
On the Power of Cliques in the Parameterized

Verification of Ad Hoc Networks

Giorgio Delzanno1, Arnaud Sangnier2, and Gianluigi Zavattaro3

1 University of Genova - Italy
2 LIAFA, University Paris 7, CNRS - France

3 University of Bologna - Italy

Abstract. We study decision problems for parameterized verification
of protocols for ad hoc networks. The problem we consider is control
state reachability for networks of arbitrary size. We restrict our anal-
ysis to topologies that approximate the notion of cluster (graphs with
bounded diameter) often used in ad hoc networks for optimizing broad-
cast communication. In particular we are interested in classes of graphs
that include at least cliques of arbitrary order. We show that, although
decidable, control state reachability over cliques is already Ackermann-
hard and study more sophisticated topologies for which the problem
remains decidable.

1 Introduction

Ad hoc networks consist of wireless hosts that, in the absence of a fixed infras-
tructure, communicate sending broadcast messages. In this context protocols are
typically supposed to work independently from the communication topology and
from the size (number of nodes) of the network. As suggested in [3], the control
state reachability problem (or coverability problem) seems a particularly adequate
formalization of parameterized verification problems for ad hoc networks. A net-
work is represented in [3] as a graph in which nodes are individual processes
and edges represent communication links. Each node executes an instance of the
same protocol. A protocol is described by a finite state communicating automa-
ton. The control state reachability problem consists in checking whether there
exists an initial graph (with unknown size and topology) that can evolve into a
configuration in which at least one node is in a given error state. Since the size
of the initial configuration is not fixed a priori, the state-space to be explored is
in general infinite. As proved in [3], control state reachability is undecidable for
graphs with unrestricted topology. As in other communication models [13,21],
finding interesting classes of network topologies for which verification is, at least
theoretically, possible is an important research problem.

Moving along this line, in this paper we consider networks in which the
underlying topology is in between the class of cliques and the strictly larger
class of bounded diameter graphs. Cliques represent the best possible topology for
minimizing the number of hops needed for diffusing data. Furthermore, control

state reachability in clique graphs reduces to coverability in a Broadcast Protocol
(with unstructured configurations), a problem proved to be decidable in [8].
Graphs with bounded diameter (also called clusters) are particularly relevant
for the domain of ad hoc networks. They are often used to partition a network
in order to increase the efficiency of broadcast communication [10].

Our first result is negative. Indeed, we prove that control state reachability is
undecidable for networks in which configurations have bounded diameter. We in-
vestigate then further restrictions having in mind the constraint that they must
allow at least cliques of arbitrary order. By using an original well-quasi ordering
result, we prove that coverability becomes decidable when considering a class
of graphs in which the corresponding maximal cliques are connected by paths
of bounded length. Furthermore, by exploiting a recent result of Schnoebelen
[19] and a reduction to coverability in reset nets, we show that the resulting
decision procedure is Ackermann-hard. Interestingly, the same complexity result
already holds in the subclass of clique topologies. Finally, we introduce a unicast
mechanism inspired by rendezvous communication in other concurrency mod-
els. Having the two mechanisms in the same model allows us to compare them,
with complexity measures, with respect to the coverability problem. Specifically,
coverability for unicast communication is easier than for selective broadcast. In-
deed, it turns out to be in EXPspace for unrestricted graphs. To the best of our
knowledge, this discrimination result is novel compared to the existing literature
on concurrency models with selective broadcast and unicast communication.

Related Work Model checking has been applied to verify protocols for ad hoc
networks with a fixed number of nodes in [9,20]. A possibly non-terminating pro-
cedure for the verification of routing protocols in ad hoc networks of arbitrary
size is described in [18]. In [3] we have introduced and studied the (repeated)
control state reachability problem described in the introduction for the ad hoc
network model of [20]. Specifically, we have shown that the problem is unde-
cidable when the topology is unrestricted and that it becomes decidable when
the initial network has a topology taken from the class of graphs with bounded
paths (the maximal length of a path is bounded by a constant). However this
class does not include cliques of arbitrary order. In contrast, we extend here the
decidability result to a larger class of graphs, and we investigate the problem
for graphs with bounded diameter. Graphs with bounded paths have also been
considered in verification problems with point-to-point (unicast in the ad hoc
setting) communication in [13,17,21].

Due to lack of space, omitted proofs can be found in Appendix.

2 Preliminaries on Graphs

In this section we assume that Q is a finite set of elements. A Q-labeled undirected
graph (shortly Q-graph or graph) is a tuple G = (V,E, L), where V is a finite set
of vertices (sometimes called nodes), and E ⊆ V × V is a finite set of edges, and

2

L : V → Q is a labeling function. We consider here undirected graphs, i.e., such
that 〈u, v〉 ∈ E iff 〈v, u〉 ∈ E. We denote by GQ the set of Q-graphs. For an edge
〈u, v〉 ∈ E, u and v are called its endpoints and we say that u and v are adjacent
vertices. For a node u we call vicinity the set of its adjacent nodes (neighbors).
Given a vertex v ∈ V , the degree of v is the size of the set {u ∈ V | 〈v, u〉 ∈ E}.
The degree of a graph is the maximum degree of its vertices. We will sometimes
denote L(G) the set L(V) (which is a subset of Q). A path π in a graph is a finite
sequence v1, v2, . . . , vm of vertices such that for 1 ≤ i ≤ m − 1, 〈vi, vi+1〉 ∈ E
and the integer m− 1 (i.e. its number of edges) is called the length of the path
π, denoted by |π|. A path π = v1, . . . , vm is simple if for all 1 ≤ i, j ≤ m with
i 6= j, vi 6= vj , in other words each vertex of the graph occurs at most once in
π. A cycle is a path π = v1, . . . , vm such that v1 = vm. A graph G = 〈V,E, L〉
is connected if for all u, v ∈ V with u 6= v, there exists a path from u to v in
G. A clique in an undirected graph G = 〈V,E, L〉 is a subset C ⊆ V of vertices,
such that for every u, v ∈ C with u 6= v, 〈u, v〉 ∈ E. A clique C is said to be
maximal if there exists no vertex u ∈ V \C such that C ∪ {u} is a clique. If the
entire set of nodes V is a clique, we say that G is a clique. A bipartite Q-graph
is a tuple 〈V1, V2, E, L〉 such that 〈V1 ∪ V2, E, L〉 is a Q-graph, V1 ∩ V2 = ∅ and
E ⊆ (V1 × V2) ∪ (V2 × V1).

The diameter of a graph G = 〈V,E, L〉 is the length of the longest shortest
simple path between any two vertices of G. Hence, the diameter of a clique is
always one. We also need to define some graph orderings. Given two graphs
G = 〈V,E, L〉 and G′ = 〈V ′, E′, L′〉, G is in the subgraph relation with G′,
written G �s G′, whenever there exists an injection f : V → V ′ such that, for
every v, v′ ∈ V , if 〈v, v′〉 ∈ E, then 〈f(v), f(v′)〉 ∈ E′ and for every v ∈ V ,
L(v) = L′(f(v)). Furthermore, G is in the induced subgraph relation with G′,
written G �i G′, whenever there exists an injection f : V → V ′ such that,
for every v, v′ ∈ V , 〈v, v′〉 ∈ E if and only if 〈f(v), f(v′)〉 ∈ E′ and for every
v ∈ V , L(v) = L′(f(v)). As an example, a path with three nodes is a subgraph,
but not an induced subgraph, of a ring of the same order. Finally, we recall the
notion of well-quasi-ordering (wqo for short). A quasi order (A,≤) is a wqo if for
every infinite sequence of elements a1, a2, . . . , ai, . . . in A, there exist two indices
i < j s.t. ai ≤ aj . Examples of wqo’s are the sub-multiset relation, and both the
subgraph and the induced subgraph relation over graphs with simple paths of
bounded length [6].

3 Ad Hoc Networks

In our model of ad hoc networks a configuration is simply a graph and we assume
that each node of the graph is a process that runs a common predefined protocol.
A protocol is defined by a communicating automaton with a finite set Q of
control states. Communication is achieved via selective broadcast. The effect of
a broadcast is in fact local to the vicinity of the sender. The initial configuration
is any graph in which all the nodes are in an initial control state. Remark that
even if Q is finite, there are infinitely many possible initial configurations. We

3

next formalize the above intuition.

Individual Behavior The protocol run by each node is defined via a process
P = 〈Q,Σ,R,Q0〉, where Q is a finite set of control states, Σ is a finite alphabet,
R ⊆ Q× ({τ}∪{!!a, ??a | a ∈ Σ})×Q is the transition relation, and Q0 ⊆ Q is a
set of initial control states. The label τ represents the capability of performing an
internal action, and the label !!a (??a) represents the capability of broadcasting
(receiving) a message a ∈ Σ.

Network Semantics An AHN associated to P is defined via a transition system
AP = 〈C,⇒, C0〉, where C = GQ (undirected graphs with labels in Q) is the set of
configurations, C0 = GQ0

(undirected graphs with labels in Q0) is the subset of
initial configurations, and ⇒⊆ C × C is the transition relation defined next. For
u ∈ V , we first define the set Ra(u) = {q ∈ Q | 〈L(u), ??a, q〉 ∈ R} that contains
states that can be reached from the state L(u) upon reception of message a.
For G = 〈V,E, L〉 and G′ = 〈V ′, E′, L′〉, G ⇒ G′ holds iff G and G′ have the
same underlying structure, i.e., V = V ′ and E = E′, and one of the following
conditions on L and L′ holds:

– ∃v ∈ V s.t. (L(v), τ, L′(v)) ∈ R, and L(u) = L′(u) for all u in V \ {v};
– ∃v ∈ V s.t. (L(v), !!a, L′(v)) ∈ R and for every u ∈ V \ {v}

• if 〈v, u〉 ∈ E and Ra(u) 6= ∅ (reception of a in u is enabled), then
L′(u) ∈ Ra(u).

• L(u) = L′(u), otherwise.

An execution is a sequence G0G1 . . . such that G0 ∈ GQ0
and Gi ⇒ Gi+1 for

i ≥ 0. We use ⇒∗ to denote the reflexive and transitive closure of ⇒.
Observe that a broadcast message a sent by v is delivered only to the subset

of neighbors interested in it. Such a neighbor u updates its state with a new
state taken from R(u). All the other nodes (including neighbors not interested
in a) simply ignore the message. Also notice that the topology is static, i.e., the
set of nodes and edges remain unchanged during a run.

Finally, for a set of Q-graphs T ⊆ GQ, the AHN AT
P

restricted to T is
defined by the transition system 〈C ∩ T ,⇒T , C0 ∩ T 〉 where the relation ⇒T is
the restriction of ⇒ to (C ∩ T)× (C ∩ T).

Decision problem

Given a process P = 〈Q,Σ,R,Q0〉 with an associated AHN AP = 〈C,⇒, C0〉,
we define the control state reachability (cover) as follows:

Given a control state q ∈ Q, does there exist G ∈ C0 and G′ ∈ C such
that q ∈ L(G′) and G ⇒∗ G′?

Control state reachability is strictly related to parameterized verification of
safety properties. The input control state q can be seen as an error state for
the execution of the protocol in some node of the network. If the answer to
cover is yes, then there exists a sufficient number of processes, all executing
the same protocol, and an initial topology from which we can generate a con-
figuration in which the error is exposed. Under this perspective, cover can be
viewed as instance of a parameterized verification problem.

4

L0

firstZ1 Z1 Z1 Z1 Z1 Z1
. . .

firstZ2 Z2 Z2 Z2 Z2 Z2
. . .

Fig. 1. Butterfly-shaped induced subgraph needed to simulate a Minsky machine.

4 Configurations with Bounded Diameter

As mentioned in the introduction, cover is undecidable for configurations with
unrestricted topology [3]. The problem becomes decidable when configurations
are restricted to graphs with k-bounded paths (BP k) for any k ≥ 0. k-bounded
path graphs are graphs in which there exist no simple path with length strictly
greater than k. The class BP k is infinite for any k > 0. As an example, with
k = 2 it includes star-shaped graphs of any order.

Unfortunately, restricting protocol analysis to configurations in BP k seems
to have a limited application in a communication model with selective broad-
cast. Indeed, we first observe that BP k does not include the class K consisting
of clique graphs of any order. Cliques however are appealing for at least two
reasons. First, they represent the best possible scenario for optimizing broadcast
communication (one broadcast to reach all nodes). Second, when restricting con-
figurations only to graphs in the class K, cover can be reduced to coverability
in a Broadcast Protocol, i.e., in a model in which configurations are multisets of
processes defined by communicating automata [7]. Coverability is decidable in
Broadcast Protocols in [8]. For these reasons, in this paper we investige cover in
restricted classes of graphs that at least include the class K. The first class we
consider is that of graphs with bounded diameter. Fixed k > 0, a graph G has
a k-bounded diameter if and only if its diameter is smaller than or equal to k.
Observe that for every k > 0, clique graphs belong to the class of graphs with
a diameter bounded by k. Furthermore, given k > 0 the class BP k is included
in the class of graphs with a diameter bounded by k. Graphs with k-bounded
diameter coincide with the so called k-clusters used in partitioning algorithm for
ad hoc networks [10]. Thus, this class is of particular relevance for the analysis
of selective broadcast communication. Intuitively, the diameter corresponds to
the minimal number of broadcasts (hops) needed to send a message to all nodes
connected by a path with the sender.

The cover problem restricted to configurations with k-bounded diameter
turns out to be undecidable for k > 1. Indeed, we show next that AHNs working
over this class of configurations can be used to simulate the behavior of a de-
terministic Minsky machine. A deterministic Minsky machine manipulates two

5

integer variables c1 and c2, which are called counters, and it is composed of a
finite set of instructions. Instructions are of the form (1) L : ci := ci+1; goto L′

or (2) L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′ where i ∈ {1, 2}
and L,L′, L′′ are labels preceding each instruction. There is also a special halting
label LF . The halting problem consists in deciding whether or not the execution
that starts from L0, with both counters set to 0, reaches LF . The halting prob-
lem for deterministic two counter machines is undecidable [15]. The encoding is
built in two steps.

We first need to run a protocol that terminates successfully only when the
projection of the configuration on an appropriate set of control state is a sort of
butterfly (see Figure 1) consisting of two lists (to represent the counters) and in
which all nodes in the lists are connected to a monitor node (to represent the
program counter).

To reach such a configuration, we use a process P = 〈Q,Σ,R,Q0〉 with
{L0, f irstZ1, Z1, f irstZ2, Z2, error} ⊆ Q such that if G0 is an initial configu-
ration in AP = 〈C,⇒, C0〉 and if G0 ⇒∗ G for a configuration G = 〈V,E, L〉
verifying L0 ∈ L(V), then the graph θ = 〈V ′, E′, L′〉 represented in Figure 1 is
an induced subgraph of G. Furthermore, all vertices v ∈ V \ V ′ adjacent to a
vertex of θ in G are labeled with error. We also have that all the nodes labeled
with L0 in G are connected as in θ (when abstracting away the nodes in state
error). In these graphs θ of Figure 1, the number of nodes is guessed nondeter-
ministically and represents the maximum value reached by the counters during
the simulation. Thus, the number of Z1 and Z2 can be different. However, there
is at least one node labeled Z1 and one labeled Z2. The diameter of θ is equal
to 2 no matters how many nodes there are labelled with Z1 or Z2. The protocol
for the first step is described in detail in [5].

Once the configuration is in the desired form, the second step consists in
the simulation of the instructions of the encoded Minsky machine. The protocol
for this step is shown in Figure 2 (as far as the simulation of the counters is
concerned) and 3 (for the simulation of the instructions). More precisely, we
build a process P ′ obtained by completing the process P with the processes
shown on the Figures 2 and 3.

The simulation works as follows: first if the Minsky machine is at the line
labelled with L and m is the value of the first counter (the same reasoning holds
for the second counter) then in the corresponding configuration of the AHN
there is one node labelled with L which is neighbor of m− 1 nodes labelled by
NZ1 and if m > 0 this node has also a neighbor labelled by firstNZi, if m = 0
then this same neighbor is labelled by firstZi. To simulate an increment of the
form L1 : ci := ci + 1; goto L2, the node of the AHN labelled with L1 sends
an inci and the unique node labelled by nextZi receives it, acknowledges it by
sending an ackinci and updates its unique neighbor labelled by Zi to nextZi.
The decrement works in the same manner except that if the value of the counter
ci is equal to 0 the node labelled with a label of the Minsky machine receives a
zeroi otherwise it receives a deci. We have then that in P ′ there is an execution
from an initial configuration which reaches a configuration where at least one

6

firstZi

??inci
firstNZi

!!ackinci

??ackdeci

??deci

!!zeroi

Zi nextZi

??ackinci ??inci
NZ1

!!ackinci

??ackdeci

??deci

!!ackdeci

Fig. 2. Simulation of the instructions for counter ci.

L1

!!inci
L2

??ackinci
L3

!!deci

L4

??ackdeci

L5

??zeroi

Fig. 3. Encoding (L1 : ci := ci + 1; goto L2) and (L3 : if ci = 0 then goto L5

else ci := ci − 1; goto L4)

node is labelled by LF if and only if the corresponding Minsky machine halts.
This allows us to deduce:

Theorem 1. For k > 1, cover restricted to configurations with k-bounded di-
ameter is undecidable.

Note that if we restrict our attention to graphs with a diameter bounded by
1, the above encoding does not work anymore. The class of graphs with diameter
1 corresponds to the set of clique graphs and, as said above, cover turns out
to be decidable when restricting to clique topologies.

Bounded diameter and bounded degree. From a non trivial result on
bounded diameter graphs [12], we obtain an interesting decidable subclass. In-
deed, in [12] the authors show that, given two integers k, d > 0, the number of
graphs whose diameter is smaller than k and whose degree (max number of neigh-
bors) is smaller than d is finite. The Moore bound M(k, d) = (k(k−1)d−2)/(k−2)

7

G KG

Fig. 4. A graph G and its associated clique graph KG.

is an upper bound for the size of the largest undirected graph in such a class.
The following property then holds.

Theorem 2. For fixed k, d > 0 and given a process P = 〈Q,Σ,R,Q0〉, cover re-
stricted to configurations with k-bounded diameter and d-bounded degree is in
Pspace in the size of P .

Proof. From [12], it follows that the number of possible configurations is finite.
Thus, cover is decidable. Since k and d are two fixed constants, the constant
N = M(k, d) gives us an upper bound on the number of nodes of the largest
graph to be considered. Notice that we only need polynomial space in the size of
P to store a graph with size smaller or equal than N . To solve the cover prob-
lem, we define a non deterministic algorithm that first guesses the initial graph
G0 and then explore all possible successor configurations in search for an error
state. Since the topology never changes, in the worst case we have to consider
all possible relabelings of the initial graph. Thus, the size of the state space is
bounded by |Q|N and it is still polynomial in the size of P .

5 Maximal Clique Graphs with Bounded Paths

In this section we prove decidability for cover restricted to the class of graphs
we call BPCn (n-Bounded Path maximal Cliques graphs). BPCn contains both
n-bounded path graphs and any clique graph, while being strictly contained in
the class of graphs with k-bounded diameter. The class is defined on top of the
notion of maximal clique graphs associated to a configuration.

Definition 1. Given a connected undirected graph G = 〈V,E, L〉 and • 6∈ L(V),
the maximal clique graph KG is the bipartite graph 〈X,W,E′, L′〉 in which

– X = V ;
– W ⊆ 2V is the set of maximal cliques of G;
– For v ∈ V,w ∈ W , 〈v, w〉 ∈ E′ iff v ∈ w;
– L′(v) = L(v) for v ∈ V , and L′(w) = • for w ∈ W .

Note that for each connected graph G there exists a unique maximal clique
graph KG. An example of construction is given by Figure 4. One can also easily
prove that if G is a clique graph then in KG there is no path of length strictly
greater than 3. Furthermore, from the maximality of the cliques in W if two
nodes v1, v2 ∈ V are connected both to w1 and w2 ∈ W , then w1 and w2 are
distinct cliques. We use the notation v1 ∼w v2 to denote that v1, v2 belong to
the same clique w.

8

Definition 2. For n ≥ 1, the class BPCn consists of the set of configurations
whose associate maximal clique graph has n-bounded paths (i.e. the length of the
simple paths of KG is at most n).

Let us now study the properties of this class of graphs. We first introduce the
following ordering on BPCn graphs.

Definition 3. Assume G1 = 〈V1, E1, L1〉 with KG1
= 〈X1,W1, E

′
1, L

′
1〉, and

G2 = 〈V2, E2, L2〉 with KG2
= 〈X2,W2, E

′
2, L

′
2〉 with G1 and G2 both connected

graphs. Then, G1 ⊑ G2 iff there exist two injections f : X1 → X2 and g : W1 →
W2, such that

i. for every v ∈ X1, and C ∈ W1, v ∈ C iff f(v) ∈ g(C);
ii. for every v1, v2 ∈ X1, and C ∈ W2, if f(v1) ∼C f(v2), then there exists

C′ ∈ W1 s.t. f(v1) ∼g(C′) f(v2);
iii. for every v ∈ X1, L

′
1(v) = L′

2(f(v));
iv. for every C ∈ W1, L

′
1(C) = L′

2(g(C)).

The first condition ensures that (dis)connected nodes remain (dis)connected in-
side the image of g. Indeed, from i it follows that, for every v1, v2 ∈ X1, and
C ∈ W1, v1 ∼C v2 iff f(v1) ∼g(C) f(v2). The second condition ensures that
disconnected nodes remain disconnected outside the image of g.

By condition i in the definition of ⊑, we have that G1 ⊑ G2 (via f and
g) implies that KG1

is in the induced subgraph relation with KG2
(via f ∪ g).

Furthermore, we also have the following property:

Lemma 1. G1 ⊑ G2 iff G1 �i G2 (G1 is an induced subgraph of G2).

We are now interested in the property of being wqo for the above defined graph
orderings. Lemma 1 shows that the ordering ⊑, defined on the maximal clique
graph, is equivalent to the induced subgraph ordering on the original graphs.
It is well known that the induced subgraph relation is not a wqo for generic
graphs (e.g. consider the infinite sequence of rings of increasing size). There are
however interesting classes of graphs for which the induced subgraph ordering is
wqo. For instance, induced subgraphs is a wqo for the class of graphs for which
the length of simple paths is bounded by a constant (bounded path graphs). This
result is known as Ding’s Theorem [6]. Now observe that given n ≥ 1 the class
BPCn we are interested in contains cliques of arbitrary order and it also strictly
contains the class of n/2-bounded path graphs. Interestingly, Ding’s result can
be extended to the BPCn class for every n ≥ 1.

Lemma 2. For any n ≥ 1, (BPCn,⊑) is a well-quasi ordering.

The proof, given in [5], follows Ding’s induction method and exploits a decom-
position property of bounded path graphs due to Robertson and Seymour.

Given a subset S ⊆ BPCn, we now define its upward closure S ↑= {G′ ∈
BPCn | G ∈ S and G ⊑ G′}, i.e., S ↑ is the set of configurations generated by
those in S via ⊑. A set S ⊆ BPCn is an upward closed set w.r.t. to (BPCn,⊑)
if S ↑= S. Since (BPCn,⊑) is a wqo, we obtain that every set of configurations

9

that is upward closed w.r.t. (BPCn,⊑) has a finite basis, i.e., it can be finitely
represented by a finite number of graphs. We can exploit this property to define
a decision procedure for the coverability problem. For this purpose, we apply the
methodology proposed in [1]. The first property we need is that the transition
relation induced by our model is compatible with ⊑.

Lemma 3. Fixed n ≥ 1, for every G1, G2, G
′
1 ∈ BPCn such that G1 ⇒BPCn

G2

and G1 ⊑ G′
1, there exists G′

2 ∈ BPCn such that G′
1 ⇒BPCn

G′
2 and G2 ⊑ G′

2.

For a fixed n ≥ 1, monotonicity ensures that if S is an upward closed set of
configurations, then the set of predecessors of S according to ⇒, defined as
pre(S) = {G | G ⇒BPCn

G′ and G′ ∈ S}, is still upward closed. Furthermore,
we can effectively compute a finite representation of S ∪ pre(S).

Lemma 4. Given a finite basis B of an upward closed set S ⊆ BPCn, there
exists an algorithm to compute a finite basis B′ of S ∪ pre(S) s.t. S ∪ pre(S) =
B′ ↑.

This allows us to state the main theorem of this section.

Theorem 3. Given n ≥ 1, cover restricted to BPCn configurations is decid-
able.

Proof. It follows from Lemmas 2, 3, and 4 and from the general properties of
well structured transition systems [1,2,11]. ⊓⊔

6 Ackermann-hardness of cover in BPCn

In the previous section we have proved that, despite cover is undecidable for
AHNs, it becomes decidable when imposing the configurations to be in BPCn

and this for every n ≥ 1. We prove here, that even if decidable, this problem is
not primitive recursive. The proof is by reduction from the coverability problem
for reset nets, which is known to be an Ackermann-hard problem [19].

A reset net RN is a tuple 〈P, T,m0〉 such that P is a finite set of places, T
is a finite set of transitions, and m0 is a marking, i.e. a mapping from P to N

that defines the initial number of tokens in each place of the net. A transition
t ∈ T is defined by a mapping •t (preset) from P to N, a mapping •t (postset),
and by a set of reset arcs t↓⊆ P . A configuration is a marking m. Transition t
is enabled at marking m iff •t(p) ≤ m(p) for each p ∈ P . Firing t at m leads
to a new marking m

′ defined as m
′(p) = m(p) −• t(p) + t•(p) if p 6∈ t ↓, and

m
′(p) = 0 otherwise. We assume that if p ∈ t↓ then t•(p) = 0. A marking m is

reachable from m0 if it is possible to produce it after firing finitely many times
transitions in T . Given a reset net 〈P, T,m0〉 and a marking m, the coverability
problem consists in checking for the existence of a reachable marking m

′ such
that m

′(p) ≥ m(p) for every p ∈ P . In [19] it is proved that the coverability
problem for reset nets is Ackermann-hard.

We start by showing a linear reduction of the coverability problem for reset
nets to cover for the class of AHNs with clique topologies, denoted with K. Note

10

that K corresponds to BPCn with 2 ≤ n < 4. Then, we show how to generalize
the presented reduction to AHNs with topologies in BPCn, with n ≥ 4.

Let RN = 〈P, T,m0〉 be a reset net, and let m be a marking. We construct
a process P = 〈Q,Σ,R,Q0〉 with a control state q ∈ Q such that m is coverable
in RN iff the control state q is reachable in AK

P
. We assume, without loss of

generality, that both m0 and m contain only one token, i.e. there exist two
places ps and pe such that m0(ps) = 1 (resp. m(pe) = 1) and m0(p) = 0 (resp.
m(p) = 0) for every p 6= ps (resp. p 6= pe).

We now describe the corresponding process definition P = 〈Q,Σ,R,Q0〉.
We define Q0 = {q0}, i.e. all the processes are initially in the state q0. At the
beginning the processes perform a simple protocol (depicted in Figure 5) that
elects one node as the master, and the other nodes become slaves.

q0master slave
!!start ??start

Fig. 5. The initialization phase.

The master will control the simulation of the reset net, while the slaves will
be used to represent tokens in the net markings. Namely, when a slave process
is in the state qp ∈ Q, it represents one token in the place p ∈ P . For instance,
in order to represent the initial marking it is necessary for the master to move
one slave in the state qps

. This is achieved by the protocol in Figure 6.

master

!!ps

??ack

Error
??ack

master′

!!ok

slave

??ps??ok

!!ack

qps

??ok

Fig. 6. Generating the initial marking with only one token in ps.

Note that the protocol can deadlock in two possible cases: either when there
is no slave node, or two of them reply with the ack message before the master
closes the protocol with the ok message. If the master completes the protocol by
entering in the state master′, exactly one slave moved to the state qps

.

11

At this stage, the simulation of the net transitions starts. The master in
state master′ nondeterministically selects one of the possible transitions t, with
•t = {p1, . . . , pn}, t ↓= {p′1, . . . , p

′
m}, and t• = {p′′1 , . . . , p

′′
l }, and it starts its

simulation by performing the following protocol. It first tries to consume the
tokens in the preset •t by performing in sequence protocols similar to the one in
Figure 6: in this case, it moves processes from the states qpi

to slave to simulate
the consumption of tokens in the places pi. After, the reset actions are performed
simply by emitting the messages resetp′i, whose effect is to move all nodes in
the states qp′

i
to the slave state. Finally, by performing in sequence the same

protocol of Figure 6, it simulates the production of tokens in the places p′′i .

Lemma 5. Given a marking m containing only one token in pe, we have that
m can be covered in RN iff AK

P satisfies cover for the state qpe
.

Proof. The if part follows from the fact that every ad hoc network in AK
P

cor-
rectly reproduces computations of the reset net (it simply introduces deadlocks
that are not relevant as far as the coverability problem is concerned). The only-
if part is a consequence of the fact that every finite computation of the reset
net can be simulated by at least one ad hoc network in AK

P
having a sufficient

number of nodes. ⊓⊔

It is easy to see that the above construction does not work for topologies dif-
ferent from the clique. For instance, in the topologies in BPCn with n ≥ 4, there
are nodes belonging to two distinct maximal cliques. If such nodes are connected
to two distinct masters, they could generate interferences among them. In order
to cope with this problem, we build another process P ′ obtained by replacing
the trivial initialization protocol of Figure 5 with the most sophisticated one
depicted in Figure 7.

q0

!!start

??ready

master

!!go

blocked

??ready

??start

??start

??ready

!!ready

slave

??go

Fig. 7. The initialization phase for BPCn with n ≥ 4.

After the execution of this initialization protocol, we have the guarantee that
slave processes do not generate interferences between two distinct master nodes.

12

In fact, at the end of the protocol we have the guarantee that every slave node
is connected to exactly one master, and all of its other neighbors are blocked.

Lemma 6. Given a marking m containing only one token in pe and n ≥ 4, we
have that m can be covered in RN iff ABPCn

P′ satisfies cover for the state qpe
.

We can conclude with the main result of this section.

Theorem 4. For every n ≥ 2, cover restricted to BPCn configurations is non-
primitive recursive.

Proof. The result follows from the Ackermann-hardness of reset nets [19], and
from Lemma 5 and Lemma 6. It is sufficient to note that K coincides with BPCn

with 2 ≤ n < 4, and to observe that P is obtained in linear time from the reset
net RN .

7 Broadcast vs Unicast Communication

Although broadcast communication is specifically devised for networks in which
nodes have no complete knowledge of the surrounding topology, unicast (point-
to-point) communication is often provided, e.g., to exchange information after
the acquisition of the information on the vicinity of a node. We investigate here
the relationship between the coverability problem for unicast and broadcast com-
munication. Specifically, we show that the two problems can be kept separated
(i.e. the problem is more difficult for broadcast) in all the classes of graphs
studied in [3] and in the present paper.

For this analysis we first introduce two primitives !a and ?a for unicast com-
munication. As in CCS [14], when a process sends a message a (action !a) it
synchronizes with only one process that is in a state in which it is ready to re-
ceive a (action ?a). The receiving process is nondeterministically chosen among
those ready to receive a. For unicast communication the definition of a pro-
cess P = 〈Q,Σ,R,Q0〉 is modified in the component R that is now a subset of
Q × ({τ} ∪ {!a, ?a} | a ∈ Σ) × Q. The operational semantics is obtained via a
transition relation ⇒ defined as follows: given two configurations G = 〈V,E, L〉
and G′ = 〈V ′, E′, L′〉, we have G ⇒ G′ iff G and G′ have the same underlying
structure, i.e., V = V ′ and E = E′, and, in addition to the conditions for τ of
Section 3, the following condition on L and L′ defines a case in which a transition
may take place:

– there exists v 6= w ∈ V such that (L(v), !a, L′(v)) and (L(w), ?a, L′(w)) are
both in R, and L(u) = L′(u) for all u in V \ {v, w}.

For the sake of clarity, in the rest of the section we name AHNb the model
with broadcast (and no unicast) and AHNu the model with unicast (and no
broadcast).

The coverability problem for AHNu can be reduced to the corresponding
problem for AHNb. Indeed, unicast communication can be simulated via broad-
cast messages via a protocol like the one in Figure 6. The encoding introduces

13

deadlocks that are not relevant as far as the cover problem is concerned. The
following theorem then holds.

Theorem 5. The control state reachability problem for AHNu is in EXPspace.

Proof. We first show that we can restrict our attention to clique graphs only.
Indeed, given a state q, if there exist G0 and G1 with n nodes s.t. G0 ⇒∗

G G1

and q is a label in G1, then there exist two cliques K0 and K1 with order n s.t.
K0 ⇒∗

G K1 and q is a label in K1. This property follows from the observation that
for any graph G with n′ ≤ n nodes, there exists a clique graph with n nodes such
that G �s Kn. Let K0 be the clique such that G0 �s K0. Since G0 ⇒∗

G G1, by
exploiting the monotonicity of unicast communication w.r.t. subgraph ordering,
we have that there exists K1 s.t. K0 ⇒∗

G K1 and q is a label in K1. Now we
observe that control state reachability in the class of clique graphs can be reduced
to coverability in a Petri net in which each place corresponds to a state in Q.
The initial marking is produced by firing transitions that (a nondeterministically
chosen number of) tokens in the places in Q0. For each unicast communication
step involving a pair of nodes in state q and q′, we add a transition with q and q′

in the preset, and the corresponding target states in the postset. It follows then
from classical results on Petri nets [16] that we can use an EXPspace decision
procedure for deciding cover for AHNu.

From this property and from the undecidability result for coverability in AHNb

(for unrestricted topologies), we observe that there cannot be any recursive en-
coding of coverability in AHNb into the corresponding problem in AHNu. Fur-
thermore, in the case of cliques with bounded paths, from Theorem 4, we have
that there is no primitive recursive encoding of coverability in AHNb. This way
we separate the difficulty of the coverability problem in the two types of com-
munication schemes.

8 Conclusions

In this paper we have extended the decidability result for verification of networks
with bounded path topology presented in [3] to a larger and more interesting
class of graphs. The new class consists of topologies in which the correspond-
ing maximal cliques are connected by paths of bounded length. Furthermore,
we have characterized the complexity of the corresponding decision procedure
and compared the expressiveness of broadcast and unicast communication. As a
future work, we plan to study decidability issues in presence of communication
and node failure and to consider extensions of the ad hoc network model with
features like timing information and structured messages.

References

1. P. A. Abdulla, C. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS’96, pages 313–321. IEEE Computer Soci-
ety, 1996.

14

2. P. A. Abdulla, C. Čerāns, B. Jonsson, and T. Y.-K. Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput., 160(1-2):109–127, 2000.

3. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized Verification of Ad Hoc
Networks. In CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.

4. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized Verification of Ad Hoc
Networks (Extended version). Technical Report DISI-TR-10-01, DISI-University
of Genova, 2010.

5. G. Delzanno, A. Sangnier, and G. Zavattaro. On the Power of Cliques in the
Parameterized Verification of Ad Hoc Networks. Technical Report DISI-TR-11-01,
DISI-University of Genova, 2011.

6. G. Ding. Subgraphs and well quasi ordering. J. of Graph Theory, 16(5):489 – 502,
1992.

7. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic
infinite-state systems. In LICS’98, pages 70–80. IEEE Computer Society, 1998.

8. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
LICS’99, pages 352–359. IEEE Computer Society, 1999.

9. A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of the LMAC
protocol for wireless sensor networks. In IFM’07, volume 4591 of LNCS, pages
253–272. Springer, 2007.

10. Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks. In
POMC’02, pages 31–37. ACM, 2002.

11. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoret. Comp. Sci., 256(1-2):63–92, 2001.

12. A. Hoffman and R. Singleton. On Moore graphs with diameter 2 and 3. IBM J.

Res. Develop., 4:497–504, 1960.
13. R. Meyer. On boundedness in depth in the pi-calculus. In IFIP TCS’08, volume

477–489 of IFIP, pages 477–489. Springer, 2008.
14. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
15. M. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.
16. C. Rackoff. The covering and boundedness problems for vector addition systems.

Theoret. Comp. Sci., 6:223–231, 1978.
17. F. Rosa Velardo. Depth boundedness in multiset rewriting systems with name

binding. In RP, volume 6227 of Lecture Notes in Computer Science, pages 161–
175. Springer, 2010.

18. M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification
of Ad Hoc Routing Protocols. In TACAS’08, volume 4963 of LNCS, pages 18–32.
Springer, 2008.

19. P. Schnoebelen. Revisiting Ackermann-Hardness for Lossy Counter Machines and
Reset Petri Nets. In MFCS’10, volume 6281 of LNCS, pages 616–628. Springer,
2010.

20. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-Based model checking of
Ad Hoc Network Protocols. In CONCUR’09, volume 5710 of LNCS, pages 603–61.
Springer, 2009.

21. T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded
processes. In FOSSACS’10, volume 6014 of LNCS, pages 94–108. Springer, 2010.

15

A Enforcing a configuration for the proof of Theorem 1

We give here the definition of the process P = 〈Q,R,Σ,Q0〉 which allows to
enforce the topology into a certain form in order to prove then the undecid-
ability result of Theorem 1. We assume that the considered AHN works on
configurations with a diameter bounded by 2. However one can easily adapt our
construction to prove similar results for each k ∈ N when considering AHN re-
stricted to configurations with k-bounded diameter. In fact, one can build a more
evolved process which will enforce the topology in a graph as the one presented
in Figure 1 except that instead to be at a distance one from the central node
L0, each node Zi would be at a distance equal to k/2. The construction of P
is inspired by the process Req/Ack/Ok-protocol we had introduced in [3]. The
process P is given by the Figures 8,9 and 10. The initial states are M0,S

1
0 and

S2
0 . The part of P represented in Figure 8 ensures that after this protocol have

been executed each node in the state Si
3 is adjacent with exactly one node in the

state M1 and furthermore since the diameter of the considered configurations
is at most 2, we deduce also that if two nodes in a state Si

3 are neighbors then
they are connected to the same node in state M1. The part of P represented
on Figure 9 allows the nodes in state M1 to select one of their neighbors to be
the node that will then be in state firstZi. Finally the part of P represented
on Figure 10 allows to construct the lists of nodes in state Zi. Note that we use
plainly the fact that the diameter of the manipulated configuration is bounded
by 2 otherwise we would not obtain the considered result: which is that if a
configuration G which contains at least a node labelled by L0 is reached in the
AHN associated to P then all the nodes labelled by L0 in G are connected with
other nodes as in the graph of the Figure 1 where we did not represent the nodes
labelled with error.

M0 M1

error

!!init

??ackinit1 ??ackinit2

!!okinit

??init

??ackinit1
??ackinit2

Si
0 Si

1 Si
2 Si

3
??init !!ackiniti ??okinit

??okinit

??reqinit

??ackinit2−1

Fig. 8. Enforcing the form of the topology for i ∈ {1, 2} (I)

16

M1

M2

!!first1

M3

??ackfirst1

M4

!!okfirst1

M5

!!first2

M6

??ackfirst2

M7

!!okfirst2

error

??ackfirst1

??ackfirst2

Si
3

Si
4

??firsti

Si
5

!!ackfirsti

T i
1

??okfirsti

Fig. 9. Enforcing the form of the topology for i ∈ {1, 2} (II)

B Proof of Lemma 1

Proof. We first show that G1 ⊑ G2 (via f and g) implies G1 �i G2.
Assume that v ∼ v′ in G1. Then there exists a maximal clique C ∈ X1 for which
v ∼C v′. Thus, by definition of ⊑ we have that f(v) ∼g(C) f(v′) that implies
f(v) ∼ f(v′) in G2. Now assume that f(v) ∼C′ f(v′) for a maximal clique C′ in
G2. By condition ii in the definition of ⊑, there must be a clique C in G1 s.t.
and v ∼C v′. Thus, v ∼ v′ in G1.
We now show that G1 �i G2 implies G1 ⊑ G2.
Let us assume that G1 �i G2 via f . To prove G1 ⊑ G2 we still use the same
injection f . Furthermore, we observe that for each clique C in G1 there must be
a clique C′ in G2 that contains the image of C via f (this because 〈v〉v′ ∈ E iff
〈f(v)〉f(v′) ∈ E′). To define g, we map C into C′ for every component C in G1.
It is straightforward to check that the conditions defining ⊑ are satisfied by f
and g.

17

M7

M8

!!req1

M9

??ackreq1

M10

??okreq1

!!req1

M11

!!done1

M12

!!req2

M13

??ackreq2

M14

??okreq2

!!req2

L0

!!done2

Si
5

Si
6

??reqi

Si
5

!!reqnewi

Si
7

??ackreqi

firstZi

!!okreqi

Err
??ackreqi

T i
1

T i
2

??reqnewi

T i
3

!!ackreqi

T i
4

??reqi

T i
5

!!reqnewi

T i
6

??ackreqi

Zi

!!okreqi

!!donei

Err

??ackreqi

??okreqi

??donei

Fig. 10. Enforcing the form of the topology for i ∈ {1, 2} (III)

18

C Proof of Lemma 2

Proof. We first recall Higman’s lemma. Let (A,≤) be a quasi order. We define
Bags(A) as the set of bags (multisets) of elements in A. Let [a1, . . . , an] denote a
bag in Bags(A) (the same element a ∈ A may occur several times in a1, . . . , an).
We now define [a1, . . . , an] ≤b [a′1, . . . , a

′
m] iff there exists an injection h : n → m

s.t. ai ≤ a′
h(i) for i : 1, . . . , n.

Lemma 7. If (A,≤) is a wqo, then (Bags(A),≤b) is a wqo.

We also need the following property of easy proof.

Lemma 8. Let G be a connected graph in which paths have length at most n ≥ 1.
Then, there exists a vertex v such that removing v splits G into a multiset of
connected graphs G1, . . . , Gk such that Gi has paths with length at most n − 1
for i : 1, . . . , k.

We now assume that the labels of vertices in the maximal cliques are taken
from a finite alphabet (not just a singleton) and prove the wqo in this more
general case.

The proof is by induction of n. Let G be any graph such that KG has paths
of length at most n.

The base case is for n = 2, i.e., cliques of arbitrary order. It is immediate
to see that ⊑ can be reduced to =b over bags with elements in Q. We can then
apply Lemma 7 to infer that ⊑ is a wqo for n = 2.

Let us now consider an infinite sequence KG1
KG2

. . .KGi
. . . of clique graphs

with paths of length at most n > 1. Since KGi
is a connected graph we can apply

Lemma 8, i.e., there exists a vertex vi such that by removing it we split KGi
into

a bag of connected graphs with paths of length at most n− 1 for i : 1, . . . , n.
We now consider two cases.

– Let K1K2 . . .Ki . . . be an infinite subsequence such that, for every i ≥
1, the node vi that disconnects the graph has label q ∈ Q. We assume
that by removing vi from Ki we obtain the bag of connected components
Ki,1, . . . ,Ki,mi

. Now given Ki,j = 〈X,W,E′, L′〉, we define Ka
i,j by replacing

L′ with L′
a with co-domain (Q × {0, 1})∪ ({•} × {0, 1}) defined as:

• L′
a(v) = 〈L′(v), 1〉, L′

a(C) = 〈•, 1〉 for v ∈ X , C ∈ W s.t. v ∼C vi in Ki;
• L′

a(w) = 〈L′(w), 0〉 for all w s.t. there is no D for which w ∼D vi in Ki;
• L′

a(D) = 〈•, 0〉 for all D s.t. there is no w for which w ∼D vi in Ki.

Let D be the infinite set of graphs defines as D = {Ka
i,j | j : 1, . . . ,mi, i ≥ 1}.

Since the D contains only graphs with path of length at most n−1 and labels
from a finite alphabet, we can apply the inductive hypothesis and assume
that (D,⊑) is a wqo.
We now define the infinite set of bags B = {[Ka

i,1, . . . ,K
a
i,mi

] | i ≥ 1}. By

Lemma 7, 〈B,⊑b〉 is a wqo. This implies that there exist indexes k < l such
that 〈Kk,1, . . . ,Kk,mk

〉 ⊑b 〈Kl,1, . . . ,Kl,ml
〉, i.e., there exists mk distinct

indexes j1, . . . , jmk
s.t. Kk,i ⊑ Kl,ji via injections 〈fi, gi〉 for i : 1, . . . ,mk.

19

Let us now define f = f1 ⊎ . . .⊎ fmk
extended by setting f(vk) = f(vl), and

g = g1 ⊎ . . . ⊎ gmk
. We now show that Kk ⊑ Kl via f and g.

Let L′
k be the label function in Kk and L′

l be the label function in Kl.
• Assume that vk ∈ C in Kk. Then, C belongs to one connected component
Kk,i and, by construction, it is marked 1. By induction hypothesis g maps
C to a clique in Kl,ji that must be marked 1 (since g must preserve the
labeling). Thus, vl = f(vk) must be connected to g(C) in Kl.

• Now consider a vertex v ∈ C such that vl ∼C v in Kl. Then, v and C
belong to a connected graph Kl,r of Kl and they are both marked with
1. Assume that v = f(v′) for some v′ in C′ in Kk. By definition of f ,
v′ must be marked 1 in Kl. Thus, there exists a maximal clique C′ s.t.
vk ∼C′ v.

Notice that g(C′) = C may not be true. For instance, vl may
belong to 2 cliques C1 and C2 that share in common vl and
another node v. Now v, C1, C2 are all marked 1. Now Kk may
contain only one clique C′ with vk and v′ s.t. f(v′) = v. Thus
either C1 or C2 is not in the image of g. However since v′ is
mapped to v and the marking is preserved we know that there
exists C′ that connects v′ and v.

– Let K1K2 . . .Ki . . . be an infinite subsequence such that, for every i ≥ 1,
by removing node Ci with label • from Ki we split Ki into the connected
components Ki,1, . . . ,Ki,mi

. We apply the same steps as in the former case
(marking of nodes connected to Ci of Ki,j , application of Higman’s lemma
to obtain indexes k and l, definition of f and g to put in relation Kk and Kl.
In this case the property that Kk ⊑ Kl follows immediately by the definition
of f and g that maps Ck to Cl and, by definition of f , maps nodes connected
to Ck to nodes connected to Cl.

D Proof of Lemma 3

Proof. It follows from Lemma 1 and from the monotonicity property of selective
broadcast w.r.t. to the induced subgraph relation proved in [3].

E Proof of Lemma 4

Proof. The construction is similar to that used in [3] for the class of graphs with
bounded path. Fixed n ≥ 0, we work here with minimal configurations that are
graphs in BPCn. By a case analysis on the backward application of transitions
similar to the one in [4], we compute a new graph that represents upward closed
set of predecessors. The size of the graph can increase in this step. Indeed when
computing predecessors we also have to consider nodes that are not explicitly
represented in the minimal configuration but that belong to a configuration
in its upward closure. The predecessors are computed then by discharging all
predecessor representations that lie outside the class BPCn and by collecting
all those belonging to BPCn. In this construction minimal configurations are

20

compared modulo graph isomorphism preserving the labeling of vertices. The
correspondence with the operational semantics again is obtained modulo graph
isomorphism, i.e., if G1 ∈ pre(G2), then for each G′

1 in the upward closure of
G1 there exists H1 isomorphic to G′

1 and H2 isomorphic to G′
2 is in the upward

closure of G2 such that H1 → H2. ⊓⊔

F Proof of Theorem 5

Proof. We show that coverability for AHNu reduces to coverability in a Petri
net. It follows then from classical results on Petri nets [16] that we can use an
EXPspace decision procedure for deciding coverability for AHNu.

The key property for this reductions is the following. Given a state q, there
exist graphs G0 and G1 both with n nodes s.t. G0 ⇒∗

G G1 and q is a label in G1

if and only if there exist two cliques of n nodes K0 and K1 s.t. K0 ⇒∗
G K1 and

q is a label in K1. Clearly, if the two cliques exist, then we automatically have
found G0 and G1. Vice versa, assume that we have found G0 and G1. Then, for
any graph G with n′ ≤ n nodes, there exists a clique graph with n nodes such
that G �s Kn. Let K0 be the clique such that G0 �s K0. Since G0 ⇒∗

G G1,
by iterating the application of Lemma ??, we have that there exists K1 s.t.
K0 ⇒∗

G K1 and q is a label in K1.
To conclude the proof, we notice that checking coverability (with unknown

initial configuration) in a completely connected graph boils down to marking
coverability in a Petri net in which each place corresponds to a state in Q. The
initial marking is produced by firing transitions that (a nondeterministically
chosen number of) tokens in the places in Q0. For each unicast rule involving a
pair of nodes in state q and q′, we add a transition with q and q′ in the preset,
and the corresponding target states in the postset. ⊓⊔

21

G Figure for Section 6

master′

!!rp1

??ack

Error

??ack
!!ok

. . .

!!rpn

??ack

??ack

!!ok !!resetp′1 . . .

!!resetp′m

!!p′′1

??ack

??ack

!!ok

. . .

!!p′′l

??ack!!ok

??ack

qp

??rp??ok

!!ack

slave

??ok

??resetp

Fig. 11. Transition t with •t = {p1, . . . , pn}, t↓= {p′1, . . . , p
′

m}, and t• = {p′′1 , . . . , p
′′

l }.

22

