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Abstract. We study decision problems for parameterized verification of a formal
model of Ad Hoc Networks with selective broadcast and spontaneous movement
recently proposed by Singh, Ramakrishnan, and Smolka. The communication
topology of a network is represented here as a graph. Nodes represent states of
individual processes. Adjacent nodes represent single-hop neighbors. Processes
are finite state automata that communicate via selective broadcast messages. Re-
ception of a broadcast is restricted to single-hop neighbors. For this model we
consider verification problems that can be expressed as reachability of configura-
tions with one node (resp. all nodes) in a certain state. All decision problems are
parametric both on the size and on the form of the communication topology of the
initial configurations. We draw a complete picture of the decidability boundaries
of these problems according to various assumptions on the communication topol-
ogy of the network, namely static vs mobile and unbounded- vsbounded-path
topologies.

1 Introduction

In recent years there has been an increasing interest in the formal verification of proto-
cols used in Ad Hoc Networks. In this setting a node of the network can communicate
only with the subset of nodes that are within the range of the its own transmission de-
vice. Movement or external factors can dynamically modify the configuration of the
network. Building on previous works like [18,6,17,20,21],Singh, Ramakrishnan and
Smolka define theω-calculus [22] as a formal model of Ad Hoc Networks with se-
lective broadcast and spontaneous movement. The structureunderlying a configuration
is a finite graph that defines the communication topology of the network. Specifically,
in this model each node represents an individual process. Each process has an inter-
face. An interface contains a set of group names. Nodes communicate through selective
broadcast, i.e., a broadcast message is received only from nodes whose interfaces share
names in common with that of the sending node (single-hop neighbors). When the num-
ber of nodes is fixed a priori, formal models of Ad Hoc Networkslike those proposed
in [22] can be verified by using symbolic model checking [9,22]. The study of verifi-
cation problems for networks of arbitrary size and unknown topology is an interesting
and challenging problem for this class of systems.

In this paper we investigate decidability and undecidability of parameterized ver-
ification problems for an automata-based model, we named AHN, inspired by theω-
calculus of [22]. In all decision problems we study, initialconfigurations may have an
arbitrary (finite) number of nodes connected with an arbitrary topology. Our investiga-
tion takes into account different assumptions on the communication topology. Specifi-
cally, we consider configurations with unknown but static topology, with unknown but



mobile topology, and with unknown static but bounded path topology. In the latter case
we assume that there is an upper bound to the length of simple paths in the network
topology.

For these three parameterized cases we present a systematicanalysis of the decid-
ability of the following verification problems: (COVER) reachability of a configuration
with onenode in a given state, (TARGET) reachability of a configuration withall nodes
in a given state, (REPEAT-COVER) existence of a computation traversinginfinitely often
configurations with at least one node in a given state.

Our main negative result is that all three problems are undecidable for arbitrary
static topology. The proofs are based on a simulation of a Turing complete formalism
which is correct only for topologies of a given type. As the topology is arbitrary, the
simulation is preceded by a protocol able to explore the current topology and to start
the simulation only if it is of the expected form.

Perhaps surprisingly, all three problems become decidablein the mobile case. This
result is similar to what happens in channel systems where introducing lossiness simpli-
fies the verification task [3]. On the contrary, for static bounded path topologies,TAR-
GET and REPEAT-COVER turn out to be undecidable whileCOVER is still decidable.
This last result is similar to what happens in point-to-point communication networks
with bounded communication paths [23], but due to broadcastcommunication we need
to resort to a different proof technique. Namely, even if we use the theory of Well-
Structured Transition Systems (WSTS) [1,2,10] as in [13,23], we need to consider a
stronger ordering on states based on the induced subgraph ordering [4] instead of the
subgraph-embedding. To the best of our knowledge, this is the first case of application
of the induced subgraph ordering in the context of WSTS.

Related Work. Ethernet-like broadcast communication has been analyzed by Prasad
[18] using the Calculus of Broadcasting Systems, in which all processes receive a broad-
cast message at once. A similar type of broadcast mechanism is used in the Broadcast
Protocols of Emerson and Namjoshi [5]. In our setting, this is similar to the case in
which all nodes share a common group (the underlying graph isa clique). Ene and
Muntean presented thebπ-calculus [6], an extension of theπ-calculus [15] with a broad-
cast such that only nodes listening on the right channel can receive. Wireless broadcast
communication has been investigated in the context of process calculi by Nanz and
Hankin [17], Singh, Ramakrishnan and Smolka [20,21], Mezzetti and Sangiorgi [14],
Godskesen [11], and Merro [12]. In particular Nanz and Hankin [17] consider a graph
representation of node localities to determine the receivers of a message, while Godske-
sen [11] makes use of a neighbour relation. On the contrary, Mezzetti and Sangiorgi [14]
and Merro [12] associate physical locations to processes sothat the receivers depend on
the location of the emitter and its transmission range. As already mentioned, we have
been directly inspired by theω-calculus of Singh, Ramakrishnan and Smolka [20,21].
Theω-calculus is based on theπ-calculus. Theπ-calculus [15] intermixes the commu-
nication and mobility of processes by expressing mobility as change of interconnection
structure among processes through communication. In theω-calculus mobility of pro-
cesses is abstracted from their communication actions, i.e., mobility is spontaneous and
it does not involve any communication. In [22] the same authors define a constraint-
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based analysis for configurations with fixed topologies and afixed number of nodes.
The authors also mention that checking reachability of a configuration from an initial
one is decidable for the fragment without restriction. Thisproperty is an immediate con-
sequence of the fact that there is no dynamic generation or deletion of processes (i.e. it
boils down to a finite-state reachability problem). The symbolic approach in [22] seems
to improve verification results obtained with more standardmodel checking techniques.
For instance, in [9] model checking is used for automatic verification of finite-state and
timed models of Ad Hoc Networks. In these works the number of nodes in the initial
configurations is known and fixed a priori. In order to detect protocol vulnerabilities
tools like Uppaal are executed on all possible topologies (modulo symmetries) for a
given number of nodes. In [19] Saksena et al. define a symbolicprocedure based on
graph-transformations to analyze routing protocol for Ad Hoc Networks. The symbolic
representation is based on upward closed sets of graphs ordered w.r.t. subgraph inclu-
sion. Their procedure is not guaranteed to terminate. In ourpaper we consider a non
trivial class of graphs (bounded path configurations) for which backward analysis with
a similar symbolic representation (upward closure of graphs w.r.t. induced subgraph or-
dering) is guaranteed to terminate for finite-state descriptions of individual nodes.

Due to lack of space, omitted proofs can be found in Appendix.

2 A Formal Model for Ad Hoc Network Protocols

Syntax.Following [22], a configuration of an Ad Hoc Network is modeled as a graph
in which nodes represent processes and edges represent the underlying communication
topology. We assume that nodes cannot dynamically be created or deleted. The behavior
of a single node is described by a finite-state automaton, called process, with either
local, broadcast, or reception actions.

Definition 1. A processP is a tuple〈Q, Σ, E, Q0〉 where:Q is a finite set of control
states;Σ is a finite alphabet;E ⊆ Q × ({τ} ∪ {b(a), r(a) | a ∈ Σ}) × Q is the
transition relation;Q0 ⊆ Q is a set of initial control states.

The labelτ represents an internal action of a process, the labelb(a) represents the
broadcast messagea sent to all single-hop (or adjacent) neighbors, and the label r(a)
represents the reception of messagea. A convenient way to describe the connectivity of
the network is to associate to each node an interface that defines the set of group names
to which the node belongs. Two nodes are connected if their interfaces share at least
one common group name.

Definition 2. An Ad Hoc Network Protocol (shortly AHN) is a pair〈P,G〉 whereP is
a process andG is a denumerable set of group names.

Semantics.Given an AHN〈P,G〉 with P = 〈Q, Σ, E, Q0〉, anoden is represented by
a pair〈q, I〉, whereq ∈ Q is its currentstateandI ⊆ G is its interface. A configuration
γ of 〈P,G〉 is then a tuple〈n1, . . . , nk〉 of nodes withk ≥ 1.

We useC to denote the set of configurations associated to〈P,G〉. We define func-
tions σ and ι to extract the state and the interface of a node, i.e.,σ(〈q, I〉) = q and
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Fig. 1. Graph associated to a configuration.

ι(〈q, I〉) = I. We extendσ andι to configurations in the natural way. Given a config-
urationγ, we sometimes considerσ(γ) as a set rather than a vector and useq ∈ σ(γ)
to denote that there exists a nodeni in γ such thatσ(ni) = q. A configurationγ de-
fines a given network topology specified by the graphG(γ). The vertices inG(γ) are
in bijection with the nodes ofγ. The label of a vertex is the state of the corresponding
node inγ. Furthermore, there exists an edge between two vertices inG(γ) if and only
if the intersection of the interfaces of the corresponding nodes inγ is not empty. For
instance, consider a configurationγ with six nodes such thatn1 = 〈red, {g1, g2}〉,
n2 = 〈green, {g1, g3}〉, n3 = 〈green, {g2, g3}〉, n4 = 〈white, {g3, g4}〉, n5 =
〈yellow, {g4}〉, andn6 = 〈green, {g4}〉, the communication topology induced byγ
is depicted in Figure 1.

We then define the set of single-hop neighbors of nodeni in a configurationγ =
〈n1, . . . , nk〉 asShn(γ, i) = {j ∈ [1..k] | ι(ni) ∩ ι(nj) 6= ∅ andj 6= i}, i.e., the set of
nodes adjacent toni in G(γ). Furthermore, given a broadcast messagea ∈ Σ, we define
the set of indexesRec(γ, a) = {j ∈ [1..k] | (σ(nj), r(a), q) ∈ E for someq ∈ Q}.
The set of nodes inγ enabled by a broadcasta sent by nodeni is then defined as
Enabled(γ, i, a) = Shn(γ, i) ∩ Rec(γ, a).

The semantics of an AHN〈P,G〉 with P = 〈Q, Σ, E, Q0〉 is given by its associated
transition systemTS(P,G) = 〈C,⇒, C0〉. C is the set of configurations associated to
〈P,G〉, C0 is the set of initial configurations defined asC0 = {γ ∈ C | σ(γ) ⊆ Q0}
and⇒⊆ C × C is the transition relation defined as follows: forγ = 〈n1, . . . , nk〉 and
γ′ = 〈n′

1, . . . , n
′
k〉, γ ⇒ γ′ iff one of the following conditions holds:

local action there existsi ∈ [1..k] such that(σ(ni), τ, σ(n′
i)) ∈ E, ι(ni) = ι(n′

i), and
for all j ∈ [1..k] \ {i}, n′

j = nj (local action);
broadcast there existsi ∈ [1..k] such that(σ(ni),b(a), σ(n′

i)) ∈ E, ι(ni) = ι(n′
i),

and for all j ∈ Enabled(γ, i, a), (σ(nj), r(a), σ(n′
j)) ∈ E , and for all l /∈

(Enabled(γ, i, a) ∪ {i}) n′
l = nl.

We denote by⇒∗ the reflexive and transitive closure of⇒. An execution is a sequence
γ0γ1 . . . such thatσ(γ0) ∈ Q0 andγi ⇒ γi+1 for i ≥ 0. As an example, consider the
following set of rules:

(white, τ, yellow) (yellow,b(m), red)

(green, r(m), yellow) (white, r(m), yellow)

Starting with a configuration with white and green nodes, once a red alarm is detected
by a white node (i.e. the node turns yellow), it is flooded to all single-hop neighbors. In
turn, they forward the red alarm to their neighbors, and so on. In Figure 2 we show an
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Fig. 2.Example of execution

execution of the previous rules. After some steps, the alarmreaches all the nodes of the
communication graph.

Decision Problems.In this section we consider decision problems related to verifica-
tion of safety and liveness properties studied in the literature for models like Petri nets
[7,8]. All the problems are formulated in the parameterizedcase in which the size and
the topology of the networks are not known. In the following definitions we assume an
AHN 〈P,G〉 with transition systemTS(P,G) = 〈C,⇒, C0〉.

The first problem iscontrol state reachability(COVER) defined as follows: given a
control stateq of P , do there existγ ∈ C0 andγ′ ∈ C such thatγ ⇒∗ γ′ andq ∈ σ(γ′)?
We recall that a configurationγ is initial if σ(γ) ⊆ Q0. Notice that being initial does
not enforce any particular constraint on the topology. Thus, assume that the stateq
represents an error state for a node of the network. If we can solve COVER, then we can
decide if there exists a topology of the network and a sufficient number of processes
from which we can generate a configuration in which the error is exposed.

The second problem istarget reachability problem(TARGET) which we define as
follows: given a subset of control statesF of P , do there existγ ∈ C0 andγ′ ∈ C such
thatγ ⇒∗ γ′ andσ(γ′) ⊆ F?
Assume that the subsetF represents blocking states for nodes of the network. If we
can solveTARGET, then we can decide if there exists a topology of the network and
a sufficient number of processes from which we can reach a configuration in which
processes can no longer move.

Finally we will also study therepeated control state reachability problem(REPEAT-
COVER): given a control stateq of P , does there exist an infinite executionγ0 ⇒ γ1 ⇒
. . . such that the set{i ∈ N | q ∈ σ(γi)} is infinite?
This problem is a classical extension of theCOVER problem that can be used, for in-
stance, to verify whether a protocol is able to react to the occurrence of errors by reach-
ing a state from which errors do not occur any longer. Assume that q represents the
error state. If we can solveREPEAT-COVER, then we can decide if there exists a topol-
ogy of the network and a sufficient number of processes that can generate a computation
including infinitely many error states.
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3 Static Topology

In this section, we will prove thatCOVER, TARGET andREPEAT-COVER are all unde-
cidable problems. We first recall that in our decision problems there are no assumptions
on the number of nodes and on the communication topology of the initial configura-
tions. Furthermore, the model does not admit dynamic reconfigurations of the topology.
Broadcast communication can be used however to ensure that aspecific protocol suc-
ceeds only if the network topology has a certain form. To be more precise, consider the

ErrA0
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A1

b(req)

A2

r(ack)
r(ack)

A3

b(ok)

B0

r(ack)

B1
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r(ack)r(req)

r(ok)

B2

b(ack)

B3

r(ok)

Fig. 3. The RAO (Req/Ack/Ok) protocol.

protocol specified by the process Req/Ack/Ok (RAO) of Figure3 whereA0 andB0 are
the initial states.

Proposition 1. LetG be a denumerable set of group names andγ an initial configura-
tion of the AHN〈RAO,G〉. If γ′ is a configuration such thatγ ⇒∗ γ′ and such that
B3 ∈ σ(γ′), then the graphG(γ′) has the following properties:

– each noden labelled withB3 is adjacent to a unique node labelled withA3 (we
will denotef(n) this node)1;

– for each noden labelled withB3, all the nodes adjacent ton or f(n) are labelled
with Err (except of coursen andf(n)).

Proof. Assumen is a node ofγ′ in stateB3. Sincen has received a messageok to reach
B3, it is necessarily adjacent to a node in stateA3. No other node adjacent ton can be in
stateA3. Indeed, ifn receives tworeq messages before sending anack, thenn moves to
stateErr. Furthermore, ifn sends anack, then all adjacent nodes that are in statesA0

(ready to send areq) move to stateErr. Rule(A0, r(req), Err) ensures that, inG(γ′),
no node labeledAi is adjacent to a node labeledA3. Rules(B0, r(ack), Err) and
(B1, r(ack), Err) ensure that, whenn has labelB3, its single-hop neighbors cannot
have labelBi. Rule(B1, r(ok), Err) ensures that a node different fromn but adjacent
to f(n) must have state different fromBi. Indeed, if such a node is in stateB1, then the
broadcastok sent byf(n) sends it toErr, and if such a node moves toB2 sendingack
then it sends nodef(n) to Err before it can reachA3. ⊓⊔

1 Two nodes are adjacent iff there is an edge between these two nodes
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Using an extension of the RAO protocol, we can define an AHN which simulates
the execution of a deterministic two-counter Minsky machine and reduce the halting
problem toCOVER. A deterministic Minsky machine manipulates two integer variables
c1 andc2, which are called counters, and it is composed of a finite set of instructions.
Each of the instuction is either of the form (1)L : ci := ci + 1; goto L′ or (2) L :
if ci = 0 then goto L′ else ci := ci − 1; goto L′′ wherei ∈ {1, 2} andL, L′, L′′

are labels preceding each instruction. Furthermore there is a special labelLF from
which nothing can be done. The halting problem consists thenin deciding whether or
not the execution that starts fromL0 with counters equal to0 reachesLF .

The intuition behind the reduction is as follows. In a first phase we adapt the RAO
protocol to ensure that a given control node is connected to two distinct lists of nodes
used to simulate the content of the counters. Each node in thelist associated to counter
ci is either in stateZi or NZi The current value of the counterci equals the number of
NZi nodes in the list. The length of each list is guessed non-deterministically during
the execution of the first phase (i.e. before starting the simulation) and it corresponds to
the maximum value store in a counter for the simulation to succeed. Initially, all nodes
must encode zero (stateZi). Note however that the RAO protocol can only be used
to connect pairs of nodes with distinct ending state. For this reason, we assume that
adjacent nodes in the list have distinct states (e.g.Zi is connected to a node with state
Z ′

i, Z ′
i is connected to a node in stateZ ′′

i , Z ′′
i is connected to a node in stateZi, and so

on). This way each node has only one predecessor and one successor node among all
neighbors (all other nodes, if present, are sent to error states).

In the second phase the control node starts the simulation ofthe instructions. It op-
erates by querying and changing the state of the nodes in the two lists according to the
type of instructions to be executed. In this phase all nodes in the same list behave in
the same way (i.e.,Z ′

i, Z
′′
i andZi are all treated as zero units). Requests are propagated

back and forth a list by using broadcast sent by a node to its (unique) single-hop succes-
sor/predecessor node. The protocols that define the two phases are fairly complicated;
the corresponding automata are described in detail in Appendix A. Since it has been
shown in [16] that the halting problem for deterministic two-counter Minsky machine
is undecidable, we obtain the following result.

Theorem 1. COVER is an undecidable problem.

Furthermore, we have the following corollary.

Corollary 1. TARGET andREPEAT-COVER are undecidable problems.

Proof. Let P = 〈Q, Σ, E, Q0〉 be a process,G a denumerable set of group names and
q ∈ Q. The reduction fromCOVER to REPEAT-COVER is classical and is performed by
adding a loop of the form(q, τ, q) to E. To reduceCOVER to TARGET, we build the
processP ′ = 〈Q′, Σ′, E′, Q′

0〉 as follows:

– Q′ = Q ⊎ {r0, r1, rF } (with Q ∩ {r0, r1, rF } = ∅);
– Σ′ = Σ ⊎ {F1, F2} (with Σ ∩ {F1, F2} = ∅);
– E′ = E ⊎ {(q,b(F1), rF ), (r0, r(F1), r1), (r1,b(F2), rF )} ∪ {(q′, r(F2), rF ) |

q′ ∈ Q};
– Q′

0 = Q0 ⊎ {r0}.
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Let TS(P,G) = 〈C,⇒, C0〉 andTS(P ′,G) = 〈C′,⇒′, C′
0〉. It is then easy to see that

there existγ2 ∈ C′
0 and γ′

2 ∈ C′ such thatγ2 ⇒′∗ γ′
2 and σ(γ′

2) ⊆ {rF } if and
only if there existsγ1 ∈ C0 andγ′

1 ∈ C such thatγ1 ⇒∗ γ′
1 andq ∈ σ(γ′

1). In fact,
in TS(P ′,G) after being in the stateq a node can broadcast the messageF1 which
launches a protocol whose goal is to send all the other nodes in the staterF . ⊓⊔

4 Mobile topology

In this section we consider a variant on the semantics of AHN obtained by adding spon-
taneous movement of nodes as in [22]. Node mobility is modeled by non-deterministic
updates of their interfaces. Formally, let〈P,G〉 be a AHN withTS(P,G) = 〈C,⇒, C0〉.
The semantics of〈P,G〉 with mobility is given by the transition systemTSM (P,G) =
〈C,⇒M , C0〉 where the transition⇒M is defined as follows.

Definition 3 (Transition Relation with Mobility). For γ, γ′ ∈ C withγ = 〈n1, . . . , nk〉
andγ′ = 〈n′

1, . . . , n
′
k〉, we haveγ ⇒M γ′ iff one the following condition holds:

– γ ⇒ γ′ (no movement);
– there existsi ∈ [1..k] such that,σ(n′

i) = σ(ni) (state does not change),ι(n′
i) ⊆ G

(interface changes in an arbitrary way), and for allj ∈ [1..k] \ {i}, n′
j = nj (all

other nodes remain unchanged) (movement).

We prove next thatCOVER, REPEAT-COVER andTARGET are decidable for AHN
with mobility. Intuitively, this follows from the observation that the topology of the
network changes in an unpredictable and uncontrollable manner. Hence, every time a
node broadcasts a message this is received by a non-deterministically chosen set of
nodes, namely those in the communication range of the emitter at the time the message
is broadcast. Formally, we reduceCOVER, TARGET and REPEAT-COVER respectively
to themarking coverability, marking reachabilityand repeated marking coverability
problems for Petri nets, which are known to be decidable (seee.g. the survey [7] and
[8] for the repeated coverability).

A Petri net (see e.g. [7]) is a tupleN = (S, T, m0), whereS and T are finite
sets ofplacesand transitions, respectively. A finite multiset over the setS of places
is called amarking, andm0 is the initial marking. Given a markingm and a place
p, we say that the placep containsm(p) tokensin the markingm if there arem(p)
occurrences ofp in the multisetm. A transition is a pair of markings written in the form
m′ 7→ m′′. The markingm of a Petri net can be modified by means of transitions firing:
a transitionm′ 7→ m′′ can fire ifm(p) ≥ m′(p) for every placep ∈ S; upon transition
firing the new marking of the net becomesn = (m \ m′) ⊎ m′′ where\ and⊎ are the
difference and union operators for multisets, respectively. This is written asm → n. We
use→∗ [resp.→+ ] to denote the reflexive and transitive closure [resp. the transitive
closure] of→. We say thatm′ is reachable fromm if m →∗ m′. The coverability
problem for markingm consists of checking whetherm0 →∗ m′ with m′(p) ≥ m(p)
for every placep ∈ S. The reachabilityproblem for markingm consists of checking
whetherm0 →∗ m. Finally, therepeated coverability problemfor markingm consists
of checking wether there exists an infinite executionm0 →+ m1 →+ m2 →+ . . . such
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Fig. 4. A Petri net which simulates an AHN with mobility

that for all i ∈ N, mi(p) ≥ m(p) for every placep ∈ S. The coverability, reachability
and repeated coverability problems are decidable for Petrinets [7,8].

We now show how to build a Petri net which simulates the behavior of an AHN
with mobility. The Figure 4 gives an example of a Petri net associated to a process. In
the Petri net, each control stateq has a corresponding placeq, and each node〈q, I〉 of
the network is represented by a token in the placeq. The nodes interfaces (thus also the
network topology) are abstracted away in the Petri net. In a first phase, before to put a
token in the placeok, the Petri net put non-deterministically tokens in the places corre-
sponding to the initial control states of the process. Then it produces a token in the place
ok and the simulation begins. The broadcast communication is modeled by abroadcast
protocolwhose effect is to deliver the emitted message to a non-deterministically cho-
sen set of potential receivers. More precisely, the broadcast protocol can be started by a
token in a placeq such that(q,b(m), q′); after starting the protocol the token is moved
to a transient placeq′b and a token is produced in the placem ↑. During the execution
of the protocol, every token in a placer such that(r, r(m), r′) can receive the mes-
sage moving in a transient placer′r . The protocol ends when the token in the transient
placeq′b moves to the placeq′. The tokens in the transient placesr′r can move to the
corresponding placesr′ only when no broadcast protocol is running (when a broadcast
protocol is running, there is no token in the placeok). This broadcast protocol does
not faithfully reproduces the broadcast as formalized in the AHN model: in fact, in
the Petri net there is no guarantee that the tokens in the transient placesr′r move to
the corresponding placesr′ at the end of the execution of the protocol. A token that
remains in those transient places (thus losing the possibility to interact with the other
tokens in the Petri net) corresponds to a node in the AHN modelthat disconnects, due
to mobility, from the other nodes in the system. Testing whether there is an execution
in the AHN with mobility which ends in a configuration where one of the nodes is in
the control stateq can be done by testing whether the marking{q, ok} can be covered
in the associated Petri net. Hence:
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Theorem 2. There exists a reduction from theCOVER problem for AHN with mobility
to the marking coverability problem for Petri nets.

Using the same construction, we also obtain:

Theorem 3. There exists a reduction from theREPEAT-COVER problem for AHN with
mobility to the marking repeated coverability problem for Petri nets.

In order to reduceTARGET to marking reachability we need to extend the Petri
net associated to an AHN, adding a final stage in the computation, dedicated to the
elimination of tokens from the places corresponding to the final states inF . Intuitively
we add a transition of the form{ok} 7→ {end} and for eachq ∈ F we add a transition
{end, q} 7→ {end} and we then test if the marking where all the places are empty
execpt the placeend is reachable.

Theorem 4. There exists a reduction from theTARGET problem for AHN with mobility
to the marking reachability problem for Petri nets.

From these three last theorems and from the fact that the marking coverability,
marking repeated coverability and marking reachability problems are decidable for Petri
nets, we finally deduce:

Corollary 2. COVER, REPEAT-COVER and TARGET are decidable for AHN with mo-
bility.

5 AHN restricted to Bounded Path Configurations

Let us go back to the AHN model with static topology. The possibility for a message to
pass through an unbounded number of new nodes is a key featurein the proof of The-
orem 1 (undecidability ofCOVER for static topology). For this reason, it seems natural
to studyCOVER, TARGET andREPEAT-COVER for a restricted class of configurations in
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Fig. 6.Examples of the induce subgraph relation.

which, for a fixedK, a message can pass through at mostK-different nodes. Formally,
given an AHN〈P,G〉 with P = 〈Q, Σ, E, Q0〉 andTS(P,G) = 〈C,⇒, C0〉 our class
of restricted configurations is defined as follows:

Definition 4 (K-bounded Path Configuration).Given an integerK ≥ 1, a configu-
ration γ is aK-bounded path configuration if the longest simple path in theassociated
graphG(γ) has length at mostK.

We denote byCK the set ofK-bounded path configurations. The semantics of the AHN
〈P,G〉 resticted toK-bounded path configurations is given by the transition system
TSK(P,G) = 〈CK ,⇒K , CK

0 〉 where the transition relation⇒K is the restriction of⇒
to CK × CK andCK

0 = C0 ∩ CK . For fixedK, the class ofK-bounded path configura-
tions contains an infinite set of graphs. In Figure 5 we show anexample in which nodes
of typeS (server) are connected via bounded paths and nodes of typea andb (clients)
are locally connected to each server (using private group names). Here we could add
any number of client nodes (connected with private group names to a single server)
without breaking the bounded path property.

Decidability of COVER. In order to studyCOVER restricted to bounded path configura-
tions, we first introduce some definitions and prove auxiliary properties. First of all we
give the definition of theinduced subgraphrelation.

Definition 5 (Induced Subgraph Relation).For configurationsγ1 andγ2, we define
γ1 4is γ2 if there exists a label preserving injectionh from nodes ofG1 = G(γ1) to
nodes ofG2 = G(γ2) such that(n, n′) is an edge inG1 if and only if (h(n), h(n′)) is
an edge inG2, i.e.,G1 is isomorphicto an induced subgraph ofG2.

Notice that the induced subgraph relation is stronger than the usual subgraph relation
that requires only an homomorphic embedding ofG1 into G2. In Fig. 6 (a)G1 is iso-
morphic to an induced subgraph ofG2, thusG1 4is G2. In (b)G3 is obtained fromG1

by removing the edge from nodea to nodec. The induced graph ofG2 with nodesa,
b, c is no more isomorphic toG3, henceG3 64is G2 Notice, however, thatG3 is still a
subgraph ofG2.

The following lemma then holds.

11



Lemma 1. GivenK ≥ 1, (CK , 4is) is a well-quasi ordering (shortly wqo), i.e., for
every infinite sequence ofK-bounded path configurationsγ1γ2 . . . there existi < j s.t.
γi 4is γj .

Proof. We can apply here Ding’s Theorem (Theorem 2.2 in [4]). LetPn be the class of
graphs (with wqo labels) that do not containPn subgraphs, wherePn represents simple
paths withn nodes (over the same labels). Ding’s Theorem states that, for any natural
numbern ≥ 0, the classPn equipped with the induced subgraph relation is a wqo.
SincePK+1 corresponds to the class of graphs with longest simple path of length at
mostK, by taking as set of labels control states equipped with=, we obtain the wqo of
(CK , 4is). ⊓⊔

Given a subsetS ⊆ CK we defineS ↑= {γ′ ∈ CK | γ ∈ S andγ 4is γ′}, i.e.,S ↑ is
the set of configurations generated by those inS via 4is. A setS ⊆ CK is anupward
closed setw.r.t. to(CK , 4is) if S ↑= S. Since(CK , 4is) is a wqo, we obtain that every
set of configurations that is upward closed w.r.t.(CK , 4is) has a finite basis, i.e., it can
be finitely represented by a finite number ofK-bounded path configurations. We can
exploit this property to define a decision procedure forCOVER. For this purpose, we
apply the methodology proposed in [1]. The first property we need to prove is that the
transition relation induced by our models is compatible with 4is.

Lemma 2 (Monotonicity). For everyγ1, γ2, γ
′
1 ∈ CK such thatγ1 ⇒K γ2 andγ1 4is

γ′
1, there existsγ′

2 ∈ CK such thatγ′
1 ⇒K γ′

2 andγ2 4is γ′
2.

Proof. The interesting case is the application of a broadcast ruleb(a). Assume that the
rule is applied to a noden adjacent inG(γ1) to nodesN = {n1, . . . , nk}. Assume
that the subsetN ′ of N contains nodes that are enabled by messagea. By applying
the operational semantics, the state ofn and the states of nodes inN ′ are updated
simultaneously Assume now thatG(γ1) is isomorphic to an induced subgraph ofG(γ′

1)
via the injectionh. Then,h(n) is adjacent to the set of nodesh(N) (there cannot be
more connections sinceh(G(γ1)) is an induced subgraph ofG(γ′

1)). Thus, the same
rule is enabled inh(n) and inh(N ′) and yields the same effect on the labels. Thus, we
obtainγ′

2 such thatG(γ2) 4is G(γ′
2). ⊓⊔

Monotonicity ensures that ifS is an upward closed set of configurations (w.r.t.(CK ,
4is)), then the set of predecessors ofS accroding to⇒K , defined aspreK(S) =
{γ | γ ⇒K γ′ andγ′ ∈ S}, is still upward closed. We now show that we can effectively
compute a finite representation ofS ∪ preK(S).

Lemma 3. Given a finite basisB of an upward closed setS ⊆ CK , there exists an
algorithm to compute a finite basisB′ of S ∪ preK(S) such thatS ∪ preK(S) = B′ ↑.

In Appendix E, we give an example of the symbolic computationof S ∪ preK(S). We
can now state the main theorem of this section.

Theorem 5. For K ≥ 1, COVER is decidable for AHN restricted toK-bounded path
configurations.

12
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Fig. 7. Configuration〈q0, c1 = 3, c2 = 2〉 for c1 ∈ [0, 4] andc2 ∈ [0, 2].

Proof. From Lemmas 1, 2, and 3 it follows that the transition system induced by any
AHN is well structured with respect to(CK , 4is). The theorem then follows from the
general properties of well-structured transition systemsdescribed in [1,2,10]. The deci-
sion procedure is based on a symbolic backward exploration in which we use finite sets
of configurations inCK to symbolically represent upward closed sets of configurations
(those generated by the bases). Thus, to solveCOVER for a control stateq, we compute
Pre∗({q} ↑). The wqo of(CK , 4is) ensures that the symbolic computation of prede-
cessors terminates after finitely many step whenever we use4is to discard graphs that
do not add new information. We can then test if the resulting fixpoint contains initial
configurations by looking for graphs in which all nodes have labels inQ0. ⊓⊔

Undecidability of TARGETand REPEAT-COVER. In order to show thatTARGET is unde-
cidable forK-bounded path configurations, we show how to model a Minsky machine
in such a way that the machine terminates if and only if the corresponding AHN has
a computation (restricted toK-bounded path configurations) that reaches a configura-
tion in which all nodes are in some specific final state. For this purpose, we design a
protocol that succeeds only on star topologies in which the center node represents the
current control state and the satellite nodes the units of the two counters. Such units
are initially in thezeroi state (withi ∈ {1, 2}). The number of satellite nodes needed
to guess the maximal values reached by the counters during the computation is non-
deterministically chosen in a preliminary part of the simulation . Only runs that initially
guess a sufficient number of satellite nodes can successfully terminate the simulation.
A satellite node moves from thezeroi to theonei state when thei-th counter is incre-
mented, and a single node moves from theonei back to thezeroi state when the counter
is decremented. For instance, the star in Figure 7 represents a configuration with con-
trol stateq0 and countersc1 = 3 (with maximal value equals to4), andc2 = 2 (with
maximal value equals to2).

Test for zero actions are more difficult to be simulated as it is not possible to check
the absence of neighbours in the stateonei. Nevertheless, it is possible to ensure that no
node is in the stateonei after a test for zero is executed. It is sufficient to use broadcast
communication to move all the satellite nodes in theonei state to a specialsink state. If
the simulation terminates exposing the final control state and no node is in thesink state
(i.e. a configuration is reached in which all the nodes are in the final control state, in
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thezeroi, or theonei state), we can conclude that the simulated computation is correct,
thus also the corresponding Minsky machine terminates.

Note that the number of satellite nodes is not fixed a priori. However the graph have
bounded path (the construction works for paths of length3), so we can conclude what
follows:

Theorem 6. TARGET is undecidable for AHN restricted toK-bounded path configura-
tions (withK ≥ 3).

As a corollary we now prove the undecidability ofREPEAT-COVER. We need to
slightly modify the way we model Minsky machines. The idea isto repeatedly simulate
the computation of the Minsky machine, in such a way that the final control state can
be exposed infinitely often if and only if the simulated Minsky machine terminates.

Every simulation phase simulates only a finite number of steps of the Minsky ma-
chine, and if the final control state is reached then a new simulation phase is started.
This is achieved by including in the initial star topology also satellite nodes in thefree
state, and ensuring that every simulated action moves one ofthose nodes to thedone
state. In this way, a simulation cannot perform more steps than the number offree
nodes in the initial star topology. If the final control stateis reached, a new simulation is
started by moving all the nodes from thedone to thefree state, all the nodes from the
onei to thezeroi state, and by restarting from the initial control state. Notice that nodes
reaching thesink state (due to a wrong execution of a test for zero action) are no longer
used in the computation. For this reason, as every time a wrong test for zero is executed
some node moves in thesink state, we are sure that only finitely many wrong actions
can occur. Hence, if the final control state is exposed infinitely often, we have that only
finitely many simulation phases could be wrong, while infinitely many are correct. As
all simulation phases reaches the final control state (necessary to start the subsequent
phase), we have that the corresponding Minsky machine terminates. Hence, we have
the following Corollary of Theorem 6:

Corollary 3. REPEAT-COVER is undecidable for AHN restricted toK-bounded path
configurations (withK ≥ 3).

6 Conclusions

In this paper we have studied different types of verificationproblems for a formal model
of Ad Hoc Networks in which communication is achieved via a selective type of broad-
cast. Perhaps surprisingly, a model with static topology turns out to be more difficult to
analyze with respect to a model with spontaneous node movement. A similar dichotomy
appears in verification of perfect and lossy channel systems. Studying the expressive-
ness of other variations on the semantics to model for instance conflicts, noise and
lossiness, is an interesting research direction for futureworks.
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A Proof of Theorem 1

We show how to reduce the halting problem for deterministic Minsky machine to the
COVER problem. To perform this reduction we will use many times thesame prin-
ciple as for the Req/Ack/Ok-protocol. We build a processP = 〈Q, E, Σ, Q0〉 given
by the Figures 8, 9, 10, 11, 12, 13 and 14. The initial states are Q0 = {R, C1, C

′
1,

C′′
1 , C2, C

′
2, C

′′
2 }. For each labelL of the Minsky machine there is a control stateL in

Q and the instructions of the Minsky machine are encoded by theFigures 13 and 14. In
the sequel we call processS with S ∈ {R, C1, C

′
1, C

′′
1 , C2, C

′
2, C

′′
2 } the process whose

initial state corresponds to the given name.
We consider an infinite denumerable set of namesG and we will show that the

Minsky machine eventually reaches the labelLF if and only if there is an initial con-
figurationγ associated toP andG and a configurationγ′ such thatγ =⇒∗ γ′ and
LF ∈ σ(γ′).

We first assume that there is an initial configurationγ associated toP andG and a
configurationγ′ such thatγ =⇒∗ γ′ andLF ∈ σ(γ′). Intuitively the AHN associated
to P andG works in two phases, in the first phase it ensures that the topology has a
certain form (using the same method as theRAO protocol) and in the second phase
it simulates the behavior of the Minsky machine. Note that the RAO protocol works
to isolate two nodes in the graph, since we want here to build lists of nodes, we need
at least three types of process (whereas theRAO protocol is using only two kinds of
process, the one labelled byAi and the one labelled byBi in the Figure 3).

Let us now explain the first phase more in details. Letγ′′ be a configuration such
thatL0 ∈ σ(γ′′) (note that before reaching a configuration containingLF the system
has to be in a configuration likeγ′′). Using a reasoning similar to the one developed in
the proof of Proposition 1, we can deduce that the graphG(γ′′) enjoys the following
properties. Ifn is a node ofG(γ′′) labelled withL0 then there are two sequences of
nodesn1, n2, . . . , nk andn′

1, n
′
2, . . . , n

′
l such that:

– n1 andn′
1 are connected ton;

– for i ∈ {1, . . . , k − 1}, ni is adjacent toni+1;
– for i ∈ {1, . . . , l − 1}, n′

i is adjeacent ton′
i+1;

– for i ∈ {1, . . . , k}, if (i mod 3 = 1) thenni is labelled withZ ′
1, if (i mod 3 = 2)

thenni is labelled withZ ′′
1 and if (i mod 3 = 0) thenni is labelled withZ1;

– for i ∈ {1, . . . , l}, if (i mod 3 = 1) thenn′
i is labelled withZ ′

2, if (i mod 3 = 2)
thenn′

i is labelled withZ ′′
2 and if (i mod 3 = 0) thenn′

i is labelled withZ2.

In other words in the graph we have two such sequences of labelsL0−Z ′
1−Z ′′

1 −Z1−
Z ′

1 −Z ′′
1 −Z1 − . . . andL0 −Z ′

2 −Z ′′
2 −Z2 −Z ′

2 −Z ′′
2 −Z2 − . . .. Furthermore, we

have that :

– all the other nodes which are adjacent ton are in stateErr (and so they will not
play any role in the further communication);

– for i ∈ {1, . . . , k} all the other nodes adjacent toni are either in stateErr or in
a state belonging to processC2 or C′

2 or C′′
2 (which is not a problem since these

processes cannot communicate directly with each other);
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– for i ∈ {1, . . . , l} all the other nodes adjacent ton′
i are either in stateErr or in

a state belonging to processC1 or C′
1 or C′′1 (which is not a problem since these

processes cannot communicate directly with each other).

We have the following property because each node first answers to the protocolRAO to
its predecessor and then either it launches a new protocolRAO with a successor node
or it sends adonei which is transmitted to the noden sending it in stateL0.

Once the form of the topology is ensured, the simulation of the Minsky machine
begins. In this second phase we forget about the distinctionbetweenZi, Z ′

i andZ ′′
i

[resp.NZi, NZ ′
i andNZ ′′

i ] which was useful only to explain how to obtain two lists
of nodes. The simulation of the Minsky machine is performed as follows:

– For the incrementation of the counterc1, the noden sends aninc1 and waits for
anackinc1 (see Figure 13); thisinc1 is transmitted to the first nodenj which is
in stateZ1 and which then goes in stateNZ1 sending the acknowledgement (see
Figure 12). So the number of nodesn1 in stateNZ1 characterizes the value of the
counter at each step of the simulation. Note that if there is no more node in stateZ1

then the noden is in a pending state;
– For the decrementation of the counterc1 the noden sends adec1 and then there are

two cases (see Figure 14):
1. if the noden1 is in stateZ1, it sends back azero1 to the noden,
2. if the noden1 is not in stateZ1, but in stateNZ1, the dec1 is transmitted

to first nodenj in stateNZ1, this node then sends azero1 and the nodenj−1

receives this message and goes fromNZ1 to stateZ1 sending aackdec1 which
is transmitted back to noden by its predecessors.

The incrementation and decrementation of the second counter are performed exactly
the same way. It is then clear that if the AHN reaches the configurationγ′ such that
LF ∈ σ(γ′) we can build a run of the Minsky machine which reaches the label LF .

We now assume that the Minsky machine reaches the stateLF during its unique
execution. We denote byk [resp. byl] the highest value taken by the first [resp. the
second] counter during this execution. Then it is enough to consider the following initial
configurationn′

l+1 − n′
l − . . . − n′

1 − n − n1 − . . . − nk − nk+1 where:

– n is labelled byR;
– for i ∈ 1, . . . , l + 1, if (i mod 3 = 1) thenn′

i is labelled byC′
2, if (i mod 3 = 2)

thenn′
i is labelled byC′′

2 and if (i mod 3 = 0) thenn′
i is labelled byC2;

– for i ∈ 1, . . . , k + 1, if (i mod 3 = 1) thenni is labelled byC′
1, if (i mod 3 = 2)

thenni is labelled byC′′
1 and if (i mod 3 = 0) thenni is labelled byC1.

The execution of the AHN from this initial configuration willnecessarily reaches a
configurationγ′ such thatLF ∈ σ(γ′), the details of the execution being the same as to
prove the previous implication. ⊓⊔
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B Proof of Theorem 2

Let 〈P,G〉 be a AHN withP = 〈Q, Σ, E, Q0〉 andTSM(P,G) = 〈C,⇒M , C0〉 its
associated transition system with mobility. We associate to P the following Petri net
[[P ]] = (S, T, m0) where the set of placesS is defined as follows

S = Q ∪ {qb, qr | q ∈ Q} ∪ {a↑ | a ∈ Σ} ∪ {start, ok}

the set of transitionsT is the minimal set containing the following classes of transitions

Prepare: if q0 ∈ Q0 then{start} 7→ {start, q0} ∈ T ;
Start: if q0 ∈ Q0 {start} 7→ {ok, q0} ∈ T ;
Start protocol: if (q,b(a), q′) ∈ E then{q, ok} 7→ {q′b, a↑} ∈ T ;
Receive: if (q, r(a), q′) ∈ E then{q, a↑} 7→ {q′r, a↑} ∈ T ;
End protocol: if q ∈ Q anda ∈ Σ then{qb, a↑} 7→ {q, ok} ∈ T ;
Complete receive: if q ∈ Q anda ∈ Σ then{qr, ok} 7→ {q, ok} ∈ T .

and the initial markingm0 = {start} ∈ T .
This Petri net includes thePrepareandStart transitions that are used to reach the

markings corresponding to every possible (parameterized)initial configuration of the
AHN. The other transitions are used to implement the broadcast protocol.

We now prove that the behavior of[[P ]] models the behavior of〈P,G〉 with mobil-
ity. This proof is divided in two distinct results: a completeness result stating that all
execution inTSM (P,G) are mimicked by computations of[[P ]] and a soundness result
showing that for every marking not including tokens in transient places (places of the
form qb or qr) there is a corresponding configuration reachable in the AHN.

We use the following notation: given a configurationγ = 〈n1, . . . , nk〉 in C, the
marking corresponding toγ is denoted withdec(γ) =

⊎
i∈{1,··· ,k} σ(ni) ⊎ {ok}.

Lemma 4 (Completeness).Let γ ∈ C0 and γ′ ∈ C. If γ ⇒∗
M γ′ then the marking

dec(γ′) is reachable in[[P ]].

Proof. By induction on the length of the computationγ ⇒∗
M γ′. ⊓⊔

Lemma 5 (Soundness).Let m be a marking reachable in the Petri net[[P ]] such that
m(ok) = 1 andm(p) = 0 for every placep ∈ {qb, qr | q ∈ Q}. There existsγ ∈ C0

andγ′ ∈ C′ such thatdec(γ′) = m andγ ⇒∗
M γ′.

Proof. By induction on the number of broadcast protocols executed during the compu-
tationm0 →∗ m of the Petri net[[P ]]. In the inductive case we note that the computation
m0 →∗ m can be divided in three partsm0 →∗ m′ →∗ m′′ →∗ m wherem′ →∗ m′′

is the last execution of the broadcast protocol. The transitions in m′′ →∗ m are all
Complete receivetransitions and can be divided in two groups: (i) those that apply to
tokens introduced in transient places by the last broadcastprotocol, and (ii) those that
apply to the tokens in transient places when the last broadcast protocol is started. It is
easy to see that an alternative computationm0 →∗ m can be obtained simply by antici-
pating the transitions of type (ii) immediately before the execution of the last broadcast
protocol. In this way, the last broadcast protocol starts from a marking in which all tran-
sient places are empty, thus it is possible to apply the inductive hypothesis to prove the
thesis. ⊓⊔
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As a corollary of these two Lemmas we have thatCOVER in an AHN with mobility
can be reduced to marking coverability in the correspondingPetri net, thusCOVER turns
out to be decidable.

Lemma 6. Let q ∈ Q. We have that there exists anγ ∈ C0 and γ′ ∈ C such that
γ ⇒M γ′ andq ∈ σ(γ′) if and only if the marking{q, ok} is coverable in the Petri net
[[P ]].

Proof. Theonly-if part directly follows from Theorem 4. In theif part we observe that
if in [[P ]] there exists a computationm0 →∗ {q, ok} ⊎ m, then the computation can be
extended withComplete receivetransitions in order to remove all the tokens present in
transient places in the markingm. Thus the thesis directly follows from Lemma 5.⊓⊔

C Proof of Theorem 4

Let 〈P,G〉 be a AHN withP = 〈Q, Σ, E, Q0〉 andTSM(P,G) = 〈C,⇒M , C0〉 its
associated transition system with mobility. We consider a set F ⊆ Q. We associate to
P the following Petri net[[[P, F ]]] = (S, T, m0) where the set of placesS includes the
places of the Petri nets built in the proof of Theorem 2 plus the placeend, the initial
markingm0 is defined as in the proof of Theorem 2, and the set of transitionsT includes
the transitions defined in proof of Theorem 2 plus the following

End {ok} 7→ {end} ∈ T ;
Remove Final: if q ∈ F then{end, q} 7→ {end} ∈ T .

We have then:

Lemma 7. There existsγ ∈ C0 andγ ∈ C such thatγ ⇒∗
M γ′ andσ(γ′) ⊆ F if and

only if the marking{end} is reachable in the Petri net[[[P, F ]]].

Proof. The only-if part follows from Lemma 4; it is sufficient to observe that given
a configurationγ′ such thatσ(γ′) ⊆ F , then the marking{end} is reachable in[[[P, F ]]]
from the markingdec(γ′). Theif part follows from Theorem 5; it is sufficient to observe
that every computationm0 →∗ {end} is of the formm0 →∗ {ok} ⊎ m′ → {end} ⊎
m′ →∗ {end} wherem′ has tokens only in places corresponding to states inF . ⊓⊔

D Proof of Lemma 3

The interesting case is the backward application of a broadcast rule(q,b(a), q′) to a
configuration in the upward closure ofB. The computation of the setB ↑ ∪ preK(B ↑)
wherepreK(B ↑) = {γ | γ ⇒K γ′ andγ′ ∈ B ↑} is done according to the following
steps :

– B′ := B;
– For eachγ ∈ B:

1. For each vertexn labelled withq′ in the graphG(γ), let N be the set of nodes
adjacent toq′
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If There exists a node inN with stater such that(r, r(a), r′) is a rule in the
model

Then We add no predecessor toB′ (because every noden′ ∈ S in stater must
react to the broadcast);

Else For any subsetN ′ = {n1, . . . , nk} of nodes inN such thatni has stater′i
and(ri, r(a), r′i) is a rule in the model, we build a predecessor configura-
tion γ′ in which the label ofn is updated toq and the label ofni is updated
to ri for i ∈ {1, . . . , k} and if there is noγ′′ in B′ such thatγ′′ 4is γ′,
we addγ′ to B′ (Note that we have to select all possible subsetN ′ of N
because we must consider the cases in which nodes connected to n are
already in the target state of some reception rule).

2. Let Γ ′ be the set of configurationsγ′ in CK obtained by adding a noden in
stateq′ to γ such that inG(γ′), n is adjacent to at least one node (i.e. inΓ ′ we
have all the configurations obtained by added a connected node toγ and which
are stillK-bounded path configurations). We then apply the precedent rule 1.
to each configuration inΓ ′ considering the added noden labelled withq′.

⊓⊔

E An Example of Pre-computation

green red
b(m)

white yellow
r(m)

Fig. 15.Example of process.

We consider the processP represented on the Figure 15. The Figure 16 shows
example of the computation ofpre6({γ} ↑), in other words for this example we restrict
the configurations to6-bounded path configurations. We build four configurations such
that {γ1, γ2, γ3, γ4} ↑⊆ pre6({γ} ↑). Configurationγ1 is obtained by matching the
right-hand side of the broadcast rule with the topleftmost node and the righthand side of
the reception rule with all of its yellow neighbors, whileγ2 is obtained by matching the
righthand side of the reception rule with a subset of them. Configurationγ3 is obtained
by assuming that the broadcast node is sent by a node in the upward closure, connected
to two yellow nodes. In the example the effect is that of adding a new green node and
changing one of two yellow neighbors (we must consider othercases like changing
all yellow neighbors etc.). Similarly, configurationγ4 is obtained by assuming that the
broadcast node is sent by a node in the upward closure, connected to a red node and two
yellow nodes. The effect is that of adding a new green node, turning the yellow nodes
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γ red yellow yellow

yellow yellow white

γ1 green white white

white yellow white

γ2green white white

yellow yellow white

γ3 red yellow white

yellow yellow white

green γ4red white yellow

white yellow whitegreen

Fig. 16.Example of symbolicpre computation.

into white, and leaving the red node unchanged. It is important to notice that in the last
two cases the new graphs have both a new node and additional edges.

F Proof of Theorem 6

Let L0 be the initial location of the Minsky machine. To simulate a run of the Minsky
machine in which the upper bound on the values of the two counters areB1 andB2,
in a preliminary phase we non-deterministically select in some part of the network
a control node and a sufficient number of unit nodes (at leastB1 + B2) initially all
in statenull1 or null2. The protocol is defined in Figure 17. The broadcast message
req sent by a node in statestart forces all other nodesstart in its vicinity to enter an
error state. The sending node moves to an auxiliary state in which non-deterministically
either accepts acknowledgment from unit nodes or stops the initialization phase. Null
nodes in the vicinity send acknowledgements and move to an auxiliary state. Reception
of acknowledgments from another unit node results in an error state. The control node
sends anok message to send unit nodes which did not acknowledge thereq to a special
error state and the others to the statezero1 or zero2. This protocol ensures that every
node inzero1 or zero2 state has no otherzero1 or zero2 neighbors (i.e. every edge
connecting a satellite node must be labeled with a differentgroup name).

In the second phase we run the simulation of the counter machine. The ruleL :
ci := ci + 1; goto L′ is simulated by the automaton in Figure 18. The control node
broadcastsinci message forcing allzeroi nodes to move to an auxiliary state. The first
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start L0

error

b(req)

r(ack1) r(ack2)

b(ok)

r(req)
r(ack1)

r(ack2)

null zeroi

r(req) b(acki) r(ok)

r(ok)
r(req)

r(ack1)

r(ack2)
r(ack1)

r(ack2)

Fig. 17. Initialization of the star: Selection of the control node and initialization of satellite node
associated to counteri ∈ {1, 2}.

node in that state that broadcasts the acknowledgment movesto stateiai and forces
the control node to move to a special state. If the control node receives another ac-
knowledgment it moves to an error state. Otherwise, it sendsan ioki message that
forces theiai node to stateonei and all other nodes in auxiliary states back tozeroi.
This way, only one satellite in statezeroi changes its state to stateonei. The rule
L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′ is simulated by the automa-
ton in Figure 19. The simulation works as follows: the control node chooses to broadcast
non deterministically eitherdeci or zeroi. If it broadcastsdeci, it launches a symmet-
ric protocol to the one for incrementation which forces one satellite node to move from
onei to zeroi. If it broadcasts azeroi message, it forces allonei satellite nodes to move
to a specialsink state. Thus, a zero test is correctly executed only if thesink state is
never generated. Hence the Minsky machine stops in stateLF if an only if there exists
an execution of the protocol that starts from an initial configuration in in which nodes
have state in{start, null0, null1} and, in some neighbor, it non-deterministically se-
lects a control node and a sufficient number of satellite nodes (initially all in statezero)
such that the protocol stops in a configurationγ1 in which there are no nodes inerror
and sink (nowhere in the network) state and at least of the control node is in state
LF . From this property, it follows thatTARGET is undecidable for AHN restricted to
K-bounded path configurations withK ≥ 3.
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L L’

error

b(inci) r(iai) b(ioki)

r(iai)

zeroi iai onei

r(inci) b(iai)

r(ioki)

r(ioki)

Fig. 18.EncodingL : ci := ci + 1; goto L′.

L L′′

errorL′

b(deci) r(dai) b(doki)

r(dai)b(zeroi)

onei dai
zeroi

sink

r(zeroi)

r(deci) b(dai)

r(doki)

r(doki)

Fig. 19.EncodingL : if ci = 0 then goto L′
else ci := ci − 1; goto L′′
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