
Fundamenta Informaticae XX (2016) 1–29 1

IOS Press

Adding data registers to parameterized networks with broadcast

Giorgio Delzanno

DIBRIS, University of Genova

Italy

Arnaud Sangnier

LIAFA, Univ Paris Diderot, Paris Cité Sorbonne, CNRS

France

Riccardo Traverso

DIBRIS, University of Genova

Italy

Abstract. We study parameterized verification problems for networks of interacting register au-

tomata. The network is represented through a graph, and processes may exchange broadcast mes-

sages containing data with their neighbours. Upon reception a process can either ignore a sent value,

test for equality with a value stored in a register, or simply store the value in a register. We consider

safety properties expressed in terms of reachability, from arbitrarily large initial configurations, of a

configuration exposing some given control states and patterns. We investigate, in this context, the

impact on decidability and complexity of the number of local registers, the number of values carried

by a single message, and dynamic reconfigurations of the underlying network.

1. Introduction

Distribution is at the core of modern computer applications. They usually involve partially synchronized

entities, use different communication means, and manipulate data like identifiers and time-stamps. For

all these reasons, distributed algorithms are a challenging test-case for automated verification methods

[24]. Several examples of distributed algorithms are based on the assumption that individual processes

follow the same protocol. Methods like model checking are not always directly applicable to this class of

algorithms. Indeed, they normally require to fix the initial system configuration or the maximum number

of components.

One way to validate distributed algorithms parametric in the number of involved agents consists in

searching for finite model properties, e.g., cut-off values for the parameters. In their seminal paper [22],

German and Sistla propose a model where each entity in the system executes the same finite state pro-

tocol and where the communication is achieved via rendez-vous communication. They exhibit cut-off

properties for finding a minimal number of entities that expose a violation to a given property. They

also rely on the idea that in such systems, one does not need to know precisely the state of each process,

but that it is enough to count the number of processes in each state, this idea is known as the counting

abstraction. These ideas have then been extended to other parameterized systems with different char-

acteristics: for instance, in [17] and [19] Emerson and Namjoshi and Esparza et al. propose the model

of broadcast protocols which extends the model in [22] by allowing the entities to communicate either

via rendez-vous or via broadcast. In the broadcast operation all the entities that can react to a message

have to react. To decide coverability, the authors apply the theory of well-structured transition systems

[1, 21] formulated on the counting abstraction of the considered model. Constraint-based methods for the

analysis of broadcast protocols have been considered in [10]. In a recent paper [20], Esparza and Ganty

introduce a parameterized model in which communication is achieved via a finite set of shared variables

storing finite domain values. In [18], Esparza presents a survey of some of the main results for the above

mentioned parameterized models. Parameterized verification of systems composed by repeated compo-

nents have also been proposed by considering different means of communication as token-passing [5, 9],

message passing [7], or rendez-vous over an infinite domain of data in [11].

introduced in [19, 22], Delzanno et al. propose in [15] a model of ad-hoc networks based on the

following consideration: communication in ad-hoc networks is often based on broadcast, but only the

entities in the transmission range can receive emitted messages. For this reason, they propose a simple

parameterized model, that we will refer to as AHN (for Ad Hoc Network), where each system node

executes the same protocol define by a finite state automaton labeled with broadcast and reception ac-

tions. Configuration are equipped with a communication topology (defined as a graph). In this model

broadcast messages belong to a finite alphabet. The verification problems consists then in asking whether

there exists a number of entities and a communication topology such that an execution of the protocol

exhibits some anomalies. For this model, they prove that coverability (or reachability of a configuration

exhibiting a bad control state) is undecidable [15]. Decidability can be regained by restricting the class

of allowed topologies, e.g., by considering bounded path communication topologies (in which the length

of the longest simple path is bounded) [15], or clique graphs [16] where broadcast messages are received

by all the nodes in the networks, or a mix of these two notions [16]. Decidability results can also be ob-

tained with mobility or non-deterministic reconfiguration of the communication topology at any moment

[15]. In reconfigurable AHNs a node may disconnect from its neighbors and connect to other ones at any

time during a computation. This behavior models in a natural way unexpected power-off and dynamic

movement of devices. For the latter restriction, it has been proved that checking the reachability of a

configuration where some control states are present can be done in polynomial time [14]. Furthermore,

testing for the absence of some control state in a configuration to be reached renders the problem NP-

complete [14]. We point out the fact that the model of AHN with fully connected topologies (or clique

communication topologies) is equivalent to the model of broadcast protocols introduced in [19] without

rendez-vous communication. The model of AHN has also been extended in different ways: considering

finite protocols equipped with independent clocks à la timed automata [4] evolving at the same rate [2],

or finite protocols with probabilities [6].

In this paper we study an extension of the model of AHN with reconfiguration originally introduce

in [15] and studied more deeply in [14] where we consider that the messages that are broadcast belong

now to an infinite alphabet. We assume furthermore that each node in the network is equipped with a

finite set of registers. The resulting model called Broadcast Networks of Register Automata (BNRA) is

aimed at modeling both the local knowledge of distributed nodes as well as their interaction via broadcast

communication. As in AHN, a network is modeled via a finite graph where each node runs an instance of

a common protocol. A protocol is specified via a register automaton, an automaton equipped with a finite

set of registers [23], where each register assumes values taken from the set of natural numbers. Node

interaction is specified via broadcast communication where messages are allowed to carry data, that can

be assigned to or tested against the local registers of receivers. The resulting model can be used to reason

about core parts of client-server protocols as well as of routing protocols, e.g. route maintenance as

in Link Reversal Routing. We focus our attention on the decidability and complexity of parameterized

verification of safety properties, i.e., the problem of finding a sufficient number of nodes and an initial

topology that may lead to a configuration exposing a bad pattern. The considered class of verification

problems is parametric in four dimensions: the number of nodes, the topology of the initial configuration

to be discovered, and the amounts of data contained in local registers and exchanged messages. The

peculiarity of our model is that messages are now data from an infinite domain and that interaction is

restricted according to an underlying communication graph. Distributed algorithms often manipulate

data belonging to an infinite domain such as identifiers of the agents of the network.

In our analysis we study the decidability status of some coverability problem for this model taking

into account the number of registers of individual nodes and the number of fields in the messages. For

messages with no data field (and hence no register as well in the nodes), our model boils down to AHN,

and we know that the coverability problem is undecidable for arbitrary topologies without reconfigura-

tion, while decidability is regained for fully connected and bounded-path topologies or by taking into

account reconfiguration [15, 16]. We study here whether these last decidability results still hold when

extending the protocols with registers over infinite data value and fields in the messages. We draw the

following decidability frontier.

• When reconfiguration is allowed, we show that:

– The coverability problem is undecidable if nodes have at least two registers and messages

have at least two fields.

– If we restrict the number of data fields in the messages to be less than or equal to one, we

regain decidability (without any bound on the number of allowed registers). The decision

algorithm is based on a saturation procedure that operates on a graph-based symbolic repre-

sentation of sets of configurations in which the data are abstracted away. This representation

uses the relations between data (equality, inequality) and is inspired by similar techniques

used in the case of classical register automata [23]. We prove that in this case the problem is

PSPACE-complete.

• For fully connected topologies without reconfiguration, we have that:

– The coverability problem is undecidable when nodes are equipped with at least two registers

and messages with at least one field;

– On the other hand if we restrict the number of register to be less than or equal to one and the

number of data field per message to be also less than or equal to one, then the coverability

problem becomes decidable. The decidability proof exploits the theory of well-structured

transition systems [3, 21]. We obtain as well a non-elementary lower bound which follows

from a reduction from coverability in reset nets [28].

This paper corresponds to a completed version of [12].

2. Broadcast Networks of Register Automata

2.1. Syntax and semantics

We model a distributed network using a graph in which the behavior of each node is described via an

automaton with operations over a finite set of registers. A node can transmit part of its current data

to adjacent nodes using broadcast messages. A message carries both a type and a finite tuple of data.

Receivers can test/store/ignore the data contained inside a message. We assume that broadcasts and

receptions are executed without delays (i.e. we simultaneously update the state of sender and receiver

nodes).

Actions Let us first describe the set of actions. We use r ≥ 0 to denote the number of registers in each

node. We use f ≥ 0 to denote the number of data fields available in each message and we consider a

finite alphabet Σ of message types. We often use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j}. We also

assume that if r = 0 then f = 0 (no registers, no information to transmit). The set of broadcast actions

parameterized by r, f and Σ is defined follows:

Send
r,f
Σ = {b(m, p1, . . . , pf) | m ∈ Σ and pi ∈ [1..r] for i ∈ [1..f]}

The action b(a, p1, . . . , pf) corresponds to a broadcast message of type a whose i-th field contains the

value of the pi-th register of the sending node. For instance, for r = 2 and f = 4, b(req, 1, 1, 2, 1)
corresponds to a message of type req in which the current value of the register 1 of the sender is copied

in the first two fields and in the last field, and the current value of register 2 of the sender is copied into

the third field.

A receiver node can then either compare the value of a message field against the current value of

a register, store the value of a message field in a register, or simply ignore a message field. Reception

actions parameterized by r, f and Σ are defined as follows:

Rec
r,f
Σ =

{

r(m,α1, . . . , αf)

∣

∣

∣

∣

∣

m ∈ Σ, αi ∈ Actr for i ∈ [1..f]

and if αi = αj = ↓k then i = j

}

where the set of field actions Actr is: {?k, ?k, ↓k, ∗ | k ∈ [1..r]}. When used in a given position of a

reception action, ?k [resp. ?k] tests whether the content of the k-th register is equal [resp. different] to

the corresponding value of the message, ↓k is used to store the corresponding value of the message into

the k-th register, and ∗ is used to denote that the corresponding value is ignored.

As an example, for r = 2 and f = 4, r(req, ?2, ?1, ∗, ↓1) specifies the reception of a message of

type req in which the first field is tested for inequality against the current value of the second register, the

second field is tested for equality against the first register, the third field is ignored, and the fourth field

is assigned to the first register. We now provide the definition of a protocol that models the behavior of

an individual node.

Definition 2.1. A (r, f)-protocol over Σ is a tuple P = 〈Q,R, q0〉 where: Q is a finite set of control

states, q0 ∈ Q is an initial control state, and R ⊆ Q × (Sendr,f
Σ ∪ Rec

r,f
Σ) × Q is a set of broadcasting

and reception rules.

In the rest of the paper we call a (r, f)-protocol over Σ simply a (r, f)-protocol when the alphabet is

clear from the context.

A configuration is a graph in which nodes represent the current state of the corresponding protocol

instance running on it (control state and current value of registers) and edges denote communication

links. In this paper we assume that the value of registers are naturals. Therefore, a valuation of registers

is defined as a map from register positions to naturals. More formally, a configuration γ of a (r, f)-
protocol P = 〈Q,R, q0〉 is an undirected graph 〈V,E, L〉 such that V is a finite set of nodes, E ⊆
V ×V \{(v, v) | v ∈ V } is a set of edges, and L : V → Q× N

r is a labeling function (current valuation

of registers).

Before we give the semantics of our model, we introduce some auxiliary notations. Let γ = 〈V,E, L〉
be a configuration. For a node v ∈ V , we denote by LQ(v) and LM (v) the first and second projection

of L(v). For u, v ∈ V , we write u ∼γ v – or simply u ∼ v when γ is clear from the context –

the fact that (u, v) ∈ E, i.e. the two nodes are neighbors. Finally, the configuration γ is said to be

initial if LQ(v) = q0 for all v ∈ V and, for all u, v ∈ V and all i, j ∈ [1..r], if u 6= v or i 6= j
then LM (v)[i] 6= LM (v)[j]. Consequently in an initial configuration, all the registers of the nodes

contain different values. Note that we could have consider a different semantics with no restriction on

the contents of the registers in the initial configurations. We comment this point in the conclusion section.

We write Γ [resp. Γ0] for the set of all [resp. initial] configurations, and Γfc [resp. Γfc
0] for the set

of configurations [resp. initial configurations] 〈V,E, L〉 that are fully connected, i.e. such that E =

V × V \ {(v, v) | v ∈ V }. Note that for a given (r, f)-protocol the sets Γ, Γ0, Γfc , and Γfc
0 are infinite

since we do not impose any restriction on the number of processes present in the graph.

Furthermore, from two nodes u and v of a configuration γ = 〈V,E, L〉 and a broadcast action

of the form b(m, p1, . . . , pf), let R(v, u,b(m, p1, . . . , pf)) ⊆ Q × N
r be the set of the possible la-

bels that can take u on reception of the corresponding message sent by v, i.e. we have (q′r,M) ∈
R(v, u,b(m, p1, . . . , pf)) if and only if there exists a receive action of the form 〈LQ(u), r(m,α1, . . . , αf),
q′r〉 ∈ R verifying the two following conditions:

(1) For all i ∈ [1..f], if there exists j ∈ [1..r] s.t. αi = ?j [resp. αi = ?j], then LM (u)[j] =
LM (v)[pi] [resp. LM (u)[j] 6= LM (v)[pi]];

(2) For all j ∈ [1..r], if there exists i ∈ [1..f] such that αi = ↓j then M [j] = LM (v)[pi] otherwise

M [j] = LM (u)[j].

Given a (r, f)-protocol P = 〈Q,R, q0〉, we define a Broadcast Network of Register Automata

(BNRA) as the transition system BNRA(P) = 〈Γ,⇒,Γ0〉 where Γ [resp. Γ0] is the set of all [resp.

initial] configurations and ⇒⊆ Γ× Γ is the transition relation defined as follows: for γ = 〈V,E, L〉 and

γ′ = 〈V ′, E′, L′〉 ∈ Γ, we have γ ⇒ γ′ if and only if V = V ′ and one of the following conditions holds:

(Broadcast) E = E′ and there exist v ∈ V and 〈q,b(m, p1, . . . , pf), q
′〉 ∈ R such that LQ(v) = q,

L′
Q(v) = q′ and for all u ∈ V \ {v}:

• if u ∼ v then L′(u) ∈ R(v, u,b(m, p1, . . . , pf)), or, R(v, u,b(m, p1, . . . , pf)) = ∅ and

L(u) = L′(u);

• if u ≁ v, then L(u) = L′(u).

(Reconfiguration) L = L′ (no constraint on new edges E′).

Reconfiguration steps model dynamic changes of the connection topology, e.g., loss of links and mes-

sages or node movement. An internal transition τ can be defined using a broadcast of a special message

such that there are no reception rules associated to it. A register j ∈ [1..r] is said to be read-only if and

only if there is no 〈q, r(m,α1, . . . , αf), q
′〉 ∈ R and i ∈ [1..f] such that αi = ↓j. Read-only registers

can be used as identifiers of the associated nodes.

Given BNRA(P) = 〈Γ,⇒,Γ0〉, we use ⇒b to denote the restriction of ⇒ to broadcast steps only,

and ⇒∗ [resp. ⇒∗
b] to denote the reflexive and transitive closure of ⇒ [resp. ⇒b]. Now we define the set

of reachable configurations as: Reach(P) = {γ′ ∈ Γ | ∃γ ∈ Γ0 s.t. γ ⇒∗ γ′}, Reachb(P) = {γ′ ∈ Γ |
∃γ ∈ Γ0 s.t. γ ⇒∗

b γ
′}, and Reach fc(P) = Reachb(P) ∩ Γfc.

2.2. Coverability Problem

Our goal is to decide whether there exists an initial configuration (of any size and topology) from which

it is possible to reach a configuration exposing (covered by with respect to graph inclusion) a bad pattern.

We express bad patterns using reachability queries defined as follows. Let P = 〈Q,R, q0〉 be a (r, f)-
protocol and Z a denumerable set of variables. A reachability query ϕ for P is a formula generated by

the following grammar:

ϕ ::= q(z) | Mi(z) = Mj(z
′) | Mi(z) 6= Mj(z

′) | ϕ ∧ ϕ

where z, z′ ∈ Z, q ∈ Q and i, j ∈ [1..r]. We now define the satisfiability relation for such queries. Given

a configuration γ = 〈V,E, L〉 ∈ Γ, a valuation is a function g : Z 7→ V . The satisfaction relation |= is

parameterized by a valuation and is defined inductively as follows:

• γ |=g q(z) if and only if LQ(g(z)) = q,

• γ |=g Mi(z) = Mj(z
′) if and only if LM (g(z))[i] = LM (g(z′))[j],

• γ |=g Mi(z) 6= Mj(z
′) if and only if LM (g(z))[i] 6= LM (g(z′))[j],

• γ |=g ϕ ∧ ϕ′ if and only if γ |=g ϕ and γ |=g ϕ′.

We say that a configuration γ satisfies a reachability query ϕ, denoted by γ |= ϕ if and only if there exists

a valuation g such that γ |=g ϕ. Furthermore we assume that our queries do not contain contradictions

with respect to = and 6=. This query language mediates between expressiveness and simplicity, enabling

us to search for graph patterns involving both control states and register values. We can now provide the

definition of the parameterized coverability problem, which consists in finding an initial configuration

that leads to a configuration containing in which the query can be matched.

Definition 2.2. The problem Cov(r, f) is defined as follows: given a (r, f)-protocol P and a reachabil-

ity query ϕ, does there exist γ ∈ Reach(P) such that γ |= ϕ?

The problem Cov b(r, f) [resp. Cov fc(r, f)] is obtained by replacing the reachability set with Reachb(P)
[resp. Reach fc(P)]. Finally, Cov(∗, f) denotes the disjunction of the problems Cov(r, f) varying on

r ≥ 0 (i.e. for any (finite) number of registers).

Note that these problems belong to the class of coverability problem since we seek a configura-

tion which “covers” the query, in other words a configuration which contains a subpart respecting a

reachability query. Furthermore in our context, strict reachability problems, where one asks whether a

configuration is reachable, are easier to solve, since when we fix a final configuration we know the num-

ber of nodes present in all the previous configurations (since during an execution this number does not

change) and hence the problem boils down to the verification of a finite state system.

For the cases with no register (r = 0) and hence no information to transmit (f = 0), the problems

have already been studied previously. More precisely it has been shown that Cov b(0, 0) is undecidable

[15] and that Cov fc(0, 0) is decidable [16, 19] and Ackermann-complete [27] and that Cov(0, 0) [14]

can be solved in polynomial time.

3. An Example: Route Discovery Protocol

We describe here the behavior of our model on an example Consider the problem of building a route

from nodes of type sender to nodes of type dest. We assume that nodes are equipped with two registers,

called id and next, used to store a pointer to the next node in the route to dest. The protocol that collects

such information is defined in Figure 1.

Initially nodes have type sender, idle, and dest. Request messages like rreq are used to query

sender swait ready

b(rreq, id)
r(rrep, ↓next)

τ

τ

dest raux
r(rreq, ∗)

b(rrep, id)

idle iaux iwait ireply null
r(rreq, ∗)

b(rreq, id)

τ

r(rrep, ↓next) b(rrep, id)

τ

Figure 1. Route discovery example

adjacent nodes in search for a valid neighbor. Back edges are used to restart the protocol in case of loss

of intermediate messages or no reply at all. An instance of the protocol starts with a node in state sender
broadcasts a route request rreq, attaching his identifier to the message, and waits. Intermediate nodes in

state idle react to it by forwarding another rreq with their identifier, and then they wait too for a reply.

The protocol goes on until an rreq message finally reaches a destination, a node in state dest, which

replies by providing its identifier with an rrep message to its vicinity. All of the intermediate nodes

involved save in the local register next the value from the rrep message, and send another rrep message

with their identifier to the neighbors, to notify them that they are on the route to reach the destination.

When an rrep message arrives to the sender, it saves the identifier of the next hop and the route is

established.

In this example an undesired state is, e.g., any configuration in which two adjacent nodes n and n′

point to each other. Bad patterns like this one can be specified using a query like ready(z1)∧ready(z2)∧
Mid(z1) = Mnext(z2) ∧Mnext(z1) = Mid(z2).

Note that in this work we are mainly interested in safety properties, or more precisely, properties

that can be checked thanks to reachability queries. On this example, another interesting property could

be to check whether the protocol builds eventually a route from sender to dest. Such a property would

involved a more complex reasoning than the one we currently propose and it will be hence more difficult

to tackle.

4. Reconfiguration in Arbitrary Graphs

4.1. Undecidability of Cov(2, 2)

Our first result is the undecidability of coverability for nodes with two registers (one read-only) and

messages with two data fields. The proof is based on a reduction from reachability in two counter

machines. The reduction builds upon an election protocol that can be applied to select a linked list (of

arbitrary length) of nodes in the network. The existence of such a list-builder protocol is at the core of

the proof. The simulation of a two counter machine becomes easy once a list has been constructed. In

this section, we assume that protocols have at least one read-only register id ∈ [1..r]. We formalize next

the notion of list and list-builder that we use in the undecidability proofs presented across the paper.

We first say that a node v points to a node v′ via x if the register x of v contains the same value as

register id of v′. We consider a configuration γ = 〈V,E, L〉 ∈ Γ with LQ(v) ⊆ Q for all v ∈ V . For

a set of states Q and pairwise disjoint sets Qa, Qb, Qc ⊂ Q, we say that γ contains a 〈Qa, Qb, Qc〉-list

(linked via x), or simply list, starting at v if there exists a set of nodes {v1, · · · , vk} ⊆ V such that

LQ(v1) ∈ Qa, LQ(vk) ∈ Qc, and LQ(vi) ∈ Qb for i ∈ [2..k− 1], and furthermore vj is the unique node

in V that points to vj+1 via x and has label in Qa ∪ Qb for j ∈ [0..k − 1]. In other words sets Qa and

Qc are sentinels for a list made of nodes with label in Qb. A backward list is defined as before but with

reversed pointers, i.e., vj+1 points to vj and we say that the list ends at v.

We often write 〈qa, qb, qc〉-list as a shorthand for a 〈{qa}, {qb}, {qc}〉-list. For a transition relation

 ∈ {⇒,⇒b}, Γ′ ⊆ Γ and γ ∈ Γ, Γ′

∗ γ is true iff there exists γ′ ∈ Γ′ s.t. γ′ ∗ γ. We now state the

definition of list builders.

Definition 4.1. A protocol P = 〈Q,R, q0〉 is a forward [resp. backward] 〈qa, qb, qc〉-list builder for a

transition relation ∈ {⇒,⇒b} and Γ′
0 ⊆ Γ0 on x ∈ [1..r] if, for any γ = 〈V,E, L〉 ∈ Γ and every

v ∈ V such that Γ′
0

∗ γ and LQ(v) = qa, we have that γ contains a 〈qa, qb, qc〉-list [resp. 〈qc, qb, qa〉-
list] linked via x starting at v [resp. ending at v]. Furthermore, if is ⇒b, then v′ ∼ v′′ for all successive

nodes v′ and v′′ in the list.

We will now see how we can exploit the list (of arbitrary length) generated by a list-builder protocol

to build a simulation of a two counter machine. Indeed, notice that if node v is the only one pointing to

node v′ then the pair of actions b(m,x) and r(m, ?id) can be used to send a message from v to v′ (v′ is

the only node that can receive m from v). Furthermore, the pair of actions b(m, id) and r(m, ?x) can be

used to send a message from v′ to v (v is the only node that can receive m from v′). This property can

be exploited to simulate counters by using intermediate nodes as single units (the value of the counter is

the sum of unit nodes in the list). One of the sentinels is used as program location, and the links in the

list are used to send messages (in two directions) to adjacent nodes to increment or decrement (update of

labels) the counters. Test for zero is encoded by a double traversal of the list in order to check that each

intermediate node represents zero units.

Let Ql be the set {qa, qb, qc}. We say that a forward or backward 〈qa, qb, qc〉-list builder protocol

Plb = 〈Qlb, Rlb, q0〉 is extended with new states Q′ and rules R′ when the resulting protocol P =
〈Q,R, q0〉 first executes Plb reaching a state in Ql, and then continues only in states in Q′ by firing

only rules in R′ which preserve lists and cannot interfere with the Plb sub-protocol. More formally,

we require that Q = Qlb ∪ Q′, Qlb ∩ Q′ = Ql, R = Rlb ∪ R′, and each rule in R′ cannot involve:

messages m ∈ Σ that appear in some rule of Rlb; states in Qlb \ Ql; or store operations overwriting

register x. Furthermore, there is a partitioning Qa, Qb, and Qc of Q′ such that qa ∈ Qa, qb ∈ Qb,

qc ∈ Qc, and every rule in R′ does not involve states belonging to different partitions. Thanks to all these

conditions, while executing P , 〈qa, qb, qc〉-lists may evolve into 〈Qa, Qb, Qc〉-lists while maintaining the

original underlying structure. Then (e.g., with f = 1 and forward list builders), a message m ∈ Σ can

be propagated from a node vi of the list v1 · · · vk ∈ V to the next vi+1 by broadcasting b(m,x) and

receiving r(m, ?id). Indeed, because of the property of lists, vi is the only node in the network which

can possibly execute the broadcast from some state in Q′ and, at the same time, having its register x set

to vi+1. At the same time, vi+1 is the only node in the network in some state in Q′ with the reception

rule possibly enabled, because the read-only register id uniquely identifies it. For the same reasons, m
can be propagated backward from vi+1 to vi by broadcasting b(m, id) and receiving r(m, ?x).

Lemma 4.1. For r ≥ 2 and f ≥ 1, Cov(r, f) [resp. Cov b(r, f)] restricted to initial configurations

Γ′
0 ⊆ Γ0 is undecidable if there exists a forward or backward list builder (r, f)-protocol for ⇒ [resp.

⇒b] and Γ′
0 ⊆ Γ0 on x ∈ [1..r] that can generate lists of arbitrary finite length.

Proof:

We show that, under the assumptions of the Lemma, the following reduction from the halting problem

for two-counter machines to Cov b(r, f) is correct. Then, to prove the Cov(r, f) case, we will show that

the reduction also works with ⇒. We provide the reduction only for the case of forward list builders: in

case of backward ones it is sufficient to swap the patterns to communicate back and forth in the linked

list. Indeed, the only change to be dealt with would be the direction of the links kept in register x of each

node.

First we recall the definition of a a two-counter machine; it is machine M = 〈Loc, Inst, ℓ0〉 where

Loc is a finite set of location, ℓ0 ∈ Loc is an initial location and Inst is a finite set of instructions

manipulating two variables c1 and c2 which take their value in the natural numbers (aka counters), each

rule being of the following form: increment of counter ci (ℓ, ci++, ℓ′), decrement of counter ci
(ℓ, ci−−, ℓ′) and zero-test of counter ci (ℓ, ci == 0, ℓ′) with ℓ, ℓ′ ∈ Loc. In such a machine, the

counters can never take negative values. We do not recall the semantics of such machine which is quite

natural. The reachability problem for a two counter machine M and a location ℓ ∈ Loc consists in

determining whether such a machine starting in ℓ0 with 0 as counter values can reach the location ℓ by

executing the instructions. This problem is known to be undecidable [26].

Let Plb = 〈Qlb, Rlb, q0〉 be a forward 〈qh, qz, qt〉-list builder for ⇒b and Γ′
0 ⊆ Γ0 on x ∈ [1..r] and

with a read-only register id ∈ [1..r], and let M = 〈Loc, Inst, ℓ0〉 be a two-counter machine. We extend

Plb to obtain protocol P = 〈Q,R, q0〉 as an encoding of M. Each location ℓ ∈ Loc \ {ℓ0} and each

instruction i ∈ Inst are mapped respectively to a state P(ℓ) ∈ Q \ Qlb and to a set of new auxiliary

states q ∈ Q \Qlb and rules r ∈ R \Rlb. The initial location ℓ0 is mapped into P(ℓ0) = qh, because, by

Definition 4.1, as soon as a node labelled qh appears its corresponding list is ready. Counters are encoded

in unary through individual processes: each process in state qz represents a zero and it may change state

in order to represent a unit of one counter (qc1) or another (qc2). The encoded instructions work by

propagating appropriate messages back and forth through the list, with the the tail node qt serving as a

terminator.

P(ℓ)

P(ℓ′)

b(incc1 , x)

r(incrc1 , ?x)

qc1 qc1
r(incc1 , ?id) b(incc1 , x)

r(incrc1 , ?x)
b(incrc1 , id)

qc2 qc2
r(incc1 , ?id) b(incc1 , x)

r(incrc1 , ?x)
b(incrc1 , id)

qZ qc1
r(incc1 , ?id) b(incrc1 , id)

Figure 2. Increment of counter c1

It is worth noting that, since Plb may build more than one list, at a given point we may have sev-

eral ongoing simulations of M. However, by following the point to point communication patterns

previously described we ensure they are independent of each other. Figure 2 shows how increments

(ℓ, c++, ℓ′) ∈ Inst are encoded. The head node, in state P(ℓ), sends an increment order incc and waits

for an acknowledgement reply incrc before moving to the encoding of the next state, P(ℓ′). The message

is propagated through the list, until either it reaches the first process in state qz , which goes to state qc
and replies back, or it reaches the tail qt, which ignores it leading the head node to a deadlock (meaning

the processes in the list were not enough to keep count of c1 and c2). A decrement instruction can be

encoded by following the same pattern as for increments. Tests (ℓ, c == 0, ℓ′) ∈ Inst are encoded in

a similar way, but in this case the reply with the acknowledgement tzrc can be sent only by the tail node

qt. The nodes in state qc representing units of the currently tested counter do not propagate the message,

therefore the message tzc travels through the whole list and reaches the tail if and only if there are no qc
nodes, i.e. when c = 0.

When considering reconfigurations, i.e. when the transition relation is ⇒, all of the previous assump-

tions still hold, except for the fact that, when sending a message from a node in the list to its successor,

we no longer know if the two of them are neighbors. Otherwise said, with ⇒ we may lose messages,

and the computation would block as soon as this happens. This is not a problem for the reduction how-

ever, because we know that an execution with reconfigurations such that no messages are lost still exists.

Indeed, when encoding the reachability problem for M and ℓ ∈ Loc with Cov(r, f) for P and P(ℓ),
blocked executions do not represent an obstacle, since the parameterized coverability problem is satisfied

by the existence of an execution that leads to the target state. ⊓⊔

The previous lemma tells us that to prove undecidability of the parameterized coverability problem

we just have to exhibit a list-builder protocol. In the case of Cov(2, 2), we apply Lemma 4.1, by showing

that protocol Plb of Figure 4 is a backward list-builder for qh, qz , and qt on x ∈ [1..r]. The rationale is

as follows. Lists {v1, · · · , vk} are built one node at a time, starting from the tail vk, in state qt. The links

P(ℓ)

P(ℓ′)

b(tzc1 , x)

r(tzrc1 , ?x)

qZ qZ
r(tzc1 , ?id) b(tzc1 , x)

r(tzrc1 , ?x)
b(tzrc1 , id)

qc2 qc2
r(tzc1 , ?id) b(tzc1 , x)

r(tzrc1 , ?x)
b(tzrc1 , id)

qt qt
r(tzc1 , ?id) b(tzrc1 , id)

Figure 3. Testing for zero counter c1

point from each node to the previous one, up to the head v1, in state qh. Any node in the initial state q0
(e.g., v1) may decide to become a tail by starting to build its own list. Every such construction activity,

however, is guaranteed not to interfere in any way with the others, thanks to point to point communication

between nodes simulated on top of network reconfigurations and broadcast by exploiting the two payload

fields. This is achieved via a three-way handshake where the first and second fields respectively identify

the sender and the recipient. When the sub-protocol is done, v1 moves to state qt, v2 moves to the

intermediate state qi, and one points to the other. Node v2 decides whether to stop building the list by

becoming the head qh, or to continue by executing another handshake to elect node v3. The process

continues until some vk finally ends the construction by moving to state qh. The following theorem then

holds.

qt

q0 qi qh

qz

b(s, id, id) r(a, ↓x, ?id) b(sa, id, x)

r(s, ↓x, ∗) b(a, id, x) r(sa, ?x, ?id) τ

b(s, id, id)
r(a, ↓x, ?id)b(sa, id, x)

Figure 4. Plb: backward list-builder for qh, qz , qt, and Γ0 on x

Theorem 4.1. Cov(2, 2) is undecidable even when restricting one register to be read-only.

Proof:

Let us consider protocol Plb of Figure 4. We now prove that Plb is a backward list builder for qh, qz , qt
and Γ0 on x ∈ [1..r].

Let γ = 〈V,E, L〉 ∈ Γ be a configuration. It is not fundamental that γ ∈ Γ0, because the protocol

may elect multiple lists. The only requirement is to have at least some nodes still in the initial state

q0, and this is trivially satisfied by every γ0 ∈ Γ0. A node vi ∈ V wishing to establish a connection

with vi+1 ∈ V broadcasts its identifier with a request b(s, id, id), either from q0 or qi (the paths from

those two states to respectively qt and qz are labelled by the same actions). Its current neighbors in state

q0 store the identifier of vi by firing r(s, ↓x, ∗). The first vi+1 of them that answers b(a, id, x) gets

its own identifier stored by vi with the reception rule r(a, ↓x, ?id) (provided reconfigurations did not

disconnect it, otherwise the message is lost and the protocol stops). The winner, vi+1, is notified by vi
with a confirmation message b(sa, id, x). Only vi+1 will be able to react to such a message, because it

is the only node in the network for which the guard ?id in r(sa, ?x, ?id) is satisfied. At this point, node

vi which started the communication from q0 or qi is respectively in qt or qz . Node vi+1 is necessarily in

the intermediate state qi instead, as the (temporarily) latest elected node of the list. Its role is to choose

whether to stop the construction via an internal transition to qh, which would make it the head of the list,

or to continue as previously described by choosing the path toward qz . In the latter case, vi+1 becomes

an intermediate node qz and loses the pointer to vi, which is overwritten because of the handshake with

the next vi+2. Nevertheless vi will continue to point to vi+1: the pointers of a completed list, therefore,

go from qt to qh. With appropriate reconfigurations to keep only two nodes connected at a time, the

protocol may build lists of arbitrarily length by involving all nodes in the network.

According to Definition 4.1, is indeed a backward list builder for qh, qz , qt and Γ0 on x ∈ [1..r]. By

applying Lemma 4.1, we can finally conclude that Cov(2, 2) is undecidable. ⊓⊔

4.2. Decidability of Cov(∗, 1)

In this section, we will prove that Cov(∗, 1), i.e. the restriction of our coverability problem to processes

with only one field in the message, is PSPACE-complete.

4.2.1. Lower bound for Cov(∗, 1)

We obtain PSPACE-hardness through a reduction from the reachability problem for 1-safe Petri nets.

Proposition 4.1. Cov(∗, 1) is PSPACE-hard.

Proof:

A Petri net N is a tuple N = 〈P, T, ~m0〉, where: P is a finite set of places, T is a finite set of transitions

t such that •t and t• are multisets of places (pre- and post-conditions of t), and ~m0 is a multiset of places

that indicates how many tokens are located in each place in the initial net marking. Given a marking ~m,

the firing of a transition t such that •t ⊆ ~m leads to a new marking ~m′ obtained as ~m′ = ~m \• t ∪ t•.

A Petri net P is 1-safe if in every reachable marking every place has at most one token. Reachability of

a marking ~m1 from the initial marking ~m0 is decidable for Petri nets, and PSPACE-complete for 1-safe

nets [8].

Given a 1-safe net N = 〈P, T, ~m0〉 and a marking ~m1, we encode the reachability problem into

Cov(|N |, 1). We will assume that P = {p1, . . . , pr} and that p1 is the unique place such that ~m0(p1) =
1 and pr the only place such that ~m1(pr) = 1 (without lost of generality we can in fact reduce the

reachability problem of 1-safe net into such a simple case). We now explain how to simulate the behavior

of N with a (r, 1)-protocol P = 〈Q,R, q0〉. The protocol P contains two control states full and empty

from which the only possible action is the broadcast of a message containing the value stored in the first

register. This is depicted in Figure 5. We see that nodes in state empty will always broadcast messages

of type α and nodes of type full will always broadcast messages of type β, and each of these messages

contains the value of the first register which will never be overwritten (and hence will correspond to the

identifier of the node). Then for each transition t ∈ T with •t = {pi1 , . . . , pik} and t• = {pj1 , . . . , pjl}

empty full

b(α, 1) b(β, 1)

Figure 5. Encoding the nodes of type full and empty

(with i1, . . . , ik, j1, . . . , jl ∈ [1..r]), we will have in P the transitions depicted in Figure 6. Basically, a

node in state q1 will first begin to test whether it has identifiers of nodes of type full in its register i1 to

ik, then it will put in these registers identifiers of nodes of type empty to simulate the consumption of

tokens in the associated places (by receiving messages of type α) and finally it will store identifiers of

nodes of type full in its registers j1 to jl to simulate the production of tokens in the associated places.

Finally, the Figure 7 shows how the simulation begin from the initial state q0, first nodes can go in states

q1

r(β, ?i1)

r(β, ?i2) r(β, ?ik)

r(α, ↓i1)

r(α, ↓ik)

r(β, ↓j1)r(β, ↓jl−1)

r(β, ↓jl)

Figure 6. Encoding transition t with •t = {pi1 , . . . , pik} and t• = {pj1 , . . . , pjl}

full or empty by broadcasting a message that no one will receive and then a node can go to state q1 by

receiving a message sent by a node full and it will store the identifier in the first register, this to simulate

that the initial marking of N is the one with one token in p1. Finally, a node will go in state end if there

is an identifier of a node of type full in the f -th register. One can then easily prove that the protocol P
verifies the property that ~m1 is reachable from ~m0 in N if and only if there exists γ ∈ Reach(P) such

that γ |= end . ⊓⊔

q0 q1
r(β, ↓1)

end
r(β, ?f)

empty

b(m, 1)

full

b(m, 1)

Figure 7. Initialization of the simulation and ending of the simulation of the 1-safe net

4.2.2. Upper bound for Cov(∗, 1)

We now provide a PSPACE algorithm for solving Cov(∗, 1). The algorithm is based on a saturation

procedure that computes a symbolic representation of reachable configurations. The representation is

built using graphs that keep track of control states that may appear during a protocol execution and of

relations between values in their registers. The set of symbolic configurations we consider is finite and

each symbolic configuration can be encoded in polynomial space.

Symbolic configurations. Assume a (r, 1)-protocol P = 〈Q,R, q0〉 over Σ. A symbolic configuration

θ for P is a labelled graph 〈W, δ, λ〉 where W is a set of nodes, δ ⊆ W × [1..r] × [1..r] ×W is the set

of labelled edges and λ : W 7→ Q× {0, 1}r is a labeling function (as for configurations, we will denote

λQ [resp. λM] the projection of λ to its first [resp. second] component) such that the following rules are

respected:

• For w,w′ ∈ W , w 6= w′ implies λQ(w) 6= λQ(w
′), i.e. there cannot be two nodes with the same

control state;

• If (w, a, b, w′) ∈ δ then λM (w)[a] = 1 or λM (w′)[b] = 1 (or both);

• For w ∈ W and j ∈ [1..r], if λM (w)[j] = 1 then (w, j, j, w) ∈ δ.

The labels {0, 1}r are redundant (they can be derived from edges) but simplify some of the constructions

needed in the algorithm. We denote by Θ the set of symbolic configurations for P .

The intuition behind symbolic configuration is the following: a concrete configuration γ belongs to

the denotation JθK of θ if for any node of γ there is a node in θ labelled with the same control states.

Furthermore, for a pair of nodes v1 and v2 in γ containing the same value in registers a and b, respectively,

θ must contain nodes labelled with the corresponding states and an edge labelled with (a, b) connecting

them. Finally, if there are two nodes v in γ labelled with the state q and with the same value in register

j, then there must be a node w in θ with state q and λM (w)[j] = 1.

We now formalize this intuition. Let θ = 〈W, δ, λ〉 be a symbolic configuration for P . Then,

〈V,E, L〉 ∈ JθK iff the following conditions are satisfied:

1. For each v ∈ V , there is a node w ∈ W such that LQ(v) = λQ(w), i.e. v and w have the same

control state;

2. For each v 6= v′ ∈ V , if there exist registers j, j′ ∈ [1..r] s.t. LM (v)[j] = LM (v′)[j′], i.e., two

distinct nodes with the same value in a pair of registers, then there exists an edge (w, j, j′, w′) ∈ δ
with λQ(w) = LQ(v) and λQ(w

′) = LQ(v
′), i.e. we store possible relations on data in registers

using edges in θ;

3. For each v ∈ V , if there exist j 6= j′ ∈ [1..r] s.t. LM (v)[j] = LM (v)[j′], i.e. a node with the same

value in two distinct registers, then there exists a self loop (w, j, j′, w) ∈ δ with λQ(w) = LQ(v).

We remark that we do not include any information on the communication links of γ, indeed reconfigu-

ration steps can change the topology in an arbitrary way. We define the initial symbolic configuration

θ0 = 〈{w0}, ∅, λ0〉 with λ0(w0) = (q0,~0). Clearly, we have Jθ0K = Γ0, i.e. the set of concrete configu-

rations represented by θ0 is the set of initial configurations of the protocol P .

Computing symbolically the successors. In order to perform a symbolic reachability on symbolic

configurations, we define a symbolic post operator POSTP that, by working on a symbolic configuration

θ simulates the effect of the application of a broadcast rule on its instances JθK. We illustrate the key

points underlying its definition with the help of an example. Consider the symbolic configurations θ1
and θ2 in Figure 8, where we represent edges (w, a, b, w′) ∈ δ with arrows from w to w′ labelled by a, b.
Please note that, even though we use directed edges for the graphical representation, the relation between

nodes in W symmetrical as (w, a, b, w′) ∈ δ is equivalent to (w′, b, a, w).

θ1

q0, 0, 0 q1, 0, 1
1, 2

2, 2

θ2

q0, 1, 0

1, 1

q1, 0, 1
1, 2

2, 2

q2, 0, 1

2, 2
1, 2

q3, 0, 1

2, 2
1, 2

2, 2

2, 2

2, 2

Figure 8. Example of computations of symbolic post

θ1 denotes configurations with any number of nodes with label q0 or q1. Nodes in state q0 must

have registers containing distinct data (label 0, 0). Nodes in state q1 may have the same value in their

second register (label 0, 1 is equivalent to edge 〈q1, 2, 2, q1〉), that in turn may be equal to the value of

the first register in a node labelled q0 (edge 〈q0, 1, 2, q1〉). θ1 can be obtained from the initial symbolic

configuration by applying rules like 〈q0,b(α, 1), q0〉 and 〈q0, r(α, ↓2), q1〉. Indeed, in q0 we can send the

value of the first register to other nodes in q0 that can then move to q1 and store the data in the second

register (i.e. we create a potential data relation between the first and second register).

We now give examples of rules that can generate the symbolic configuration θ2 starting from θ1.

The pair 〈q0,b(β, 1), q0〉 and 〈q0, r(β, ↓1), q0〉 generates a new data relation between nodes in state q0
modelled by changing from 0 to 1 the value of λM (q0)[1]. We remark that a label 1 only says that

registers in distinct nodes may be (but not necessarily) equal.

Consider now the reception rule 〈q1, r(β, ?2), q2〉 for the same message β. The data relation between

nodes in state q0 and q1 in θ1 tells us that the rule is fireable. To model its effect we need to create a new

node with label q2 with data relations between registers expressed by the edges between labels q0, q1 and

q2 in the figure. Due to possible reconfigurations, not all nodes in q1 necessarily react, i.e. θ2 contains

the denotations of θ1.

A rule like 〈q1, r(β, ?2), q3〉 can also be fireable from instances of θ1. Indeed, the message β can

be sent by a node in state q0 that does not satisfy the data relation specified by the edge (1, 2) in θ1,

i.e., the sending node is not the one having the same value in its first register as the node q1 reacting to

the message, hence the guard ?2 could also be satisfied. This leads to a new node with state q3 which

inherits from q1 the constraints on the first register, but whose second register can have the same value

as the second register of nodes in any state.

We will now provide the formal definition of this symbolic post operator POSTP : Θ 7→ Θ that takes

as input a symbolic configuration and compute a symbolic configuration characterizing the successor of

all the configurations represented by the input symbolic configuration following the rules of P . Before

giving the formal definition, we need to introduce another notion over symbolic configurations. Given

two symbolic configurations θ = 〈W, δ, λ〉 and θ′ = 〈W ′, δ′, λ′〉, we define the union of symbolic

configurations θ and θ′, denoted θ ⊔ θ′, as follows: 〈W ′′, δ′′, λ′′〉 = θ ⊔ θ′ iff the following conditions

are respected:

• there exist w′′ ∈ W ′′ with λQ(w
′′) = q iff there exists w ∈ W with λQ(w) = q or there exists

w′ ∈ W ′ with λQ(w) = λ′′
Q(w

′′) and furthermore for all i ∈ [1..r], λM (w′′)[i] = 1 if and only if

λM (w)[i] = 1 or λM (w′)[i] = 1.

• there exists (w′′
1 , a, b, w

′′
2) ∈ δ′′ with λQ(w

′′
1) = q1 and λQ(w

′′
2) = q2 iff there exists (w1, a, b, w2) ∈

δ (with λQ(w1) = q1) and λQ(w2) = q2) or there exists (w′
1, a, b, w

′
2) ∈ δ′ (with λ′

Q(w
′
1) = q1

and λQ(w
′
2) = q2)

The idea is that to build θ ⊔ θ′, we put all the labels present in the symbolic configuration in the result

symbolic configuration and each time we encounter a 1 in a label, it is reported in the union and all the

edges of the two configurations are reported in the union. We have then the following result which makes

the link between the symbolic union and the union on the corresponding concrete configurations.

Lemma 4.2. Let θ, θ′ be two symbolic configurations. We have JθK ∪ Jθ′K ⊆ Jθ ⊔ θ′K.

Proof:

Assume θ = 〈W, δ, λ〉 and θ′ = 〈W ′, δ′, λ′〉. Let γ = 〈V,E, L〉 be in JθK∪Jθ′K. We suppose γ ∈ JθK (the

case γ ∈ Jθ′K can be treated similarly). Let 〈W ′′, δ′′, λ′′〉 = θ⊔θ′. We will show that γ ∈ J〈W ′′, δ′′, λ′′〉K.

We verify each point of the definition of JK.

1. Let v ∈ V , since γ ∈ JθK, there exists w ∈ W such that LQ(v) = λQ(w), by definition of ⊔, there

exists w′′ ∈ W ′′ such that λ′′
Q(w

′′) = λQ(w) = LQ(v).

2. Let v, v′ ∈ V with v 6= v′ and let j, j′ ∈ [1..r].Assume LM (v)[j] = LM (v′)[j′]. Then there exists

(w, j, j′, w′) ∈ δ with λQ(w) = LQ(v) and λQ(w
′) = LQ(v

′) and by definition of ⊔ there exists

(w′′
1 , j, j

′, w′′
2) ∈ δ′′ with λQ(w

′′
1) = λQ(w) = LQ(v) and λQ(w

′′
2) = λQ(w

′) = LQ(v
′).

3. Let v ∈ V and j, j′ ∈ [1..r] with j 6= j′ such that λM (v)[j] = λM (v)[j′] then there exists

(w, j, j′, w) ∈ δ with λQ(w) = LQ(v) and by definition of ⊔ there exists (w′′, j, j′, w′′) ∈ δ′′ with

λQ(w
′′) = λQ(w) = LQ(v).

This allows us to conclude that γ ∈ Jθ ⊔ θ′K.

⊓⊔

Algorithm 1 gives the formal definition of the function POSTP : (Q×Send
r,1
Σ ×Q)×Θ 7→ Θ which

take as input a broadcast rule and a symbolic configuration and compute the effect of the broadcast on the

configurations by considering the different receptions of the protocol P . The operator POSTP : Θ 7→ Θ
is then simply the symbolic union of the possible symbolic configurations obtained by applying all the

broadcast rules of P . More formally if P = 〈Q,R, q0〉, then for all symbolic configurations θ we have

POSTP(θ) =
⊔

〈q,b(m,p),q′〉∈R POSTP(〈q,b(m, p), q′〉, θ).

Before giving the properties of the POSTP operator, we introduce some notations. First we in-

troduce an order on symbolic configurations. Given two symbolic configurations θ = 〈W, δ, λ〉 and

θ′ = 〈W ′, δ′, λ′〉, we say that θ ⊑ θ′ if and only if there exists an injective function h : W 7→ W ′ such

that for all w,w′ ∈ W :

• λQ(w) = λ′
Q(h(w));

• for all j ∈ [1..r], if λM (w)[j] = 1 then λ′
M (h(w))[j] = 1;

• if (w, a, b, w′) ∈ δ then (h(w), a, b, h(w′)) ∈ δ′.

In other words, we have θ ⊑ θ′ if there are more nodes in θ′ than in θ and all the labels of θ appears in θ′

as well, and for what concerns the symbolic register valuation, the one of θ′ should ”cover” the one of θ,

i.e. there are more 1 in θ′ than in θ. In the sequel, we will say that two symbolic configurations are equal

if they are equal up to isomorphism. Since the number of symbolic configurations which are pairwise

disjoint is finite (because there is at most |Q| nodes in a symbolic configuration), and by definition of the

JK operator and of ⊑, one can easily prove the following result.

Lemma 4.3. (1) If θ ⊑ θ′ then JθK ⊆ Jθ′K. (2) If there exists an infinite increasing sequence θ0 ⊑ θ1 ⊑
θ2 . . . then there exists i ∈ N s.t. for all j ≥ i, θj = θi.

Using the definition of ⊑, we can state our first property saying any symbolic configurations is

symbolically included in its symbolic successor.

Lemma 4.4. For all symbolic configurations θ, we have θ ⊑ POSTP(θ).

Sketch of proof. Recall that POSTP(θ) =
⊔

〈q,b(m,p),q′〉∈R POSTP(〈q,b(m, p), q′〉, θ). If we look care-

fully at Algorithm 1, we notice that it only changes 0 to 1 in the label of the nodes of the input symbolic

configuration θ or it adds new edges or new nodes. Hence by definition of the relation ⊑, we have for

all rules 〈q,b(m, p), q′〉 ∈ R, θ ⊑ POSTP(〈q,b(m, p), q′〉, θ) and using the definition of the operator

⊔ that also do not delete any edges from the symbolic configurations given in input, we deduce that

θ ⊑ POSTP(θ). �

One consequence of these two lemmas is that if we denote POSTiP the function which consists in

applying i times POSTP , then we now that for all symbolic configurations θ, there exists an integer K
such that for all i ≥ K we have POSTiP(θ) = POSTKP (θ). We denote in the sequel POST∗P(θ) the symbolic

configuration POSTKP (θ). Note that each symbolic configuration of the (r, 1)-protocol P is a graph with

at most |Q| nodes and at most |Q|2 ∗ |r|2 edges and hence we need only polynomial space in the size of

the protocol P to compute POST∗P(θ) for a symbolic configuration θ.

Algorithm 1 θ′ = POSTP(〈q,b(m, p), q′〉, θ)

Require: A broadcast rule 〈q,b(m, p), q′〉 ∈ R and θ = 〈W, δ, λ〉 a symbolic configuration of the (r, 1)-protocol P =
〈Q,R, q0〉

Ensure: θ′ = 〈W ′, δ′, λ′〉
1: W ′ := W , δ′ := δ, λ′ := λ

2: if there exists w ∈ W such that λQ(w) = q then

3: if there does not exist w′ ∈ W ′ such that λ′

Q(w
′) = q′ then

4: Create a node w′ ∈ W ′ with λ′

Q(w
′) = q′ and λ′

M (w′) := ~0
5: end if

6: Let w′ ∈ W ′ such that λ′

Q(w
′) = q′

7: for all j ∈ [1..r], if λM (w)[j] = 1 then λ′

M (w′)[j] := 1
8: for all (w, a, b, w′′) ∈ δ′, δ′ := δ′ ∪ {(w′, a, b, w′′)}
9: for all (w, a, b, w) ∈ δ′, δ′ := δ′ ∪ {(w′, a, b, w′)}

10: for all 〈q′′, r(m,α), q′′′〉 ∈ R such that there exists w′′ ∈ W with λQ(w
′′) = q′′ do

11: if α = ?k or α = ∗ then

12: if there does not exist w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′ then

13: Create a node w′′′ ∈ W ′ with λ′

Q(w
′′′) = q′′′ and λ′

M (w′′′) := ~0
14: end if

15: Let w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′

16: for all j ∈ [1..r], if λM (w′′)[j] = 1 then λ′

M (w′′′)[j] := 1
17: for all (w′′, a, b, v) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, v)}
18: for all (w′′, a, b, w′′) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, w′′′)}
19: end if

20: if α = ↓k then

21: if there does not exist w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′ then

22: Create a node w′′′ ∈ W ′ with λ′

Q(w
′′′) = q′′′ and λ′

M (w′′′) := ~0
23: end if

24: Let w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′

25: λM (w′′′)[k] = 1 and δ′ := δ′ ∪ {(w′, p, k, w′′′), (w′′′, k, k, w′′′)}
26: For all j ∈ [1..r], if λM (w′′)[j] = 1 then λ′

M (w′′′)[j] := 1
27: if λM (w)[p] = 1, Then for all (w, p, b, v) ∈ δ, δ′ := δ′ ∪ {(w′′′, k, b, v)}
28: for all (w′′, a, b, v) ∈ δ′ with a 6= k, δ′ := δ′ ∪ {(w′′′, a, b, v)}
29: For all (w′′, a, b, w′′) ∈ δ′ with a 6= k and b 6= k, δ′ := δ′ ∪ {(w′′′, a, b, w′′′)}
30: end if

31: if α = ?k and (w, p, k, w′′) ∈ δ or (w′′, k, p, w) ∈ δ then

32: if there does not exist w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′ then

33: Create a node w′′′ ∈ W ′ with λ′

Q(w
′′′) = q′′′ and λ′

M (w′′′) := ~0
34: end if

35: Let w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′

36: for all j ∈ [1..r], if λM (w′′)[j] = 1 then λ′

M (w′′′)[j] := 1
37: for all (w′′, a, b, v) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, v)}
38: for all (w′′, a, b, w′′) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, w′′′)}
39: end if

40: end for

41: end if

Lemma 4.5. Given a symbolic configuration, POST∗P(θ) can be computed in polynomial space in the

size of P .

Given a set of configurations S ⊆ Γ of the (r, 1)-protocol P = 〈Q,R, q0〉 (with BNRA(P) = 〈Γ,⇒
,Γ0〉), we define postP(S) = {γ′ ∈ Γ | ∃γ ∈ Γ s.t. γ ⇒ γ′} and post∗P is the reflexive and transitive

closure of postP . We will now see how to relate POSTP and postP .

Lemma 4.6. For all symbolic configuration θ, we have postP(JθK) ⊆ JPOSTP(θ)K.

Sketch of proof. We consider a symbolic configuration θ. We recall that by definition POSTP(θ) =
⊔

〈q,b(m,p),q′〉∈R POSTP(〈q,b(m, p), q′〉, θ). We consider a broadcast rule 〈q,b(m, p), q′〉 and we denote

by postP(〈q,b(m, p), q′〉, JθK) the set of configurations γ′ that can be obtained by performing a Broad-

cast step in BNRA(P) from a configuration γ in JθK using the broadcast rule 〈q,b(m, p), q′〉. By per-

forming a case analysis on the different reception rules of P , one can show that postP(〈q,b(m, p), q′〉, JθK)
⊆ JPOSTP(〈q,b(m, p), q′〉, θ)K. We have hence:

⋃

〈q,b(m,p),q′〉∈R

postP(〈q,b(m, p), q′〉, JθK) ⊆
⋃

〈q,b(m,p),q′〉∈R

JPOSTP(〈q,b(m, p), q′〉, θ)K

Thanks to Lemma 4.2, we can deduce that

⋃

〈q,b(m,p),q′〉∈R

JPOSTP(〈q,b(m, p), q′〉, θ)K ⊆ J
⊔

〈q,b(m,p),q′〉∈R

POSTP(〈q,b(m, p), q′〉, θ)K

and hence we have:

⋃

〈q,b(m,p),q′〉∈R

postP(〈q,b(m, p), q′〉, JθK) ⊆ JPOSTP(θ)K

Furthermore note that for all γ ∈ JθK and all configurations γ′, if γ ⇒ γ′ and the applied rule is a

Reconfiguration, then we have γ′ ∈ JθK, hence using Lemma 4.4 and the first item of Lemma 4.3, we

deduce that γ′ ∈ JPOSTP(θ)K. Consequently we can conclude that postP(JθK) ⊆ JPOSTP(θ)K. �

From this lemma, we can deduce by an easy induction the following lemma.

Corollary 4.1. For all symbolic configurations θ, we have post∗P(JθK) ⊆ JPOST∗P(θ)K.

Ideally, we would like to have that for any symbolic configuration the set JPOSTP(θ)K is included

into post∗P(JθK) because we perform many broadcast in a symbolic step during the computation of the

symbolic post. Unfortunately this is not the case. In fact, consider the symbolic configuration θ1 depicted

in Figure 8. As we explained this symbolic configuration could be equal to POSTP(θ0) (where θ0 is the

initial symbolic configuration containing a single node labelled by 〈q0,~0〉) by considering the rules in P
of the form: 〈q0,b(α, 1), q0〉 and 〈q0, r(α, ↓2), q1〉. Note that the configuration γ containing two nodes

u and v such that LQ(u) = q0, LM (u) = 〈0, 1〉, LQ(v) = q1 and LM (u) = 〈2, 3〉 belongs to Jθ1K
but is not reachable thanks to the according rules, in fact when one node goes from q0 to q1 it should

share in its second register a value with a node labelled by q0. Hence we have γ ∈ JPOSTP(θ0)K and

γ /∈ post∗P(Jθ0K). However we can ”increase” the configuration γ to obtain a bigger configuration γ′

reachable from an initial configuration and belonging as well to Jθ1K, for instance by adding a node u′ to

γ such LQ(u
′) = q0 and LM (u′) = 〈3, 4〉. We now formalize this idea.

We introduce an ordering relation ✂ ⊆ Γ × Γ on concrete configurations defined as follows: given

two configurations γ = 〈V,E, L〉 and γ′ = 〈V ′, E′, L′〉, we have γ ✂ γ′ iff there exists an injective

function h : V 7→ V ′ such that:

• for all v ∈ V , LQ(v) = LQ(h(v));

• for all v, v′ ∈ V and all i, j ∈ [1..r], LM (v)[i] = LM (v′)[j] if and only if LM (h(v))[i] =
LM (h(v′))[j].

Note that in the previous example, we have effectively γ✂γ′. By using the definition of the transition

relation ⇒ and of the satisfaction relation |= for reachability query we have the following lemma.

Lemma 4.7. Let γ1, γ2 ∈ Γ such that γ1 ✂ γ2. We have then:

1. For all γ′1 ∈ Γ such that γ1 ⇒ γ′1, there exists γ′2 ∈ Γ such that γ2 ⇒ γ′2 and γ′1 ✂ γ′2.

2. For all reachability queries ϕ, if γ1 |= ϕ then γ2 |= ϕ.

Furthermore, as shown with the previous example, by using the definition of JK over symbolic con-

figurations and the definition of the symbolic post operator POSTP , we can deduce the following result.

Lemma 4.8. Let θ be a symbolic configuration. For all γ ∈ JPOSTP(θ)K, there exists γ′ ∈ post∗P(JθK)∩
JPOSTP(θ)K such that γ ✂ γ′.

These two last lemmas allow us to obtain the following corollary.

Corollary 4.2. Let θ be a symbolic configuration. For all γ ∈ JPOST∗P(θ)K, there exists γ′ ∈ post∗P(JθK)
such that γ ✂ γ′.

Proof:

We will prove that for all n ∈ N, for all γ ∈ JPOSTnP(θ)K, there exists γ′ ∈ post∗P(JθK) such that

γ ✂ γ′. We reason by induction on n. First in the case n = 0, the property holds trivially (we recall that

POSTnP(θ) = θ). Now assume the property holds for n ∈ N and we will show it is still true for n + 1.

Let γ ∈ JPOSTn+1
P (θ)K. From Lemma 4.8, we deduce that there exists γ′ ∈ post∗P(JPOST

n
P(θ)K) ∩

JPOSTn+1
P (θ)K such that γ ✂ γ′. Hence there exists γ1 ∈ JPOSTnP(θ)K such that γ1 ⇒ . . . ⇒ γ′. By

induction hypothesis, there exist γ2 ∈ post∗P(JθK) such that γ1 ✂ γ2. But then thanks the first item of

Lemma 4.7, since γ1 ✂ γ2 and γ1 ⇒ . . . ⇒ γ′ we deduce that there exists γ′2 such that γ2 ⇒ . . . ⇒ γ′2
and γ′ ✂ γ′2. Note that since γ2 ∈ post∗P(JθK), then γ′2 ∈ post∗P(JθK) and since γ ✂ γ′ and γ′ ✂ γ′2, we

also have γ ✂ γ′2. ⊓⊔

Evaluating a reachability query symbolically. We now define how to evaluate a reachability query

over a symbolic configuration . Let θ = 〈W, δ, λ〉 be a symbolic configuration and ϕ be a reachability

query. We denote by Vars(ϕ) the subset of variables used in the query ϕ and we assume that ϕ =
∧

k∈[1..m] ϕk where for each k ∈ [1..m], ϕk is of the form q(z) or Mi(z) = Mj(z
′) or Mi(z) 6= Mj(z

′).
We will then say that θ |= ϕ if there exists a function g : Vars(ϕ) 7→ W such that for all k ∈ [1..m]
we have the following properties: if ϕk = q(z), then λQ(g(z)) = q; if ϕk = (Mi(z) = Mj(z

′)) with

z 6= z′ or i 6= j, then (g(z), i, j, g(z′)) ∈ δ. We have then the following lemma.

Lemma 4.9. Given a symbolic configuration θ and a reachability query ϕ, we have θ |= ϕ if and only if

there exists γ ∈ JθK such that γ |= ϕ.

We can now state the main result about the symbolic post operator.

Lemma 4.10. Let θ be a symbolic configuration of the protocol P . Then we have for all reachability

query ϕ, there exists γ ∈ post∗P(JθK) such that γ |= ϕ iff POST∗P(θ) |= ϕ.

Proof:

Let θ be a symbolic configuration of the protocol P . Let ϕ be a reachability query. First assume that

there exists γ ∈ post∗P(JθK) such that γ |= ϕ, then by Corollary 4.1 we know that γ ∈ POST∗P(θ). By

Lemma 4.9, we deduce that POST∗P(θ) |= ϕ. Assume now that POST∗P(θ) |= ϕ. By Lemma 4.9, there

exists γ ∈ JPOST∗P(θ)K such that γ |= ϕ. By Corollary 4.2, there exists γ′ ∈ post∗P(JθK) such that γ✂γ′.
Using the second item of Lemma 4.7, we obtain that γ′ |= ϕ. ⊓⊔

We have consequently an algorithm to solve whether there exists γ ∈ Reach(P) = post∗P(Γ0). In fact it

is enough to compute POST∗P(θ0) and to check whether POST∗P(θ) |= ϕ. This computation is feasible in

polynomial space thanks to Lemma 4.5. Finally we can check in non-deterministic linear time whether

POST∗P(θ0) |= ϕ (it is enough to guess the function g from Vars(ϕ) to the nodes of POST∗P(θ0)). Using

Lemma 4.10, this gives us a polynomial space procedure to check whether there exists γ ∈ Reach(P)
such that γ |= ϕ. Furthermore, thanks to the lower bound given by Proposition 4.1, we can deduce the

exact complexity of coverability for protocols using a single field in their messages.

Theorem 4.2. Cov(∗, 1) is PSPACE-complete.

5. Fully Connected Topologies and No Reconfiguration

5.1. Undecidability of Cov fc(2, 1)

We now move to coverability in fully connected topologies. In contrast with the results obtained without

identifiers in [15] it turns out that, without reconfiguration, coverability is undecidable already in the

case of nodes with two registers and one payload field. We define a (forward) list-builder protocol,

which builds lists backwards from the tail qt. At each step, a node v among the ones which are not part

of the list broadcasts its identifier to the others (which store the value, thus pointing to v), and moves to

qz (or qt, if it is the first step) electing itself as the next node in the list. The construction ends when such

a node will instead move to qh and force everyone else to stop. By applying Lemma 4.1, the following

theorem then holds.

Theorem 5.1. Cov fc(2, 1) is undecidable even when one register is read-only.

Proof:

We now show that the protocol Pfc
lb in Figure 9 is a list builder for ⇒b and Γfc

0 on x and states qh, qz , qt

(where the lists are built backwards from qt). Let γ0 = 〈V,E, L〉 ∈ Γfc
0 be an initial configuration. As

soon as a node v ∈ V decides to start the construction of the list, it broadcasts its identifier to every other

node with a message b(tail, id). Since the network is fully connected, every process has to react to the

qt qz

q0 q1 qh

qhalt

b(tail, id)

r(tail, ↓x)

b(zero, id)

b(head, id)

r(head, ∗)

r(zero, ↓x)

Figure 9. Pfc
lb : list builder for 〈qh, qz, qt〉 and fully connected configurations on x

message: after the transition we get a configuration γ1 ∈ Γ such that v is the only node in state qt while

any other node u ∈ V \ {v} is in state q1 and points to v via x.

The processes labelled by q1 may build a list of arbitrary length by electing one qz node at a time.

The communication pattern for handling message b(zero, id) is the same as before, therefore the same

reasoning applies: at each step, all of the nodes in state q1 have their local register x pointing to the newly

elected node z ∈ V in state qz (or to v if it is the first qz), and z is excluded from the list construction

from now on. As soon as a node h ∈ V switches to qh, every remaining process moves to qhalt: exactly

one list has been built, and the protocol has to stop. According to Definition 4.1, Pfc
lb is therefore a

forward 〈qh, qz, qt〉-list builder for ⇒b and Γfc
0 on x. Since it also has a read-only register id, we can

conclude that Cov fc(2, 1) is undecidable thanks to Lemma 4.1.

⊓⊔

5.2. Decidability of Cov fc(1, 1)

We now consider the problem Cov fc(1, 1), where configurations are fully connected and do not change

dynamically, processes have a single register, and each message has a single data field. To show de-

cidability, we employ the theory of well-structured transition systems [1, 21] to define an algorithm for

backward reachability based on a symbolic representation of infinite set of configurations, namely mul-

tisets of multisets of states in Q. In the following we use [a1, . . . , ak] to denote a multiset containing

(possibly repeated) occurrences a1, . . . , ak of elements from some fixed domain. For a multiset m, we

use m(q) to denote the number of occurrences of q in m.

In the sequel we consider a (1, 1)-protocol P = 〈Q,R, q0〉. The set Ξ of symbolic configurations

contains, for every k ∈ N, all multisets of the form ξ = [m1, . . . ,mk], where mi for i ∈ [1..k] is in turn

a multiset over Q. Given ξ = [m1, . . . ,mk] ∈ Ξ, 〈V,E, L〉 ∈ JξK iff there is a function f : V → [1..k]
such that (1) for every v, v′ ∈ V , if LM (v) = LM (v′) then f(v) = f(v′) and (2) for all i ∈ [1..k] and

q ∈ Q, mi(q) is equal to the number of nodes v ∈ V s.t. f(v) = i and LQ(v) = q. Intuitively, each mi

is associated to one of the k distinct values of the register (the actual values do not matter), and mi(q)
counts how many nodes in state q have the corresponding value. We now define an ordering over Ξ.

Definition 5.1. Given ξ = [m1, . . . ,mk] ∈ Ξ and ξ′ = [m′
1, . . . ,m

′
p] ∈ Ξ, ξ ≺ ξ′ iff k ≤ p and there

exists an injection h : [1..k] → [1..p] such that for all i ∈ [1..k] and all q ∈ Q, mi(q) ≤ mh(i)(q), i.e.

mi is included in mh(i).

The following properties then hold.

Proposition 5.1. The ordering (ξ,≺) over symbolic configurations is a well-quasi ordering (wqo), i.e.

for any infinite sequence ξ1ξ2 . . . there exist i < j s.t. ξi ≺ ξj .

Proof:

By Dickson’s Lemma, we know that, for multisets over a finite set Q, multiset inclusion is a wqo. By

Higman’s Lemma, for multisets built over a wqo domain, multiset inclusion (in which elements are

compared using the wqo) is still a wqo. Thus, the juxtaposition of the two orderings yields a well-quasi

ordering. ⊓⊔

We now exhibit an algorithm PREP that works on symbolic representations in Ξ of configurations of net-

works with one register x in each node and one data field in each message. For a symbolic configuration

ξ = [m1, . . . ,mk], mi is a multiset over Q for i ∈ [1, . . . , k]. The representation allows us to maintain

the minimal information about relations (= and 6=) over data and forget about specific values of the data

and minimal constraints on the number of nodes (sharing the same value) in each state in Q. For S ⊆ Γ,

we define preP(S) as the set {γ | γ ⇒b γ
′ and γ′ ∈ S} The following proposition then holds.

Proposition 5.2. There exists an algorithm PREP that takes in input I ⊆ Ξ and returns a set I ′ ⊆ Ξ s.t.

JI ′K = preP(JIK).

To prove the proposition, in the rest of the section we define the algorithm PREP . The algorithm that

computes PREP computes minimal representations of predecessors by applying backwards broadcast

and receive rules to elements of I . Actually,

PREP(I) =
⋃

b∈B

PREb(I)

where B = (Q× Send
1,1
Σ ×Q) ∩R is the set of all broadcast actions. Furthermore,

PREb({ξ1, . . . , ξn}) =
⋃

i∈[1,...,n]

PREb(ξi)

We focus our attention on PREb for a given broadcast b and a given symbolic configuration ξ. In the rest

of the section we assume that

• b = 〈q,b(msg, p1), q
′〉,

• ξ = [m1, . . . ,mk] where each multiset mi of symbols in Q is associated to a distinct value for

register x;

To symbolically compute predecessors, we recall that a configuration ξ = [m1, . . . ,mk] denotes the

infinite set of multisets of the form γ = [m′
1, . . . ,m

′
k,mk+1, . . . ,mr] where, in turn, mi is a sub-

multiset of m′
i for i ∈ [1..k]. These kind of configurations are obtained either by adding either nodes

with identifiers equal to those already present in ξ (e.g. when m′
i is strictly larger than mi) or by adding

nodes with fresh identifiers (the additional multisets mk+1, . . . ,mr).

We recall that reception rules in R have four possible types of action ?p1, ?p1, ↓p1, and ∗. For

a reception rule of the shape r = 〈qi, r(msg, α), q′i〉 with α ∈ {?p1, ?p1, ↓p1, ∗} we call qi [q′i] the

precondition [resp. postcondition] of the rule r.

To illustrate the rationale behind our construction of PREb, we first illustrate the key ideas with the

help of an example.

Example 5.1. Consider a symbolic configuration ξ = [m1,m2], where m1 = [q2, r2, u2] and m2 =
[v2, v2] represent two groups of nodes s.t. m1 contains at least three processes with the same value c1 in

the register and m2 contains at least two processes with the same value c2 in the register.

Consider now the rules: 〈q1,b(a, 1), q2〉, 〈r1, r(a, ?1), r2〉, 〈u1, r(a, ↓1), u2〉, and 〈v1, r(a, ?1), v2〉.
We assume that the sender is the node in state q2 in m1. Its precondition is then the state q1. We now

have to consider reactions. We first consider the nodes in m1 (same identifier as the sender) with state r2
and u2. Each node matches a postcondition of a test or store rule. However, for each of them there are

two cases to consider: they either reacted to the current broadcast or they reached their state in a previous

step. Thus the precondition for r2 can be either r1 or r2 itself. Both preconditions must remain in the

same group. For u2 we have to be more careful. The precondition can be either u1 or u2. However, since

the value of the register before store is unknown, they can either remain in the same group, move to other

existing groups in ξ, or to newly created groups (associated to fresh identifiers). Similarly, the precon-

ditions for nodes in state v2 can be either v1 or v2. These processes remain in the same group. Among

the predecessors we have then symbolic configurations like: [[q1, r1, u1], [v1, v1]], [[q1, r1, u1], [v1, v2]],
[[q1, r1, u1], [v2, v2]], [[q1, r2, u2], [v1, v1]], [[q1, r1], [u1, v1, v1]], [[q1, r1], [v1, v1], [u1]], etc.

To take into account the upward closure of the denotations of ξ, we also have to consider possible

extensions of ξ with additional nodes that match postconditions of send and receive rules. For instance,

we may assume that there exists another node in state q1 in m2, and then recompute predecessors start-

ing from [[q2, r2, u2], [q2, v2, v2]] or assume that there exist a node with a fresh value with postcondition

q2 and then compute the predecessors from [[q2, r2, u2], [v2, v2], [q2]], and so on. Similarly we have to

consider possible extensions of ξ with matching postconditions of reception rules and computed prede-

cessors for them too. Luckily, we have to consider only finitely many extensions since we are interested

in computing minimal configurations only. Specifically, extensions of ξ with more than one occurrence

of the same postcondition will lead to non-minimal configurations, and thus they can be avoided.

All the predecessor symbolic configurations are then collected together and only the minimal one

w.r.t. ≺ form the basis of the symbolic representation of predecessor configurations.

To simplify the presentation, we present a non-deterministic algorithm to compute PREb(ξ) defined

via a case analysis on broadcast and receptions. The algorithm can be transformed into a deterministic

one by exploring all possible alternatives. Consider the broadcast rule b = 〈q,b(msg, p1), q
′〉 and the

symbolic configuration ξ = [m1, . . . ,mk]. We recall that ξ denotes all configurations larger than ξ
w.r.t. ≺. However, to compute predecessors it is enough to consider extensions of ξ with at most one

occurrence of a sender process. Adding explicit representations of receivers is not necessary since the

corresponding predecessors would produce non minimal representations. This is due to the fact that

update of receiver states do not influence the state of other processes.

In what follows, the operator ⊕ denotes the multiset union. We first define the finite set of possible

extensions of ξ as follows:

Extq′(ξ) = {ξ} ∪ {ξ ⊕ [q′]} ∪ {[m1, . . . ,mi ⊕ [q′], . . . ,mk] | i ∈ [1, k]}

The intuition behinds this extension is that we have to consider the configuration in JξK where the state q′

appears since these are the configuration we will get after taking the broadcast rule b = 〈q,b(msg, p1), q
′〉.

For each ξ′ ∈ Extq′(ξ), we will show how to compute a set of symbolic predecessor. Let ξ′ ∈
Extq′(ξ) with ξ′ = [m1, . . . ,mk]. We can now assume now that mi = [q′] ⊕ m for some i. We first

notice that ξ′ has no predecessors if there are states that correspond to preconditions of receptions of

msg that could be fired with b, unless receptions preserve the state with a loop on q′. Indeed, since the

topology is fully connected all nodes must react to the broadcast b (i.e. a precondition state of a reception

cannot remain in the current state unless the reception does not change it). Let us assume now that the

previous case does not apply. We will give now the way to obtain set of predecessors of ξ of the shape

[m′
1, . . . ,m

′
ℓ] with ℓ ≥ k.

To define m′
i we first non-deterministically decompose m into the multisets w1, w2, w3, w4, where

w1 contains target states of receptions for msg with action ?p1, w2 contains target states of receptions

for msg with action ∗, w3 contains target states of receptions for msg with action ↓p1, and w4 contains

the remaining states. We then non-deterministically decompose wi into ui, vi. In other words we have

that

m = (

3
⊕

i=1

(ui ⊕ vi))⊕ w4

We can now define the effect of b on m as the multiset m′ defined as

m′ = (
3

⊕

i=1

(pre(ui)⊕ vi))⊕ w4

To multiset pre(ui) is defined by case analysis on receptions.

• For rules with test and ignore action pre(ui), i ∈ [1, 2], is obtained by replacing each occurrence of

a postcondition with the corresponding precondition of a (non deterministically selected) reception

rule for msg (i.e pre(ui) and ui have the same size).

• For rules with store actions, pre(u3) is obtained by first replacing each occurrence of a postcon-

dition in u3 with the corresponding precondition of a (non deterministically selected) reception

rule for msg, and then by non-deterministically splitting the resulting multiset into two multisets,

namely pre(u3) and pre 6=(u3). The latter processes correspond to processes with register values

distinct from those in m.

We will then have m′
i = [q]⊕m′.

We now have to generate the multiset m′
j associated to the multisets mj with j ∈ [1..k] \ {i}. To

compute m′
j we consider reception rules that either have ?p1 (i.e. the value in the register is distinct from

the sender) or ∗ action. We non-deterministically split mj in

mj = uj ⊕ vj

so that uj contains postcondition states of receptions of msg, and compute m′
j by applying reception

backwards to uj , i.e.,

m′
j = pre(uj)⊕ vj

Finally, the multiset pre 6=(u3) is non-deterministically distributed among the multisets m′
j with j 6= i or

used to add to the resulting configuration additional multisets (all possible splittings of sub multisets of

pre 6=(u3)). In the former case the processes in pre 6=(u3) correspond to processes with register values

that were already present in ξ′. In the latter case they correspond to processes whose register value is

fresh with respect to those in ξ′.
When we have computing sets of symbolic predecessors for each ξ′ ∈ Extq′(ξ), we take for PREb(ξ)

the minimal set I of symbolic representations representing the union of all the computed sets and which

is obtained by by removing redundant representations and representations that are larger than others.

5.3. Decision Procedure

Following [3], the algorithm for PREP can be used to effectively compute a finite representation of the

set of predecessors pre∗P(JBadK) for a set of symbolic configurations Bad. The computation iteratively

applies PREP until a fixpoint is reached. The termination test is defined using ≺. The wqo ≺ ensures

termination of the computation [1]. The following theorem then holds.

Theorem 5.2. Cov fc(1, 1) is decidable.

Proof:

We show how to apply the symbolic predecessor computation based on PREP . Let ϕ be a query with set

of variables Z. The (in)equalities in ϕ induce a finite set P1, . . . , Pk of partitions of Z. Each partition

Pi = {Xi
1, . . . , X

i
ui
} is such that Xi

j contains variables that may take the same value (i.e. there are

no 6= constraints between them in ϕ). For a partition X , we define the multiset mX of symbols in Q
for which there exists a predicate q(z) with z ∈ X . Thus Pi = {Xi

1, . . . , X
i
ui
} can be represented via

the multiset of multisets si = [mXi
1

, . . . ,mXi
ui
]. The set I = {s1, . . . , sk} corresponds to the minimal

elements of the set of configurations that satisfy ϕ. To apply the algorithm we set Bad = I↑, i.e.,

I = min(Bad). We compute then the least fixpoint of PREP , say PRE∗P(I). To check if the resulting

set of symbolic configurations contains an initial state, we need to search for a finite basis 〈V, L,E〉
(where E = V × V \ {(v, v) | v ∈ V }) in which all nodes have initial states as labels, and in which

there cannot be two nodes with the same value in the register (initially all processes have distinct values

in local registers). Using the multiset representation, we need to search for a multiset consisting of

multisets of the form [q0] where q0 is the initial state of the protocol, i.e. coverability holds if and only if

[[q0], . . . , [q0]] ∈ PRE∗P(I). ⊓⊔

An alternative proof can be given by resorting to an encoding into coverability in data nets [25]. We

present such an encoding in [13]. We did not investigate the reverse translation, i.e. whether data nets

can be encoded into our model with fully-connected topology, one register and one-field per message,

but due to the expressive power of data nets, it seems that it would be difficult to get such a reduction.

We consider now the complexity. We observe that, without registers and fields our model boils down

to the AHNs of [15]. For fully connected topologies, AHN can simulate reset nets as shown in [16]

and hence the parameterized coverability problem for such a model is Akcermann-hard. In fact, this

can be deduced from the fact that the complexity of coverability in reset nets is Ackermann-hard [28].

Furthermore it has been show later that for fully connected topology, the parameterized coverability

problem in AHN is in fact Ackermann-complete [27]. Following these results, we obtain the following

theoretical lower bound.

Corollary 5.1. Cov fc(0, 0) and Cov fc(1, 1) are Ackermann-hard.

6. Conclusions

In this paper we investigated decidability and complexity for parameterized verification of a formal model

of distributed computation based on register automata communicating via broadcast messages with data.

The results we obtained are summarized in Table 1 where we recall that r stands for the number of

registers present in each node of the network and f characterizes the number of fields allowed in the

messages of the protocol. As already mentioned, for r = 0 and f = 0 the parameterized coverability

problem had already been studied previously. From a technical point of view, our results can be viewed

as a fine grained refinement of those obtained for the case without data. For instance, undecidability

follows from constructions similar to those adopted in [15]. They are based on special use of data for

building synchronization patterns that can be applied even in fully connected networks. We point out

the fact that we have characterize exhaustively the decidability status of the parameterized coverability

problem for Broadcast Networks of Register Automata since as mentioned before it does not make sense

to consider more data fields in the message than number of registers in the nodes. The only problem left

open is the precise complexity characterization of Cov fc(1, 1).

Protocol

Problem r f Complexity

Cov(r, f) 0 0 PTIME[14]

r ≥ 1 1 PSPACE-complete [Thm. 4.2]

r ≥ 2 f ≥ 2 Undecidable [Thm 4.1]

Cov fc(r, f) 0 0 Ackermann-complete [16, 27]

1 1 Decidable and Ackermann-hard [Thm 5.2]

r ≥ 2 f ≥ 1 Undecidable [Thm. 5.1]

Cov b(r, f) r ≥ 0 f ≥ 0 Undecidable [15]

Table 1. Decidability and complexity boundaries

In our model, we have assumed that in an initial configuration the same data is not present twice

(in any register). One could easily verify that for the cases where we obtain decidability (for Cov(∗, 1)
and Cov fc(1, 1)), the same techniques can be applied if we relax this hypothesis and hence we would

obtain the same decidability results with the same complexity. For the cases where we have proved

undecidability (Cov(2, 2) and Cov fc(2, 1)), we can observe that we need in our undecidability proofs

one read-only register containing a different identifier for each node of the network. Hence if we relax

two much the hypothesis on the initial configurations (such that nodes cannot be anymore distinguished

through this register) it is not clear whether the problems will remain undecidable or not.

Finally, in this work, we have considered only safety properties for our model, but as we mention

with the example provided in Section 3, it would be interested to investigate liveness property that states

that eventually something desired happens. For the cases of fully connected topologies in which we

rely on the theory of well-structured transition systems, positive results might be difficult to obtain since

backward algorithms, as the one we use for Cov fc(1, 1), will not apply, but for the case with reconfigura-

tion with one register and one field per message it might be easier. We plan to investigate such problems

in future works. Another possible direction for future research would be to see what happens when the

data are ordered. It would be also interesting to understand how such techniques can be applied to real

protocols by analyzing for instance approximate executions (our model being not expressive enough to

characterize precisely the behaviors of a concrete protocols). In fact to verify the behaviors of concrete

protocols with our method, we would need to abstract away some aspects of the protocols in order to be

able to encode them in our model. One negative point is that such methods might lead to false alarms

(bugs in the approximation which cannot occur in the real protocols) and an idea left also as possible

direction of research could then be to provide a way to refine the abstraction in order to discard such

wrong executions.

References

[1] Abdulla, P. A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-State Sys-

tems, LICS’96, IEEE Computer Society, 1996.

[2] Abdulla, P. A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the Verification of Timed Ad Hoc

Networks, FORMATS’11, 6604, Springer, 2011.

[3] Abdulla, P. A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state sys-

tems, Theor. Comput. Sci., 256(1-2), 2001, 145–167.

[4] Alur, R., Dill, D. L.: A Theory of Timed Automata, Theor. Comput. Sci., 126(2), 1994, 183–235.

[5] Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized Model Checking of Token-Passing Systems,

VMCAI’14, 8318, 2014.

[6] Bertrand, N., Fournier, P., Sangnier, A.: Playing with Probabilities in Reconfigurable Broadcast Networks,

FOSSACS’14, 8412, Springer, 2014.

[7] Bollig, B., Gastin, P., Schubert, J.: Parameterized Verification of Communicating Automata under Context

Bounds, RP’14, 8762, 2014.

[8] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets, TCS, 147(1&2), 1995, 117–136.

[9] Clarke, E. M., Talupur, M., Touili, T., Veith, H.: Verification by Network Decomposition, CONCUR’04,

3170, 2004.

[10] Delzanno, G.: Constraint-Based Verification of Parameterized Cache Coherence Protocols, FMSD, 23(3),

2003, 257–301.

[11] Delzanno, G., Rosa-Velardo, F.: On the coverability and reachability languages of monotonic extensions of

Petri nets, Theor. Comput. Sci., 467, 2013, 12–29.

[12] Delzanno, G., Sangnier, A., Traverso, R.: Parameterized Verification of Broadcast Networks of Register

Automata, RP’13, 8169, Springer, 2013.

[13] Delzanno, G., Sangnier, A., Traverso, R.: Parameterized Verification of Broadcast Networks of Register

Automata (Technical Report), Technical report, TR-13-03, DIBRIS, University of Genova, 2013, Available

at the URL http://verify.disi.unige.it/publications/.

http://verify.disi.unige.it/publications/

[14] Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the Complexity of Parameterized Reachability in

Reconfigurable Broadcast Networks, FSTTCS’12, 18, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2012.

[15] Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc Networks, CONCUR’10,

6269, Springer, 2010.

[16] Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the Parameterized Verification of Ad

Hoc Networks, FOSSACS’11, 6604, Springer, 2011.

[17] Emerson, E. A., Namjoshi, K. S.: On Model Checking for Non-Deterministic Infinite-State Systems,

LICS’98, IEEE Computer Society, 1998.

[18] Esparza, J.: Keeping a Crowd Safe: On the Complexity of Parameterized Verification (Invited Talk),

STACS’14, 25, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[19] Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols, LICS’99, IEEE Computer

Society, 1999.

[20] Esparza, J., Ganty, P., Majumdar, R.: Parameterized Verification of Asynchronous Shared-Memory Systems,

CAV’13, 8044, Springer, 2013.

[21] Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!, Theor. Comput. Sci., 256(1-2),

2001, 63–92.

[22] German, S. M., Sistla, A. P.: Reasoning about Systems with Many Processes, J. ACM, 39(3), 1992, 675–735.

[23] Kaminski, M., Francez, N.: Finite-Memory Automata, Theor. Comput. Sci., 134(2), 1994, 329–363.

[24] Konnov, I., Veith, H., Widder, J.: Who is afraid of Model Checking Distributed Algorithms?, Unpublished

contribution to: CAV Workshop (EC)2, 2012.

[25] Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A. W., Worrell, J.: Nets with Tokens which Carry Data,

Fundam. Inform., 88(3), 2008, 251–274.

[26] Minsky, M.: Computation, Finite and Infinite Machines, Prentice Hall, 1967.

[27] Schmitz, S., Schnoebelen, P.: The Power of Well-Structured Systems, CONCUR’13, 8052, Springer, 2013.

[28] Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets,

MFCS’10, 6281, Springer, 2010.

	Introduction
	Broadcast Networks of Register Automata
	Syntax and semantics
	Coverability Problem

	An Example: Route Discovery Protocol
	Reconfiguration in Arbitrary Graphs
	Undecidability of Cov(2,2)
	Decidability of Cov(,1)
	Lower bound for Cov(,1)
	Upper bound for Cov(,1)

	Fully Connected Topologies and No Reconfiguration
	Undecidability of Covfc(2,1)
	Decidability of Covfc(1,1)
	Decision Procedure

	Conclusions

