
Parameterized Verification of Broadcast

Networks of Register Automata

Giorgio Delzanno1, Arnaud Sangnier2, and Riccardo Traverso1

1 DIBRIS, University of Genova, Italy
2 LIAFA, Univ Paris Diderot, Paris Cité Sorbonne, CNRS, France

Abstract. We study parameterized verification problems for networks
of interacting register automata. We consider safety properties expressed
in terms of reachability, from arbitrarily large initial configurations, of a
configuration exposing some given control states and patterns.

1 Introduction

We introduce a formal model of data-sensitive distributed protocols, called Broad-
cast Networks of Register Automata (BNRA), aimed at modelling both the local
knowledge of distributed nodes as well as their interaction via broadcast com-
munication. A network is modelled via a finite graph where each node runs an
instance of a common protocol. A protocol is specified via a register automaton,
an automaton equipped with a finite set of registers [20]. Each register assumes
values taken from the set of natural numbers. Node interaction is specified via
broadcast communication, well-suited to model scenarios in which individual
nodes have partial information about the network topology. Messages are al-
lowed to carry data, that can be assigned to or tested against the local registers
of receivers. Dynamic updates of the current configuration are modelled via
non-deterministic reconfigurations of the underlying connectivity graph. A node
may disconnect from its neighbours and connect to other ones at any time of the
execution. This behaviour models in a natural way unexpected power-off and
dynamic movement of devices. The resulting model can be used to reason about
core parts of client-server protocols as well as of routing protocols, e.g. route
maintainance as in Link Reversal Routing.

In the paper we focus our attention on the decidability and complexity of
parameterized verificatiom, i.e., the problem of finding a sufficient number of
nodes and an initial topology that may lead to a configuration exposing a bad
pattern (e.g. a loop in the information contained in the routing tables). The con-
sidered class of verification problems is parametric in four dimensions, namely,
the number of nodes, the topology of the initial configuration to be discovered,
and the amount of data contained in local registers and exchanged messages.

Related Works. Our formal model of topology-sensitive broadcast communica-
tion with data naturally extends those obtained in [11,12,10]. Formal models
of broadcast networks date back to CBS [22], extended in several ways (time,

asynchrony, etc) in successive works. Automated verification methods have been
tested on protocols for Ad Hoc Networks with a fixed number of processes in
[16,25,15]. Verification of broadcast protocols in fully connected networks in
which nodes and messages range over a finite set of states has been considered,
e.g., in [13,18,5]. Via an adequate counting abstraction, the problem can be re-
formulated in terms of Petri nets with transfer arcs [14,7]. The non-elementary
complexity of coverability in this class of nets is proved in [24]. Symbolic back-
ward exploration procedures for network protocols specified in graph rewriting
have been presented in [19] (termination guaranteed for ring topologies) and
[23] (approximations without termination guarantees). Decidability issues for
broadcast communication in fully connected networks have been studied in [14].
Verification of unreliable communicating FIFO systems has been studied in [3].
Coverability problems for broadcast communication in fully connected networks
with data is investigated in [2,21,8].

2 Broadcast Networks of Register Automata

2.1 Syntax and semantics

We model a distributed network using a graph in which the behaviour of each
node is described via an automaton with operations over a finite set of registers.
A node can transmit part of its current data to adjacent nodes using broadcast
messages. A message carries both a type and a finite tuple of data. Receivers can
test/store/ignore the data contained inside a message. We assume that broad-
casts and receptions are executed without delays (i.e. we simultaneously update
the state of sender and receiver nodes).

Actions Let us first describe the set of actions. We use r ≥ 0 to denote the
number of registers in each node. We use f ≥ 0 to denote the number of data
fields available in each message and we consider a finite alphabet Σ of message
types. We often use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j}. We also assume
that if r = 0 then f = 0 (no registers, no information to transmit). The set of
broadcast actions parameterized by r, f and Σ is defined follows:

Sendr,f
Σ = {b(m, p1, . . . , pf) | m ∈ Σ and pi ∈ [1..r] for i ∈ [1..f]}

The action b(a, p1, . . . , pf) corresponds to a broadcast message of type a whose
i-th field contains the value of the register pi of the sending node. For instance,
for r = 2 and f = 4, b(req, 1, 1, 2, 1) corresponds to a message of type req in
which the current value of the register 1 of the sender is copied in the first two
fields and in the last field, and the current value of register 2 of the sender is
copied into the third field.

A receiver node can then either compare the value of a message field against
the current value of a register, store the value of a message field in a register, or
simply ignore a message field. Reception actions parameterized by r, f and Σ

2

are defined as follows:

Recr,fΣ =

{

r(m,α1, . . . , αf)

∣

∣

∣

∣

m ∈ Σ, αi ∈ Actr for i ∈ [1..f]
and if αi = αk = ↓j then i = k

}

where the set of field actions Actr is: {?k, ?k, ↓k, ∗ | k ∈ [1..r]}. When used in a
given position of a reception action, ?k [resp. ?k] tests whether the content of the
k-th register is equal [resp. different] to the corresponding value of the message,
↓k is used to store the corresponding value of the message into the k-th register,
and ∗ is used to denote that the corresponding value is ignored.

As an example, for r = 2 and f = 4, r(req, ?2, ?1, ∗, ↓1) specifies the reception
of a message of type req in which the first field is tested for inequality against
the current value of the second register, the second field is tested for equality
against the first register, the third field is ignored, and the fourth field is assigned
to the first register. We now provide the definition of a protocol that models the
behaviour of an individual node.

Definition 1. A (r, f)-protocol over Σ is a tuple P = 〈Q,R, q0〉 where: Q is
a finite set of control states, q0 ∈ Q is an initial control state, and R ⊆ Q ×
(Sendr,f

Σ ∪ Recr,fΣ)×Q is a set of broadcasting and reception rules.

In the rest of the paper we call a (r, f)-protocol over Σ simply a (r, f)-protocol
when the alphabet is clear from the context.

A configuration is a graph in which nodes represent the current state of the
corresponding protocol instance running on it (control state and current value of
registers) and edges denote communication links. In this paper we assume that
the value of registers are naturals. Therefore, a valuation of registers is defined
as a map from register positions to naturals. More formally, a configuration γ

of a (r, f)-protocol P = 〈Q,R, q0〉 is an undirected graph 〈V,E, L〉 such that
V is a finite set of nodes, E ⊆ V × V \ {(v, v) | v ∈ V } is a set of edges, and
L : V → Q× N

r is a labelling function (current valuation of registers).
Before we give the semantics of our model, we introduce some auxiliary no-

tations. Let γ = 〈V,E, L〉 be a configuration. For a node v ∈ V , we denote
by LQ(v) and LM (v) the first and second projection of L(v). For u, v ∈ V , we
write u ∼γ v – or simply u ∼ v when γ is clear from the context – the fact
that (u, v) ∈ E, i.e. the two nodes are neighbours. Finally, the configuration γ

is said to be initial if LQ(v) = q0 for all v ∈ V and, for all u, v ∈ V and all
i, j ∈ [1..r], if u 6= v or i 6= j then LM (v)[i] 6= LM (v)[j]. In an initial configu-
ration, all the registers of the nodes contain different values. We write Γ [resp.

Γ0] for the set of all [resp. initial] configurations, and Γ fc [resp. Γ fc
0] for the set

of configurations [resp. initial configurations] 〈V,E, L〉 that are fully connected,
i.e. such that E = V × V \ {(v, v) | v ∈ V }. Note that for a given (r, f)-protocol

the sets Γ , Γ0, Γ
fc , and Γ

fc
0 are infinite since we do not impose any restriction

on the number of processes present in the graph.
Furthermore, from two nodes u and v of a configuration γ = 〈V,E, L〉 and a

broadcast action of the form b(m, p1, . . . , pf), let R(v, u,b(m, p1, . . . , pf)) ⊆ Q×
N

r be the set of the possible labels that can take u on reception of the correspond-
ing message sent by v, i.e. we have (q′r,M) ∈ R(v, u,b(m, p1, . . . , pf)) if and only

3

if there exists a receive action of the form 〈LQ(u), r(m,α1, . . . , αf), q
′
r〉 ∈ R ver-

ifying the two following conditions:

(1) For all i ∈ [1..f], if there exists j ∈ [1..r] s.t. αi = ?j [resp. αi = ?j], then
LM (u)[j] = LM (v)[pi] [resp. LM (u)[j] 6= LM (v)[pi]];

(2) For all j ∈ [1..r], if there exists i ∈ [1..f] such that αi = ↓j then M [j] =
LM (v)[pi] otherwise M [j] = LM (u)[j].

Given a (r, f)-protocol P = 〈Q,R, q0〉, we define a Broadcast Network of
Register Automata (BNRA) as the transition system BNRA(P) = 〈Γ,⇒, Γ0〉
where Γ [resp. Γ0] is the set of all [resp. initial] configurations and ⇒⊆ Γ ×Γ is
the transition relation. Specifically, for γ = 〈V,E, L〉 and γ′ = 〈V ′, E′, L′〉 ∈ Γ ,
we have γ ⇒ γ′ if and only if V = V ′ and one of the following conditions holds:

(Broadcast) E = E′ and there exist v ∈ V and 〈q,b(m, p1, . . . , pf), q
′〉 ∈ R

such that LQ(v) = q, L′
Q(v) = q′ and for all u ∈ V \ {v}:

– if u ∼ v then L′(u) ∈ R(v, u,b(m, p1, . . . , pf)), or,R(v, u,b(m, p1, . . . , pf))
= ∅ and L(u) = L′(u);

– if u ≁ v, then L(u) = L′(u).
(Reconfiguration) L = L′ (no constraint on new edges E′).

Reconfiguration steps model dynamic changes of the connection topology, e.g.,
loss of links and messages or node movement. An internal transition τ can be
defined using a broadcast of a special message such that there are no reception
rules associated to it. A register j ∈ [1..r] is said to be read-only if and only
if there is no 〈q, r(m,α1, . . . , αf), q

′〉 ∈ R and i ∈ [1..f] such that αi = ↓j.
Read-only registers can be used as identifiers of the associated nodes.

Given BNRA(P) = 〈Γ,⇒, Γ0〉, we use ⇒b to denote the restriction of ⇒ to
broadcast steps only, and ⇒∗ [resp. ⇒∗

b] to denote the reflexive and transitive
closure of ⇒ [resp. ⇒b]. Now we define the set of reachable configurations as:
Reach(P) = {γ′ ∈ Γ | ∃γ ∈ Γ0 s.t. γ ⇒∗ γ′}, Reachb(P) = {γ′ ∈ Γ | ∃γ ∈
Γ0 s.t. γ ⇒∗

b γ′}, and Reach fc(P) = Reachb(P) ∩ Γ fc.

2.2 Coverability Problem

Our goal is to decide whether there exists an initial configuration (of any size
and topology) from which it is possible to reach a configuration exposing (cov-
ered by w.r.t. graph inclusion) a bad pattern. We express bad patterns using
reachability queries defined as follows. Let P = 〈Q,R, q0〉 be a (r, f)-protocol
and Z a denumerable set of variables. A reachability query ϕ for P is a formula
generated by the following grammar:

ϕ ::= q(z) | Mi(z) = Mj(z
′) | Mi(z) 6= Mj(z

′) | ϕ ∧ ϕ

where z, z′ ∈ Z, q ∈ Q and i, j ∈ [1..r]. We now define the satisfiability relation
for such queries. Given a configuration γ = 〈V,E, L〉 ∈ Γ , a valuation is a
function f : Z 7→ V . The satisfaction relation |= is parameterized by a valuation
and is defined inductively as follows:

4

– γ |=f q(z) if and only if LQ(f(z)) = q,
– γ |=f Mi(z) = Mj(z

′) if and only if LM (f(z))[i] = LM (f(z′))[j],
– γ |=f Mi(z) 6= Mj(z

′) if and only if LM (f(z))[i] 6= LM (f(z′))[j],
– γ |=f ϕ ∧ ϕ′ if and only if γ |=f ϕ and γ |=f ϕ′.

We say that a configuration γ satisfies a reachability query ϕ, denoted by γ |= ϕ

if and only if there exists a valuation f such that γ |=f ϕ. Furthermore we assume
that our queries do not contain contradictions w.r.t. = and 6=. We now define
the parameterized verification problem, i.e., finding an initial configuration that
leads to a configuration containing a sub-configuration that matches the query.

Definition 2. The problem Cov (r, f) is defined as follows: given a (r, f)-protocol
P and a reachability query ϕ, does there exist γ ∈ Reach(P) such that γ |= ϕ?

The problem Cov b(r, f) [resp. Cov fc(r, f)] is obtained by replacing the reach-
ability set with Reachb(P) [resp. Reach fc(P)]. Finally, Cov (∗, f) denotes the
disjunction of the problems Cov (r, f) varying on r ≥ 0 (i.e. for any (finite)
number of registers).

3 An Example: Route Discovery Protocol

Consider the problem of building a route from nodes of type sender to nodes of
type dest. We assume that nodes have two registers, called id and next, used to
store a pointer to the next node in the route to dest. The protocol that collects
such information is defined in Figure 1. Initially nodes have type sender, idle,
and dest. Request messages like rreq are used to query adjacent nodes in search

sender swait ready

b(rreq, id)
r(rrep, ↓next)

τ

τ

dest raux

r(rreq, ∗)

b(rrep, id)

idle iaux iwait ireply null
r(rreq, ∗)

b(rreq, id)

τ

r(rrep, ↓next) b(rrep, id)

τ

Fig. 1. Route discovery example

for a valid neighbour. Back edges are used to restart the protocol in case of loss
of intermediate messages or no reply at all.

In this example an undesired state is, e.g., any configuration in which two
adjacent nodes n and n′ point to each other. Bad patterns like this one can
be specified using a query like ready(z1) ∧ ready(z2) ∧Mid(z1) = Mnext(z2) ∧
Mnext(z1) = Mid(z2).

4 Reconfiguration in Arbitrary Graphs

4.1 Undecidability of Cov(2, 2)

Our first result is the undecidability of coverability for nodes with two registers
(one read-only) and messages with two data fields. The proof is based on a

5

reduction from reachability in two counter machines. The reduction builds upon
an election protocol that can be applied to select a linked list (of arbitrary
length) of nodes in the network. The existence of such a list-builder protocol
is at the core of the proof. The simulation of a two counter machine becomes
easy once a list has been constructed. We assume that protocols have at least
one read-only register id ∈ [1..r]. We formalize next the notion of list and list-
builder that we use in the undecidability proofs presented across the paper. We
first say that a node v points to a node v′ via x if the register x of v contains
the same value as register id of v′. For qa, qb, qc ∈ Q, a list (linked via x) is a set
of nodes {v1, · · · , vk} such that v1 has label qa, vk has label qc, vi has label qb
for i ∈ [2..k − 1], and vj is the unique node in V that points to vj+1 via x and
has label in {qa, qb} for j ∈ [0..k−1]. In other words qa and qc are sentinels for a
list made of qb elements. A backward list is defined as before but with reversed
pointers, i.e., vj+1 points to vj .

Definition 3. A protocol P = 〈Q,R, q0〉 with {qa, qb, qc} ⊆ Q is a list-builder
for qa, qb, and qc on x ∈ [1..r] if, for any γ such that γ ∈ Reach(P), if a node v

in γ has label qa, then v is the first node of a list linked via x.

A backward list-builder is defined in a similar way for backward lists.

Lemma 1. For r ≥ 2 and f ≥ 1, Cov (r, f) is undecidable if there exists a list-
builder (r, f)-protocol on x ∈ [1..r] that can generate lists of any finite length.

The proof exploits the list (of arbitrary length) generated by a list-builder proto-
col to build a simulation of a two counter machine. Indeed, notice that if node v
is the only one pointing to node v′ then the pair of actions b(m,x) and r(m, ?id)
can be used to send a message from v to v′ (v′ is the only node that can receive
m from v). Furthermore, the pair of actions b(m, id) and r(m, ?x) can be used
to send a message from v′ to v (v is the only node that can receive m from v′).
This property can be exploited to simulate counters by using intermediate nodes
as single units (the value of the counter is the sum of unit nodes in the list). One
of the sentinels is used as program location, and the links in the list are used to
send messages (in two directions) to adjacent nodes to increment or decrement
(update of labels) the counters. Test for zero is encoded by a double traversal
of the list in order to check that each intermediate node represents zero units.
The details of the protocol that extends a list-builder are given in [9]. A similar
result can be stated for backward list-builders.

The previous lemma tells us that to prove undecidability of coverability we
just have to exhibit a list-builder protocol. In the case of Cov (2, 2), we apply
Lemma 1, by showing that protocol Plb of Figure 2 is a backward list-builder
for qh, qz, and qt on x ∈ [1..r]. The rationale is as follows. Lists {v1, · · · , vk} are
built one node at a time, starting from the tail vk, in state qt. The links point
from each node to the previous one, up to the head v1, in state qh. Any node in
the initial state q0 (e.g., v1) may decide to become a tail by starting to build its
own list. Every such construction activity, however, is guaranteed not to interfere
in any way with the others, thanks to point to point communication between
nodes simulated on top of network reconfigurations and broadcast by exploiting

6

the two payload fields. This is achieved via a three-way handshake where the
first and second fields respectively identify the sender and the recipient. When
the sub-protocol is done, v1 moves to state qt, v2 moves to the intermediate state
qi, and one points to the other. Node v2 decides whether to stop building the
list by becoming the head qh, or to continue by executing another handshake to
elect node v3. The process continues until some vk finally ends the construction
by moving to state qh. The following theorem then holds (the proof can be found
in [9]).

qt

q0 qi qh

qz

b(s, id, id)
r(a, ↓x, ?id) b(sa, id, x)

r(s, ↓x, ∗) b(a, id, x) r(sa, ?x, ?id) τ

b(s, id, id)
r(a, ↓x, ?id)b(sa, id, x)

Fig. 2. Plb: backward list-builder for qh, qz, qt, and Γ0 on x

Theorem 1. Cov (2, 2) is undecidable even when restricting one register to be
read-only.

4.2 Decidability of Cov(∗, 1)

In this section, we will prove that Cov (∗, 1), i.e. the restriction of our coverability
problem to processes with only one field in the message, is Pspace-complete.

We obtain PSpace-hardness through a reduction from the reachability prob-
lem for 1-safe Petri nets, which is PSpace-complete [6]. The detail of this con-
struction is provided in [9].

Proposition 1. Cov (∗, 1) is PSpace-hard.

We now provide a PSpace algorithm for solving Cov (∗, 1). The algorithm is
based on a saturation procedure that computes a symbolic representation of
reachable configurations. The representation is built using graphs that keep track
of control states that may appear during a protocol execution and of relations
between values in their registers. The set of symbolic configurations we consider
is finite and each symbolic configuration can be encoded in polynomial space.

Assume a (r, 1)-protocol P = 〈Q,R, q0〉 over Σ. A symbolic configuration θ

for P is a labelled graph 〈W, δ, λ〉 where W is a set of nodes, δ ⊆ W × [1..r] ×
[1..r] × W is the set of labelled edges and λ : W 7→ Q × {0, 1}r is a labelling
function (as for configurations, we will denote λQ [resp. λM] the projection of λ
to its first [resp. second] component) such that the following rules are respected:

– For w,w′ ∈ W , w 6= w′ implies λQ(w) 6= λQ(w
′), i.e. there cannot be two

nodes with the same control state;

7

– If (w, a, b, w′) ∈ δ then λM (w)[a] = 1 or λM (w′)[b] = 1 (or both);
– For w ∈ W and j ∈ [1..r], if λM (w)[j] = 1 then (w, j, j, w) ∈ δ.

The labels {0, 1}r are redundant (they can be derived from edges) but simplify
some of the constructions needed in the algorithm. We denote by Θ the set of
symbolic configurations for P . Let θ = 〈W, δ, λ〉 be a symbolic configuration for
P . Then, 〈V,E, L〉 ∈ JθK iff the following conditions are satisfied:

1. For each v ∈ V , there is a node w ∈ W such that LQ(v) = λQ(w), i.e. v and
w have the same control state;

2. For each v 6= v′ ∈ V , if there exist registers j, j′ ∈ [1..r] s.t. LM (v)[j] =
LM (v′)[j′], i.e., two distinct nodes with the same value in a pair of registers,
then there exists an edge (w, j, j′, w′) ∈ δ with λQ(w) = LQ(v) and λQ(w

′) =
LQ(v

′), i.e. we store possible relations on data in registers using edges in θ;
3. For each v ∈ V , if there exist j 6= j′ ∈ [1..r] s.t. λM (v)[j] = λM (v)[j′], i.e.

a node with the same value in two distinct registers, then there exists a self
loop (w, j, j′, w) ∈ δ.

We remark that we do not include any information on the communication links of
γ, indeed reconfiguration steps can change the topology in an arbitrary way. We
define the initial symbolic configuration θ0 = 〈{w0}, ∅, λ0〉 with λ0(w0) = (q0,0).
Clearly, we have Jθ0K = Γ0, i.e. the set of concrete configurations represented by
θ0 is the set of initial configurations of the protocol P . In order to perform a
symbolic reachability on symbolic configurations, we use a operator POSTP that,
by working on a graph θ simulates the effect of the application of a broadcast
rule on its instances JθK. The formal definition of the POSTP operation is given
in [9]. We illustrate the key points underlying its definition with the help of an
example. Consider the symbolic configurations θ1 and θ2 in Figure 3, where we
represent edges (w, a, b, w′) ∈ δ with arrows from w to w′ labelled by a, b. Please
note that, even though we use directed edges for the graphical representation,
the relation between nodes in W symmetrical as (w, a, b, w′) ∈ δ is equivalent
to (w′, b, a, w). θ1 denotes configurations with any number of nodes with label

θ1

q0, 0, 0 q1, 0, 1
1, 2

2, 2

θ2

q0, 1, 0

1, 1

q1, 0, 1
1, 2

2, 2

q2, 0, 1

2, 2
1, 2

q3, 0, 1

2, 2
2, 2

2, 2

2, 2

2, 2

Fig. 3. Example of computations of symbolic post

q0 or q1. Nodes in state q0 must have registers containing distinct data (label

8

0, 0). Nodes in state q1 may have the same value in their second register (label
0, 1 is equivalent to edge 〈q1, 2, 2, q1〉), that in turn may be equal to the value
of the first register in a node labelled q0 (edge 〈q0, 1, 2, q1〉). θ1 can be obtained
from the initial symbolic configuration by applying rules like 〈q0,b(α, 1), q0〉 and
〈q0, r(α, ↓2), q1〉. Indeed, in q0 we can send the value of the first register to other
nodes in q0 that can then move to q1 and store the data in the second register
(i.e. we create a potential data relation between the first and second register).

We now give examples of rules that can generate the symbolic configuration
θ2 starting from θ1. The pair 〈q0,b(β, 1), q0〉 and 〈q0, r(β, ↓1), q0〉 generates a
new data relation between nodes in state q0 modelled by changing from 0 to
1 the value of λM (q0)[1]. We remark that a label 1 only says that registers in
distinct nodes may be (but not necessarily) equal.

Consider now the reception rule 〈q1, r(β, ?2), q2〉 for the same message β.
The data relation between nodes in state q0 and q1 in θ1 tells us that the rule
is fireable. To model its effect we need to create a new node with label q2 with
data relations between registers expressed by the edges between labels q0, q1 and
q2 in the figure. Due to possible reconfigurations, not all nodes in q1 necessarily
react, i.e. θ2 contains the denotations of θ1.

A rule like 〈q1, r(β, ?2), q3〉 can also be fireable from instances of θ1. Indeed,
the message β can be sent by a node in state q0 that does not satisfy the data
relation specified by the edge (1, 2) in θ1, i.e., the sending node is not the one
having the same value in its first register as the node q1 reacting to the message,
hence the guard ?2 could also be satisfied. This leads to a new node with state
q3 which inherits from q1 the constraints on the first register, but whose second
register can have the same value as the second register of nodes in any state.

We now define how to evaluate a reachability query over a symbolic config-
uration . Let θ = 〈W, δ, λ〉 be a symbolic configuration and ϕ be a reachability
query. We denote by Vars(ϕ) the subset of variables used in the query ϕ and we
assume that ϕ =

∧

k∈[1..m] ϕk where for each k ∈ [1..m], ϕk is of the form q(z) or

Mi(z) = Mj(z
′) or Mi(z) 6= Mj(z

′). We will then say that θ |= ϕ if there exists
a function g : Vars(ϕ) 7→ W such that for all k ∈ [1..m] we have the following
properties: if ϕk = q(z), then λQ(g(z)) = q; if ϕk = (Mi(z) = Mj(z

′)) with
z 6= z′ or i 6= j, then (g(z), i, j, g(z′)) ∈ δ. We have then the following lemma.

Lemma 2. Given a symbolic configuration θ and a reachability query ϕ, we have
θ |= ϕ if and only there exists γ ∈ JθK such that γ |= ϕ.

Before giving the properties of the POSTP operator, we introduce some nota-
tions. First we introduce an order on symbolic configurations. Given two sym-
bolic configurations θ = 〈W, δ, λ〉 and θ′ = 〈W ′, δ′, λ′〉, we say that θ ⊑ θ′ if and
only if there exists an injective function h : W 7→ W ′ such that for all w,w′ ∈ W :

– λQ(w) = λ′
Q(h(w));

– for all j ∈ [1..r], if λM (w)[j] = 1 then λ′
M (h(w))[j] = 1;

– if (w, a, b, w′) ∈ δ then (h(w), a, b, h(w′)) ∈ δ′.

In other words, we have θ ⊑ θ′ if there are more nodes in θ′ than in θ and all
the labels of θ appears in θ′ as well, and for what concerns the symbolic register

9

valuation, the one of θ′ should ”cover” the one of θ. One can easily prove the
following result.

Lemma 3. (1) If θ ⊑ θ′ then JθK ⊆ Jθ′K. (2) If there exists an infinite increasing
sequence θ0 ⊑ θ1 ⊑ θ2 . . . then there exists i ∈ N s.t. for all j ≥ i, θj = θi.

Furthermore, given a set of configurations S ⊆ Γ of the (r, 1)-protocol P =
〈Q,R, q0〉 (with BNRA(P) = 〈Γ,⇒, Γ0〉), we define post

P
(S) = {γ′ ∈ Γ | ∃γ ∈

Γ s.t. γ ⇒ γ′} and post∗
P

is the reflexive and transitive closure of postP (and
POST∗

P
the reflexive and transitive closure of POSTP). Note that since symbolic

configuration generate a single node for each label, repeated application of POSTP
are ensured to terminate. We can now give the properties of the POSTP operator.

Lemma 4. Let θ be a symbolic configuration of the protocol P. Then we have
θ ⊑ POSTP(θ) and for all reachability query ϕ, there exists γ ∈ post∗

P
(JθK) such

that γ |= ϕ iff POST∗
P
(θ) |= ϕ.

We have consequently an algorithm to solve whether there exists γ ∈ Reach(P) =
postP(Γ0). In fact it is enough to compute POST∗P(θ0) and to check whether
POST∗

P
(θ) |= ϕ. This computation is feasible thanks to Lemma 3 and thanks to

the first point of the previous lemma. Note that each each symbolic configuration
of the (r, 1)-protocol P is a graph with at most |Q| nodes and at most |Q|2 ∗ |r|2

edges and hence we need only polynomial space in the size of the protocol P
to compute POST∗

P
(θ0). Finally we can check in non-deterministic linear time

whether POST∗
P
(θ0) |= ϕ (it is enough to guess the function g from Vars(ϕ) to the

nodes of POST∗
P
(θ0)). Using Lemma 2, this gives us a polynomial space procedure

to check whether there exists γ ∈ ReachP such that γ |= ϕ. Furthermore, thanks
to the lower bound given by Proposition 1, we can deduce the exact complexity
of coverability for protocols using a single field in their messages.

Theorem 2. Cov (∗, 1) is PSpace-complete.

5 Fully Connected Topologies and No Reconfiguration

5.1 Undecidability of Cov fc(2, 1)

We now move to coverability in fully connected topologies. In contrast with the
results obtained without identifiers in [11] it turns out that, without reconfigu-
ration, coverability is undecidable already in the case of nodes with two registers
and one payload field. Following the same line as in Lemma 1, to prove the result
it is enough to define a (forward) list-builder protocol. We refer to Lemma 1∗

as the variation of Lemma 1 obtained considering the relation ⇒b (see [9]). The
protocol builds lists backwards from the tail qt. At each step, a node v among
the ones which are not part of the list broadcasts its identifier to the others
(which store the value, thus pointing to v), and moves to qz (or qt, if it is the
first step) electing itself as the next node in the list. The construction ends when
such a node will instead move to qh and force everyone else to stop. By applying
Lemma 1∗, the following theorem then holds (a complete proof is in [9]).

10

Theorem 3. Cov fc(2, 1) is undecidable even when one register is read-only.

5.2 Decidability of Cov fc(1, 1)

We now consider the problem Cov fc(1, 1), where configurations are fully con-
nected and do not change dynamically, processes have a single register, and each
message has a single data field. To show decidability, we employ the theory of
well-structured transition systems [1,17] to define an algorithm for backward
reachability based on a symbolic representation of infinite set of configurations,
namely multisets of multisets of states in Q. In the following we use [a1, . . . , ak]
to denote a multiset containing (possibly repeated) occurrences a1, . . . , ak of el-
ements from some fixed domain. For a multiset m, we use m(q) to denote the
number of occurrences of q in m.

Let P = 〈Q,R, q0〉 be a (1, 1)-protocol. The set Ξ of symbolic configurations
contains, for every k ∈ N, all multisets of the form ξ = [m1, . . . ,mk], where
mi for i ∈ [1..k] is in turn a multiset over Q. Given ξ = [m1, . . . ,mk] ∈ Ξ,
〈V,E, L〉 ∈ JξK iff there is a function f : V → [1..k] such that (1) for every
v, v′ ∈ V , if LM (v) = LM (v′) then f(v) = f(v′) and (2) for all i ∈ [1..k] and
q ∈ Q, mi(q) is equal to the number of nodes v ∈ V s.t. f(v) = i and LQ(v) = q

Intuitively, each mi is associated to one of the k distinct values of the register
(the actual values do not matter), and mi(q) counts how many nodes in state q

have the corresponding value. We now define an ordering over Ξ.

Definition 4. Given ξ = [m1, . . . ,mk] ∈ Ξ and ξ′ = [m′
1, . . . ,m

′
p] ∈ Ξ, ξ ≺ ξ′

iff k ≤ p and there exists an injection h : [1..k] → [1..p] such that for all i ∈ [1..k]
and all q ∈ Q, mi(q) ≤ mh(i)(q), i.e. mi is included in mh(i).

The following properties then hold.

Proposition 2. The ordering (ξ,≺) over symbolic configurations is a well-quasi
ordering (wqo), i.e. for any infinite sequence ξ1ξ2 . . . there exist i < j s.t. ξi ≺ ξj.

Proposition 3. Let preP(S) = {γ | γ ⇒b γ′, γ′ ∈ S}. There exists an al-
gorithm PREP taking in input I ⊆ Ξ and returning a set I ′ ⊆ Ξ s.t. JI ′K =
preP(JIK).

The formal definition of the predecessor operator is given in [9], together with
an example. Following [4], the algorithm for PREP can be used to effectively
compute a finite representation of the set of predecessors pre∗

P
(JBadK) for a set

of symbolic configurations Bad. The computation iteratively applies PRE until a
fixpoint is reached. The termination test is defined using ≺. The wqo ≺ ensures
termination of the computation [1]. The following theorem then holds.

Theorem 4. Cov fc(1, 1) is decidable.

An alternative proof can be given by resorting to an encoding into coverability
in data nets [21]. We present such an encoding in [9].

We consider now the complexity. We observe that, without registers and
fields our model boils down to the AHNs of [11]. For fully connected topologies,

11

Transitions/Topology r f Status Complexity

B+R,G
0 0 DEC PTIME
k ≥ 1 1 DEC PSPACE
2 2 UNDEC –

B,FC
0 0 DEC NON EL
1 1 DEC NON EL
2 1 UNDEC –

B,G 0 0 UNDEC –

Fig. 4. Decidability and complexity boundaries: B=broadcast transitions,
R=reconfiguration, FC=fully connected topologies, and G=arbitrary graphs.

AHN can simulate reset nets as shown in [12]. Following from the complexity of
coverability in reset nets [24], we have the the following theoretical lower bound.

Corollary 1. Cov fc(0, 0) and Cov fc(1, 1) are non elementary.

6 Conclusions

We have investigated decidability and complexity for coverability in a data-
sensitive model of broadcast communication (Figure 4). From a technical point
of view, our results can be viewed as a fine grained refinement of those obtained
for the case without data. For instance, undecidability follows from constructions
similar to those adopted in [11]. They are based on special use of data for building
synchronization patterns that can be applied even in fully connected networks.
Concerning possible applications, the symbolic algorithm for messages with a
single data field can be applied to abstract models of routing protocols like the
protocol of Section 3. Finally, as future extensions it would be interesting to
study ordered data fields and time-sensitive communication.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS’96, pages 313–321. IEEE Computer Soci-
ety, 1996.

2. P. A. Abdulla, G. Delzanno, and L. Van Begin. A classification of the expressive
power of well-structured transition systems. Inf. Comput., 209(3):248–279, 2011.

3. P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. Inf. Comput., 130(1):71–90, 1996.

4. P. A. Abdulla and B. Jonsson. Ensuring completeness of symbolic verification
methods for infinite-state systems. Theor. Comput. Sci., 256(1-2):145–167, 2001.

5. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized verification
with automatically computed inductive assertions. In CAV’01, volume 2102 of
LNCS, pages 221–234. Springer, 2001.

12

6. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. TCS,
147(1&2):117–136, 1995.

7. G. Delzanno. Constraint-based verification of parameterized cache coherence pro-
tocols. FMSD, 23(3):257–301, 2003.

8. G. Delzanno and F. Rosa-Velardo. On the coverability and reachability languages
of monotonic extensions of petri nets. Theor. Comput. Sci., 467:12–29, 2013.

9. G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification of broadcat
networks of register automata (technical report), 2013. Available at the URL
http://verify.disi.unige.it/publications/.

10. G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complexity of
parameterized reachability in reconfigurable broadcast networks. In FSTTCS’12,
volume 18 of LIPIcs, pages 289–300. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2012.

11. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc
networks. In CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.

12. G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the
parameterized verification of ad hoc networks. In FOSSACS’11, volume 6604 of
LNCS, pages 441–455. Springer, 2011.

13. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic
infinite-state systems. In LICS’98, pages 70–80. IEEE Computer Society, 1998.

14. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
LICS’99, pages 352–359. IEEE Computer Society, 1999.

15. A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W. L.
Tan. Automated analysis of aodv using uppaal. In TACAS’12, volume 7214 of
LNCS, pages 173–187. Springer, 2012.

16. A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of the lmac
protocol for wireless sensor networks. In IFM’07, volume 4591 of LNCS, pages
253–272. Springer, 2007.

17. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

18. S. M. German and A. P. Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

19. S. Joshi and B. König. Applying the graph minor theorem to the verification of
graph transformation systems. In CAV’08, volume 5123 of LNCS, pages 214–226.
Springer, 2008.

20. M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

21. R. Lazic, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with
tokens which carry data. Fundam. Inform., 88(3):251–274, 2008.

22. K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program.,
25(2-3):285–327, 1995.

23. M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification
of ad hoc routing protocols. In TACAS’08, volume 4963 of LNCS, pages 18–32.
Springer, 2008.

24. P. Schnoebelen. Revisiting ackermann-hardness for lossy counter machines and
reset petri nets. In MFCS’10, volume 6281 of LNCS, pages 616–628. Springer,
2010.

25. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-based model checking of
ad hoc network protocols. In CONCUR’09, volume 5710 of LNCS, pages 603–619.
Springer, 2009.

13

http://verify.disi.unige.it/publications/

	Parameterized Verification of Broadcast Networks of Register Automata

