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Abstract. We investigate the impact of node and communication fail-
ures on the decidability and complexity of parametric verification of a
formal model of ad hoc networks. We start by considering three possible
types of node failures: intermittence, restart, and crash. Then we move
to three cases of communication failures: nondeterministic message loss,
message loss due to conflicting emissions, and detectable conflicts. Inter-
estingly, we prove that the considered decision problem (reachability of a
control state) is decidable for node intermittence and message loss (either
nondeterministic or due to conflicts) while it turns out to be undecidable
for node restart/crash, and conflict detection.

1 Introduction

Broadcast communication is often used in networks in which individual nodes
have no precise information about the underlying connection topology (e.g. ad
hoc wireless networks). As shown in [13,10,11,16,17,4], this type of communi-
cation can naturally be specified in models in which a network configuration is
represented as a graph and in which individual nodes run an instance of a given
protocol specification. A protocol typically specifies a sequence of control states
in which a node can either send a message (emitter role), waits for a message
(receiver role), or performs an update of its internal state. Broadcast commu-
nication can be represented here as a simultaneous update of the state of the
emitter node and of the states of its neighbors. This semantics of broadcast is
often termed selective in contrast with broadcast messages that simultaneously
reach all nodes of a network.

Already at this level of abstraction, verification of ad hoc network protocols
turns out to be a very difficult task. A formal account of this problem is given
in [3,4], where the control state reachability problem is proved to be undecidable
for selective broadcast communication. The control state reachability problem
consists in verifying the existence of an initial network configuration (with un-
known size and topology) that may evolve into a configuration in which at least
one node is in a given control state. If such a control state represents a protocol
error, then this problem naturally expresses (the complement of) a safety veri-
fication task in a setting in which nodes have no information a priori about the



size and connection topology of the underlying network. The analysis in [3,4]
works under the assumption that the underlying network and communication
model are both reliable. This is a quite strong assumption since ad hoc networks
have several sources of unreliability: from node failures to conflicts caused by
interferences among different transmissions.

In this paper we study the impact of node and communication failures on
the control state reachability problem for ad hoc network protocols. We start
our analysis by introducing node failures in a model of selective broadcast. For
this purpose, we consider an intermittent semantics in which a node can be
(de)activated at any time. As a first result, we show that control state reach-
ability becomes decidable under the intermittent semantics. Decidability seems
strictly related to the assumption that nodes have cannot directly take decisions
that depend on the current activation state (e.g. change state when the node
is turned on). We then consider two restricted types of node failure, i.e., node
crash (a node can only be deactivated) and node restart (when it is activated,
it restarts in a special restart state). We show that for these two semantics, the
verification task becomes undecidable.

We consider then different types of communication failures. We first consider
a semantics in which a broadcast is not guaranteed to reach all neighbors of the
emitter nodes (message loss). Control state reachability is again decidable in this
case. We then introduce a semantics for selective broadcast specifically designed
to capture possible conflicts during a transmission. Basically, a transmission of
a broadcast message is split into two different phases: a starting and an ending
phase. During the starting phase, receivers connected to the emitter move to a
transient state. While being in the transient state, a reception from another node
generates a conflict. In the ending phase an emitter always moves to the next
state whereas connected receivers move to their next state only when no con-
flicts have been detected. Time-out can be modeled here by allowing receivers to
abandon a transmission at any time. In our model we also allow several emitters
to simultaneously start a transmission. Decidability holds only when receivers
ignore corrupted messages by remaining in their original state. Moreover, for the
verification task in the decidable variants we show that it is possible to resort to
the polynomial time reachability algorithm that we have presented for a model
of ad hoc networks with nondeterministic mobility presented in [2].

Related Work. Formal models of broadcast communication have been consid-
ered in several work in the literature such as [14,16,17,6,5,8,10,11,12]. Perfect
synchronous semantics for broadcast communication in mobile and ad hoc net-
works have been proposed in [14,16,17,5]. Verification problems for broadcast
protocols has been studied in the different context of hardware protocols [6]. In
all the above mentioned works a transmission is modelled as an atomic step in
which the emitter node and the connected receiver nodes simultaneously update
their current state. Decidability of reachability problems like those we consider
here (coverability) is not considered only in the case of synchronous broadcast
for fully connected networks [6].
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Delays in between the instant in which the emitter starts a transmission
and the instant in which the transmission ends have been considered in a timed
semantics [10,11] in which every message has an associated non-zero transmission
time, or in form of non-atomic transitions (start and end phase are kept distinct)
as in [12]. In all these approaches a broadcast communication is split into several
phases to model scenarios in which different transmission periods of different
emitters overlap. Following [12] in the present paper we consider an untimed
semantics for explicitly representing conflicts. Differently from other models, our
semantics allows multiple nodes to start a communication in the same instant,
a model that seems closer to real scenarios.

In [3,4] we have studied decision problems for verification of models of ad hoc
networks with seective broadcast communication with perfect semantics and no
conflicts. In this paper we lift our studies to unreliable networks and communica-
tion models and consider semantics for broadcast communication with conflicts.
Communication failures (e.g. message loss and insertion) are commonly consid-
ered when facing verification problems for communication protocols as in the
case of unreliable FIFO channels [1]. Differently from works like [1], we evalu-
ate here the impact of communication failures in a communication model with
broadcast communication restricted to neighbour nodes and in which reachabil-
ity is formulated for an initial configuration with arbitrary size and topology.

2 Ad Hoc Networks

Definition 1. A Q-graph is a labeled undirected graph γ = 〈V,E, L〉, where V
is a finite set of nodes, E ⊆ V × V is a symmetric relation representing a finite
set of edges, and L is a labeling function from V to a set of labels Q (in our
setting they represent control states).

We use L(γ) to represent all the labels present in γ (i.e. the image of the function
L). The nodes belonging to an edge are called the endpoints of the edge. For an
edge 〈u, v〉 in E, we use the notation u ∼γ v and say that the vertices u and v
are adjacent to each other in the graph γ. We omit γ, and simply write u ∼ v,
when it is made clear by the context.

A configuration is a Q-graph and we assume that each node of the graph is
a process that runs a common predefined protocol defined by a communicating
automaton with a finite set Q of control states. Communication is achieved
via selective broadcast: the effect of a broadcast is local to the vicinity of the
sender. The initial configuration is any graph in which all the nodes are labeled
by an initial control state. Note that even if Q is finite, there are infinitely many
possible configurations (the number of Q-graphs). We next formalize the above
intuition.

Definition 2. A process is a tuple P = 〈Q,Σ,R,Q0〉, where Q is a finite set of
control states, Σ is a finite alphabet, R ⊆ Q × ({τ} ∪ {!!a, ??a | a ∈ Σ})×Q is
the transition relation, and Q0 ⊆ Q is a set of initial control states.
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The label τ represents the capability of performing an internal action, and the
label !!a (??a) represents the capability of broadcasting (receiving) a message
a ∈ Σ. For q ∈ Q and a ∈ Σ, we define the set Ra(q) = {q′ ∈ Q | 〈q, ??a, q′〉 ∈ R}
which contains states that can be reached from the state q when receiving the
message a.

The network semantics associated to a process P = 〈Q,Σ,R,Q0〉 is given
by the transition system AHN (P) = 〈C,⇒, C0〉, where C is the set of Q-graphs
(network configurations), C0 is the set of Q0-graphs (initial configurations), and
⇒⊆ C×C is the transition relation defined as follows: for γ = 〈V,E, L〉, we have
γ ⇒ γ′ iff γ′ = 〈V,E, L′〉 and one of the following conditions holds:

Local: ∃v ∈ V s.t. (L(v), τ, L′(v)) ∈ R, and L(u) = L′(u) for all u in V \ {v};
Broadcast: ∃v ∈ V s.t. (L(v), !!a, L′(v)) ∈ R and for every u ∈ V \ {v}, we

have:

– if u ∼ v and Ra(L(u)) 6= ∅ (u can receive a), then L′(u) ∈ Ra(L(u)),
– L(u) = L′(u), otherwise.

An execution in AHN (P) is a sequence γ0γ1 . . . such that γ0 ∈ C0 and γi ⇒ γi+1

for i ≥ 0. We use ⇒∗ to denote the reflexive and transitive closure of ⇒.
Observe that a broadcast message a sent by v is delivered only to the subset

of neighbors interested in it; such a neighbor u has then to update its state
with a new state taken from Ra(L(u)). All the other nodes (including neighbors
not interested in a) simply ignore the message. Also notice that the topology is
static, i.e., the set of nodes and edges remain unchanged during an execution.

As an example of an ad hoc network and of its semantics, consider a pro-
cess consisting of the following rules: (A, τ, C), (C, !!m,D), (B, ??m,C), and
(A, ??m,C). As shown in Figure 1, starting from a configuration with only A
and B nodes, an A node first moves to C and then sends m to his/her neighbors.
In turn, they forward the message m to their neighbors, and so on.

A A B

B A B

⇒
C A B

B A B

⇓

D C B

C A B

∗⇐
D D D

D D D

Fig. 1. Example of normal execution

The network semantics formalized by the transition system ⇒ assumes fixed
topology. Formally, if γ ⇒ γ′ then γ = 〈V,E, L〉 and γ′ = 〈V,E, L′〉 share
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the same nodes and edges and can differ only in the labeling function. In [3]
we have formalized also nondeterministic mobility as follows. Given a process
P = 〈Q,Σ,R,Q0〉 the mobile network semantics is given by the transition system
MAHN (P) = 〈C, , C0〉, where C and C0 are as in the definition of AHN (P) and
 ⊆ C×C is the transition relation defined as follows: for γ = 〈V,E, L〉, we have
γ  γ′ iff γ′ = 〈V,E′, L′〉 and one of the following conditions holds:

State transition: γ ⇒ γ′;
Mobility: E′ ⊆ V × V and L′ = L.

Observe that all the transitions of the original AHN (P) transition system
are included by the state transition rule, while the mobility rule adds transitions
that modify the edges arbitrarily while preserving the labeling function.

2.1 Safety Analysis: the Control State Reachability Problem

Following [3,4] we consider decision problems related to verification of safety
properties. We remark that in our formulation the size and topology of the initial
configurations is not fixed a priori. The problem that we consider is control state
reachability (cover) defined as follows:

Input: A process P = 〈Q,Σ,R,Q0〉 with AHN (P) = 〈C,⇒, C0〉 and a control
state q ∈ Q.

Output: Yes, if ∃γ ∈ C0 and γ′ ∈ C s.t. γ ⇒∗ γ′ and q ∈ L(γ′); no, otherwise.

If q represents an error state, cover amounts at checking whether there exists
an initial configuration (among the infinitely many possible ones) from which a
configuration containing a node in the error state is reachable.

In [3], we prove the following result.

Theorem 1. cover is undecidable.

In the following we will also consider cover for the mobile network seman-
tics: in that case the transitions γ  γ′ will be taken into account instead of
γ ⇒ γ′. In [3] we have proved that cover turns out to be decidable with spon-
taneous (i.e. non-deterministic) mobility. Indeed, in this setting the topology of
the network cannot be exploited to build structures that could be applied to
model an unbounded storage. In a more recent work [2], we have characterized
its complexity.

Theorem 2. cover for mobile ad hoc networks is Ptime-complete.

We will also study different semantics for ad hoc networks and we will con-
sider cover for these semantics. However, sometimes the labelled graphs repre-
senting the configurations will have more information in their labels than only
the control state of the process, for these cases, cover will correspond to the
reachability of a configuration in which there exists a node whose label contains
the desired control state.
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3 Node Failures

3.1 Intermittent Nodes

We start our analysis from a semantic variant that models intermittent nodes.
We modify the network semantics by using a flag, which is set to A [resp. to D]
to denote an active [resp. deactivated] node.

Definition 3. Given a process P = 〈Q,Σ,R,Q0〉, an i-configuration is a (Q×
{A, D})-graph and an initial i-configuration is a (Q0 × {A, D})-graph.

We use Cint [resp. Cint
0 ] to denote the set of i-configurations [resp. initial i-

configurations] associated to a process definition P . Given a process P = 〈Q,Σ,
R,Q0〉, the semantics of the corresponding ad hoc network with intermittent
nodes is given by the transition system AHN i(P) = 〈Cint, 99K, Cint

0 〉 where the
transition relation 99K⊆ Cint × Cint is defined as follows: for γ = 〈V,E, L〉, we
have γ 99K γ′ iff γ′ = 〈V,E, L′〉 and one of the following conditions holds:

Local: ∃v ∈ V s.t. L(v) = 〈q, A〉, L′(v) = 〈q′, A〉, (q, τ, q′) ∈ R, and L(u) = L′(u)
for all u in V \ {v};

Broadcast: ∃v ∈ V s.t. L(v) = 〈q, A〉, (q, !!a, q′) ∈ R, L′(v) = 〈q′, A〉, and for
every u in V \ {v}:

– if u ∼ v and L(u) = 〈q′′, A〉 and Ra(q
′′) 6= ∅, then L′(u) = 〈q′′′, A〉 with

q′′′ ∈ Ra(u);

– L(u) = L′(u), otherwise.

Intermittence: ∃v ∈ V s.t. L(v) = 〈q, A〉 [resp. L(v) = 〈q, D〉], L′(v) = 〈q, D〉
[resp. L(v) = 〈q, A〉] , and L(u) = L′(u) for all u in V \ {v}.

Note that the transition relation is defined as in the previous section with only
two differences: the transitions already present in the previous definition now
apply only to active nodes (i.e. those with the flag A); additional transitions
allow one node to move from the active to the passive state, and vice versa. We
denote by 99K∗ the reflexive and transitive closure of 99K.

An example of ad hoc network protocol and of its semantics under node inter-
mittence, consider the following protocol: (A, !!m,D), (C, !!m,D), (B, ??m,C),
and (A, ??m,C). As shown in Figure 2, the top-left node is initially deactivated.
It then activates, sends a message, and only active neighbors react, and so on.

We now prove that cover is Ptime-complete also for ad hoc networks
with intermittent nodes. This result follows from a the correspondence between
AHN i(P) and MAHN (P) formalized by the following proposition.

Proposition 1. Consider a process definition P and a control state q. A con-
figuration γ s.t. q ∈ L(γ) is reachable from an initial configuration in AHN i(P)
if and only if a configuration γ′ s.t. q ∈ L(γ′) is reachable from an initial con-
figuration in MAHN (P).

6



A, D A, A B, D

B, D A, A B, D

99K

A, A A, A B, D

B, D A, A B, D

↓

D, A C, A B, D

B, D A, A B, D

L99

D, A D, A B, D

B, D C, A B, D

Fig. 2. Example of execution with intermittent nodes

Proof. We start from the only if part. Consider the initial state γ0 = 〈V,E, L0〉
and the execution γ0 99K

∗ γ in AHN i(P) with q ∈ L(γ). A similar execu-
tion can be reproduced also in MAHN (P). Consider the initial configuration
γ′
0 = 〈V,E, L′

0〉 with, for every v ∈ V , L′
0(v) = qv assuming L0(v) = 〈qv, A〉

or L0(v) = 〈qv, D〉. Consider now the following execution γ′
0  

∗ γ′ constructed
from the above execution γ0 99K

∗ γ as follows. All the Local and Broadcast
transitions are faithfully reproduced, while the Intermittence transitions are
mimicked by a Mobility transition: in case of deactivation of one node the Mo-
bility transition disconnects such node from its neighbors, while in case of node
activation the Mobility transition restores the previously removed edges. It is
easy to see that q ∈ L(γ′).

We now move to the if part. Consider the initial state γ′
0 = 〈V ′, E′, L′

0〉
and the execution γ′

0  
∗ γ′ in MAHN (P) with q ∈ L(γ′). A similar execu-

tion can be reproduced also in AHN i(P). Consider the initial configuration
γ0 = 〈V ′, E, L0〉 with E = V ′ × V ′ (i.e. γ0 is a complete graph) and, for ev-
ery v ∈ V ′, L0(v) = 〈qv, A〉 assuming L′

0(v) = qv. Consider now the following
execution γ0 99K

∗ γ constructed from the above execution γ′
0  

∗ γ′ as follows.
All the Local transitions are faithfully reproduced; the Broadcast transitions
are reproduced by a protocol that first deactivates the nodes that are not neigh-
bors of the emitter in the corresponding mobile network execution, then the
broadcast actions is mimicked, and then the previously deactivated nodes are
re-activated; the Mobility transitions are not reproduced. It is easy to see that
q ∈ L(γ). ⊓⊔

As a simple corollary of the above Proposition and Theorem 2 we obtain the
following.

Theorem 3. cover for ad hoc networks with intermittent nodes is Ptime-
complete.

3.2 Node Crash and Restart

We now consider two variants of the semantics with intermittence. In the first
one, modelling node crash, nodes can only be deactivated. In the second one,
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modelling node restart, nodes can also be reactivated but then they restart from
a given special state.

Given process P , its transition system with node crash denoted by AHN cr(P),
is defined as the transition system AHN i(P) where the Intermittence transi-
tions are replaced by the following Crash transitions:

Crash: ∃v ∈ V s.t. L(v) = 〈q, A〉, L′(v) = 〈q, D〉, and L(u) = L′(u) for all u in
V \ {v}.

Note that with this semantics, nodes that have been turned off (or deactivated)
cannot be activated again.

The variant with restart requires the indication of the restart state in the
process. So a process P = 〈Q,Σ,R,Q0, qr〉 now includes a restart state qr ∈
Q. The transition system AHN r(P) with node restart for P , is defined as the
transition system AHN i(〈Q,Σ,R,Q0〉) where the Intermittence transitions
are replaced by the following Restart transitions:

Restart: ∃v ∈ V s.t. L(v) = 〈q, A〉 [resp. L(v) = 〈q, D〉], L′(v) = 〈q, D〉 [resp.
L′(v) = 〈qr , A〉] and L(u) = L′(u) for all u in V \ {v}.

In this case, besides the transitions turning off nodes, there are also transitions
that turn on one node by changing its internal state to the restart state qr. The
following theorem then holds.

Theorem 4. cover with node crash [resp. with node restart] is undecidable.

Proof. The proof is by reduction from the undecidability of cover for ad hoc
networks (Theorem 1). We first consider the model with node crash. Let P be
a process. It is trivial to see that a computation leading to a configuration that
exposes the control state q in AHN (P) has a corresponding computation in
AHN cr(P) (in which no Crash transition is performed).

Consider now a computation in AHN cr(P) leading to a configuration that
exposes the control state q. It is not restrictive to assume that the state q is
exposed by a node that did not crash during the computation (we can always
consider the last step in q before the node crashes). Consider now a computation
in AHN (P) that performs the same Local and Broadcast transitions (but not
the Crash transitions). It is easy to see that the nodes that did not crash during
the computation in AHN cr(P) are in the same state also in the computation of
AHN (P). Hence also the latter computation leads to a configuration exposing
the control state q.

The undecidability can be proved as in [3] where we present how to translate
a two counter machine (a Turing powerful formalism) into a protocol P for ad
hoc network without failures. Such protocol P should be slightly modified as
follows to work also under intermittence. Let P = 〈Q,Σ,R,Q0〉; the modified
protocol is defined as P ′ = 〈Q′, Σ′, R′, {q0}, q0〉 where q0 /∈ Q and R′ is obtained
from R by adding the following rules: (q0, !!init, q

′
0) and (q′0, τ, q) for all q ∈ Q0

and (q, ??init, qerr) for all q ∈ Q and this assuming that q′0, qerr ∈ Q′ \Q. The
idea of this encoding is that the unique initial state and the restart state are

8



the same, but when a node comes back to the initial state while simulating the
protocol P , if it goes to q′0 it sends all his neighbors (which are in state belonging
to Q) into the deadlock state qerr. This ensures that if a node is turned off and is
reactivated, it cannot play a role in the simulation of the protocol P by P ′. ⊓⊔

4 Communication Failures

4.1 Message Loss

The first type of failures corresponds to nondeterministic message loss: when a
message is broadcasted, some of the receivers could not receive it.

A process P is defined as usual. The corresponding transition system AHN l(P)
is defined as AHN (P) where the Broadcast transitions are replaced by the fol-
lowing Message loss transitions:

Message loss: ∃v ∈ V s.t. (L(v), !!a, L′(v)) ∈ R and for every u ∈ V \ {v}

– if u ∼ v and Ra(L(u)) 6= ∅ (reception of a in u is enabled), then L′(u) ∈
Ra(L(u)) or L′(u) = L(u),

– L(u) = L′(u), otherwise.

The main difference with the transition system AHN (P) is that during the
performance of a broadcast, some of the potential receivers could remain in
their internal state. This is similar to what happens in the model with inter-
mittent nodes when one is deactivated. Starting from this observation it is easy
to show that there exists a computation leading to a configuration that exposes
the control state q in AHN l(P) iff there exists a corresponding computation in
AHN i(P). From this consideration, we deduce the following theorem.

Theorem 5. cover for ad hoc networks with message loss is Ptime-complete.

Proof. Consider a process definition P . As in Theorem 3 we show that there
exists an execution in AHN l(P) leading to a configuration exposing the con-
trol state q if and only if there exists an execution in AHN i(P) leading to a
configuration exposing q.

Consider an execution leading to a configuration that exposes the control
state q in AHN l(P). It has the following corresponding execution in AHN i(P):
it is sufficient to mimic Broadcast transitions by executing before the broadcast
a sequence of Intermittence transitions that switch off the nodes that do not
receive the message, and by performing after the broadcast the Intermittence
transitions on the same nodes.

Consider now an execution in AHN i(P) leading to a configuration that ex-
poses the control state q. This execution can be mimicked in AHN l(P) simply
by assuming that the nodes that are deactivated during a specific phase of the
execution in AHN i(P), lose the messages that are broadcasted in that phase in
the corresponding execution in AHN l(P). ⊓⊔
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4.2 Conflict

The second type of failures we consider corresponds to transmission conflicts.
Here we consider conflicts due to the contemporaneous emission of messages: if
a node has (at least two) neighbors that contemporaneously broadcast a mes-
sage, then such a node is unable to correctly receive the emitted messages. The
modeling of this phenomenon requires a significant modification of the formal
semantics. First of all we need to introduce a notion of internal state.

Internal State. The internal state of a node is characterized by the current state
according to the process behavior, and by two additional flags indicating whether
the node is currently emitting or receiving a message. Formally, given a process
P = 〈Q,Σ,R,Q0〉 we define the set of states S =

{

[q, x, y] | q ∈ Q, x ∈ {⊥} ∪

Σ, y ∈ {⊥, rcv, cnfl}
}

. The field denoted with x represents whether the node
is or is not in a transmission state (⊥ means no transmission, while a ∈ Σ
denotes transmission of message a). The field y represents whether the node
is not receiving (⊥) or it is currently receiving correctly a message (rcv) or
the reception has been damaged due to a conflict (cnfl). The initial states are
defined as follows: S0 = {[q,⊥,⊥] | q ∈ Q0}. Notice that nodes in their initial
state are neither receiving nor emitting.
The notation based on triples is useful to simplify the definition of the semantics.
In the figures we also use a more compact notation without distinction between
transmission and reception state, e.g., [q,⊥,⊥] is simplified as q, [q, a,⊥] as [q, a],
[q,⊥, rcv] as [q, rcv], etc.
Network Semantics. The semantics of a process P = 〈Q,Σ,R,Q0〉 with conflicts
is given by the transition system AHN co(P) = 〈Cco,⇉, Cco

0 〉 where Cco is the set
of S-graphs and the set of initial configurations Cco

0 is the set of S0-graphs.
Before giving the formal definition of the transition relation⇉ ⊆ Cco×Cco, we

define the function emitter which associates to a S-graph γ = 〈V,E, L〉 and to a
node u ∈ V , the set emitter(γ, u) = {v | u ∼ v and L(v) = [q, a, y] for some a ∈
Σ and y ∈ {⊥, rcv, cnfl}} of nodes adjacent to u in γ which are in a transmis-
sion state.

Given a configuration γ = 〈V,E, L〉, we have that γ ⇉ γ′ iff γ′ = 〈V,E, L′〉
and one of the following conditions holds:

Local/Time-out: ∃v ∈ V s.t. L(v) = [q,⊥, y], y ∈ {⊥, cnfl, rcv}, (q, τ, q′) ∈
R, L′(v) = [q′,⊥,⊥], and L(u) = L′(u) for all u ∈ V \ {v};

Start broadcast: ∃v1, . . . , vl ∈ V s.t. ∪j∈{1...l}emitter(γ, vj) = ∅, L(vi) =
[qi,⊥,⊥], (qi, !!ai, q

′
i) ∈ R, L′(vi) = [q′i, ai,⊥] ∀i ∈ {1 . . . l} and the following

conditions hold:

– ∀u ∈ V \{v1, . . . , vl} s.t. u ∼ vi for some i ∈ {1 . . . l} and L(u) = [r,⊥, y]
with y ∈ {rcv,⊥} we have:
• if y = rcv then L′(u) = [r,⊥, cnfl];
• if y = ⊥ and u 6∼ vj ∀j ∈ {1 . . . l} \ {i} then L′(u) = [r,⊥, rcv];
• if y = ⊥ and u ∼ vj for some j ∈ {1 . . . l} \ {i} then L′(u) =
[r,⊥, cnfl];
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– L(u) = L′(u) otherwise;
End broadcast: ∃ v ∈ V s.t. L(v) = [q, a,⊥], L′(v) = [q,⊥,⊥] and we have:

– ∀u ∈ V s,t. u ∼ v and L(u) = [r,⊥, y], with y ∈ {rcv, cnfl}, and
emitter(γ, u) = {v} we have:
• if y = rcv and ∃ r′ s.t. (r, ??a, r′) ∈ R then L′(u) = [r′,⊥,⊥];
• if y = rcv and 6 ∃ r′ s.t. (r, ??a, r′) ∈ R or y = cnfl then L′(u) =
[r,⊥,⊥];

– L(u) = L′(u) otherwise.

The local rule models internal and time-out steps (a node non-deterministically
decides to abandon a transmission). In the start rule we select a set of node
that have the capability of sending a broadcast and check that no other node
in their vicinity is currently transmitting. The selected emitters simultaneously
start transmitting. Receiving nodes connected to a single emitter move to the
rcv state, and to the cnfl state in case of connection with more than one emitter
(e.g. a selected node and an emitter that started transmitting in a previous step).
In the ending rule an emitter moves to its next state. A receiver connected to
such a node moves to the next state only if it is still in the rcv state (no conflicts
occurred in between the start and end phases).

As an example of ad hoc networks and of its semantics in the model with
conflicts, consider the process (S, !!m,T ), (R, ??m,Q), and the execution in Fig-
ure 3. In the initial configuration we have three senders in state S (a, b, c from
left to right), and three receivers in state R (d, e, f from left to right). Nodes
a and b can simultaneously start transmitting m, since no other node is cur-
rently transmitting in their vicinity. Node d simultaneously moves to a conflict
state (it is connected to both emitters), while node e moves to a reception state.
When c starts transmitting m (again there are no other emitters in its vicinity),
node e is forced to enter a conflict state, whereas node f goes to a reception
state. When a stops transmitting, d goes back to the original state (a conflict
occurred). If now c stops transmitting, f receives the message and moves to its
next state Q (no conflicts occurred). Finally when b stops transmitting, e goes
back to the original state (a conflict occurred). Other possible executions are
obtained, e.g., by selecting only one of the nodes a, b for starting a transmission
(the other node has to remain silent since it is connected to an active emitter)
and by nondeterministically allowing receiver nodes to abandon a transmission.

Theorem 6. cover for ad hoc networks with conflicts is Ptime-complete.

Proof. Consider a process P . Following our usual proof technique, we show that
there exists an execution in AHN co(P) leading to a configuration exposing the
control state q if and only if there exists an execution in AHN i(P) leading to a
configuration exposing q.

It is easy to see that a computation leading to a configuration that exposes the
control state q in AHN co(P) has a corresponding computation in AHN i(P): the
Local transitions are faithfully reproduced, the Start broadcast transitions are
not mimicked, and the End broadcast transitions are simulated via a protocol
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Fig. 3. Example of execution with conflicts

that first turns off the nodes that do not receive the message or that detect a
conflict, then executes the broadcast, and then turns on the samenodes.

It is more complex to show that a computation in AHN i(P) that leads to a
configuration that exposes the control state q can be reproduced in AHN co(P).

We first assume, without loss of generality, that in the process P there is at
least one state with an outgoing broadcast transition which is reachable from
an initial state q0 ∈ Q0 doing only internal steps. If this is not the case, there
is no communication in the system and the analysis of cover can be trivially
done by checking whether the target state q is reachable from an initial state in
the automaton defining the process behavior doing only internal steps. Consider
now the computation in AHN i(P) that leads to a configuration that exposes the
control state q. Let γ0 be the initial configuration in the considered computation,
and let loss(u) be the number of messages that the node u loses during the
computation when it was turned off.

We now show the existence of an initial configuration in AHN co(P) able to
reproduce such computation. This initial configuration contains γ0 plus a set of
additional nodes used to generate conflicts.

Namely, we connect to each node u of the initial configuration loss(u) addi-
tional nodes Noise(u): each node in Noise(u) is connected only with its corre-
sponding node u.

Each node u simulates the behavior of the corresponding node in the com-
putation in AHN i(P). The nodes in Noise(u) are initially in the state q0. The
simulation of the transitions in the computation in AHN i(P) is as follows. First
of all, for every node u we consider local transitions for nodes in Noise(u) in state
q0 leading them to a state ready to perform a broadcast. Then the transitions
are simulated as follows.

– Local transitions are faithfully reproduced.
– Intermittence transitions are not mimicked.
– To simulate Broadcast transitions performed by one node, say v, we pro-

ceed as follows: we partition the potential receivers in two groups, (i) those
that actually receive the message and (ii) those that do not receive it as
they are turned off. For each node u in group (ii) we take an attacker node

12



n ∈ Noise(u) ready to start a transmission and let n perform a Start broad-
cast transition. Simultaneously node u moves to the rcv-state. Node v per-
forms then a broadcast (it executes both the Start and the End broadcast
transitions). Since u and v are connected, u detects a conflicting transmission
and moves to the cnfl-state. Finally, node n ends the transmission.
Note that the nodes corresponding to (i) receive the broadcast messages,
while those corresponding to (ii) do not receive it, due to the conflict gener-
ated by the interferring transmissions generated by the attacker node n.

By assumption on the cardinality of Nodes(u), therefore an attack can be ex-
ecuted every time node u is switched off in the computation with intermittent
semantics. ⊓⊔

4.3 Conflict detection

We now define a variant of the semantics in order to capture the notion of conflict
detection. In fact, even though a node that receives overlapping signal emissions
is unable to reconstruct the emitted messages, it can infer that (at least) two
neighbors have contemporaneously emitted their messages. This can be consid-
ered in our model of ad hoc networks by adding conflict detection transitions to
the processes. Such transitions can be executed by nodes at the end of a receive
phase during which more than one neighbor has performed a broadcast. For-
mally, we slightly modify the definition of the Internal State and of the Network
Semantics of the previous section.

Internal State. The new definition of P is as usual with the unique difference
that we can have transitions of the form (q, ρ, q′) in R, representing conflict de-
tection (where ρ is a new symbol).

Network Semantics. Given a process P , the transition system AHN cd(P) charac-
terizing the semantics with conflict detection is defined as AHN co(P) except that
the End broadcast transitions are replaced by the following End broadcast
II transitions:

End broadcast II: ∃v ∈ V s.t. L(v) = [q, a,⊥], L′(v) = [q,⊥,⊥] and we have:
– ∀u ∈ V s.t. u ∼ v, L(u) = [r,⊥, y], with y ∈ {rcv, cnfl}, and emitter(γ, u) =

{v}:
• if y = rcv and ∃r′ s.t. (r, ??a, r′) ∈ R then L′(u) = [r′,⊥,⊥];
• if y = cnfl and ∃r′ s.t. (r, ρ, r′) ∈ R then L′(u) = [r′,⊥,⊥];
• if y = rcv and 6 ∃r′ s.t. (r, ??a, r′) ∈ R, or y = cnfl and 6 ∃r′ s.t.
(r, ρ, r′) ∈ R, then L′(u) = [r,⊥,⊥];

– L(u) = L′(u) otherwise.

As an example of ad hoc networks and of its semantics with conflict detec-
tion, consider the process (S, !!m,T ), (R, ??m,Q), (R, ρ,Er), and the execution
in Figure 4. It consists of the same steps as those in Figure 3 up to ending phases
of broadcast messages. Receiver that detect a conflict move here to the special
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Er states. Note that in the step from the fourth to the fifth configuration only
the node in the leftmost down corner detects a conflict. The other receiver R
is connected to two different emitters, so it will apply the detection only in the
next step.
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T T,m T

Er R, cnfl Q

⇇d

T T,m T,m

Er R, cnfl R,rcv

Fig. 4. Example of execution with conflict detections (indicated as ⇉d)

Theorem 7. cover for ad hoc networks with conflict detection is undecidable.

Proof. The proof is by reduction from the undecidability of cover for ad hoc
networks with node restart (Theorem 4). Consider a process P = 〈Q,Σ,R,Q0, qr〉
for ad hoc networks with node restart (qr being the restart state). Consider now
the process P ′ = 〈Q ∪ {qi}, Σ,R′, Q0〉, for ad hoc networks with conflict detec-
tion, defined as P with the following additional transitions: for each node q ∈ Q
we have a transition labeled with ρ leading to the additional state qi, from which
there is only one outgoing transition labeled with τ leading to the restart state
qr.

We first show that given a computation in AHN r(P) leading to a configura-
tion that exposes the control state q, there exists a corresponding computation
in AHN cd(P ′). As in Theorem 6 we make the nonrestrictive assumption that in
the process P there is at least one state with an outgoing broadcast transition
which is reachable from an initial state q0 ∈ Q0 doing only internal steps. Let
γ be the initial configuration of the considered computation in AHN r(P). For
each node u in γ we denote with restart(u) the number of restarts performed by
u during the computation. We now show the existence of an initial configuration
γ′ of AHN cd(P ′) from which the computation is simulated. The configuration
γ′ is as γ with the difference that each node u has exactly restart(n) × 2 addi-
tional neighbors that are used to generate conflicts. These additional nodes are
connected only to the corresponding node u. The simulation of the computation
proceeds as follows. At the beginning the additional nodes in state q0 perform
the local transitions leading them to a state ready to perform a broadcast. Then
the simulation starts.

– Local transitions are reproduced faithfully.
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– A transition that deactivates the node u is simulated via the following proto-
col: two of the additional nodes connected to u perform a Start broadcast
transition and then execute the End broadcast II. Due to the emission
conflict, the node u moves to the internal state qi.

– A transition that activates the node u is reproduced by an internal transition
from the state qi of u to the restart state qr.

– Finally, Broadcast transitions are mimicked by performing in sequence a
Start and an End broadcast II transition.

We now show that a computation in AHN cd(P ′) leading to a configuration
that exposes the control state q has a corresponding computation in AHN r(P).
In the simulated computation the Local transitions are reproduced faithfully,
the Start broadcast transitions are not mimicked, while End broadcast II
transitions are simulated by the following protocol.

Assume that the node that completes its signal emission in the End broad-
cast II transition is u, and let a be the emitted message. The neighbors of u
able to receive a can be partitioned in three groups:

(i) those that correctly receive message a,
(ii) those that perform a conflict detection transition during the execution
of the End broadcast II transition,
and (iii) those that do not change their internal state because they are still
under the effect of another signal emission.

The simulation of the transition in AHN r(P) proceeds as follows. The nodes,
corresponding to those in (ii) and (iii), that are not currently crashed perform
a Crash transition, then the Broadcast transition is executed. Notice that at
the end of this protocol the nodes in (ii) are in the intermediary state qi in
the computation in AHN cd(P ′), while they are crashed in the corresponding
computation in AHN r(P). The Local transitions that move the nodes form the
state qi to qr are reproduced in AHN r(P) by Restart transitions. ⊓⊔

5 Conclusion

In this paper we have compared different types of semantics for modelling un-
reliability in protocols based on broadcast communication. The comparison is
based on the study of decidability and undecidability of the coverability problem
(reachability of a network with at least a node in an error state for an initial
configuration of unknown size and shape). Coverability is commonly used to
formulate violations of properties like mutual exclusion (and more in general to
locally reason on errors generated by a fixed set of processes independently from
the global configuration). Coverability turns out to be undecidable for models
in which individual nodes have special transition to the detect the occurrence
of a failure (e.g. crash with restart, conflict detection). Removing this feature
from the model completely change the corresponding expressive power, often
making coverability decidable. Decidability results are obtained by means of re-
duction to a coverability in a model with spontaneous movement, for which we
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have given a PTIME algorithm in [2]. Among possible future direction we plan
to investigate the impact of node and communication failures in richer models
of broadcast communication that could be used to model for instance routing
strategy or time division protocols.
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