {zero, true}"” is the
finite set ofguardsandA = {—1,0, 1}" is the finite set ohctions

— qo € Qs theinitial control state.

Given a counter machink/, we define theransition systenT'S(M) = (Q x N, —)
where@ x N is the set ofconfigurationsand —C (Q x N") x (@ x N™) is the
transition relation for (¢,v), (¢/,V/) € Q x N", we have(q,v) — (¢/,Vv') & there
exists a transition = (¢,9,a,¢’) € A such that:

1.V =v+a,
2. for1 < ¢ < n,g(c) = zero impliesv(c) = 0.

We write = to denote the reflexive and transitive closure-efand the reachability
set of M is Reach(M) = {(q,V) | (g0,0) = (g,v)}. Observe that this reachability
set implicitly depends on the initial configuratidgy, O): this is all what we need in
the sequel. A finite (resp. infiniteun in T'S(M) is a finite (resp. infinite) sequence
p = (qo,0) — {¢q1,v1) — .... A counter machiné/ is deterministic(also known as
single-path whenever for eacky, v) € Reach(M), there is at most one configuration
(¢',Vv") such that(q,v) — (¢’,V'). In the sequel, we shall use Minsky machines [43]
that form a special class of deterministic 2-counter maghin

We present below two types of decision problems wheis a class of counter
machines. Theeachability problenfor the clas< is defined as follows.

instance: a machine\/ € C and a configuratioky, v).
question: (go,0) = (g,Vv) ?

Similarly, thegeneralized repeated control-state reachability probfenthe clas<’ is
defined as follows.

instance: a counter maching/ € C, N setst, ..., F'y of control states.
question: Is there a run of\/ such that forl < ¢ < N, there is a control state if;
that is repeated infinitely often?

1CM. One-counter machinese naturally defined as counter machines of dimension
one: they can be used for the verification of cryptographatqaols [39] and to char-
acterize subclasses of context-free languages [4]. Thsyteve nice computational
properties, see for instance complexity results about\ieteal equivalences in [36].



Various logical formalisms have been introduced to spebi§behavior of one-counter
machines, including Freeze LTL [21], EF logic [27] and fiester logic with reach-
ability predicate [49]. Moreover, since one-counter awtanare equivalent to push-
down systems with a singleton stack alphabet, the resultsese systems can help to
refine some results about pushdown systems. For instareendlel-checking prob-
lem for one-counter automata with the mogatalculus has been shown to be in
PSPACE [47] whereas the model-checking problems for pushdownraata over the
modal y-calculus and the linegi-calculus are in EPTIME. When one-counter ma-
chines are enriched by a finite alphabet (so that transitiomkbelled), the universality
problem is undecidable [33], witnessing that this simplerational model can lead to
natural undecidable problems.

VASS. Vector addition systems with states (a.k.a. VA®Xnown to be equivalent to
Petri nets, see e.g. [45], and they correspond to countehimexwithout zero-tests,
i.e. each guard has no component equaldno. To be precise, we are a bit less liberal
than the usual definition since we only consider actions-in, 0, 1}™ (instead ofZ™)
but this does not make a real difference for all the develogswmade in this paper.
Flat counter machine# directed graplty = (V, E) (with V' C E x F) is said to bdlat
whenever each vertex belongs to at most one simple cycle fpawhich the initial and
final vertices coincide and no edge is repeated). A countehina(n, Q, A, qo) is flat
whenever (1) between two control states there is at mostransition and (2) the di-
rected grapiQ, {(q,q’) € Q% : (q,09,a,¢’) € A}) is flat. Reachability problems have
been considered for flat counter machines in [6,13,23];stance it is proved that flat
counter machines have an effectively computable semiliseid6,23], see also [10].

2.2 Reversal-bounded counter machines

The class ofeversal-boundedounter machines has been introduced in [32] by con-
sidering the following restriction: each counter perforamy a bounded number of
alternations between increasing and decreasing mode clEss of counter machines
is particularly interesting because it has been shown #edt eeversal-bounded counter
machine has a semilinear reachability set that can be mctomputed. We present
below a more general class, introduced in [24], for whichrizbng the number of al-
ternations is only considered above a given bound. Thiseéstition we adopt in the
rest of the paper. The members of subclass introduced iraf@jalledbarra reversal-
bounded counter machines.

Given a bound € N, we consider the number of alternations between increas-
ing and decreasing mode when a counter is allovgiven a counter maching =
(n,Q, A, qo), let us define thenodaltransition system

TSy(M) = (Q x N" x {DEC,INC}" x N", —,).

Intuitively, a configuratioriq, v, mode, falt) records a standard configuratiorifa$ (1),
modestores the current mode (either decreasing or increasingatch counter anlt
stores the number of alternations abéver each counter. The transition relatiesy, is
defined as follows{q, v, mode, falt) —; (¢’,v’, mod€, talt’) £ the following condi-

tions hold:(¢,v) — (¢’,Vv') and forl < ¢ < n, the relation described by the following



table is verified:

[V(c) = V/(c) | mode(c) [ mod€(c) [v(c) | falt’(c) |
>0 DEC | DEC | — | falt(c)
>0 INC | DEC |<b]| tfalt(c)
>0 INC | DEC |>b|falt(c) + 1
<0 INC | INC | — | falt(c)
<0 DEC | INC | <b| falt(c)
<0 DEC INC | >b|tfalt(c)+1
=0 DEC | DEC | — | zalt(c)
=0 INC INC | — | falt(c)

Definition 1. Letb, k € N. A counter machin@/ is k-reversals-bounded< when-
ever(qo, 0,INC, 0) = (¢,v, mode, falt), we havefalt < k.

This definition can be slightly refined: a counter machivieis reversal-boundedf
there exist, b € N such thatV/ is k-reversalb-bounded. In the sequel, when reversal-
bounded counter machines are part of the instances of sooigateproblems, we
assume that they come with thdirandb. As mentioned in [24], the above-defined
class of reversal-bounded counter machines contains thefgeed in [32] and it also
contains the counter machines for which the set of reaclalifigurations is finite.

Theorem 2. [24] Reversal-bounded counter machines have an effegto@hputable
reachability set.

In [16], it is proved that the generalized repeated corgtate reachability problem
is decidable when the instances are made of an Ibarra rédersaded counter ma-
chine and one set of control states. This result has beendedeo reversal-bounded
counter machines in [46]. Note that we can easily reduce émelized reachability
problem with/N' > 1 sets of control states to its restriction to only one setl{@gsame
generalized Buchi automata can be reduced to Biichi autpmata

Corollary 3. The generalized repeated control-state reachability fgobfor reversal-
bounded counter machines is decidable.

3 LTL with the Freeze Operator

In this section, we present a variant of temporal logic LTIthaiegisters (also known
as Freeze LTL) in order to reason about runs from counter mashin [21], LTL with
registers is used to specify properties about one-coundehimes. The datum stored
in a register is the current counter value and equality testsperformed between a
register value and the current counter value. When dealitty @unter machines, a
register can store the value of a countemd test it later against the value of counter
¢ with possiblyc # ¢'. Below, we present different ways to restrict the equabists
between registers and counters.



Given a finite set) of control states (possibly empty) and> 1, the formulae of
the logicLTL'[Q, n] are defined as follows:

pu=q [17] =0 | oA | OV | ¢UG | RO | X | |7 ¢

whereqg € @, c € {1,...,n} andr € (N\ {0}). Intuitively, the modality| ¢ is used
to store the value of the counteinto the register; the atomic formuld¢ holds true
if the value stored in the registeris equal to the current value of the counteAn
occurrence of ¢ within the scope of some freeze quantifiéris bound by it; otherwise
it is free. A sentence is a formula with no free occurrencenyf.

Models of LTL![Q, n] are runs of transition systems from counter machines of
dimensionn and with a set of control states containi@g Given a counter machine
(n,Q', A, qo) with @ C Q" and a runp, we write |p| to denote itdengthin w + 1
and theith configuration( < ¢ < |p|) is denoted by(g;, v;). A register valuationf
is a finite partial map fronN \ {0} to N. Note that whenevef(r) is undefined, the
atomic formulal¢ is interpreted as false. Given a rgrand a positior) < i < |p|, the
satisfaction relatior= is defined as follows (Boolean clauses are omitted):
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r € dom(f)andf(r) = vi(c)
i+1<|plandp,i+1F; ¢

for somei < j < ||, p.j =5 ¢
andforalli < j' < j, we havep, j' =¢ ¢1

foralli < j <o, p.j =y o2
or for somei < j < |pl, p.j =1 b1

andforalli <k <j, p.k =5 ¢2
def

Pl o S pi Eflrovie) ¢

f[r — vi(c)] denotes the register valuation equaljftexcept that the register is
mapped tov;(c). In the sequel, we omit the subscript™in |=; when sentences are
involved. We use the standard abbreviations for the tenhjpperators ¢, F, ...) and
for the Boolean operators and constants (T, L, ...).

We defined below fragments afTL'[Q, n] by restricting the use of the freeze
operators. Thetrict fragment, written,TL*[Q, n], consists in associating a unique
counter to each register (to store and to test). More prigcasrmulag in LTL'* @, n]
verifies the following syntactic property: i ¢ is a subformula of, then¢ has not
subformulae of the form eithe’ or | ¢/ with ¢ # ¢/. We also writeLTL[Q] to
denote the fragment dfTL'[Q, n] in which the atomic formulae of the forrf. are
forbidden (and thereforg: becomes also useless).

Model-checking problemd&he infinitary (existential) model-checking problem over
counter machines, writtesC* (LTL'[-, ]), is defined as follows:
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18

18

. f
pyi FEr ¢1Rpy &

instance: A counter machind/ = (n,Q’, 4, qo) and a sentencg € LTLl[Q, n] with
QCq
question: Is there an infinite rup such thap, 0 = ¢? If the answer is “yes”, we write

M ¥ ¢



The subproblem o#MC* (LTL'[-, ]) with formulae restricted t&.TL!*[Q, n] is writ-
ten MC¥(LTLY*[-,-]). Givenn > 1, we write MC* (LTL'[-,n]) to denote the sub-
problem of MC*(LTL![.,-]) with counter machines of dimension at mastSimi-
larly, we write MC* (LTL'[(), -]) to denote the subproblem aiC*(LTL![.,-]) with
no atomic formula made of control states. Similar notatiaresused with other frag-
ments of LTL* [@, n]. In this existential version of model checking, this prablean be
viewed as a variant of satisfiability in which satisfactidradormula can be only wit-
nessed within a specific class of data words, namely the rutieaounter machine.
Note that results for the universal version of model chegkirll follow easily from
those for the existential version when considering fragselosed under negation or
deterministic counter machines.
Flat formulae.We say that the occurrence of a subformula in a formufostiveif it
occurs under an even number of negations, otherwisaeégative Let £ be a fragment
of LTL! [Q, n]. Theflat fragment ofZ, written flat-L, is the restriction ofZ where, for
any occurrence ap, U, [resp.¢aRe1], if it is positive then the freeze operatpidoes
not occur ing,, and if it is negative then the freeze operafatoes not occur iy. A
formulaispositively flatwhen it is flat and no occurrence of the freeze operatmrcurs
in the scope of an odd number of negations. For example, theula below belongs to
the positively flat fragment and it states that sometimeeetiwea value of the counter
1 such that (1) infinitely often counter 2 takes that valuenidl anly if infinitely often
counter 3 takes that value and (2) from some future positl@counter 4 has always
that value:

F |1 [(GF 17 GF 17) AFG 1]

Considering flat fragments remains a standard means tardgeidability: for instance
flat fragments of LTL variants have been studied in [15,12] emthe presence of the
freeze operator in [20,9] (see also in [34, Section 5] thaegiesf a flat logical tem-

poral language for model-checking pushdown machines}idet shall illustrate that
flatness can lead to decidability but this is not always ttseca

4 Preliminary Results

In this section, we present preliminary results that willhadpful to strenghten forth-
coming results and we present results for flat counter mashamd one-counter ma-
chines based on existing works. We shall study the effeatsstificting the set of atomic
formulae, for instance by allowing only atomic formulaetthee control states [resp.
that are of the fornj¢].

4.1 Purification, or how to get rid of control states

Control states can be viewed as an internal piece of infaomatbout the counter
machines and therefore, it is interesting to understandiveingéhe absence of control
states among the set of atomic formulae (called heyeiification) makes a difference.
Lemma 4 below roughly shows that control states can be aleageded by patterns
for various classes of counter machines.



Lemma 4.

Given a counter machind/ = (n,Q, A, ¢) and a sentence in LTL'[Q, n], one
can build in logspace a counter machidér = (n + 1,Qp, Ap, qo) and a formula
¢p € LTL'[), n 4 1] such thatM = ¢ iff Mp = ¢p. Moreover,

— M is deterministic [resp. reversal-bounded, flat] #fp is deterministic [resp.
reversal-bounded, flat].
— ¢ € LTLY*[Q, n] iff ¢p € LTLY*[0, n 4 1].

Proof. Let M = (n,Q, A, qo) WithQ = {q1, ..., ¢} and¢ be aformulaii.TL! [Q, n)].
We shall build (in logarithmic space) a counter machide = (n + 1,Qp, Ap, qo)
and aformulapp € LTL[(, n 4 1] such thatV =% ¢ iff Mp =* ¢p.

Intuitively, the counter machind/p is built from M by adding an extra counter
whose behavior inV/p encodes the control states frali. More precisely, when we
are in a control state;, the value of the counter + 1 is incremented once and then
remains constant during thie+ 1) next transitions (without changing the other original
counters) and then is again incremented twice. Figure &titibes the behavior of the
countern + 1 when encoding a transition of the forfa;, g, a, ¢;). The use of the

Fig. 1. Purification: projection on thén + 1)th counter

freeze quantifiers enables us to identify the control stgt&ince the additional counter
does only increase, this will guarantee tidtis reversal-bounded ifi/p is reversal-
bounded. Furthermore, it should be clear thét is deterministic [resp. flat] iff\/ is
deterministic [resp. flat].

Let us define formally the machind p.

def

- Qp = QW Q" with:
Q ={q,¢,¢|ie{l,...;.t}}U{q,lie{l,...,t}andj € {1,...,i+ 1}}

— Ap is the smallest relation (with respect to set inclusionisfging the following
properties:
o forallie {1,...,t},
* (in true, e,41, qz‘l)v (qz‘la true, 0, Qi,l) € Ap,



« forall j € {1,...,i}, (¢;;,true,0,¢; j+1) € Ap,
* (Giit1,true, e,41,¢7), (g7, true, e,41,¢;) € Ap,
e foreach(¢;,0,a,¢;) € A, (¢3,d,@,q;) € Apsuchthatforalt € {1,...,n},
a(c) =ale),d(¢c) =9g(c)and,@(n+ 1) =0andg'(n+ 1) = true.

We are now in position to present a formula,;. that holds true exactly on con-
figurations belonging to some runs bfp:

Gstate =11 X(= 1P A LT X(IPT AX 1Y)

Wheng belongs to a strict fragment and if we wish to preserve steigs, in the above
formula we replace the register 1 by a new register not oowiin ¢. Hence, for all
runsp of Mp and0 < j < |p|, we have thap, j = dstare if and only if p, j = ¢ for
someg € Q andj < |p| + 2.

Fori € {1,...,t}, let us define the formula; as follows:

o =X A\ X A

One can check that for all rupsof Mp and0 < j < |p|, we have thap, j = dstate A
¢; ifand only if p, j = ¢; andj < |p| + 2. As above, if we have further syntactic
restrictions we may usg'™! wherer is a new register.

Now, let defineg» with the help of a translatiof’(-) such thatyp = T'(¢) and,
T(-) is homomorphic for Boolean operators affd Basically,T'(-) performs a simple
relativization (we omit the clauses for Boolean connestized foIR):

- T(T?) - ;Eu T(QZ> = sttate A ¢zu T(X'l/)) = X(_‘(bstate‘U((bstate A\ T(’l/))))l
= T(Uy') = (Pstate = T(¥))U(¢state A T(Y)).
O

The reduction in the proof of Lemma 4 does not preserve thebeuof counters;
however, a purification lemma can be also established focl#ss of one-counter ma-
chines as shown in [21]. By the way, the construction in [21]ld be also adapted to
encode control states by patterns however, it does notmeesaversal-boundedness.

4.2 Restricting the atomic formulae to control states

Before considering decidability issues with the freezerafme, it is legitimate to won-
der what happens when the atomic formulae are restrictedritval states. We show
below that for all subclasses of counter machines congidarthis paper, this restric-
tion leads to decidability (for flat counter machines, thegdiis postponed to the next
subsection). Basically, the proof is a consequence of tbdallowing properties: LTL
formulae can be translated into equivalent Blichi automathrepeated reachability
problem is decidable for the concerned subclasses of comatehines.

LetM = (n,Q, 4, qo) be a counter machine aotl= (Q’, 9, qo, F') be a Blichi au-
tomaton over the alphabét(o C Q' xQ x Q' andF C Q’). We write M ® A to denote
the counter machin@) x Q’, A’, (qo, ¢)) defined as follows{(q, ¢'), 9, a, (¢1,¢})) €



A iff there exist(¢,9,8,¢1) € A and(q¢’,q,q;) € J. Observe that\/ is reversal-
bounded [resp. one-counter, VASS] ff ® A is reversal-bounded [resp. one-counter,
VASS]. Given a formulap € LTL[Q], one can effectively build a Biichi automaton
Ay over the alphabef) such that the language accepted by = (Q’, 4, qo, Fy) is
precisely the sequence ©fsequences satisfying see e.g. [50].

Lemma 5. Given a counter maching&l = (n, @, 4, qo) and a formulap € LTL[Q],
M =¥ ¢iff there is a run ofM x Ay such that a control state i) x F is repeated
infinitely often.

The proof is by an easy verification by using the propertied pf

Theorem 6. MC¥(LTL[]) restricted to one-counter machines, VASS, and reversal-
bounded counter machines is decidable.

Proof. Given a reversal-bounded counter machifeand a formulap € LTL[Q)],
checking whethefx) M ® A, has a run with a control state i x F;, repeated
infinitely can be decided thanks to Corollary 3. Alternalifyygzhen M is a one-counter
machine, we can decide), see e.g. [16, Theorem 4] (the repeated reachability pnoble
for one-counter machines being even in DiSPACE, see e.g. [18]). Finally, assuming
that M is a VASS checkindg*) can be decided thanks to [37]. It is sufficient to show
that the repeated reachability problem for VASS is decigabhich is the case by [37,
Theorem 7.27] and even indBSPACE by [30, Theorem 5.4]. a

4.3 Existing results for two subclasses

In this paper, we wish to provide a complete classificatioth wéspect to the above-
mentioned subclasses. The two following results are kn@sults recasted in our con-
text. First, we observe thafT'L![Q,n] can be viewed as a fragment of the temporal
logic FOCTL*(Pr) [17] which extends the logic CTLby allowing the use of Presburger
formulae as atomic propositions to describe sets of cordtgurs for a counter ma-
chine. Since model-checking FOCT{Pr) over flat counter machines is decidable [17],
we establish the following theorem.

Theorem 7. MC¥(LTL![., -]) restricted to flat counter machines is decidable.

Proof. Let M = (n,Q, 4, q) be a flat counter machine anrd € LTLl[Q,n]. The
counter machiné/ is admissiblein the sense of [17, Definition 5] plus the fact that
Presburger formulae used for accelerations can be efédégttomputed thanks to [23].
Decidability of MC* (LTL*[-, ]) can be then established by translatinigto a formula

¢' of FOCTL*(Pr) and then using the decidability result in [17, TheordnThe tem-
poral logic FOCTL (Pr) is a variant of CTE with atomic formulae made of Presburger
formulae on counters and with first-order quantificationrax@unter values. The for-
mula¢’ is equal toE t(¢; (z1,. .., zn)) whereE quantifies existentially over runs and
¢ contains at mostV registers. The map(-) is homomorphic for the Boolean and
temporal operators:

def

- t(1%, (21,...,2n)) = (2 = x.) Wherex. is variable associated to counter

10



def

=t (2 2m)) = 32 (2 = 2 AU (21,00 201, 20 21 20))-
One can show thal/ = ¢ iff M = ¢'. O

Moreover, we know the following results concerning the marteecking of LTL with
registers over one-counter machines.

Theorem 8. [21]

0} MC<“(LTL1£, 1]) andMCw(LTLlE-, 1]) are undecidable problems.
(I MC<¢(LTL'[-,1]) andMC*(LTL"[, 1]) restricted to deterministic one-counter
machines ard® SPACE-complete problems.

5 Nondeterministic Counter Machines

Herein, we consider the model-checking problems @k '[Q, »] for nondetermin-

istic counter machines. We have seen that for the class ctouneter machines the
problem is undecidable (see Theorem 8(1)) whereas it iddédé for flat counter ma-
chines (see Theorem 7).

5.1 VASS

First, we observe that zero-tests can be easily encodél':l]]ﬁ[@, n] by first storing the
initial value of counters in some registey and then performing a zero-test on counter
c with the atomic formulg?, .

Theorem 9. MC¥(LTL'[, -]) restricted to VASS and to positively flat formulae with at
most one register is undecidable.

Proof. Let M be a deterministic Minsky machine (a special form of two-elirsional
counter machine) with final control staje and no transition exiting from it. For each
transitiont, we write zero, to denote the set of counters on which are performed the
zero-test. LetV/’ be the VASS obtained from/ by replacing systematicaltyero by
true in guards and by adding a self-loop gpawith guardtrue and actiorD. One can
show that}/ can reach the control stage iff

M' =* Fggn |} N\ Glanrxgd= A 19.

t=(q¢,0,a,¢')€EA cEzero;

5.2 Reversal-bounded counter machines

As far as reversal-bounded counter machines are concengetiave the following
result:

Theorem 10. MC¥(LTL'[-, 4]) restricted to reversal-bounded counter machines and
to formulae with at most one register is undecidable.

11



To prove this result, we present a reduction from the halpirgplem for Minsky ma-
chines; note that a similar reduction is used in [35] in oitdeprove that in reversal-
bounded counter machines extended with equality testselestaistinct counters, the
reachability problem is undecidable. Indeed, assumingghards of the forne = ¢
are allowed, each counterfrom the Minsky machine provides two increasing coun-
tersc™e andc?ec, that counts the number of incrementationscaand the number of
decrementations, respectively. Zero-testd@s simulated by a test™ = ¢, that is
logically equivalent tg ¢*“1¢" in LTL![-, -].

Proof. Let M = (2,Q, 4, qo) be a Minsky machine (deterministic counter machine
with two counters) andr € @ be a final control state with no transition from it.
Without any loss of generality, we can assume thé,if), a, ¢') € A performs a decre-
mentation, then the transition is of the forip, true, —e., ¢') for somec € {1,2}.
Moreover, forq, ¢’ € Q, the set{(g,a) : (¢,9,a,¢') € A} contains at most one el-
ement. Let us build the reversal-bounded counter machine: (4,Q’, 4’, (¢0)g) as
follows:

- Q ={g¢x :q€Q, X C{1,2}} (X records on which counter dff zero-test is
needed next),
— A’lis the smallest set of transitions satisfying the condgibalow:
e for X C {1,2}, ((g0)p,true, 0, (go)x) € 4,
e forall (¢,9,a,¢') € A, we have(qs, true, &, ¢;) € A" assuming that
* @1 = gx with X = {c € {1,2} : 9(¢) = zero},
x forc e {1,2},
- a(c) = 1impliesd’(c) = 1 anda' (¢ + 2) = 0,
(¢c) = —1impliesd(c) =0 anda’(c+2) =1,
(¢) = 0impliesd (c) = a'(c+2) = 0.
e for X C {1,2}, ((¢r)x,true,0, (¢r)x) € A (final loops).

- al
- al

By construction, the counter machinég’ is reversal-bounded since the four coun-
ters only increase. The idea behind this construction isttifirst [resp. second] and
the third [resp. fourth] counters df/’ respectively count the number of incrementations
and decrementations of the first [resp. second] count&f dilo zero-test is performed
in M’; in order to simulate a zero-testid, we would need to test equality between two
counters, which is not allowed in our models. Consequewiyencode these equality
tests by formulae.

Let us build a formulap in LTL! [Q’, 4] such thatM’ = ¢ iff the control stateyr
can be reached from the initial configurationMf We consider the following auxiliary
formulae ¢ € {1,2}):

o=\ V ax and ¢, = \/ ax.

4€Q {c}CXC{1,2} Xc{1,2)

We are now in position to defing

$EFo A N\ Gloe =LA N 6 AN ey =15 17

ce{1,2} ce{1,2} (gtrue,—e.,¢')eA
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One can show that/’ = ¢ iff the control state;r can be reached in/. Actually, if
there exists a rup of M’ such thap |= ¢, then whenever a configuration pkatisfies
¢, the value of the counteris equal to the value of the counter 2. This allows to
build a corresponding finite ryst for /. Moreover, reaching a configuration satisfying
¢r in p, leads to a configuration satisfying in p’.

Lemma 11. M’ =¥ ¢ iff the control state;» can be reached id/.

Proof. Let {qo, Vo), {(90)x,, Vo), ((¢1)x,, V1), ((¢2) x5, V2), . . . be aninfinite run o\’
satisfying$. We know thatvy = 0 and for somel > 1 and X C {1,2}, for all
j > I,we havey; = (gr)x. One can easily show thé&do, Vi), (¢1, V1) - .., {qr,V}) IS
a finite run of M ending ingr such that forj € {1,...,7} andc € {1,2}, Vj(c) =
vi(e) = v(c+2).

Conversely, letqo, V(). - - ., (g1, V;) be afinite run of\/ ending ingr. We can build
an infinite run ofM’ of the form

<q0a 0>7 <(q0)X0aV0>a <(q1>X17V1>7 SRR <(q1)X17V1>w

(with ¢; = gqy) suchthatfoy € {1,..., I} andfore € {1,2},V}(c) = v;j(c)—V;(c+2)
and satisfies the formuta a

a

The result of Theorem 10 can be refined by showing the undeitiigeof the strict
fragmentMC« (LTL*[-, 4]) restricted to reversal-bounded counter machines. Observe
that we shall modify the above developments while we aranigalith a strict fragment

for which each register is associated with a unique couliiest, we withdraw from\/’

the transitions of the forni(¢r)x, true, 0, (¢r)x) and replacezero by true (zero-
tests will be treated after). Then, we complete the countechime M’ (in order to
obtain M"") with a mechanism that will be useful to test that counterehthe same
values. Figure 2 illustrates haW " is built from A’; an edge labelled by corresponds

to a transition with actiora and guardrue. Similarly, an edge labelled bye is a
shortcut for four edges labelled respectively-bg;, —e,, —e3 and—e,. Moreover, an
edge labelled by:. = 07 corresponds to a transition with actiOrand guard in which
only thecth component has valugro. Since inM’ the counters can only increase, the
counter machin@/” is 4-reversale-bounded. Observe that any reachable configuration
with control statey; —3 [resp.g2—4] Satisfies that the first [resp. second] counter is equal
to the third [resp. fourth] counter. So after reaching a fiitrol state from\/’, the
counter machin@/” will reach configurations with control states eithgrs or go—4
corresponding to counter values of previous configurataing/’ in which zero-tests
had to be performed. Now, let us build a formdfac LTL'*[Q”, 4] (assuming that
Q" is the set of control states @ff”’) such thatM” =~ ¢’ if and only if the control
stateqr is reachable inV/. We use again the auxiliary formulag and¢s:

¢ =Fgoma N\ GLELETS (be = Flgemerah TE A TE13))) A bdee A Giair
ce{1,2}
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Fig. 2. Counter machiné/”’ built from M’

with ({ ¢ stands for 13314 v)

Srair =6 N\ (¢ = U (Flai=aN 13 A T3 A T1) AF(ga=an 11 A TE A T3))))
qeQ’

dacc= N\ 6 N @by = I FqemeraA TTATEATEATD)

ce{1,2} (g true,—e., ¢’ )eA

Ifarunp’ of M" satisfiesy’, then for all the configurations @f which are in a control
state satisfying; [resp.¢2], the values of the first [resp. second] and of the third [resp
fourth] counters are equal. This allows us to build a puof M which is "correct”.
Hence M" =+ ¢’ iff there exists a rum of M reaching the control statg-. Observe
that the correctness of the reduction heavily relies ondbgthat all the counters i/’
only increase, see the proof below.

Lemma 12. M" |=* ¢' iff the control state;r can be reached ii/.

Proof. Let P = <Q(),V()>, <(q0)X07V0>7 <(Q1)X15V1>5 <(q2)X27V2>7 ... be an infinite run
of M" satisfyingy’. We know that, = Oand forsomd > 1 andX C {1, 2}, we have
qr = (gr)x. We now prove that the finite sequeng, v(,), . . ., {¢s, V) verifying for
j €{0,...,1} and forc € {1,2}, vj(c) = Vv;(c) — vj(c+ 2) is a finite run of M.
The proof is by induction orj. First, note that we have if/” a transition of the form
((¢j)x, true, @, (¢j+1)x,,,). We then consider the following cases.

Case lthereisc € {1,2} such thad/(c +2) = 1.

So, there exists a transition §/ of the form(g;, true, —e., ¢j+1). This transition is
firable from the configuratiory;, v/ if and only if v/;(c) > 0. Ad absurdumsuppose
V;(c) = 0. By the induction hypothesis, we get thg{c) = v;(c + 2). Suppose: =
1 (the casec = 2 can be treated analogously). As observed before the princk s
p E orir, there is a configuratiofy; —s, u) of p (occurring after the positiof)) such
thatu(l) = u(3) = max(v;(1),v;(3)) = v;(1), u(2) = v;(2) andu(4) = v,(4).

14



Sincev;(1) = v,(3), we conclude that for’ € {1,2,3,4}, v;(¢’) = u(c’), which

leads to a contradiction with the satisfactionpgf ¢qe.. Consequently’;(c) > 0. By

construction of\/”, itis then obvious that the configuratidy 1, v}, ;) obtained after

the firing of (¢;, true, —€., g;j11) is such that for alt € {1,2}, Vv ;(c) = V;t1(c) —

Vjti(e+2).

Case 2:X; = {c} for somec € {1, 2}

So, there exists a transitidn;, 9, 0, ¢;+1) in M such thag(c) = zero. Hence, we only

need to check that)(c) = 0. By the induction hypothesis, we only need to check that

v;(c) = Vv,;(c+ 2). This is ensured by the satisfaction of the first part of thenfda ¢’

and by the fact that all the configurationsiteach(A/"") of the form(g.—.42, v) verify

v(c) = v(c+ 2).

Case 3incrementation of counterwith guardO.

This can be easily deduced from the way we build the countehmaM”.
Conversely, le{qo, Vi), (1, V}) - - -, (g1, V) be a finite run ofd\/ ending ingr. We

can build an infinite run of/” of the form

<qO7 0>7 <(qO)X07V0>a <(Q1)X1;V1>7 SERE) <(q1)XUVI>7 ceey
(1=3,0), (q1=3,U1), ..., {q1=3,Ur,), ...,
(q2=4,0), (q2=4,W1), ..., (q2=4,Wr,), . ..

with I; < I andl; < I such that:

— 41 = qr,
— forj e {l,...,1}, we have:
1. forallc € {1,2},V}(c) = v;(c) — V;(c+2),
2. there existg’ < I such thau;/ (1) = u;/(3) = max(v;(1),v;(3)) = v;(1),
u; (2) :_vj(2) anduj/ (4) = v;(4),
3. there existg’ < I, such thatwv,(2) = w;/(4) = max(v,(2),v,;(2)) = v;(2),
Wj/(l) = Vj(l) ande/(S) = Vj(?)). .

Observe that the satisfaction of the above conditions ¥2)s(mainly due to the fact
that the four counters can only increase andjfor I, we havev;(1) > v,(3) and
V;(2) > v;(4). Itis then easy to check that such a run satisfies the forgiula O

This allows us to deduce the following results (using alsmbe 4).

Theorem 13. MC¥(LTL"*[., 4]) restricted to reversal-bounded counter machines are
undecidable as well asIC (LTL'*[(, 5]) (by using Lemma 4).

6 Deterministic Counter Machines

In this section, we restrict ourselves to classes of detéstic counter machines. A
e . def
classC of deterministic counter machines has &-property < for each counter

machineM € C, one can effectively build a formulgy, (xo, ..., x,11) in Presburger
arithmetic [44] such that for ally, . .., jn+1 € N, (Jo, (J1, ..., Jn)) is thej,1th con-
figuration of the unique run o/ iff (jo,...,jnt1) E érm(zo, ..., 2zhe1) (@SSUMING

thatM has dimensiom and its set of control states is viewed as a finite subskj of
We show below that model-checking restricted to counterhimas can be some-
times reduced to the decidable satisfiability problem f@sBurger arithmetic.
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Lemma 14. LetC be a class of deterministic counter machineé.lifas the PA-property,
then the model-checking problexbC« (LTL'[-,-]) over counter machines i@ is de-
cidable.

The proof of Theorem 8(ll) is partly based on the fact thatdlass of determinis-
tic one-counter machines has the PA-property. Similahly,dlass of deterministic flat
counter macines has also the PA-property [23] (see Theojyem 7

Proof. Let M € C and¢ € LTL'[Q,n]. We write ¢a;(to, . .., t,41) to denote the
Presburger formula encoding the unique runMéf For registerr in ¢, we consider
the variabley,. in the built Presburger formula. Let us define the rigp) that takes
as arguments a formula andn + 2 variablesxy, . .., z,41 and returns a Presburger
formula with free variables, ..., x,.1 internalizing the semantics djTLi[Q,n]
formulae. The mag’(-) is homomorphic for Boolean connectives and is inductively
defined as follows:

def
= T(q, 20, ZTns1) = $ofq;
- T(T ,T0, . .. xn+1) = yr =z,
def
(X¢a$07 In+1) = 31‘05 ceey '/n+1(z;z+1 = ‘:En+1 +1 A¢M($67 cee 756'/1'1+1) A
(1/1,306,..., x, 1)) (@4, ..., 2, are new variables),
1Upa, xo, . .., Ty11) is equal to the formula below:
Upa, T0, - -+ Ty qual to the f la bel
Ja, @ (@ <@l AdM(ah, -, @) AT (Y2, 2, ... 2l )A
vzgv s ,$Z+1(($n+1 S ZE,/',;+1 < :r'/n+1 A d)M(:rga . 7:17;;4»1)) =
T(i/fl,ﬂﬂ/o/v---afngrl))
(x4 21,20, - -, 2, are also new variables),

— the clause for the release operatas similar,
- T(l;Z wera e axn-‘rl) - 3%(97 = Tc N T(’L/Ja Ty 7xn+1))-

Let ¢’ be the formula

T(¢,$Q,...,$n+1)/\l'OZQQ/\ /\ IL'1:0/\QDOO,
i€{l,...,n+1}

With oo £V 2 3tq, ... a1 (2, t1, ..., thy1). Observe that recycling variables
allow to obtain a formula equivalent @ Wlth O(n) variables. One can then show
that M ¢ ¢ iff ((q0,0),0) = ¢'. Since the satisfiability problem for Presburger
formulae is decidable [44], we obtain thetC~ (LTL'[-,-]) over counter machines in
C is decidable. a

Lemma 15.
() The class of deterministic reversal-bounded counter nmeshinas the PA-property.

(I) The class of deterministic VASS has the PA-property.
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Proof. (I)Let M = (n,Q, 4, qo) be areversal-bounded deterministic counter machine.
We transform it into a counter machidd’ = (n + 1,Q, 4, go) in which we add an
extra counter in order to count the number of steps. Sincaddéional counter only
increases and sindd is reversal-bounded/’ is also reversal-bounded. As the reacha-
bility set of reversal-bounded counter machines is a seraal set which can be effec-
tively computed [24], there exists a Presburger forngulg o, 21, . . . , z,+1) with free
variablesrg, 21, . .., z,+1 such that forjo, ..., jn+1 € N, we have(jo,...,jn+1) E

dr (o, ..oy xpsr) 1ff (o, (J1,...,Jn)) IS @jnrith configuration of a run of\/ (as-
suming that its set of control states is a finite subselNpfFurthermore M being
deterministic, by constructiof/’ is also deterministic.

(II) Let M be a deterministic VASS. The Karp and Miller tree [38] for tetermin-
istic counter machiné/ from the initial configuration(qo,0) is a finite path of the

form (go,Uo) 2 (g1, u1) & ... oy (gn,un), where(qo, Up) is the initial con-
figuration; fori > 1, (¢;,u;) € @ x (NU {w})™ anda;,_; € {—1,0,1}™ is an ac-
tion of M. Determinism ofM entails that there is at most oneuch that(¢;, u;) €
Q x N™ and(gi1+1,Ui+1) € @ x (NU {w})™ \ N"). Moreover, by construction of
such a path, either no transition can be fired frgm,uy) or there isj < N such
that (¢;,u;) = (gn,un). In that latter case, the unique infinite run f is made
of a finite prefix followed by a loop of eﬁectij:y_l a; > 0. Hence, assuming
that M has the unique rufigo, vo){(qi, V1) - . (g, Vi), .. one can effectively build a
Presburger formula(xo,x1,...,2,+1) such that for all tuplesjo,...,jnt+1), We
have<j07 Ce ,jn+1> ): ¢(l‘0,$1, Ce ,l’n+1) iff there is such that<j0, Ce ,jn+1> =

({gi>vi), i) O

Corollary 16. MC¥(LTL'[,-]) is decidable when restricted to deterministic reversal-
bounded counter machines and deterministic VASS.

Checking whether a VASS is deterministic can be decided Inygusstances of the
covering problem (the problem is actually P& e-complete [31]). Checking whether
a reversal-bounded counter machine is deterministic ssddsidable adding a counter
which counts each step and using the fact that the reactyagetf can be expressed
in Presburger arithmetic. By contrast, checking whethesumter machine is reversal-
bounded is undecidable [24]. Observe that by combining thentls in [31] and de-
velopments from the long version of [21], one can estabhistNIC* (LTL'[-, -]) over
deterministic VASS can be solved irKkESPACE.

7 Flat Freeze LTL

In this section, we consider the restriction of the modedatting problem to flat for-
mulae only. By Theorem 7, we already know th&€“ (flat — LTL'[-, ) restricted to
flat counter machines is decidable and thit* (flat — LTL'[-, -]) restricted to VASS
is undecidable (the proof of Theorem 9 involves only flat fatae). It is worth ob-
serving that flafLTL' [Q, n] strictly containsLTL[Q], and therefore we refine below
decidability results from Section 4.2.
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7.1 A detour to counter machines with parameterized tests

We introduce here parameterized counter machines in codsglte later model-che-
cking problems restricted to flat formulae. First, let us fix® definitions. Acounter
machine with parameterized tegshortly parameterizedtounter machine) is defined
as a counter machine = (n, Q, 4, qv, Z) extended with a finite sef of integer vari-
ables such that the guardsare among{zero, true} U {=(z), #(z), >(z), <(z) |

z € Z})". A concretizationC of M is a mapC : Z — N. Given a parameter-
ized counter machin@/ and a concretizatio®’, we introduce the transition system
TS(M,C) = (Q x N*, =) where—C (@ x N") x (Q x N") is defined as follows:
for (¢,v), (¢,V) € Q x N, we have(q,v) — (¢/,V/) & there exists a transition
t=1(g,9,8,¢) € Asuchthat’' =v+a, andforl < ¢ < n, g(c) equalzero implies
v(c) = 0, g(c) is equal to=(z) impliesv(c) = C(z), g(c) is equal to#(z) implies
v(c) # C(z), 9(c) is equal to>(z) impliesv(c) > C(z) and,g(c) is equal to<(z)
impliesv(c) < C(z). Afinite [resp. infiniteJrunin 'S (M, C) is a finite [resp. infinite]
sequence = (qo,0) — {(q1,v1) — .... Theparameterized reachability problefar
counter machines is defined as follows:

instance: a parameterized counter machileand a configuratioky, v).
question: is there a concretizatiofi such thatg, 0) = (¢, V) in T'S(M, C)?

Even if the parameterized reachability problem is obvigpusidecidable, we will see in
this section that some restrictions lead to decidability.Will say that a parameterized
counter machine ithbarra reversal-bounded the classical counter machine obtained
by replacing each parameterized testlrye is Ibarra reversal-bounded. We have then
the following result.

Theorem 17. [35] The parameterized reachability problem for Ibarra e¥gal-boun-
ded parameterized counter machines is decidable.

If a parameterized counter machine has no guard of the fdimeret(z) or <(z),
we say it isrestricted In [29], parametric one-counter machines are defined as ex-
tensions of one-counter machines extended with actionsigtong in incrementing or
decrementing the unique counter with some parameterizegaénconstants. In [29], it
is shown that the reachability problem for this class of coanter machines is decid-
able. Here is a corollary.

Lemma 18. The parameterized reachability problem for restrictedgraeterized one-
counter machines is decidable.

The proof of Lemma 18 consists in substituting each test@ffohm =(z) by the
following sequence of instructions: decrementhyerform a zero-test and increment
by z. In order to encode the test(z), we use the same technique except that we do not
introduce a zero-test between the decrementation (in factlgo add a decrementation
by 1 and an incrementation bl) and the incrementation. Note that this method does
not work if we allow guards of the form eithe£(z) or <(z), because the value of
the counter cannot be negative, hence the decidabilityeoptinameterized reachability
problem for one-counter machines remains an open problem.
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We introduce here a new problem which is needed to reducentig@dered model-
checking problem. Thearameterized generalized repeated reachability problem
parameterized counter machines is defined as follows:

instance: a parameterized counter machibg N setsFi, ..., Fy of control states
question: are there a concretizatidgti and an infinite run of"'S(M, C) such that for
1 < < N, one control state it; is repeated infinitely often?

From the previous theorem and lemma, we deduce the folloeongjlary.

Corollary 19. The parameterized generalized repeated reachability lprakis decid-
able when considering Ibarra reversal-bounded paramegsticounter machines and
restricted parameterized one-counter machines.

Proof. Given a parameterized counter machie= (n,Q, A, qo, Z) and N sets of
control statesFi, ..., Fy, we shall build a parameterized counter machidé =
(n,Q, A qo, Z W {21, ..., 2. }) such that there is a concretizatichand an infinite
run of 'S (M, C) such that forl <1 < N, one control state itF; is repeated infinitely
often if and only if the configuratiofy,,..,, 0) can be reached if/’.

As done to reduce nonemptiness for generalized Blchi adéotoanonemptiness
for Blichi automata, we can build a parameterized countehmed/gy = (n,Q x
{1,..., N}, A" {q0, 1), Z) such thatM g is made ofN copies ofM and whenever
the ith copy visits a control state ify;, it jumps to the(1 + (i mod N))th copy. Con-
sequently, there is a concretizatichand an infinite run off’'S(M, C) such that for
1 < < N, one control state itt; is repeated infinitely often iff there is a concretiza-
tion C and an infinite run of'S(Mgn, C) such that one control state iy x {1} is
repeated infinitely often. Furthermor&ls v is Ibarra reversal-bounded if and only if
M is Ibarra reversal-bounded; the counterdig v evolves as inV/. So, without any
loss of generality, we can assume that= 1.

Let M = (1,Q, 4, qo, Z) be a restricted parameterized one-counter machine and
Fy C Q. If () there is a concretization and an infinite run in which thera control
state infy repeated infinitely often, then one of the conditions belewaitisfied:

1. atest of the form eithezero” or “=(z)" is repeated infinitely often;
2. after some position, all the fired transitions have tekteeform either true” or

“ ”

>(2)".
Consequentlyix) iff one of the conditions below holds true:
1. there is a concretization and an infinite run in which theeetwo configurations
(qi,vi) = <qj‘,1)j> with 7 < J andqi c I,

2. (by Dickson’s Lemma) there is a concretization and anitefirun in which there
are two configurationgy;, v;), (g;,v;) with i < j,v; < v;, ¢; = ¢; € Fy and no

test of the form eitherzero” or “=(z)" is performed betweery;, v;) and(g;, v;).

Let us build the parameterized counter machine

M/ = (15 Qla Al7q05 Z Y {Zi})
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such thatx) iff there is a concretizatiof’ such thatgo, 0) — {(gnew,0) INTS(M’, C'),
which can be decided thanks to [29]. Basically, is made of5 x card(F}) copies of
M plus some extra control states suchyas, andqy. Moreover, in the fourth and fifth

copies, transitions with tests of the form eitheeto” or “=(z)” are removed.
The control states of thgy, )th copy (with(g¢,:) € F; x {1,...,5}) are among

Q x{qs} x{i}.For{qs,i) € Fy x {1}, we consider the transitions truet (90, qy,7).
The(gy, 1)th copy of M in M’ behaves a8/ except that nondeterministically we jump
to the second or fourth copy when the control stgtés visited (and we check that the
counter value is equal tg). So, we consider this additional sequence of transitions

(qr,q5,1) :(z—l)’q (qr.qr,2) and{qs,qs, 1) ﬂ (gr,q5,4). As soon as a transition

is performed in thdqy, 2)th copy (see the above strict inequality< j), transitions
jump to the(gy, 3)th copy. The(gy, 3)th copy of M in M’ behaves ad/ except that
we add the following transitions:

=(21),0 —1
<Qf7 qf, 3> Z—l) Anew andQnew trL) Anew
As soon as a transition is performed in t{gg, 4)th copy (see the above strict in-
equality: < j), transitions jump to theg, 5)th copy. The(gs, 5)th copy of M in M’
behaves a9/ (remember some transitions have been also removed, thesging
equality tests) except that we add the following transgion

:( /),O >( ,)70
(a5, q7,5) =25 Gnew and{qr, 47, 5) =25 Gneaw-

Let M = (n,Q, A, qo, Z) be an Ibarra reversal-bounded parameterized counter
machine and?; C Q. Without any loss of generality, we can assume that thereis n
guard of the form#(z) since this can be replaced by transitions with guards) and
<(z). This may cause an exponential blow-up since therexareunters. If(x) there
is a concretization and an infinite run in which there is a pdrdtate inF; repeated
infinitely often, then there i{ C {1,...,n} such that the countersin X are exactly
those for which in this run, infinitely often there is a trdimi with guard onc of
the form eitherzero or <(z) or =(z). Since M is Ibarra reversal-bounded) iff
there is a concretizationrY C {1,...,n} and an infinite run in which there are two
configurations(g;, v;), {(gj,V;) with i < j,v; < vj, forc € X, v;(¢) = v;(c), and
¢; = q; € F1. Moreover, betweely,, v;) and(g;,V,), there are tests of the form either
zero Of <(z) or =(z) for exactly the counters fronX. Indeed, any counter whose
value is bounded during an infinite run takes a fixed value afime position by Ibarra
reversal-boundedness. For the other counters, Dicksemsa allows us to obtain the
conditionv; < v;.

Let us build the parameterized counter machifie= (n, Q’, A’ qo, ZW{z1,...,2.})
such thatx) iff there is a concretizatiof’ such thatgg, 0) = (gnew,0) in T'S(M’,C"),
which is decidable by [35]. Basically/ is made oR™ x card(F}; )+1 copies ofM plus
some extra control states suchg@s, . It includes an initial distinguished copy af .
ForX C {1,...,n} andgy € Fi, the control states of thgy;, X )th copy are among
Qx{qr} x{X}xP(X).ForX C {1,...,n}andgs; € Fy, we consider the transition

qr 9 (qf, X, 0): nondeterministically we jump to thg, X )th copy when the control
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stateqy is visited and forl < ¢ < n, g(c) is equal to=(z). In the (¢s, X)th copy,
(q,q7, X.Y) 98 (¢, qr,X,Y’) is a transition whenever there is a transitip%ii ¢ in
M such that fore € {1,...,n} \ X, g(c) is not of the form eithezero or <(z) or
=(z) and

Y’ =Y U{c: g(c) is either of the form zero or <(z) or =(z)}

As soon as in théqy, X)th copy, all the counters itX have been property tested at
least once, potentially we can jump to the final locatignp,. Hence, in theg;, X)th
copy, we add the following transitions:

true,—€.

9,0
<Qf7 qf, Xa X> — Qnew andQnew —— Gnew

with ¢ € {1,...,n} and forl < ¢’ < n eitherg(c’) is equal to=(z.,) or (¢’ ¢ X and
g(¢’) is equal to>(z,)). Note that)/’ is also an Ibarra reversal-bounded parameterized
counter machine. This is due to the fact that the counteig’ievolves as in\/.

O

7.2 Flat formulae and parameterized counter machines
ForMC (LTL'[-,]) restricted to flat formulae, we have the following result.

Theorem 20. There is a reduction fromIC (LTL'[-, -]) restricted to flat formulae to
the parameterized generalized repeated reachability lerolfor counter machines.

Proof. Let M = (n,Q, A, qo) be a counter machine ardbe a flat sentence belong-
ing to LTL! [Q, n]. Without any loss of generality, we can assume thistin negation
normal form (which means that all the occurrences of negatfmpear only in front of
atomic formulae). Moreover, we can assume that it} andlil/ 1) are distinct occur-
rences of subformulae in, thenr # r’ (this may just linearly increase the number of
registers). Consequently,qf; Uy [resp.i1Rys] is a subformula of, then the freeze
operator| cannot occur iny; [resp.vs]. We shall effectively build a parameterized
counter machind/’ = (n,Q’, A, qo, Z') and sets, ..., Fx C Q' for which there

is a concretizatiol® and an infinite run off’'S(M’, C) such that forl < i < N, one
control state inF; is repeated infinitely often ifif =+ ¢.

Let us fix some notations. As usual, the formdélean be encoded as a finite tree whose
leaves are labelled by atomic formulae and internal nodedadelled by (Boolean,
temporal or freeze) connectives. Each node of the formeka ¢orresponds naturally
to a subformula and the set of nodes can be viewed as a finitix-plesed subset
oce(g) C (N\ {0})* (finite sequence of natural numbers). Each elementdfp) cor-
responds to the occurrence of a subformulgihence two occurrences may correspond
to the same subformula since we do not bother herein witltsire-sharing. For exam-
ple, Figure 3 presents the formula tree of the flat formgléx 11 v(¢’ A (11 q))). The
use of occurrences instead of subformulae is motivated &y#ed to provide formal
and clear statements in which occurrences are crucial.dr@ccurrence € occ(¢),

we write ¢(u) to denote the corresponding subformulaginfor instanceg(e) = ¢.
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Fig. 3. Formula tree

Moreover, wheru is a prefix ofu’, written v <, v/, we know thatp(u’) is a sub-
formula of ¢(u). We write occl (¢) [resp.occ!(¢)] to denote the set of occurrences
corresponding to formulae whose outermost connectivetiseoform | ¢ [resp.1¢]. For
instancepcc! (11 (X 11 V(¢ A (11 q)))) = {e,1-2-2}. Letm = card(occl (¢)). Ob-
serve that ifm = 0, then we are in the case bIC¥(LTL[-]) which has been treated in
Section 4.2. In the sequel, we assume that- 0. Givenu € occ(¢) with ¢(u) =1¢,
we write bind(u) to denote the longest prefix af (with respect to<,,) in occ!(¢)
such thaip(bind(u)) is of the form| ¢’ ¢ (i.e., with the same register). Aatom X is

a subset obce(¢) satisfying the conditions below (we abusively use subfdaauo
denote occurrences corresponding to formulae with theogpjate outermost connec-
tive):

if 1 Apg € X, thenyy, 1y € X,

for all atomic formulae) € X, {¢, ¢} € X,
if 11 V1po € X, then eitherp; € X orys € X,
4.if S ¢ € X, theny € X.

wn e

The set ofatomsof ¢ is denoted byAT(¢). A pair of atoms(X, X’) is said to be
one-step consisteiff the conditions below hold true:

(I) if 1 U9 € X, then eitheryy € X or (11 € X andy, Uy € X7),

(I if ¢1Reye € X, thenys € X and )1 € X or 1Ry € X7),

(1my if x¢p € X, theny € X',

(IV) No atomX" strictly included inX" satisfies the conditions (I)—(ll1) (by replacing
X' by X7").

We will now describe the construction of the parameterizmehéer machiné/’ which

will use m integer variables, . . ., z,,. Intuitively, each integer variable will be used
to store the value of a register. In order to make explic# ttependency, we shall use
a one-to-one mapeg : occt(¢) — {1,...,m}. We define also a functiorounter :
occt(¢)Uocc! (¢p) — {1,...,n} thatindicates the counter involved in the subformula.
Givenu € occl(¢) such thatp(u) =] 1, we havecounter(u) = ¢ and givenu €
occ! (¢) such thatp(u) =1¢, we havecounter(u) = c. The setQ’ of control states is
equal to{qo} W @ x AT(¢) plus some auxiliary control states that are introduced to
perform tests. The relatiord’ is defined as follows. Firstgqo, true, 0, (gy,Y)) € A’
whenevere € Y and no atom strictly included il containse (init). Then, for each
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transition(q, g, a, ¢') € A there isinA’ the sequence of transitions
(@) g™ g™ 22 (g, Y)
assuming that:

1. occt(¢) N'Y containsT; elements, sayiy, ..., ur; occ'(¢) N'Y containsT,
elements, sayr, 11, - - -, ur,+15; {u € Y | u-1 € occ! (¢) and¢(u) is a negatioh
containsl’; elements, sayr, + 1, +1, - -, UT, +To+1s With T =T + T + T3,

. (Y,Y’) is a one-step consistent pair,

Ad(w) rueY}INQ C {g} and—g & {$(u) 1 u € Y}

. fori € {1,...,T1}, before reaching{“*, there is a transition testing equality
between the countepunter(u;) andz, with k = reg(u;),

5. fori € {1,..., T}, before reaching?'?;, there is a transition testing equality

between the countepunter(ur, +;) andz, with k = reg(bind (ur, +:)),

6. fori € {1,...,T3}, before reaching? there is a transition testing inequal-

T1+T2+1i"
ity between the countepunter (ur, +1,+;) andzy with & = reg(bind (ur, +1,+4:))-

A WN

Finally, letu,...,uy be the occurrences isce(¢) such that the outermost tem-
poral connective of(u;) is the until operatov. Then, forl <i < N, F; = {{¢,Y) :
u; €Y or (u; - 2) € Y}. Itremains to show the lemma below (whose proof follows).

Lemma 21. M ¥ ¢ iff there exist a concretizatiodl and an infinite run of'S(M’, C)
s.t. forl < i < N, one control state irf; is repeated infinitely often.

Proof. The formulag¢ is a flat sentence in negation normal form such thag ity and
o are distinct occurrences of subformulagginthenr # ' (¢ is then said to be
normalized.
LetC: {z,...,2zn} — N be a concretization and

<q070>a <qllav/1>7 R <Q7/;7V;;>7 tee

be an infinite run of"S(M’, C) such that forl < i < N, there is a control state if;
that is repeated infinitely often. For the analysis belowgdwenot want to bother about
the auxiliary control states. That is why, we introduce thepmbelow. Letg : N — N
be the function such that(0) = 0 and for alli € N\ {0}, ¢/ ;) € @ x AT(¢),
g(i) < g(i+1)andforallg(i) < j < g(i+1),q; ¢ Q x AT(¢). Foralli € N\ {0},
we write ((g;, Y;),v;) to denote they(i)th configuration(q; ;. ,v; ;). By construction
of the auxiliary control states, we also have thatffot ¢ < N, there is a control state
in F; that is repeated infinitely often ify1, v1), ..., (¢, Vi), . - ..

One can show that foi > 1, if u € Y; Noccl(¢), then fork > j, u ¢ Yj. In that
way, fori € {1,...,m}, assumingeg='(i) = u with ¢(u) =|¢ v, the valueC(z;)
is interpreted as the value of counteait the unique position (if it exists) for whichu
belongs taY;. This unicity property is a consequence of the facts thaditimms (IV)
and (init) imply that the disjunctions in conditions (3) -time definitions for atoms—,
(1) and (1) should be read exclusively in order to guarariteeminimality of the sets
of formulae. The syntactic properties ofthen entail the desired properihis is the
crucial place where occurrences are easier to manipulasatbubformulae.
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By construction ofM’ and g, thew-sequence = (q1,Vi),..., (¢, Vi),... IS an
infinite run of M. Remember that for each transition g, a, ¢’) € A there is inA’ the
sequence of transitions

auxr (l’IJ,Ig
(,Y) - qi™ g7 = (¢,Y")

i.e., the same guards and actions are used (except for #reniediate and auxiliary
transitions).

One can show that fof > 0 andu € Yj, we havep, (j — 1) =y, ¢(u) for
some register valuatiofi,_, defined below. Consequently,0 =y, ¢ and therefore
M E¥ ¢ wheref is the register valuation with empty domain. This can be shbw
structural induction om(u) by using the properties of atoms, one-step consistent pairs
and the sets of final control states (for satisfaction oflwubformulae). This part is
standard for plain LTL (we treat only the until subcase bgldvet us first explain the
cases with the freeze operators. We also need prelimindagioos to explain how to
definef;_, for j > 0. Given a register occurring ing, we writei(r, j) to denote the
maximal position less thapfor which there isu € Yj(,. ;) N occt(¢) such thatp(u) is
of the form |¢ ¢ if it exists (otherwise by conventioi{r, j) = 0). Unicity is guaran-
teed since is normalized. So, for eacghoccurring ing, the valuef;_+ (r) is undefined
wheneveri(r, j) = 0 otherwisef; 1 (r) = V,(, ; (c) for the unique counterfor which
there isu € Yj(,. j) Nocct(¢) andg(u) is of the form| ¢ ¢. Let us treat the cases in the
induction that involve register valuations.

Caseg(u) =|¢ ¥

By condition (4) (in the definition of atoms),- 1 € Y (sincegb(u 1) = ¢) and by
the induction hypothesis, we haye(j — 1) ':f ( 1). However,i(r,j) = j
sinceu € Y; and thereforef;_1(r) = v,(c) = o (@) whence by definition of the
satisfaction relatiop, (j — 1) =y, _, |5 ¢(u - 1) and¢( ) =1¢ p(u-1).

Caseg(u) =1¢:

By construction of atoms and one-step consistent pairs, megvkthat fork > 0,
Yi <pre Yk+1 whereY <. Y’ & forall v € Y/, there isu € Y such that
u <pre v (uis a prefix ofu’). Since¢ is a normalized sentencér,j) # 0 and
bind(u) € Y. ;) with ¢(bind(u)) of the form 1¢" 4 (i.e., with the same register).
So, fj—1(r) = Vi) () = Vi) (/). By condition (3) in the definition ofA’,
we getvy ;. () = Cl(zregbinduy)) @nAV;(c) = vyi(c) = Clzregvind(u)))-
Hence, we deduce thaf(c) = f;_1(r), consequently, (j — 1) |=y,_, 1¢. The case
with ¢(u) of the form— 1¢ is analogous by observing again by condition (3), that
Vj (C) 7é C(Zreg(bind(u)))-

Caseop(u) = 11Uty (standard):

There is a sef’ of final control states such that = {{¢,Y) : v ¢ Y or (u-2) € Y}
(remembep(u - 2) = 12). Ad absurdumsuppose that fof’ > j, u -2 ¢ Y;,. By con-
dition (1) in the definition for one-step consistent paics, f > j, we haveu - 1 € Yy
(remembews(u - 1) = 91) andu € Yj.. This is in contradiction with the fact that for
some(q,Y) € F, the control statéq,Y") is repeated infinitely often ip. So, there is
j' > jsuchthaw -2 € Yy andforj < k < j',u-2 ¢ Y. By induction, we can show
thatfora € [0,/ —j — 1], u-1 € Y;4, andu € Yj,,. Whenj’ = j, this is trivial.
Otherwise, takex = 0. Sinceu - 2 ¢ Y}, by (I) we getu - 1 € Y; andu € Yj4q. In

24



the induction step, suppose that Y, anda + 1 < j' — j. Sinceu € Yj,, and
u-2¢& Yita, by (), wegetu-1 € Yj,,andu € Yjiq+1. S0, forj < k < 5/, by induc-
tion hypothesis we obtain that (k — 1) | ;. Moreover, we have, (j' — 1) & 92,
whencep, (j — 1) k= 6(u).

Conversely, lep = {(q1,V1), ..., (g, V;), ... be aninfinite run of\/ such thap, 0 = ¢.
One can construct a concretizatioh: {z1,...,z,} — N, a sequence of register
valuationsfy, f1, f, ... and a sequence of atons, Y3, . .. satisfying the conditions
below:

(A) Forj >0, foru € Y;,1, we havep,j =5, ¢(u).

(B) Forj > 1, the pair(Y;, Y1) is one-step consistent.

(C) ecY.

(D) Forj >0, fj+1 is an extension of;.

(E) Forj > 1, foru € Y; with ¢(u) = ¢, we havef;_1(r) = v;(c).

(F) Fori e {1,...,m},if reg~'(i) belongs to som&; and¢(reg='(i)) =|¢ 1, then
C(ZZ) = Vj(C), i.e.fj,l(r) = C(ZZ)

The sequences can be built step by step on the model of theti@awles introduced
fore.g.in[19, Section 3.4]. This is a tedious and standardtuction but its main idea
is the following. We considew-sequences of the forfZy, f(), (Z1, f1),... where
UZi C occ(¢) and eachf; is a register valuation. We define a natural ordering on
such sequences by checking component-wise set inclustarebe sets of occurrences
and extension relation between register valuations. W Isyathe bottom sequence
(B, fo), (D, fa), ... where fy is the register valuation with empty domain. Whenever
one of the conditions among (B)-(F) is not satisfied or wheneb’s is not an atom,
we repair thiglefecteither by adding an occurrence in some set (typically tefation-
dition (B)) or by extending some register valuation (tyflicéo satisfy condition (E)).
Repairing of defects is possible because thexsatisfies, 0 = ¢. By ordering the de-
fects (for instance by ordering the occurrences and by ¢hgtsrepair defect at lowest
position), it is possible to define a repair functibrthat is monotonous with respect to
the above-mentioned ordering. By Tarski-Knaster theorerfbgoints, the map has
a least fixpoint from which can naturally defiaeand the sequences, f1, f2, ... and
Y7,Ys,. ... Observe that sometimes, in order to repair a defect,|= ¢ and (A) are
used; for instance if a defect is present because cond®)an (he definition for atoms
is not satisfied (disjunction), then the choice of the ocenee to be added in the ade-
quate set of occurrences is made thanks to (A). When bothntitg can be added, we
use an arbitrary total ordering on occurrences to determirieh occurrence to choose,
so thath is indeed a function. By the way, (A) cannot cause any defedtia only
useful to repair defects. Condition (D) is guaranteed bgeadus flat and normalized
whereas flatness guarantees thatjfer 1, if u € Y; Nocc!(¢), then fork > j,u & Yj.
So, whenreg~!(i) does not occur in the sequeriée Ya, . .., Y%, . . ., the imageC(z;)
can take an arbitrary value.

We can build an infinite rup’ of T'S(M’, C), say

<CI070>a <q/15VI1>7 ey <q£7vli>7 te
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such that there is a map: N — N with g(0) = 0 and for alli € N\ {0}, q;;) €
Q x AT(¢), g(i) < g(i+1)andforallg(i) < j < g(i+1),q; ¢ Q x AT(¢). Observe
that for1 <14 < N, there is also a control state ) that is repeated infinitely often in
p', which allows to conclude the other direction. In order tovi@re precise, a step

g,a
(qj,V5) = (@j+1,Vit1)

is replaced by a sequence of steps

aux aux g,a
<<qj;Y'>an> e <q1 ). > e <qT ). > - <<Q.j+1a}/vi+1>7vj+1>

Let us verify that this sequence of steps is valid. It is easyhieck thatY;,Y;,1) is a
one-step consistent pair (by construction of &), {¢(u) : w € Y} N Q C {¢} and
~q & {¢(u) su e Y},

Letu € occl(¢) NY; with ¢(u) =|¢ ¢ andi = reg(u). By definition of C, we
haveC(z;) = v;(c) and therefore the equality test betwegrandc is positive (before
entering some adequafg"”).

Similarly, letu € occl(¢) N'Y; with ¢(u) =1¢, v/ = bind(u), ¢(u') =1 ¥
andi = reg(u’). Supposen’ € Y, for some0 < j' < j — 1 (rememberp is a
sentence). S@; (r) = fj_1(r) = v;/(¢’) = C(z;) and by construction of thg,’s, we
havep, (j — 1) =y,_, 1%, so the equality test betweepandc is also positive (before
entering some adequafg"”).

The cases(u) is a negation and - 1 € occ! (¢) NY; is treated analogously. O

7.3 Decidability results

Remark that if the counter machird is Ibarra reversal-bounded, then the parame-
terized counter maching/’ built from M and the flat formulap is Ibarra reversal-
bounded. Using Corollary 19 and Theorem 20, we concludeMt@t (LTL'[-, ]) re-
stricted to Ibarra reversal-bounded counter machinesa@fidttformulae is decidable.
Furthermore this can be extended to the class of reversalemm counter machines,
using Lemma 22 below.

Lemma 22. There is an exponential-time reduction frafC« (LTL' [, -]) restricted to
reversal-bounded counter machines iM& (LTL' |-, -]) restricted to Ibarra reversal-
bounded counter machines. Furthermore this reductiongrxes flatness of the formu-
lae.

Proof. Let M = (n,Q, 4, qo) be a reversal-bounded counter machine ae a for-
mula. We assume thal/ is k-reversalb-bounded (withb > 0). We build an Ibarra
reversal-bounded counter machih€ and a formulay’ such that\f =¥ ¢ iff M’ =¥
¢'. Before definingl/’, we would like to stress the following point: the result sthin
Theorem 17 does also hold if we allow guards of the feffa) and>(a) with a € N
understood as a constant (as it is proved in [35]). Hekb@? (LTL'[-, -]) restricted to
Ibarra reversal-bounded counter machines extended véth tie a constant and to flat
formulae is also decidable. In order to improve the readgf this proof, we will
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consequently allow such tests id’. In the same vein, we also alloW’ to increment
or decrement a counter lyunits for some: € N.

We now give the construction dff’ that is inspired by the one proposed in the proof
of [24, Theorem 3] to establish that the reachability setgdéwersal-bounded counter
machines are semilinear. L&t’ = (n,Q x B", A', (qo,0)) whereB = {0,...,b} &
{wp}. Intuitively, the counter machin&/’ encodes the run af/ and when a counter
value in M is under the bound, its value is stored into the control state &f. The
corresponding value of the counterid’ is 0, but when the value goes abov@n M
then it is restored in the counter i’. The symbolv, is used to denote a value strictly
greater tham. The transition relation\’ is the smallest relation satisfying the following
rules. We distinguish two types of transitions: either &igra counter whose value goes
fromb + 1 to b or not.

— forallw € B™ and(q,9,a,¢') € A such that for alll < ¢ < n, (9(c) =
zero < W(c) = 0) and (c) # wp or a(c) > 0), we include the transition
((g,w), true, @, (¢’,w')) in A" where for alll < ¢ < n:

e if 0 <w(c) < b, thenw'(c) =w(c) + a(e) anda(c) = 0,

e if w(c) = banda(c) < 0, thenw(c) = w(c) + a(c) anda'(c) =0,
e if w(c) =banda(c) = 1, thenw'(c) = wp anda’(c) = b+ 1,

e if w(c) = wp anda(c) > 0, thenw’(c) = wp, andd’(c) = a(c),

— forallw € B™and(q,9,a,¢") € Asuchthatforall <c<mn,(g(c) = zero <
w(c) = 0) and there exist$ < ¢’ < n such thaw(¢') = w, anda(¢’) = —1, then
we include the two transitionsq, w), g, &, (¢, w’)) and({¢g, w),g",a", (¢’,w"))
in A" where foralll < ¢ <n:

o if 0 <w(c) < b, theng'(c) = g’ (c) = true, W (c) = W'(c) = w(c) + a(c)
anda'(c) =a’(¢) =0

e if w(c) = banda(c) < 0, theng'(c) = g’(c) = true, W (c) = W'(c) =
w(c) + a(c) anda’(c) = &’(c) = 0,

o if wic) =0 anda(c) = 1, theng'(c) = g"(c) = true, W (c) = W'(c) = wp
anda'(c) =a’(c) = b+1,

e if w(c) = wp anda(c) > 0, theng'(c) = g”(c) = true, W (c) = W' (c) = wp
anda’(

o if W(c) = wy anda( ) = —1, thend'(c) is equal to>(b + 1), W (c) = wy,
a'(c) =alc), g"(c) isequal to=(b + 1), w’(c) = banda”’(c) = —(b+ 1).

(c) = a(c),

The machinel/’ is then Ibarra reversal-bounded, because each counteriperf
the same number of alternations oveas in M and does not perform any alternation
under this bound. We then define the relatiog (Q x N") x (Q x B™ x N") as
follows: (q,Vv) ~ {{¢’,w), V') if and only if:

-q=q

—foralll <ec<n:
o if w(c) € {0,...,b} thenw(c) = v(c) andv/(c) = 0,
o if w(c) = wp thenv'(c) = v(c) andv(c) > b.

LetT'S(M) = (Q x N*,—) andT'S(M') = (Q x B™ x N",=). By construction of
M'’, one can easily prove that the relatisrenjoys the following property:
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(x) Assume(q, V1) ~ {({q1,Wy),V}). For all (g2,v2) € Q x N", we have(q;,vi) —
(g2, v2) if and only if there exist$(g2, Wa), V}) € Q x B™ xN" such thatga, va) ~
((g2,W2), v5) and({q1, W1), Vi) = ((g2,W2), V5).

We shall now give the construction of the formdfa\We define the map'(-, -) that
takes as arguments a subformulaf ¢ and a partial functiog from the set of registers
N\ {0} to {0,...,b}. We set¢’ = T(¢,gy) Wheregy has empty domain. The map
T(-,-) defined below recursively has a treatment for storing anhtpsegisters that
distinguishes the case when the counter value is bélow

g9) = Vo 'e{q}x B" 7,
19) Z15V Ve (qmye@x 5w =o(r)}

—1,9) £ =T (1, 9),

wmz/ 9) ETW,g) AT, g),

YV, g) ET (Y, 9) VT, 9g),

N >"“ (¢, 9)UT (¢, 9),

YRy, g) £ T (4, g)RT (¢, g),

) d—efXT(z/), ),

- T(l? 7/’7 9) = Vico,.01 Varetameaxsriwe=ip € AT, glr — i)V
Vo egiamexsriwe)=wy €N 17 T(W,9)).

T(q,
T(17
T (=
T(
T(
T(
T(
T (X4

By taking advantage ofj, we can show by structural induction thiat = ¢ if and
only M’ =¥ ¢'. Observe thaf'(-, -) requires exponential time i| + | M | because of
the clause abodt(|¢ v, g). This exponential blow-up would persist even if we encode
formulae as DAGs because of the presencgiofT' (v, g). a

Corollary 23. MC¥(LTL'[,-]) restricted to reversal-bounded counter machines and
to flat formulae is decidable.

Finally, assume the formula is a positively flat formula (see Section 3). For all
atomsY € AT(¢), the set{u € Y | u-1 € occ!(¢) andg(u) is a negatioh is empty.
So, in the construction of/’ from M and ¢, we only use parameterized tests of the
form =(z). Hence, ifM is a one-counter machine ards a positively flat formula, we
deduce thaf\/’ is a restricted parameterized one-counter machine. Usimgli@ry 19
and Theorem 20, we get the result below.

Theorem 24. MC¥(LTL'[-,-]) restricted to one-counter machines and to positively
flat formulae is decidable.

In order to extend Theorem 24 to the full flat fragment, onelsde perform inequality
tests in parameterized one-counter machines, which isrsenfdear how to perform
while preserving decidabibility of the corresponding paeterized reachability prob-
lem. This generalization is left as an open problem.
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8 Concluding Remarks

In this paper, we have studied the decidability status ofeiratiecking freeze LTL over
various subclasses of counter machines for which the réditiigroblem is known to
be decidable. Our most remarkable technical contributcmmsern reversal-bounded
counter machines and flat formulae. Besides, we have esttablian original link be-
tween reachability problems for parameterized counterhinas and model-checking
counter machines over the flat fragment of freeze LTL. Figucentains a summary of
the main resultsIp stands for decidabilitylJ for undecidability) in which the columns
referred to restriction either on the counter machines otherformulae. Sometimes,
an additional restriction between parentheses is indidaterder to emphasize that the
result holds true for a stricter fragment. Bibliographifkrences in the table indicate
that the related result is mainly due to the referred worketge a few rules of thumb:

Det. NDet. Flat formulae No 15
RB D U (strictness D D
Cor. 16 Theo. 13 Cor. 23 [16]
1CM |PSpAce-C.| U (1reg.) |open|D for pos. flathess PSPACE-C.
[21] [21] Theo. 24 [48,18]
Flat CM D D D D
Theo. 7
VASS |ExpSPAcCE| U (1reg.) U ExPSPACE-C.
Cor. 16 Theo. 9 Theo. 9 [30]

Fig. 4. Summary

determinism, flat counter machines and no freeze lead taldeitity. However, flat
formulae often guarantee decidability (except for VASSgvdas reversal-boundedness
can lead to decidability (but the restriction with a singdgister leads to undecidabil-
ity). Finally, throwing away the atomic formulae made of tohstates does not help for
decidability. Even though we have established variousd#diity results in the paper,
the complexity of the decision problems is far from being\Wwnpmainly because we
use reductions to Presburger arithmetic. However, as a&qoesce of the effectiveness
of our reductions, all the decidable decision problems we ltansidered, are known
to have an elementary complexity. Similarly, the undedciitstborders with respect to
the number of registers in formulae and the number of cosntemachines are not
completely known, apart from mentioning the case with ooenter machines and flat
formulae. Besides, we have not investigated the safetyrfea as done in [40] (no
until in the scope of an even number of negations).

Finally, other subclasses with decidable reachabilityofm are worth being stud-
ied; for instancé&IC* (LTL[-]) over lossy counter machines (with no freeze operators)
is already known to be undecidable by [42] —see the reduétam repeated accessi-
bility. Hence, this class behaves quite differently frora tmes considered herein since
we wished to study the effect of including the freeze operatd_TL. Last but not
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least, parameterized version of problems, in the lines 6f, [@ould be worth being
investigated.

Acknowledgments.We would like to thank the anonymous referees for their comtme
and suggestions on a preliminary version.
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