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Abstract. We study the decidability status of model-checking freezk aver
various subclasses of counter machines for which the réditihgroblem is
known to be decidable (reversal-bounded counter machiretr additions sys-
tems with states, flat counter machines, one-counter meghim freeze LTL, a
register can store a counter value and at some future positiequality test can
be done between a register and a counter value. Herein, welemman earlier
work started on one-counter machines by considering otlmiasses of counter
machines, and especially the class of reversal-boundesteromachines. This
gives us the opportuniy to provide a systematic classificatiat distinguishes
determinism vs. nondeterminism and we consider subclagdesmulae by re-
stricting the set of atomic formulae or/and the polarityted bccurrences of the
freeze operators, leading to the flat fragment.

1 Introduction

Counter machine€ounter machines are ubiquitous computational modelgtioatde

a natural class of infinite-state transition systems, blétior modeling various applica-
tions such as broadcast protocols [17], time granulafiti@sand programs with pointer
variables [6], to quote a few examples. They are also knove tosely related to data
logics for which decision procedures can be designed rglgimthose for counter ma-
chines, see e.g. remarkable examples in [5,3]. When dealthghis class of models,
most interesting reachability problems are undecidabtesbbclasses leading to de-
cidability have been designed including reversal-bourabechter machines [25], one-
counter machines [26], flat counter machines [18] and veatiglition systems with
states (see e.qg. [32]).

Model-checking with Freeze LTLn order to verify properties on counter machines, we
aim at comparing counter values and we shall use the sodda#lezeoperator. The
freeze quantifier in real-time logics has been introducetériogic TPTL, see e.g. [1].
The formulaz - ¢(z) binds the variable: to the timet of the current stater - ¢(x) is
semantically equivalent to(¢). This variable-binding mechanism, quite natural when
rephrased in first-order logic, is present in various logicanalisms including for ex-
ample hybrid logics [22,2], freeze LTL [14] and predicat@bstraction [30]. Freeze
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LTL is a powerful extension of LTL that allows to store countalues in registers. In-
finitary satisfiability restricted to one register is alrgathdecidable [14] just as model-
checking for nondeterministic one-counter machines [tiich is quite unexpected
since one-counter machines seem to be harmless operatiodals. Moreover, there
is some hope that model-checking happens to be more tradte satisfiability since
more constraints are requested on models viewed as runs.

Our contribution.We carry on with the quest started in [15] to determine whialsses
of counter machines admit decidable model-checking wébZe LTL. In the paper, we
consider the above-mentioned classes of counter machoneghich the reachability
problem is decidable. We provide an exhaustive analysigpteting [15]; some results
are obtained by adequately adapting known results to oardwaork or by designing
simple reductions. However, at each position, we may hade&bwith more than one
counter values. Our main technical contributions allow aigstablish the following
results with a special focus on reversal-bounded countehmes.

— Model-checking freeze LTL (writteMC* (LTL')) over deterministic vector addi-
tion systems with states and deterministic reversal-bededunter machines is de-
cidable (see Corollary 11). HowevéiC* (LTL') over reversal-bounded counter
machines is undecidable, even when restricted to one eedssie Theorem 7).

— MC¥(LTL') restricted to flat formulae over reversal-bounded countstiimes is
decidable (see Corollary 18) as well as the restriction tsitppely flat formulae
over one-counter machines (see Theorem 19), partly bydaddwantage of recent
results about parameterized one-counter machines [23].

A complete summary can be found in Section 8. As a nice by+mrbaf the classifica-
tion we made, we show a tight relationship between readhapioblems for parame-
terized counter machines and model-checking counter mestuver the flat fragment
of freeze LTL (see Section 7.2). Besides, we believe thaptheiples underlying our
undecidability proof foMC* (LTL') over reversal-bounded counter machines could
be reused for other problems on such counter machines.

Because of lack of space, omitted proofs can be found in [16].

2 Standard Classes of Counter Machines

In this section, we recall standard definitions about varidasses of counter machines.
We write N [resp.Z] for the set of natural numbers [resp. integers]. Given aegtigion

n > 1 andk € Z, we writek to denote the vector with all values equalit@ande; to
denote the unit vector fare {1,...,n}. We recall that a semilinear setif is a finite
union of linear sets. We often refer to Presburger arithoivetiich consists of first-order
logic over the structureN, 0, <, +) (and more generally oveéiZ, 0, <,+)) [31]. It is
known that a subset df* is semilinear if and only if it is definable by a formula in
Presburger arithmetic [20].

2.1 Counter machines

A counter machind/ is defined as a tuplé:, Q, A, qo) wheren > 1 is thedimension
of M, @ is afinite set otontrol statesA C @ x G x A x Q is afinite set ofransitions



whereG = {zero,true}” is the finite set ofguardsand A = {—1,0,1}" is the
finite set ofactions andqy € Q is theinitial control state. Given a counter machine
M, we introduce thdransition systen?'S(M) = (@ x N*,—) where@ x N" is
the set ofconfigurationsand —C (@ x N™) x (@ x N™) is thetransition relation
for (¢,v), (¢,V) € Q x N, we have(q,v) — (¢/,V/) & there exists a transition
t ={q,09,a,¢) € Asuchthatv’ =v+aandforl <c¢ < n,g(c) = zero implies
v(c) = 0. We write = to denote the reflexive and transitive closure-efand the
reachability set of\/ is Reach(M) = {(g,V) | (go,0) = (g,Vv)}. Observe that this
reachability set implicitly depends on the initial configtion (go, 0): this is all what
we need in the sequel. A finite (resp. infinite in T'S(M) is a finite (resp. infinite)
sequenc® = (go,0) — {(q1,v1) — .... A counter machiné/ is deterministic(also
known assingle-path) whenever for eaclig,v) € Reach(M), there is at most one
configuration{(¢’, v’) such that{q,v) — (¢’,V’). In the sequel, we shall use Minsky
machines that form a special class of deterministic 2-cunachines.

We present below two types of decision problems wiiés a class of counter ma-
chines. Theeachability problenfor the clas< is defined as follows: given a machine
M € C and a configuratiorfg, v), does(qo,0) = (g, V) ? Similarly, thegeneralized
repeated reachability problefior the clas< is defined as follows: given a counter ma-
chineM € C andN setsF1, ..., Fy of control states, is there a run &f such that for
1 <i < N, there is a control state if; that is repeated infinitely often?
1CM. One-counter machinese naturally defined as counter machines of dimension
one. Various logical formalisms have been introduced tei§péhe behavior of one-
counter machines, including Freeze LTL [15] and EF logic][2¥hen one-counter
machines are enriched by a finite alphabet (so that transitice labelled), the univer-
sality problem is undecidable [26], witnessing that thimglie operational model can
lead to natural undecidable problems.

VASS. Vector addition systems with states (a.k.a. VA®I)nown to be equivalent to
Petri nets, see e.g. [32], and they correspond to countehimexwithout zero-tests,
i.e. each guard has no component equaldno. To be precise, we are a bit less liberal
than the usual definition since we only consider actions-in, 0, 1}™ (instead ofZ™)
but this does not make a real difference for all the develogsmade in this paper.
Flat counter machinesA directed graphG = (V. E) (with V. C E x E) is said
to beflat whenever each vertex belongs to at most one cycle (path fatwthe ini-
tial and final vertices coincide). A counter machifie Q, A, qo) is flat whenever (1)
between two control states there is at most one transition(2nthe directed graph
Q,{{q,d") € Q% : (¢g,9,a,¢') € A}) is flat. Reachability problems have been con-
sidered for flat counter machines in [4,18]; for instancesipioved that flat counter
machines have an effectively computable semilinear s&8]4see also [8].

2.2 Reversal-bounded counter machines

The class ofeversal-boundedounter machines has been introduced in [25] by consid-
ering the following restriction: each counter performsyombounded number of alter-
nations between increasing and decreasing mode. Thisaflasanter machines is par-
ticularly interesting because it has been shown that easnsal-bounded counter ma-



chine has a semilinear reachability set which can be effelgtcomputed. We present
now a more general class of counter machines proposed inGh\83n a bound € N,
we consider the number of alternations between increasidglacreasing mode when
the value of the considered counter is abbyié for each counter this number of alter-
nations is bounded by a constan& N, we say that the counter machingiseversal-
b-bounded. From now on, we say that a counter machirie reversal-boundei there
existk,b € N such thatM is k-reversalb-bounded and in the sequel, when reversal-
bounded counter machines are part of the instances of sooigateproblems, we
assume that they come with thdirand b. As mentioned in [19], the above-defined
class of reversal-bounded counter machines contains thefgeed in [25] and it also
contains the counter machines for which the set of reachaiiéigurations is finite.
To make the distinction, we will call the machines introddiée [25] Ibarra reversal-
bounded counter machines.

In[19], the authors prove that the reachability problerneisidable for reversal-bounded
counter machines (in fact their reachability set is alsoffatgvely computable semi-
linear set) and in [33] it is proved that the generalized atp@ reachability problem for
this class of machines is also decidable when considerilygome set of control states
to be repeated infinitely often. The proof of this last resalies on the fact that this
problem is decidable for Ibarra reversal-bounded counthimes [11]. Note that we
can easily reduce the generalized reachability problemm Wit> 1 sets of control states
to its restriction to only one set (the same way the emptipesislem for generalized
Bdchi automata can be reduced to the emptiness problem fdriBiitomata).

Theorem 1. The generalized repeated reachability problem for reviebsainded coun-
ter machines is decidable.

3 LTL with the Freeze Operator

In this section, we present a variant of temporal logic LTIthaiegisters (also known
as Freeze LTL) in order to reason about runs from counter mashin [15], LTL with
registers is used to specify properties about one-coundehimes. The datum stored
in a register is the current counter value and equality testsperformed between a
register value and the current counter value. When dealitty @unter machines, a
register can store the value of a countemd test it later against the value of counter
¢ with possiblyc # ¢'. Below, we present different ways to restrict the equabists
between registers and counters.

Given a finite set) of control states (possibly empty) and> 1, the formulae of
the logicLTL'[Q, n] are defined as follows:

pu=q [17] 20 | oA | OV | UG | RO | X | |7 ¢

whereq € @, c € {1,...,n} andr € (N\ {0}). Intuitively, the modality|¢ is used
to store the value of the counteinto the register; the atomic formulg ¢ holds true
if the value stored in the registeris equal to the current value of the counteAn
occurrence of ¢ within the scope of some freeze quantifiéris bound by it; otherwise
it is free. A sentence is a formula with no free occurrencenyf .



Models of LTL'[Q,n] are runs of transition systems from counter machines of
dimensionn and with a set of control states containiQg Given a counter machine
(n,Q', A, qo) with Q@ C Q' and a runp, we write |p| to denote itdengthin w + 1
and theith configuration( < i < |p|) is denoted byg;,V;). A counter valuationf
is a finite partial map fronN \ {0} to N. Note that whenevef(r) is undefined, the
atomic formulal¢ is interpreted as false. Given a rgrand a positior) < i < |p|, the
satisfaction relatiof= is defined as follows (Boolean clauses are omitted):
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r € dom(f)andf(r) = vi(c)
i+1<|plandp,i+1F; ¢

for somei < j < [p|, p.j =5 ¢
andforalli < j' < j, we havep, j' =¢ ¢

foralli <j <|pl|, p,j =y 2
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flr — vi(c)] denotes the register valuation equalftexcept that the register is
mapped tov;(c). In the sequel, we omit the subscript™in =, when sentences are
involved. We use the standard abbreviations for the tenhjpperators ¢, F, ...) and
for the Boolean operators and constarts (T, L, ...).

We defined below fragments afTL'[Q, n] by restricting the use of the freeze
operators. Thetrict fragment, written.TL*[Q, n], consists in associating a unique
counter to each register (to store and to test). More prigcstormulag in LTLY*[Q, n]
verifies the following syntactic property: i ¢ is a subformula of, then¢ has not
subformulae of the form either¢’ or | ¢/ with ¢ # ¢/. We also writeLTL[Q] to
denote the fragment dfTL'[Q, n] in which the atomic formulae of the forrif. are
forbidden (and thereforg: becomes also useless).

Model-checking problemd&he infinitary (existential) model-checking problem over
counter machines, writteklC* (LTL'[-, ), is defined as follows: given a counter ma-
chineM = (n,Q’, A, q) and a sentencg € LTL![Q,n] with Q C @, is there an
infinite run p such thatp,0 = ¢? If the answer is “yes”, we writd/ = ¢. The
subproblem ofMC*(LTL'[-,-]) with formulae restricted tad.TL!*[Q, ] is written
MC*(LTLY*[-,-]). Givenn > 1, we write MC*(LTL'[-,n]) to denote the subprob-
lem of MC*(LTL'[-, -]) with counter machines of dimension at mestSimilarly, we
write MC* (LTL'[0), -]) to denote the subproblem dfC¥(LTL'[-,-]) with no atomic
formula made of control states. Similar notations are uséd wther fragments of
LTLL[Q, n]. In this existential version of model checking, this prablean be viewed
as a variant of satisfiability in which satisfaction of a faria can be only witnessed
within a specific class of data words, namely the runs of thunter machine. Note that
results for the universal version of model checking willdal easily from those for the
existential version when considering fragments closeceundgation or deterministic
counter machines.



Flat formulae.We say that the occurrence of a subformula in a formulpasitive

if it occurs under an even number of negations, otherwiss ritepative Let £ be a
fragment of LTL*[Q, n]. The flat fragment of£, written flat-L, is the restriction of
L where, for any occurrence a@f;Ups [resp. paRe1], if it is positive then the freeze
operator| does not occur i, and if it is negative then the freeze operatodoes
not occur ing,. A formula is positively flatwhen it is flat and no occurrence of the
freeze operatof occurs in the scope of an odd number of negations. For exathgle
formula below belongs to the positively flat fragment andates that sometimes there
is a value of the counter 1 such that (1) infinitely often ceur#t takes that value if
and only if infinitely often counter 3 takes that value andf(@n some future position,
the counter 4 has always that val@e}} [(GF 13« GF 13) A FG T1]. Considering flat
fragments remains a standard means to regain decidaldlitinstance flat fragments
of LTL variants have been studied in [9,7] (see also in [2%ti®e 5] the design of a
flat logical temporal language for model-checking pushdovaichines). Section 7 shall
illustrate that flatness can lead to decidability but thisasalways the case.

4 Preliminary Results

In this section, we present preliminary results that willHedpful to strenghten forth-
coming results and we present results for flat counter mashamd one-counter ma-
chines based on existing works. We shall study the effeatsstificting the set of atomic
formulae, for instance by allowing only atomic formulaetthee control states [resp.
that are of the form¢].

4.1 Purification, or how to get rid of control states

Control states can be viewed as an internal piece of infaomatbout the counter
machines and therefore, it is interesting to understandiveineéhe absence of control
states among the set of atomic formulae (called heyeiification) makes a difference.
Lemma 2 below roughly shows that control states can be aleageded by patterns
for various classes of counter machines.

Lemma 2.

Given a counter machind/ = (n,Q, A, ¢) and a sentence in LTL'[Q, n], one
can build in logspace a counter machinépr = (n + 1,Qp, Ap, qo) and a formula
¢p € LTL*[), n + 1] such thatM == ¢ iff Mp =* ¢p. Moreover,M is deterministic
[resp. reversal-bounded, flat] iff/p is deterministic [resp. reversal-bounded, flat] and
¢ € LTLY*[Q,n] iff ¢p € LTLY*[0, n + 1.

The proof consists in introducing an additional counter sénbehavior imM/p en-
codes the control states frod. The reduction in the proof of Lemma 2 does not
preserve the number of counters; however, a purificatiomlarcan be also established
for the class of one-counter machines as shown in [15]. Bywiég the construction
in [15] could be also adapted to encode control states bgmathowever, it does not
preserve reversal-boundedness.



4.2 Restricting the atomic formulae to control states

Before considering decidability issues with the freezerafue, it is legitimate to won-
der what happens when the atomic formulae are restrictedritval states. We show
below that for all subclasses of counter machines considarthis paper, this restric-
tion leads to decidability (for flat counter machines, theqgfiis postponed to the next
subsection). Basically, the proof is a consequence of tbdallowing properties: LTL
formulae can be translated into equivalent Buchi autonssga €.g. [35]) and repeated
reachability problem is decidable for the concerned swselsiof counter machines.

Theorem 3. MC¥(LTL[]) restricted to one-counter machines, VASS, and reversal-
bounded counter machines is decidable.

4.3 Existing results for two subclasses

In this paper, we wish to provide a complete classificatioth wéspect to the above-
mentioned subclasses. The two following results are knasults recasted in our con-
text. First, we observe thafT'L![Q,n] can be viewed as a fragment of the temporal
logic FOCTL*(Pr) [12] which extends the logic CTlby allowing the use of Presburger
formulae as atomic propositions to describe sets of cordtgurs for a counter ma-
chine. Since model-checking FOCT{Pr) over flat counter machines is decidable [12],
we establish the following theorem.

Theorem 4. MC¥ (LTL![., -]) restricted to flat counter machines is decidable.

Moreover, in [15], the authors obtain the following reseit®icerning the model-checking
of LTL with registers over one-counter machines.

Theorem 5. [15] (I) MC*(LTL'[-, 1]) is undecidable. (IIMC* (LTL![-, 1]) restricted
to deterministic one-counter machineiSPACE-complete.

5 Nondeterministic Counter Machines

Herein, we consider the model-checking problems &4 [, n] for nondeterminis-
tic counter machines. We have seen that for the class of oneter machines the prob-
lem is undecidable (see Theorem 5(1)) whereas it is decidablflat counter machines
(see Theorem 4). First, we observe that zero-tests can b easoded inLTL* (@, n]
by first storing the initial value of counters in some registeand then performing a
zero-test on counterwith the atomic formuld’, .

Theorem 6. MC*(LTL![., -]) restricted to VASS and to positively flat formulae with at
most one register is undecidable.

The proof is based on a simple encoding of zero-tests. Fot wdracerns reversal-
bounded counter machines, we have the following result:

Theorem 7. MC¥ (LTL}[-, 4]) restricted to reversal-bounded counter machines and to
formulae with at most one register is undecidable.



To prove this result, we present a reduction from the halpirgplem for Minsky ma-
chines; note that a similar reduction is used in [28] in oitdeprove that in reversal-
bounded counter machines extended with equality testselestaistinct counters, the
reachability problem is undecidable.

Proof. (sketch) LetM = (2,Q, A, qo) be a Minsky machine (deterministic counter
machine with two counters) angh € @ be a final control state with no transition from
it. Without any loss of generality, we can assume thdyig, a,¢’) € A performs a
decrementation, then the transition is of the fqgmtrue, —e,, ¢') for somec € {1, 2}.
Moreover, forg,q’ € Q, the set{(g,a) : (¢,0,a,¢') € A} contains at most one
element. Let us build the reversal-bounded counter madhine (4, Q", A’, (q0)y) @s
follows:

- Q ={g¢x :q€Q, X C{1,2}} (X records on which counter dff zero-test is
needed next),
— A’ is the smallest set of transitions satisfying the condgibelow:
o for X C {1,2}, {(q0)p,true,0, (qo)x) € 4/,
e forall (¢,0,a,¢') € A, we have(q;, true, &, ¢;) € A’ assuming that
* @1 = gx With X = {c € {1,2} : 9(¢) = zero},
x fore e {1,2},
- a(c) = 1impliesd’(c) = 1 anda' (¢ + 2) = 0,
- alc) = —1impliesd(c) =0anda’(c+2) =1,
- a(c) = 0impliesa’(¢) = a(c+ 2) = 0.
e for X C {1,2}, ((¢r)x,true,0, (¢r)x) € A (final loops).

By construction, the counter machiné’ is reversal-bounded since the four coun-
ters only increase. The idea behind this construction isttieafirst [resp. second] and
the third [resp. fourth] counters @f’ respectively count the number of incrementations
and decrementations of the first [resp. second] count&f dflo zero-test is performed
in M’; in order to simulate a zero-testid, we would need to test equality between two
counters, which is not allowed in our models. Consequewiyencode these equality
tests by formulae.

Let us build a formulap in LTL! [Q’, 4] such thatM’ = ¢ iff the control statey
can be reached from the initial configurationMf We consider the following auxiliary
formulae ¢ € {1,2}):

¢7c d:ef \/ \/ qx and ¢q d_ef \/ qx-
q€Q {c}CXC{1,2} XCc{1,2}
We are now in position to defing
¢ EFog. A\ Gl =15T7HA N\ 6( A g NXby =15 = 1572)
ce{1,2} ce{1,2} (g,true,—e.,q')EA
It remains to show that!’ = ¢ iff the control state;r can be reached if/. O

The result of Theorem 7 can be refined by showing the undeititgtad§ the strict
fragmentMC* (LTL*[-, 4]) restricted to reversal-bounded counter machines. Observe
that we shall modify the above developments while we ardmigalith a strict fragment

for which each register is associated with a unique counter.



Theorem 8. MC*(LTL'*[-, 4]) restricted to reversal-bounded counter machines is
undecidable.

The proof takes advantage of a refinement in the contrucfitrecounter maching/’
from the proof of Theorem 7 and it is interesting for its owkesgSo far, it is still open
whether the problem i&'{ -hard since we are “only” able to reduce the halting problem
to it.

6 Deterministic Counter Machines

In this section, we restrict ourselves to classes of detdstic counter machines. A
classC of deterministic counter machines has &-property & for each counter

machineM € C, one can effectively build a formuldy, (xo, ..., x,+1) in Presburger
arithmetic such that for ally, . .., jnt1 € N, (Jo, (J1,---,Jn)) IS thej,+1th configu-
ration of the unique run off iff (jo,...,jnt+1) F oM (0,- .., xnt1) (@SSUMINg that

M has dimensiom and its set of control states is viewed as a finite subsk) of
We show below that model-checking restricted to counterhimas can be some-
times reduced to the decidable satisfiability problem f@sBurger arithmetic.

Lemma 9. LetC be a class of deterministic counter machine€. lifas the PA-property,
then the model-checking probleviiC (LTL![-, -]) over counter machines i@ is de-
cidable.

The proof of Lemma 9 is based on an internalization of thestatiion relation in
Presburger arithmetic.

Lemma 10. Deterministic reversal-bounded counter machines androeigstic VASS
have the PA-property.

Corollary 11. MC¥(LTL![.,]) is decidable when restricted to deterministic reversal-
bounded counter machines and deterministic VASS.

Checking whether a VASS is deterministic can be decided Inygusstances of the
covering problem (the problem is actually P& e-complete [24]). Checking whether
a reversal-bounded counter machine is deterministic ssddsidable adding a counter
which counts each step and using the fact that the reactyasdti can be expressed
in Presburger arithmetic. By contrast, checking whethewunter machine is reversal-
bounded is undecidable [19].

7 Flat Freeze LTL

In this section, we consider the restriction of the modedatting problem to flat for-
mulae only. By Theorem 4, we already know th&€“ (flat — LTL'[-, ) restricted to
flat counter machines is decidable and thit* (flat — LTL'[-, -]) restricted to VASS
is undecidable (the proof of Theorem 6 involves only flat fatae). It is worth ob-
serving that flafLTL' [Q, n] strictly containsLTL[Q], and therefore we refine below
decidability results from Section 4.2.



7.1 A detour to counter machines with parameterized tests

We introduce here parameterized counter machines in codsglte later model-che-
cking problems restricted to flat formulae. First, let us fixne definitions. Acounter
machine with parameterized tegshortly parameterizeadtounter machine) is defined
as a counter machine = (n,Q, 4, qo, Z) extended with a finite sef of integer vari-
ables such that the guardsare among{zero, true} U {=(z), #(2), >(z), <(2) |

z € Z})". A concretizationC of M is a mapC : Z — N. Given a parameter-
ized counter machin@/ and a concretizatiof’, we introduce the transition system
TS(M,C) = {(Q x N", —) where—C (Q x N") x (Q x N") is defined as follows:
for (¢,v), (¢,V) € Q x N", we have(q,v) — (¢/,V/) & there exists a transition
t = (¢,0,a,¢") € Asuchthav’' = v+ a, and forl < ¢ < n, g(c) equalszero
impliesv(c) = 0, g(c) is equal to=(z) impliesv(c) = C(z), g(c) is equal to#£(z)
impliesv(c) # C(z), 9(c) is equal to>(z) impliesv(c) > C(z) and,g(c) is equal to
<(z) impliesv(c) < C(z). A finite [resp. infinite]Jrun in T'S(M, C) is a finite [resp.
infinite] sequence = (g0, 0) — (q1,Vv1) — .... Theparameterized reachability prob-
lemfor counter machines is defined as follows: given a pararnzecounter machine
M and a configuratiorig, v), is there a concretizatiofl such that(go, 0) = (g, V) in
TS(M,C)? Even if the parameterized reachability problem is obMiousdecidable,
we will see in this section that some restrictions lead tadsaility. We will say that a
parameterized counter machindbsirra reversal-bounded the classical counter ma-
chine obtained by replacing each parameterized testhy is Ibarra reversal-bounded.
We have then the following result.

Theorem 12. [28] The parameterized reachability problem for Ibarra exgal-boun-
ded parameterized counter machines is decidable.

If a parameterized counter machine has no guard of the fdimaret(z) or <(z),
we say it isrestricted In [23], parametric one-counter machines are defined as ex-
tensions of one-counter machines extended with actionsigtong in incrementing or
decrementing the unique counter with some parameterizegenconstants. In [23], it
is shown that the reachability problem for this class of coanter machines is decid-
able. Here is a corollary.

Lemma 13. The parameterized reachability problem for restrictedgraeterized one-
counter machines is decidable.

The proof of Lemma 13 consists in substituting each test@fdhm=(z) by the
following sequence of instructions: decrementhyerform a zero-test and increment
by z. In order to encode the test(z), we use the same technique except that we do not
introduce a zero-test between the decrementation (in factlgo add a decrementation
by 1 and an incrementation by) and the incrementation. Note that this method does
not work if we allow guards of the form eithe#(z) or <(z), because the value of
the counter cannot be negative, hence the decidabilityeoptinameterized reachability
problem for one-counter machines remains an open problem.

We introduce here a new problem which is needed to reducenti@dered model-
checking problem. Thearameterized generalized repeated reachability problem

10



parameterized counter machines is defined as follows: givearameterized counter
machineM, N setsFi, ..., Fiy of control states, are there a concretizatioand an
infinite run of 7'S(M, C) such that forl < ¢ < N, one control state i#; is repeated
infinitely often?

Lemma 14. There is alogspace reduction from the parameterized géizethrepeated
reachability problem into the parameterized reachabilitpblem. Moreover, it pre-
serves the fact of being parameterized restricted one4evumachines [resp. Ibarra
reversal-bounded counter machines].

From the previous theorem and lemmas, we deduce the folipedrollary.

Corollary 15. The parameterized generalized repeated reachability lprokis decid-
able when considering Ibarra reversal-bounded paramegsticounter machines and
restricted parameterized one-counter machines.

7.2 Flat formulae and parameterized counter machines
For MC*(LTL'[-, ]) restricted to flat formulae, we have the following result.

Theorem 16. There is a reduction fromIC (LTL'[., -]) restricted to flat formulae to
the parameterized generalized repeated reachability lerolfor counter machines.

Proof. (sketch) LetM = (n,Q, A, qo) be a counter machine ardbe a flat sentence
belonging tOLTLl[Q,n]. Without any loss of generality, we can assume tha in
negation normal form (which means that all the occurrenteggation appear only in
front of atomic formulae). Moreover, we can assume thaf ify andl;", ) are distinct
occurrences of subformulae ¢n thenr # ' (this may just linearly increase the num-
ber of registers). Consequentlyyif Uys [resp.w1Ri)s] is a subformula of, then the
freeze operatof cannot occur in); [resp.iys]. We shall effectively build a parameter-
ized counter maching!’ = (n,Q’, A, qo, Z’) and setsF, ..., Fx C Q' for which
there is a concretizatiofl and an infinite run of"S(M’, C) such that forl < i < N,
one control state if; is repeated infinitely often iffif =~ ¢.

Let us fix some notations. As usual, the form#lean be encoded as a finite tree whose
leaves are labelled by atomic formulae and internal nodedadelled by (Boolean,
temporal or freeze) connectives. Each node of the formek ¢orresponds naturally
to a subformula and the set of nodes can be viewed as a finitix-plesed subset
oce(g) C (N\ {0})* (finite sequence of natural numbers). Each elementdfip) cor-
responds to the occurrence of a subformulg;ihence two occurrences may correspond
to the same subformula. The use of occurrences instead fafreullae is motivated by
the need to provide formal and clear statements in whichroenoes are crucial. For
each occurrence € occ(¢), we write¢(u) to denote the corresponding subformula in
¢; for instancep(e) = ¢. Moreover, whenu is a prefix ofu/, writtenu <, v/, we
know thatg(u’) is a subformula ofs(u). We writeocc! (¢) [resp.occ!(¢)] to denote
the set of occurrences corresponding to formulae whoseroast connective is of the
form |¢ [resp.1¢]. Let m = card(occ! (¢)). Observe that ifn = 0, then we are in the
case ofMC¥(LTL[-]) which has been treated in Section 4.2. In the sequel, we &sum
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thatm > 0. Givenu € occ' (¢) with ¢(u) =1¢, we writebind(u) to denote the longest
prefix of u (with respect to<,,¢) in occ! (¢) such thatp(bind(u)) is of the form| <
(i.e., with the same register). Aatom X is a subset ofcc(¢) satisfying the conditions
below (we abusively use subformulae to denote occurreraressponding to formulae
with the appropriate outermost connective): (L)if A o € X, theny, 1o € X;
(2) for all atomic formulae) € X, {¢, W} € X; (3) if Y1 V ¢ € X, then either
Y1 € X orye € X; (4)if [S 9 € X, theny € X. The set ofatomsof ¢ is denoted
by AT(¢). A pair of atoms(X, X’} is said to beone-step consisteift the conditions
below hold true: (1) ify1 Uy € X, then eitherpy € X or (11 € X andy1Uyy € X7);
(I if ¥1Ryo € X, thenyy € X and ()1 € X oryyRypy € X'); () if Xy € X,
theny € X’; (IV) No atom X" strictly included inX’ satisfies the conditions (I)—(IIl)
(by replacingX’ by X"’). We will now describe the construction of the parametetize
counter machin@/’ which will usem integer variablegy, . . ., z,,. Intuitively, each
integer variable will be used to store the value of a registeorder to make explicit
this dependancy, we shall use a one-to-one map: occ'(¢) — {1,...,m}. We
define also a functionounter : occ!(¢) Uocc’(¢) — {1,...,n} that indicates the
counter involved in the subformula. Givene occ!(¢) such thaty(u) =|¢ 1, we have
counter(u) = ¢ and givernu € occ'(¢) such that(u) =1¢, we havecounter(u) = c.
The setQ’ of control states is equal o} W @ x AT(¢) plus some auxiliary control
states that are introduced to perform tests. The relatibis defined as follows. First,
(qo,true, 0, {qo,Y)) € A’ whenevek € Y and no atom strictly included ii contains
e (init). Then, for each transitiofy, g, a, ¢’) € A there is inA’ the following sequence

of transitions(q, Y) - - - g7 - - - 2= 25 (¢ Y’} assuming that:

1. occt(¢) N'Y containsT; elements, sayiy, ..., ur; occ'(¢) N'Y containsT,
elements, sayr, 11, - - -, ur,+1,; {u € Y | u-1 € occ! (¢) andg(u) is a negatioh
containsl’; elements, sayr, + 7, +1, - -, UT, +To+1s With T =T + T + T3,

. (Y, Y") is a one-step consistent pair,

Ao(w) :u e YINQ C {q} and—g ¢ {d(u) : u € Y},

fori e {1,...,Th} [resp.i € {1,...,Tx}, i € {1,...,73}], before reach-
ing the control state;?** [resp.q3'S;, ¢3¢ 1, 4], there exists a transition test-
ing equality [resp. equality, inequality] betweep and the countecounter(u;)
[resp.counter(ur, +4), counter(ur, +1,+;)] With the identityk = reg(u;) [resp.

k = reg(bind(ur, +:)), k = reg(bind(ur, +1,+:))].

A WN

Finally, letuy, ..., uy be the occurrences isce(¢) such that the outermost tem-
poral connective ob(u;) is the until operatov. Then, forl <i < N, F; = {{¢,Y) :
u; € Y or (u;-2) € Y}. Itremains to show that/ =* ¢ iff there exist a concretization
C and an infinite run of'S(M’, C) such that forl < i < N, one control state itF; is
repeated infinitely oftert]

7.3 Decidability results

Remark that if the counter machird is Ibarra reversal-bounded, then the parame-
terized counter maching/’ built from M and the flat formulap is Ibarra reversal-
bounded. Using Corollary 15 and Theorem 16, we concludeMt@t (LTL'[-, ]) re-
stricted to Ibarra reversal-bounded counter machinesafidttformulae is decidable.
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Furthermore this can be extended to the class of reversaie®sal counter machines,
using Lemma 17 below.

Lemma 17. There is an exponential-time reduction fradC« (LTL'[-, ]) restricted to
reversal-bounded counter machines iM@* (LTL' |-, -]) restricted to Ibarra reversal-
bounded counter machines. Furthermore this reductiongress flatness of the formu-
lae.

Corollary 18. MC¥(LTL'[-,-]) restricted to reversal-bounded counter machines and
to flat formulae is decidable.

Finally, assume the formula is a positively flat formula (see Section 3). For all
atomsY € AT(¢), the set{u € Y | u-1 € occ!(¢) andg(u) is a negatioh is empty.
So, in the construction o/’ from M and¢, we only use parameterized tests of the
form =(z). Hence, ifM is a one-counter machine ards a positively flat formula, we
deduce thaf\/’ is a restricted parameterized one-counter machine. Usimgliary 15
and Theorem 16, we get the result below.

Theorem 19. MC¥(LTL'[-,-]) restricted to one-counter machines and to positively
flat formulae is decidable.

In order to extend Theorem 19 to the full flat fragment, onelsde perform inequality
tests in parameterized one-counter machines, which israamnfdear how to perform
while preserving decidabibility of the corresponding paeterized reachability prob-
lem. This generalization is left as an open problem.

8 Concluding Remarks

In this paper, we have studied the decidability status ofehotiecking freeze LTL over
various subclasses of counter machines for which the rédithigroblem is known to
be decidable. Our most remarkable technical contributcmmsern reversal-bounded
counter machines and flat formulae. Besides, we have establian original link be-
tween reachability problems for parameterized counterhinas and model-checking
counter machines over the flat fragment of freeze LTL. Thiethblow contains a sum-
mary of the main resultsl¥ stands for decidabilitylJ for undecidability) in which
the columns referred to restriction either on the countechimes or on the formulae.
Sometimes, an additional restriction between parenthissadicated in order to em-
phasize that the result holds true for a stricter fragmeifli@®jraphical references in
the table indicate that the related result is mainly due éadfierred work.

Det. NDet. Flat formulae No 1¢
RB D U (strictness D D
Cor. 11 Theo. 8 Cor. 18 [11]

1CM |PSpAce-C.| U (1reg.) |open| D for pos. flathessP SpacE-C.

[15] [15] Theo. 19 [34,13]

Flat CM D D D D
Theo. 4

VASS D U (1reqg.) U D
Cor. 11 Theo. 6 Theo. 6 [29]
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to

Here are a few rules of thumb: determinism, flat counter nreshand no freeze lead
decidability. However, flat formulae often guaranteeidaiility (except for VASS)

whereas reversal-boundedness can lead to decidabilityh@uestriction with a single
register leads to undecidability). Finally, throwing awtag atomic formulae made of

co

ntrol states does not help for decidability. Even thoughhave established various

decidability results, the complexity of the decision pehk is far from being known,
mainly because we use reductions to Presburger arithn$etah characterizations are
part of future work.
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