Towards model-checking programs with listg

Alain Finkel', Etienne Loze and Arnaud Sangnié?

1 LSV, ENS Cachan & CNRS UMR 8643
61, av. Pdt Wilson 94235 Cachan Cedex, France
{finkel|lozes|sangnier}@sv.ens-cachan.fr
2 EDF R&D

Abstract. We aim at checking safety and temporal properties over nsadple-
senting the behavior of programs manipulating dynamiclgitigked lists. The
properties we consider not only allow to perform a classit@pe analysis, but
we also want to check quantitative aspect on the manipulatdory heap. We
first explain how a translation of programs into counter exyst can be used to
check safety problems and temporal properties. We thery sheddecidability
of these two problems considering some restricted cladsgograms, namely
flat programs without destructive update. We obtain theofalhg results : (1)
the model-checking problem is decidable if the considerednam works over
acyclic lists (2) the safety problem is decidable for progsawvithout alias test.
We finally explain the limit of our decidability results, shimg that relaxing one
of the hypothesis leads to undecidability results.

1 Introduction

Context. The model checking techniques of infinite-state systemsave an active
research area. These techniques have been successflibdadpga lot of infinite-state
transition systems like counter systems, lossy channétsys pushdown automata,
timed automata, hybrid automata, and rewriting systems.sbme of these models,
there exist today both an impressive set of theoreticalltsesnd efficient automatic
tools for verifying safety properties.

Among the different models, counter systems enjoy a ceptsition for both theo-
retical results and maturity of tools [IKeAST [3], ASPI C[19], LASH [20] and TREX
[1]. Moreover, counter systems, defined by Presburgerioelstallow to model and to
verify quantitative properties over various applicatisosh as the TTP protoc6l[2] and
broadcast protocols [16]. Different acceleration methfmdsomputing the reachabil-
ity relation of such counter systems have been developegatticular, an accelera-
tion method (recalled i [17]) has been completely impleteéin the verification tool
FAST [3].

In this work, we study a peculiar class of infinite state systecalled pointer sys-
tems, which allows to model the behavior of programs workiner singly-linked lists.
For pointer systems, qualitative properties (absence ahong violation like invalid
pointer dereferencing, memory leak) are difficult to anajyand may drastically rely on

* This work has been partially supported by contract 4300888&fetween EDF R&D/LSV and
by the AVERILES project.

quantitative properties (lists of equal length, finitelglieasing memory allocation,...).
Some recent works illustrate this relation between quaiinté and qualitative aspects
in pointer systems for the purpose of verifying terminafléjor safety [11].

Motivations. Our attempt in this paper is to demonstrate that this redalietween
quantitative and qualitative properties is central in maspects of pointer systems.
Consider for example the following program that allocateopy of a list, and then
disposes both lists. In this program, the variabdgst andu are pointers to list ele-
ments.

1: void copy-and-delete(List x){ 9: y=x;

2 List y,t,u; 10: while (y!=NULL)({
3 y = X; t=NULL; u=t; 11: y=y- >next ;

4: while (y!'=NULL){ 12: u=u- >next;

5: y=y- >next ; 13: free(x); x=y;
6 t=mal | oc(); 14: free(t);t=u;

7 t - >next =u; 15: }

8 u=t;}

Such a program cannot be analyzed correctly by tools baspdrety qualitative shape
analysis, whereas combining shape analysis and quargitaialysis it can be automat-
ically established that this program is safe reminding biwdh lists are of equal length
after the first loop and that the initial list is acyclic. Ittisie that this example program
seems quite artificial, but it has to be seen as an abstraftemmore complex program
in which all the operations which had no effect on the shapga®ftiata structure have
been removed. In fact, in this work we consider programs kviben only manipulate
singly-linked lists and which have to be considered as atradtifon of real programs.
We believe that situations such as the one we present withlibee example are not
so rare in programs manipulating pointers, and a quangtatiape analysis could be
worth to be considered in several practical cases. Morergéyethis is certainly a
promising perspective to consider systems that combinetg@si and counters oper-
ations and design an analysis that relates both aspect® athputation. Counters
could model parameters of list-scanning algorithms (fstance, a procedure that re-
turns thenth element of a list), but also concurrency aspects like gbmies, thread
identifier, etc. Quantitative shape analysis could be wéiésd for model-checking tem-
poral properties relying on the algorithms already propdse counter systems, such
as in [13]. Previous attempts of model-checking tempormabprties on pointer systems
have been mostly based on either over-approximating, ort@mwninating algorithms
for which completeness is usually poorly studied. Exact emiplete algorithms for
rich classes of programs, though less efficient than othegsmeral, can play a crucial
role in practice.

In broad lines, we would like to reuse the principles of semddshape analysis to define
a guantitative shape analysis, and specifically rely on dloé RAST for the quanti-
tative aspects=AST implements a loops acceleration that succeeds in comptiteng
reachability set of any flat counter system; the same aat@ercan be exploited to
model-check CTE properties on these systerhs|[13]. By flat, we mean that thiealon
flow graph does not contain nested loops. Even if the classatf systems seems to be

quite restricted with respect to usual programs, severnams transformations can
be tried to flatten the system and cover a much richer classogirams. A flattening
procedure is implemented PAST, and many classes of programs on which this pro-
cedure succeeds have been identified [21]. Furthermore was®/studies have been
verified with this approach.

Our research program, in this paper, was to try to follow tmaetracks as for counter
systems in the framework of pointer systems. Thus, we anetettonsidered the class
of flat pointer systems and tried to define an acceleratiorthfem. Unfortunately, it
has been shown that for flat pointer systems, and even fordiatgy systems without
destructive update, the problem of reachability of a cdrgtate is undecidable. This
result is somehow unsettling and we wanted to better uratedsbr which classes of
pointer systems some CTlproperties (including reachability and safety) are deiela
or not.

Contribution. Our main contribution is to investigate the possibility ofj@antitative
model-checker for singly-linked lists manipulating pragrs. We define a CTLlogic
which is able to express quantitative properties of the mgmmanaged by pointer sys-
tems. For this temporal logic, we show that the model-chegkiroblem reduces to
the one for counter systems developed_in [13], provided &ujaate translation from
pointers to counters is given. This result is important fer since it serves as a foun-
dation for a two-steps analysis of pointer systems thatistmis translating them into
counter systems and then, with the helg-8ST, to verify safety properties. It remains
to provide a good translation of pointer systems into causiietems. We obtain three
categories of results concerning the translations:

First, we show that, from the experimental point of view, ttemslation defined i [5]
allows us to verify all well-known singly-linked lists castudies, and also some new
ones that are not immediately verifiable by the other tootsrarthodologies. Most of
the case studies yield flat counter systems for which we kmoadivance thaEAST
will terminate.

Second, we propose a new translation of pointer systemmitoter systems and we
characterize several classes of pointer systems withatriLative update for which our
analysis terminates. The main feature of this new tramsias that it preserves flatness
of the systems (unlike the first translation). Using this neamslation, we prove the
decidability of the CTEE model-checking for flat pointer systems without destriectiv
update and with an acyclic initial configuration and the dability of safety problems
for flat pointer systems without destructive update and evithalias test. In[[11], the
authors prove that some safety problems were decidable wihesidering flat pro-
grams without destructive update and with an initial cornfagion containing at most
one cyclic list. We hence extend here these results to theehubbcking when the
initial configuration is acyclic and we propose a new clas$laifprograms without
destructive update for which the safety problem is decilabl

Third, we explore the limits of our analysis, and of the dabidity of CTL* model-
checking for classes of flat pointer systems. We show thaameat extend our analysis
of flat pointer systems without destructive update and #édisssif cyclic initial configu-
rations are allowed. Conversely, we show that the safetigleno becomes undecidable

for flat pointer systems that keep their memory configuraticeyclic, but can perform
destructive update. This last point answers an open proasied in[[11].

Related work. Many tools and techniques to check safety properties onrgnegyma-
nipulating pointers have been developed receP#\.E [26] verifies safety properties
on programs annotated with loop invariant&/LA [22] is another tool based on ab-
stract interpretation, where the user has the possibiitsefine the abstraction pro-
viding adequate predicates. [n[27], the framework of prati abstraction is used to
manipulate boolean formulae representing the heap. In{i&puthors present a shape
analysis method based on separation logics formulae tyzmarograms manipulat-
ing singly-linked lists. Their method always terminates ight yield false alarms
due to the over-approximation brought by the abstractidche©methods have been
proposed which use already existing model-checking teghes. For instance, inl[9],
the authors verify safety properties on programs manipgatingly-linked lists us-
ing abstract regular model-checking. They have extendeid work to programs with
more complex data structurés [10]. [[n [8], the authors atepse a translation towards
counter systems very similar to the one[df [5].[In][24], théhaws propose to combine
shape analysis and arithmetic analysis using the same kirdimiques. None of these
considers temporal model-checking or state a completeassk for these analysis.
Some efforts have already been made to introduce tempaial flor pointer verifica-
tions as the Evolution Temporal Logic [29], which used teéghas similar to the one
presented iMMVLA, or the Navigation Temporal Logic presented[in][14]. Relseir
[12], the authors have introduced a temporal logic base@parstion logic. But, to our
knowledge, these different logics do not allow to expresmdjtative properties of the
memory heaps.

2 Preliminaries

In this section, we collect some useful notions about cauarte pointer systems. We
assume a se&t' of counter variables, and a Sétof pointer variables.

2.1 Counter systems

We recall thaPresburger arithmetics the first order theory of the structuf®, 4, =).
Given a Presburger formula with free variables belonging t6' anda € N¢, we
write a = ¢ if ¢ is true for the valuatiom. We will denote by[¢] the set described
by the formulap. A Presburger-linear functiory is a partial function which can be
represented by a tuplel, b, ¢) whereA is a square matrix ilN“ >, b € Z¢ and¢ is

a Presburger formula such théta) = A.a+ b for everya = ¢. We denote by ¢ the
set of such functions.

Definition 1 (Counter system).A counter systens a graph whose edges are labeled
with Presburger linear functions, that is a tupléS = (Q, E) whereQ is a finite set of
control states andv C Q x X¢ x @ is a finite set of transitions.

To a counter systerd'S = (Q, E), we associate the transition systans(C'S) =

(Q x N, —) defined by(¢q,a) — (¢’,a’) if there is a transitior{q, f, ¢’) in E with

f = (A,b,¢) suchthat = ¢ anda’ = f(a). We see here that when a transition of the
counter system is labelled with a Presburger-linear foncti, b, ¢) the Presburger
formula ¢ plays the role of a guard on the transition and the action etiinsition is
represented by the translation which associates to@ach® the vectord.a + b.

A simple cyclein a graphG = (Q, E) is a closed path (where the initial and final
vertices coincide) with no repeated edggis said to beflat if every ¢ € @ belongs

to at most one cycle. Lef'S = (Q, E) be a counter system. We define the monoid
of C'S, denoted by C'S >, as the multiplicative monoid generated by the matrices
present in the labels af'S. More formally, < CS >= J,»,{41.42..... A; | V) e
{1,...,i} there exist4q, (4;,b, ¢),q') € E}. Acounter systend'S is said to havéhe
finite monoid propertyf the multiplicative monoid< C'S > is finite. Note that since a
counter system has a finite number of control states and mditrans, one can decide
whether a counter system is flat or not. This also holds fofitiiee monoid property,

in fact using a result of [25], one can prove that the problérknowing whether the
monoid of a counter system is finite is decidable .

For the following theorem, we use the fact that the contralest of a counter system
CS = (@, E) can be encoded into positive integers @¢¢C N) and then the set of
configurations is represented by~ 1+,

Theorem 1. [17] Let CS be a flat counter systeli@, £') with the finite monoid prop-
erty andT'S(CS) = (NI¢I+1) its associated transition system. Then the relation
—* is effectively Presburger definable.

Note that as mentioned i [17], this last result extends amdptetes previous results
on acceleration techniques for counter systems presem{gd]i

Let us recall the syntax of the temporal logic for countetteyss, called FOCTL(Pr)
in [13] :
S =q|yY|IyP|-DP|PAND| XD | PUD | AD

whereq is a control statey is a variable of a countable set VAR atids a Presburger
formula overC U VAR.

We now give the semantics of this temporal logic. We considayunter syster@'S =
(Q,E) and its associated transition systdi$(C'S) = (Q x N¢ —). Let 7 be a
configuration path if’S(CS). For an integef, we denote byr(i) € Q x N¢ thei-th
configuration ofr, 7<; the initial part ofr up to position; and|r| the length ofr. Let
p be avariable valuation, that is a partial map from VARNoFori € N and a formula
& of FOCTL*(Pr), the satisfaction relatiop= is inductively defined at positiohof a
configuration pathr as follows:

- m,i [, qiff 7(i) = (q,a) for somea € N%;
- m, i =, Yiff 7(i) = (¢,a) with ¢ € Q and(a, p) |= ¢ in Presburger arithmetic;

- 7,1 =, Jy.@iffthereism € Nsuchthatr,i =,,...,) ¢ Wherep[y — m] denotes
the variable valuation equal jpexcept that the variablgis mapped to the integer
valuem;

-, =, P iff w0 P

i =, AP iff m,i =P andr,i =, ;

i =, XPiff ¢ < || andm, i+ 1 = &;

- m,i =, PUP' iff 35 such that < j < |r| andr,j = ¢/, and for all k such that
1<k<j,mkEdo

- 7,1 =, Ad iff for all configuration pathr” such thatr<; = 7, we haver’,i |=,
P.

We denote byC'S = @ the fact that all the configurations pathsn T'S(CS) ver-
ify m,0 = &. The next result shows that the theorlelm 1 can be extendednjmotal
properties, in fact :

Theorem 2. [L3] For a flat counter systent''S with the finite monoid property, and a
FOCTL*(Pr) formulad, it is decidable whethef'S = &.

2.2 Pointer systems

We now define the model of pointer systems that will be the a@dreur study. We
use pointer systems to represent the behavior of programipuaiating singly-linked
lists. The main idea of this model consists in representieghemory heap as a graph
in which each node has at most one successor. In the sequesentbe symbol. to
express that a function is undefined.

Definition 2 (Memory graph). A memory graplis a labeled graph that can be repre-
sented by a tupl&/G = (N, succ, loc) such that :

— N is afinite set of nodes such thgtul | , L} N N = §;

— succ is a function fromV to N U {nul | , L} called the successor function;

— loc is a function fromV to N U {nul | , L} which associates a node with each
pointer variable;

— for allnodesn € N, there isv € V andi € N such that, = succ’(loc(v)).

Note that the last condition intuitively expresses thatriemory graph represents a
heap without memory leak, i.e. all nodes are reachable igridygh from a node pointed
to by a variable. We impose that memory graphs do not contaimany leaks because
anyway the nodes not reachable from a variable in a memophgteat could remain
after executing an instruction would not have any incidemtéhe behavior of the pro-
gram. In the sequel, we will see that if an action performecatanary leak, we consider
it as a fault. Remark that we could also have a semantic withrbagye collector and
in this case we would delete in the graphs the nodes that areachable by a pointer
variable. We denote byGy (MG for short) the set of all memory graphs oviér
We will say that two memory graphs are equal if there existsamorphism between
their underlying graphs which respects the positions ofvréables. Acyclic listin a
memory graph is a simple cycle in the underlying graph and momng graph is said to

beacyclicif it does not contain any cyclic list.

We defineguarded pointer actionas pairs denote(, a) where guards and actions are
defined by the following grammar :

g=True | Isnull(z) |z =y |—-g|gAyg
a = x:=e | x.succ:=e | z:=malloc | free(x) | skip
e = NULL | z | z.suce

wherez, y are pointer variables belonging 16 and z.succ represents the successor
node of the cell pointed to by. We denote by the set of pointer guard${ the set
of pointer actions and’p = G x A. For a memory grapii/G € MG and a pointer
guardg € G, we denote bYW/ G = ¢ the fact thatV/ G satisfiesy. For a pointer action

a € A, we define the partial functiofu]p : MG — MG which associates to a
memory graphV/ G the memory grapfia] » (M G) obtained after executing the action
a over M G. The function[a] p is defined partially because there are some situations
in which the actioru realizes what we call a fault on a memory grapltZ and in this
casea] p(MG) is not defined. In our approach, we consider as a fault bothanem
violation and memory leak. Intuitively, a memory violatioocurs when an action tries
to move a pointer variable to the successor ofrilaé | node or to the successor of
an undefined node; whereas a memory leak occurs when moviagabhe leads to
a graph where there exists a node which is not reachable frooda labeled with a
variable. We also believe it would not change our resultottser garbage-collected
programs (ie programs for which a memory leak is not coneidles an error).

Definition 3 (Pointer system).A pointer systenis a graph whose edges are labeled
with pairs of pointer guards and actions, that is a tugté = (Q, E) where@ is a
finite set of control states anl C Q x X'p x Q.

We then associate a transition systéi$i(P.S) = (Q x MG, —) with a pointer system
PS =(Q, E). Its transition relation is defined by(¢, MG) — (¢', MG') if there is a

transitiong (o), ¢ in E such that/G = g andM G’ = [a] p(M G). A configuration
of a pointer systenPS = (Q, E) is a pair(q, M G); for a set of configuration§, we
write Reach(PS,C) to denote the set of configurations reachabl@$(P.S) from
some configuration id.

2.3 Representing infinite sets of memory graphs

We introduce now a symbolic representation of memory grajpitsitively, a memory
shape is a memory graph where the intermediate nodes of aanguklist segments are
skipped and replaced by a counter recording the length sfitisegment.

Definition 4 (Memory shape).[5l6] A memory shapis a tupleM S = (N, suce, loc, 1)
such that :

— (N, suce, loc) is a memory graph verifying:
— for all nodesn € N, eitherloc™*(n) # 0, or |succ™ ' ({n})| > 2;

— 1 : N — (Cis an injective function which associates with each node unter
variable.

We denote byMS the set of memory shapes. We will writé,;s for the set of coun-
ters appearing in a memory shapés (i.e. the image of the functiof). To a pair
(MS,a) € MSxNC (such that the values of the counter€ljy s are strictly positive),
we associate the memory graphS(a) obtained from the memory graph underlying
M S by inserting intermediate nodes on list segments in ordeate a list length equal
to the value of the counter. As said [A[[b,6], for a fixed Bethere is a finite number of
memory shapes and for each memory grap@' there exists a memory shapés and

a valuatioma such thatM G = M S(a). An example is given in figurd 1.

MS MS(a)

€T K1) 1 T2
o—@ k2

Fig. 1. A memory graph associated with a memory shape and a valuation

To represent infinite sets of memory graphs, we define wha&l¢he symbolic mem-
ory shapesA symbolic memory shape is a pdit/ S,) whereM S is a memory shape
andy a Presburger formula ovéf,;s. The interpretation of a symbolic memory shape

is given by[(M S,)] = {MS(a) |a E ¢¥}.

Definition 5 (Symbolic memory state) A symbolic memory stat§' M/ .S is a finite set
{(MS71,¢1), ..., (MS,,1,)} of symbolic memory shapés/ S;, v;).

For a symbolic memory stat8 M S = {(M S1,¢1), ..., (MS,, 4,)} the concrete in-
terpretation is given b{SM S| = U,c(q, ., [(MS;,¢)]. We denote bySMS the
set of symbolic memory states. In [6], the authors have shiyansymbolic memory
states enjoy good properties, in particular that it is gmedio define complement and
intersection operators for this representation.

3 Model checking issues

In this section, we define the safety and temporal properteesonsider in this work.
We first formally define the model-checking problems. Thee recall a method, pre-
sented in[[5], to analyze pointer systems translating thema bisimilar counter sys-
tem.

3.1 Model-checking programs with pointers

We define now the notions of safety and model-checking wherdmsidered model is
a pointer system.

A symbolic configuration of a pointer systemS = (Q, E) is a finite set of pairs
(¢, SMS), for g € Q andSM S a symbolic memory state.

Definition 6 (Safety in pointer systems).The safety problem for a pointer system is
defined by :

— Input : A pointer systenPS = (Q, F), an initial symbolic configuratioh NI T
and a “bad” symbolic configuratioBAD;

— Output : Reach(PS, [I NI T[) N [BAD] = 0.

Note that the problem of deciding whether a given pointetesysmay reach a given
control state, may performs a memory violation, or a memesgk] reduce to this
generic safety problem.

We now consider a temporal logic for pointer systems baseth@uantitative shape
logic of the previous section :

P = q| SMS |~ |DND| XD | DUD | AD

whereg is a control state anflA/ S is a symbolic memory state. We denote by T,
this logic. We give the semantics of this logic, defined bylatien 7, : = @ between
tracesr of a pointer system and a formufeof CTL?, .. We consider a pointer system
PS = (@, F) and its associated transition syst#if(PS) = (Q x MG, —). Letn
be a configuration path if'S(P.S). For an intege, we denote byr(i) € Q@ x MG
the i-th configuration ofr, 7<; the initial part ofr up to position; and|r| the length
of 7. Fori € N and a formulab of CTL},.,,,, the satisfaction relatiop- is inductively

defined at position of a configuration pathr as follows:

— m,i = qiff 7(i) = (¢, MG) for someM G € MG;

—mi = SMSIff n(i) = (¢, MG) with ¢ € Q andM G € [SMS];

— 7,1 @iff 7,1 (£~ P;

- miEPAND iff 1,0 = P andr,i | &

— i E=EXQiff i <|r|andrm,i+ 1 &;

— m,i = PUP' iff 35 such that < j < |x| andn,j = @/, and for all k such that
1<k<j,mkEdo

— m,1 = AQ iff for all configuration pathr” such thatr<; = =, we haver’, i = .

We are then interested in solving the model-checking prolw&formulae of CTL, ..,
for pointer systems. We define here this problem.

Definition 7 (Model-checking). The model-checking problem for pointer systems is
defined by :

— Input : A pointer systenPS = (Q, E), an initial symbolic configuratioh NI T
and a formula® of CT'L}, .,..;

— Output : Do we haver,0 | ¢ for all tracesw of T'S(PS) such thatr(0) €
[I NI T]?

3.2 From pointer systems to counter systems

Let PS = (Qp, Ep) be a pointer system. Iq][5], we give an effective algorithrbudd
a counter syster@'S(P.S) which is bisimilar toP.S. Before to present this translation,
let us recall the definition of a bisimulation :

Definition 8 (Bisimulation). Given two transition systemsS; = (51, —1) andT'Se =
(S, —2), arelationR C Sy x Sq is a bisimulation if and only if, for al(s1, s2) € R :

1. If 3s} € S; such thats; —; s} then3s,, € Ss such thats, —2 s5 and (s, s5) €
R;

2. If 3s}, € Sy such thats; —2 s then3s| € S such thats; —; s} and (s, s5) €
R.

The translation presented inl [5] used the memory shapessapased on the follow-
ing principle : given a memory shapeS € MS and a pointer actiom € A, it

is possible to define a s®OST (a, M S) of pairs((A, b, ¢), MS") where(A, b, ¢)
represents a Presburger-linear function ad@$’ a memory shape such that, for all
((A,b,¢), MS’) € POST(a, MS), and for alla, a’ € N, we have :

MS'(@") = [a],(MS(a)) ifand only ifa = ¢ anda’ = A.a+b
The counter syster?'S(P.S) is then equal tdQ¢, Ec) where :

- Qc =Qp x MS,

— E¢ is the transition relation defined as followg;, M S), (4, b, ¢), (¢/, MS")) €
E¢ if and only if there exists a transitiofy, (¢,a),q') € Ep suchthatM S = ¢
and((A,b, ¢),MS") € POST (a, MS).

In this definition, we say that a memory shaldes = (N, succ, loc, 1) satisfies a guard
g ifits underlying memory graphV, succ, loc) satisfiesy. Note that since the sefs(S
andQ@p are finite, the counter syste@iS(P.S) can effectively be built. Furthermore,
using the property of the functioROST, we deduce that the relation :

B={((g. MG),((¢', MS),a)) € (QpxMG)x(QcxNY) | ¢ = ¢ \MG = MS(a)}

is a bisimulation between the transition system#6fand of C'S(PS). We can hence
use the counter syste@S(P.S) to analyze the pointer systems.

The figurd?® gives an example of a connected component of theeosystend'S (PS)
obtained from the pointer systefS = ({1}, {(1,z1.succ = z1,1)}) with V' =
{z1,x2}. We see with this example that this translation does noepveshe flatness of
systems. Tablg 1 gives a list of programs working over acywitial configurations (ex-
ceptpar se-cycl i c-acycl i ¢)which we have translated into counter systems and
successfully analyzed. Some of these programs are dedénittlee appendik’A. Most

of them are classical programs, except the prograpy - and- del et e presented in
the introduction, the prograspl i t which divides a single list in two lists and is safe
only if the input list has an even length, and the progpanse- cycl i c-acycli c
which parses a cyclic and an acyclic list in the same time. &veark that in most of

10

ko > 17

ki =k +1;
ko = ko — 1;
T2
1, ko k1
1

k1:=k + 1;
kg = O;

Fig. 2. An example of a counter systefS(P.S) obtained from a pointer systemsS

the cases the corresponding counter system is flat (andwagsalby definition of the
translation, the finite monoid property) which correspotadhe hypothesis of the the-
oremd1 and]2. When the system is not flat, it can still be ardlgpmetimes, as for
themer ge program, using a flattening procedure implemented in thieRA8T. But in
other cases it might not be fully verified, as for the progpanse- cycl i c- acycli c.

Program Is PSflat ?| Is CS(PS) flat ?| Analyzed with FAST ?
reverse YES YES YES
del ete YES YES YES
del et eALL YES YES YES
nmer ge NO NO YES
copy- and- del et e YES YES YES
split YES YES YES
del ete(n) YES YES YES
par se-cyclic-acyclic YES NO NO

Table 1. Examples of programs analyzed BAST

Since the memory shapes appear in the control stat€sSgPsS), it is possible to
translate any temporal logic formula over the symbolic ggunations of PS into a
temporal logic formula over the configurations@b'(PS). Hence :

11

Theorem 3. Let®p be aCT L, .., formula. Then there effectively exists a formaéla

of FOCT L*(Pr) such that for all pointer systeni3S :
PS E ®pifandonly ifCS(PS) E @¢

Furthermore, the counter syst&ns (PS) has the finite monoid property. In fact, [l [5],
we can see that all the matrices labeling the transitionS.$fP.S) are composed of
columns in which all the elements are equal texcept one which is equal tio Using
the theorerfil2 and the previous result, we hence have thevioliaresult.

Corollary 1. Let PS be a pointer system such th@tS(P.S) is flat. Then the model-
checking is decidable faPS.

4 Decidability results for programs without destructive update

After having seen a general method to analyze pointer sygsteanslating them into a
counter system, we aim in this section at finding some claskpsinter systems for
which the safety and the model-checking problems are delgd¥/e know that these
problems are undecidable for pointer systems in generalusecit is easy to simulate
a Minsky machine with a pointer system. Since there is no@is/notion equivalent
to finite monoid property for pointer systems, and since, asmill see, flatness is in
general not sufficient to decide reachability properties,define other restrictions on
pointer systems. We will say that a pointer systB$i = (Q, E) is :

— without destructive updatéthe actions inE are all of the forme := ewith z € V;
— without alias tesif the guards inE’ do not contain any test like = y with z,y €
V.

In [11], the authors have studied whether flat programs withi®structive update,
working on a given special shape, could fail to satisfy sosseg intructions inserted
in the code. This problem reduces to a particular case ofyspfeblem, which is the
reachability of a control state. They proved, that this pEobis undecidable for a flat
pointer system without destructive update, if any initighdolic configuration is con-
sidered, but is decidable for initial symbolic configurasavith at most one cyclic list.
Hence this result shows that even when we take strong rstiscsuch as flat pointer
systems without destructive update, the problem of realityatif a control state is un-
decidable.

The work we present here extends and completes the reseftsred in[[11]. In this
section we establish the decidability of the safety and rholdecking problems for two
restricted classes of flat pointer systems without desteiapdate. It is true that these
classes are very restricted, but we should see in the netidiséicat it is hard to obtain
decidability results without considering such restrioto

Theorem 4 (Decidability of safety).For flat pointer systems without destructive up-
date and without alias test, the safety problem is decidable

12

With this theorem, we hence propose a new class of flat pogystems without de-
structive update for which the safety problem is decidaduhel, for this class there is no
need to put restriction on the initial configuration.

With the second theorem, we extend to general temporal giepéhe results expressed
in [21] in the case of programs with an acyclic initial configtion.

Theorem 5 (Decidability of model-checking).For flat pointer systems without de-
structive update and with an initial acyclic symbolic configtion, the model-checking
is decidable.

The proofs of these theorems rely both on a translation ttegisna pointer system
without destructive update to a bisimilar counter systenorédver, this translation,
unlike the translation presented previously, preservedl#iness of the systems, and
relies on the notion of a new symbolic representation for mgmgraphs, called roots
memory shapes. We first introduce this notion, then presentranslation and sketch
the proofs of the two theorems.

4.1 Roots memory shape

The basic ingredient of the new translation is the notionoots memory shapes, that
are memory shapes in which all the variables appear only ohnades or on cyclic
lists. They can be formally defined as follows :

Definition 9 (Roots memory shape)A roots memory shape is a memory shaidd S
= (V, suce, loc, 1) such that for alln € N

— eitherloc=({n}) # 0 andsucc=1({n}) = 0 (root node);
— orloc™t({n}) = 0 and|succ=*({n})| > 2 (shared node);
— orloc=*({n}) # 0 andsucc=*({n}) = {n} (unshared node on cyclic list).

Note that we do not really need to impake—'({n}) = 0 in the second condition,
but we do it to simplify the definition of the translation wevgilater. We suppose that
the set of variables i¥ = {«1,...,x,,} and we associate with each pointer variable
x; a counter;. We defineCy = {cy, ..., ¢, } and suppose that, C C. By giving a
value for the counters labeling the nodes, and also a valudhéocounters; associ-
ated to pointer variables (which was not the case with mersbapes), we can obtain
a memory graph from a roots memory shape. Given a roots meshaeR M .S and

a valuationa € N¢, we define the memory grapRM S(a) as follows (see figure
for an example): first, we consider the memory gragle: = (N, suce, loc) ob-
tained from the interpretation d@M/.S as a memory shape; then we defiRé7 S (a)

to be the memory grapf/ G’ = (N, succ’,loc’) whereN’ = N, succ’ = succ and
loc'(x;) = succ®) (loc(z;)) for all variablesr; (wheresucc? represents thg-th suc-
cessor). Note that some valuations may not be admissibtaitodefinition, agoc’ (x;)
may be undefined, or the condition on the absence of memdty Irdhe definition of
memory graphs may not be satisfied (if all variables locatethe same node iRM S
all have strictly positive values for their counters). Wade byR M S the set of roots
memory shapes. Since for a finite number of variables the euwibmemory shapes

13

a(kl) =2 RMS RMS(a)
a(k2) =2
a(c1) =0
a(e2) =5

T2 k1 1
:1?1—’@ k2 T2

c1 andc, are respectively associated 1@ andx»

Fig. 3. A memory graph associated with a roots memory shape and atiaiu

is finite, we deduce thaR MS is also a finite set. Before to give the definition of the
new translation, we define here some useful notions on megraphs. We consider a
memory graphiV/ G = (N, suce, loc).

A noden’ € N U {null,Ll} is said to bereachablein MG from an other node
n € N if there exists a path in the graph fromto »/, i.e. a finite ordered set of nodes
{ni,..,n,} € NU{null, 1} suchthatr, = n,n, =n andvi € {1,...,r — 1},
suce(n;) = nip1. For a noden € N, we denote byLi st (MG, n) the set{n’ €
NU{null L1} |n’isreachable from in MG}.

We introduce then the notion of shared nodes. Given two nadesc N, we define
the setShar ed(M G, n,n') = Li st (MG, n)NLi st (MG, n’), which represents the
nodes that are shared by the list beginning at the moded the one beginning at the
noden’'.

We propose also a notation to represent the set of nodes Vayidtetween two nodes.
Letn,n’ € N, we defineBet ween(M G, n,n’) such that:

— if n’ ¢ Li st (MG, n), Bet ween(MG,n,n') = 0;

— else ifn’ = n, Bet ween(MG, n,n’) = 0;

— else @/ € Li st (MG, n)andn’ # n) Bet ween(MG,n,n’) is the set of nodes
{n1,...,n,.} suchthan, = succ(n),n’ = suce(n,.),Vi € {1,...,r—1}, suce(n;) =
n;+1 andvi € {1,...,r},n; & {n,n'}.

Furthermore, we will say that a variahlec V' is singlein MG if:
— loc™(loc(v)) = {v} (i.e.v is the only variable on the nodec(v)).

We recall that a node € N is called aoot nodeif succ=t({n}) = 0.

4.2 From pointers to counters

We present now how to define a counter system that faithfallyesents a pointer sys-
tem without destructive update using a translation whidserves the flatness of the
system. In this manner, we define two functidhn& ST, and POST;, we will then use

14

to build the counter system.

The partial functionl’ EST, takes as argument a pointer gugrde G and a roots

memory shapé M S and returns a Presburger-formglar his function is defined such
that the following property is verified : i = T EST,(g, RMS), for all admissible

a € N¢ (according toRM S), we have :

RMS(a) Egifandonlyifa |= ¢

Remark that ifRM S is a roots memory shape with a cyclic list andyifs a pointer
guard of the formz; = z; then the arithmetic formula given by the functi®t ST
should use propositions of the fomnis divided byz which do not belong to the Pres-
burger arithmetic. In fact, if; andz; are two pointer variables pointing iR}/ S to the
unique node of a cyclic list whose edge is labeled with thentenk, testing ifz; = z;
could be done using the formule, > ¢; = k|c;—¢;)V(c; > ¢; = klcj—¢;). To avoid
this situation, we restrict the definition domain®f ST, such thatdom (T EST,) =
{(9,RMS) € G x RMS | g does not use alias test &/ S is acyclic;. The tabldR
gives the formal definition of the functichESTs.

As it has been done for the first introduced translation, we define the partial func-
tion POST; which takes as argument a pointer actiog A that is not a destructive
update and a root memory shaRé/ S and returns a paif(4, b, ¢), RM S’) such that
the following property is satisfied : {f A, b, ¢), RM S") = POST»(a, RMS), for all
admissiblea anda’ in N¢ (according toRM S and RM S’), we have :

RMS'(a) = [a] p(RMS(a")) ifand only ifa = ¢ anda’ = A.a+b

Note that whereas the functiddO.ST was returning a set of paif¢A, b, ¢), M S) the
function POST; returns an unique pair. This feature allows us to define askaéion
which preserves the flatness of systems. The fdble 3 givetefirétion of the function
POST; in the case of actions of the form := NULL. The definition for the others
actions is given in the append¥ B. Note that sometimes theali function(A,) is
denoted for instance, := ¢; which means that the function changes only the value of
the counter; giving it the value of;. In these tables, in the column describiRg/ S’,

it is sometimes written for instandec’ (x;) = loc(z;), it means thaRM S’ is obtained
by moving inRM S the variabler; to the node where; points on.

The figurel#4 presents an example of the results of the computat POST5. Intu-
itively, the conditions ensuring some action will not yielgemory fault can be defined
with a guard on the counter variables, just as in fifllire 4 wirerguardc; = 0V ey =

0) ensures the absence of memory leak and the duard £2) the absence of memory
violation. A pointer action; := z; will correspond to moving;; to the location of:;
and doing the linear transformatien:= ¢; on counters. In the case of := z;.succ,

it is the same, we move; to the location of:; and we update the counter with the oper-
ationc; := ¢; + 1. Finally, for the actionz; := NULL, we do the following operations,
we mover; tonul | and we set the countey to 0.

Using T EST, and POST,, we can associate with a pointer systé&fi = (Qp, Ep)
the counter syster@'S;(PS) = (Qc¢, Ec) where :

15

Hypothesis

TESTs(g, RMS)

g :=True True
g .= —‘gl _‘TESTQ (g7 RMS)
g=g Ng"’ TEST>(g,RMS) NTEST»>(g', RMS)

g := Isnull(z;)

and3n such that False
n € Li st (RMS, z;) andn is on a cyclic lis}
g := Isnull(z;)
andnul | ¢ Li st (RMS,loc(x;))
and An such that False

n € Li st (RMS, z;) andn is on a cyclic lis

F

g := Isnull(z;)
andnul | € Li st (RMS,loc(z;))
and An such that
n € Li st (RMS, z;) andn is on a cyclic lis

ci =X clist (RMs,zocm))le(n)

!

g =T =T
andRM S is acyclic
andShar ed(RM S, loc(z;),loc(x;)) = 0

False

g =T =T
andRM S is acyclic
andShar ed(RMS, loc(:), loc(x;)) #

¢ > X el st (RMS,loc(z;))\Shar ed(rRMS,loc(z;),loc(z;))
Ci — 2n€|—| st (RNIS,loc(zi))\Shar ed(R]VIS,loc(zi),loc(zj))l
Cj — En’ELi st (RA{S,loc(zj))\Shar ed(RA{S,loc(zi),loc(zj))

ci > X cLi st (RMS,loc(z;)\Shar ed(R]\{S,loc(wi),loc(wj))l(n) A
I(n'

n') A

(n) =

l(n')

Table 2. Computation of EST5(g, RM S)

16

T1@T3 T4 T1@T2 T3@T4

(c1=0Ve2a=0)Acs <k2?7c3:=c4+1 Kl

kl k2 " k2

nul | nul |
RM S, RM S,

Fig. 4. Effect of the actioncs := x4.succ over RM S,

- Qc=Qp X RMS

— E¢ is the transition relation defined lyq, RM S), (A, b, ¢), (¢, RMS")) € Ec
if and only if there exists a transitiofw, (¢, a),¢’) € Ep and two Presburger for-
mulae¢; and ¢, such thatp, = TEST,(g, RMS) and((A, b, ¢2), RMS") =
POSTs(a, RMS) and¢ = ¢1 A ¢s.

Note that sincekp and@Qp x RMS are finite, we can effectively build the counter
systemC' Sy (PS).

We will show howPS andCS,(PS) are related. Let us consider the relatiBn be-
tween the configurations of the pointer systeisi and the ones of its associated counter
systemC' Sy (PS) defined by :

Ry ={ ((¢: MG), ((¢,RMS),a)) | MG = RMS(a)}.
and the relatior?3¢ which is the restriction oRRr to acyclic memory graphs :
Ry ={((¢. MG), ((g,RMS),a)) | MG = RM S(a) andM G is acyclig}.

Proposition 1. For any pointer system without destructive upd&, C'S>(PS) en-
joys the following properties:

1. C'Sy(PS) has the finite monoid property.

2. If PS'is flat thenC'S2(PS) is flat.

3. Rj¢ is a bisimulation.

4. If PS is without alias testRr is a bisimulation.

Idea of the proof : C'S2(PS) has the finite monoid property because all the matrices
given by the functionlPOST; are composed of lines in which all the elements are equal
to 0 except one which is equal g and the multiplicative monoid of such a set of ma-
trices is finite. The other points of this proposition areedirconsequences of the way
we buildC'S;(PS) and of the properties of the functio¥ST: and POST,. [

Properties 1 and 2 ensure that we will be able to use thedreansi[® (and also the
tool FAST), and properties 3 and 4 are essential to relate counteegiepto pointer
properties.

17

Hypothesis (A,b) ¢ RMS'

x; is single inRM S

andloc(z;) ¢ {nul | , L} | (Id, 0) False RMS
loc(xz;) € {nul'l | L} (Id, ﬁ) True loc'(z;) = nul |
x; isnotsingle iNRM S |¢; :=0 True loc' (z;) = nul |

andloc(z;) belongs
to a cyclic list

i isnotsingle iNRMS | ci =0 |V, cioe=1({1oc(as))\ {2} & = Of loc (z:) = nul |
andloc(z;) does not belong
to a cyclic list

Table 3. Computation of (A, b, ¢), RM S") = POST(a, RMS) for the actiona of
the formz; := NULL.

4.3 Translating the symbolic configurations

To conclude the proofs of theorefds 4 &md 5, we have to extenttahslation to sym-
bolic configurations and temporal formulae. We shall defiieNI T), 7'(BAD) as two
symbolic configurations af'S; (P.S) that correspond tbNl T andBADin PS, and we
must moreover defin€(®) € FOCTL*(Pr) that correspondst® € CTL}, ... The key

of this translation is to find an effective symbolic represéionT(q, (M .S, 1)) for the

set of (counter systems) configurations that are bisimilgpbinter systems) configu-
rations in[(q, (M S,4))]. That is, for all roots memory shape, we should represent the
set of counters values :

Trus(MS,¢) = {a| RMS(a) € [MS, 4]}

This set is not Presburger definable in general, due to dystié; but, as we will see with
the next proposition, it is definable in the logi¢ = (N, +, |, =)= of the existentially
quantified formulae of the Presburger arithmetic with dbilsy. An essential result for
our proofs is that the satisfiability problem for this logscdecidable[[23].

Proposition 2. Trars(M S, 1) is definable inﬁf. Moreover, ifM S is acyclic, then it
is definable in Presburger arithmetic.

Before to give the proof of this proposition, we introducenggpreliminary notions. We
will say that a memory shap¥ S is compatiblewith a roots memory shap@M S (de-
notedM S C RMS) if and only if [(M S, True)] N [(RMS, True)] # 0. Intuitively

18

a memory shap@/ S is compatible with a roots memory shafd/ s if it is possible
to obtain a graph isomorphic ®1/.S from M .S moving the pointer variables to a root
node or to a node in a cyclic list they are connected td/if. To be more formal, we
introduce the notion afompatibility function

Let MS = (N, suce,loc) be a memory shape aflM S = (N', succ,loc’,1"). We
denote byNr (resp.Ny,) the set of root nodes if/.S (resp. iNRM S), N, (resp.N3)

the set of nodes with at least two predecesso¥/ifi (resp. inRM .S) and N¢ (resp.
N(.) the set of nodes belonging to a cyclic list not reachablmfeoroot node im/.S

(resp. inRM S). We say that a function : N’ — N is acompatibility functiorbetween
MS andRMS if g is a total injective function such that:

= 9(Ng) = Ng, g(N3) = N2 andg(N¢) € Ne;

— forallnodes:,n’ € N’,n’ € Li st (RMS,n)ifandonlyifg(n’) € Li st (MS, g(n));
— forallnodes: € N, nul | € Li st (RMS,n)ifandonlyifnul I € Li st (MS,g(n));
— forallnodes: € N’, L € Li st (RMS,n)ifandonlyif L € Li st (MS, g(n));

— for all variablesy € V, loc(v) € Li st (MS, g(loc'(v)).

We can then deduce the following lemma.

Lemma 1. Let M S be a memory shape an@lM/ S be a roots memory shap#l S =
RM S if and only if there exists a compatibility function betwédrb and RM S.

We now give the proof of propositidd 2.

Proof : In this proof we associate the sBtrs (M .S, 1) with the arithmetic formula
that characterizes it. L¢f\/ S, v) be a symbolic memory shape aRd/ S a roots mem-
ory shape. We supposéy;s = {ki,....km}, MS = (N, succ,loc,l) and RM S =
(N', succ,loc’,1"). We build a logic formul& 'z a5 (M S, 1) overCrars U Cy as fol-
lows:

—If MSZ RMS, Trps(MS,) = False;
— Otherwise Let be a function of compatibility betweeW S and RM S;

1. Rename inp and in M S all the counters:; with k; Such that for alli ¢
{1,...,m}, k; ¢ C to obtain a formula), and we denote by the function
which associates to each node N the countef; such thai(n) = k;.

2. For each node in N/, we define the formula,, to ensure that the length on
the graphs correspond:

(bn = l/(n) = 7(9(”)) + Zn’eBet WEeEN(MS,g(n),g(succ’ (n)) Z(n/)

3. Let N¢y € N (resp.N(, € N’) the set of nodes oM S (resp. of RM S)
which belong to a cyclic list. For each variahlge V, we define a formula;
to ensure the pointer variables are located at the samequosit

o If loc(z;) € {nul |, L}, then

¢ii=ci=0

19

o If loc(x;) ¢ Ney:

¢i = l(g(loc'(x:))) + ZnGBet Ween(Ms,g(loc! (z;)),loc(z:)) I(n) =c

e Otherwise ifloc(xz;) € N¢; andlod (x;) € N{, (in this case, the cyclic
list wherez; points to is necessarily not reachable from a root node, we
write L = 37, CLi st (ar5,10¢(z1)) () the size of the cyclic list; is on
then: '

¢i = /\{mh|loc(mh):loc(wz)} (Clrmd(L) = Cherd(L)) A
B /\{mjuoc(mj)eLi St (MS,loc(z:i)\loc(a:)} (Cj-m’(j(L) =
(Ci =+ l(lOC(Il)) + ZneBet WeEN(MS,loc(z;),loc(x;)) l(n))rmd(L))

e Otherwise {oc(z;) € N¢; andloc'(z;) ¢ N{,;), and we denote by, =
Yoneli st (MS,loc()) L(1), intuitively L encodes the size of the cyclic list
pointed to byz; and.S = 37, i st (wms,g(toc (2:)))\ Ney L(10) TEPTESENtS

the length of the segment leaving frogﬁloc’(xiS) and finishing on the
cyclic list, we then have :

¢i=(c; = SA

I(g(loc (x:))) + ZnGBet Ween(Ms,g(loc! (z;)),loc(z:)) I(n) =
S+ (¢ — S).rmd(L))

4. Finally we obtain:

Tras(MS,) := 3k1...3km D A Npens On Ny, ey i

Remark that ifM S is acyclic, then by constructiofirs(M S,) is a Presburger
formula. And in the other case%xras(M S, 1) can be rewritten into an equivalent
formula of the Iogicﬁla. This is due to the fact thatmod[c] = b.mod|c] is equivalent

to the formulac | (e — b) and that any Presburger formula can be rewritten into an
equivalent Presburger formula with only existential qifséers (by elimination of the
quantifiers([18])

When we associate an arithmetic formylaover the counter€'rys U Cy with a
roots memory shap®M .S, we denote by[(RM S, ¢)] the set of memory graphs,
{RMS(a) | a = ¢} We have then the following result by constructiori®fy,s :

Lemma 2. Let (M S, 1) be a symbolic memory shape afi/.S a roots memory
shape.

1. fMS T RMS, [(RMS, Trars (M S,)] = [(MS,)].
2. fMS ¥ RMS, [(RMS, Trars (MS,1))] = 0.

We will now see how we use this different results to prove treotem$§ ¥ and| 5. The
main idea consists in reducing the problems of safety andefrctecking over pointer
systems without destructive update to similar problems owanter systems.

20

MS RMS
k4

xT1 T1@T2

k3 k2
nul | nul |

TRJ\/[s(MS, 'l/}) = 3%1.3%2.3%3.3%4.1])/\
k1l =kl + k2 A k2 = k3 + k4A
c1=0Ac2=FkIA
cs.mod[k2] = (c5 + k3).mod[k2)A
c3.mod[k2] = (ca + k4).mod[k2]

Fig. 5. An example of the computation of the formWa ;s (M S,)

4.4 Proof of theoren2

Let(q, (M S, 1)) be a symbolic configuration of a pointer system. We define :

T(qv (MSJ/’)) = U ((QaRMS)vTRI\lS(M‘va))
RMSERMS

T(q, (MS, 1)) represents a symbolic configuration 1855(PS) and furthermore by
lemmal2, we have thdi(M S, V)] = Ugirserms(BRMS, Trys(MS,1))] . The
properties of the arithmetic formulBz s s (M S, ¢») and the fact that the relatiaR is
a bisimulation between the transition systenPsf and the one of’'S,(P.S) allows us
to state the following lemma.

Lemma 3. Let PS be a pointer system without destructive update and withbas a
test, (qo, (M Sp, 1)) an initial symbolic configuration, anfyz, (M Sp,¥p)) a bad
symbolic configuration foPS. Then :

Reach(PS, [(qo, (MSo, %0))]) N (g5, (MSp,¢5))] =0
if and only if
Reach(CSz2(PS), [T(qo, (MSo,v%0))]) N [T(gp, (MSp,¢5))] =0
Using this last lemma and previous results, we can proveheereéni t.
Proof of theorem[4
Let PS be a flat pointer system without destructive update and wittadias test,

(qo, (M Sp, 1)) an initial symbolic configuration, an@ys, (M Sg,¥p)) a bad sym-
bolic configuration forPS. By propositiori 1, the counter systefi,(PS) is flat and

21

has the finite monoid property. By lemiia 3, the consideregtgairoblem reduces to
the safety problem fo€' Sz (PS) with T'(qo, (M Sy, 10)) as initial symbolic configura-
tion andT (¢p, (M Sp,p)) as bad symbolic configuration. Furthermore, since for all
memory shapes/ .S, for all Presburger formula overC,;s and for all roots memory
shapeRMS , Trys(MS,) is a formula of£|3, we can deduce from the theoréin 1,

that this last problem reduces to the satisfiability probtéra formula ofZ?, which is
a decidable problem [23]1

4.5 Proof of theoren®

We consider then a formuiaof CTL*(M S). We define the formul@ (2) by induction
as follows:

— if &:= (¢, (MS,v)) with M S acyclic then :

T(QY)) = VRMSGRMS(((]’ RMS)aTRA4S(]\/[S7¢));
— if &:= (¢, (MS,v)) with M S not acyclic then :

T(®@) := V pymserms (@, RMS), False);

if & := @' thenT(®) := -T(P');

if & := &' AP thenT(®) := T(d') AT (P");
if @ := XP' thenT'(®) := XT'(P');

if & :=¢'UP” thenT'(®) := T (&)UT(P");

if & := A® thenT (&) := AT().

Since, for all acyclic memory shapé$s, for all Presburger formulag overCj,s and
for all roots memory shapBM S, Trys(M S, 1) is a Presburger formula, we deduce
that:

Remark 1.For all formulae? of CTL*(M S), T'(®) is a formula of CTL(Pr).
Moreover, the following lemma holds.

Lemma 4. Let PS be a pointer system without destructive updatg, (M So, 1))
an initial acyclic symbolic configuration aP.S, and® a formula of CTE(M .S). We
have thatr,0 = @ for all configurations pathsr of C'Sy(PS) such thatr(0) €
[(qo, (M So,0))], if and only if7’,0 |= T'(®) for all configuration pathst’ of the
transition systen1'S(C'Sz(P.S)) such thatr’ (0) € [T'(qo, (M So, 10))]-

Proof

This lemma can be proved by induction on the length of the tdar® using the def-
inition of T'(qo, (M Sy, v9)). The first case of the induction is whéhnis of the form
(q,(MS,%)), and it is proved using lemnid 2. The other cases are then ¢huming
that the relatiom?}° is a bisimulation between the transition systenPsf and the one
of C'Sy(PS).0

This allows us to conclude the result of theofdm 5.

Proof of theorem[3
Let PSS be a flat pointer system without destructive updée, (M So, 10)) an initial

22

acyclic symbolic configuration oPS, and® a formula of CTL,_,,,. By proposition

[, the counter systei@’'Sz(P.S) is flat and has the finite monoid property. Besides, by
lemmd4, the considered problem reduces to the model-algpkbblem foiC'S3 (P.S)
with the initial symbolic configuratiofT(qo, (M Sy, 1)) and the FOCTE(Pr) for-
mulaT(®). Hence using theoref 2, we can deduce that the model-clepkiblem
for P.S with (qo, (M So, 1)) as symbolic initial configuration and as temporal for-
mula is decidable]

5 Undecidability results

In this section, we show that the decidability results weaoted for safety and tem-
poral properties are tight. In particular, these resultsobee false if one relaxes any
hypothesis. For instance, theorem 4 does not hold with@uhyipothesis of absence of
alias test (this is proved in_[11]). We list here some new diglgility results for some
classes of pointer systems very close to the ones we stutdtbed previous section. All
our undecidability results are based on a reduction fronsfgiility of Diophantine
equations, which is known as undecidable.

Diophantine equations are equations of the fdPk) = 0 where P is some polyno-
mial over naturals an#t a vector of positive integer variables. As explained(in [11]
Diophantine equations can be encoded as a conjunctiontbfraetic formulae of the
formk = k' + k" ork = lem(K', k") or k = j wherek, k', k" are counter variables
andj is a positive integer; the satisfiability problem of suchnfioitae is then undecid-
able. Below, we use the term of Diophantine equations tordessuch conjunctions of
arithmetic formulae. Followind11], we now associate watlDiophantine equatiof

a pointer systenPS¢ for which a certain safety (resp. temporal) property holdsd
only if £ has a solution.

Our first result shows that theorén 4 does not extend to mauktking :

Theorem 6. The model-checking problem is undecidable for flat poingsteams with-
out destructive update and without alias test.

The proof of this result is an adaption of the undecidabjdityof of [11]. Let us consider

& = A&; a Diophantine equation. We define the tuple S¢, PSg,) such that:

M S is a memory shape defined BY Sg = M S, W .. w MS,, (wherew represents
the disjunctive union of memory shapes andoincides with the number of conjuncts
in £); ¢ = A\ ®; is a temporal property; anf?S¢ is a flat pointer system without
destructive update and without alias test define®y = PS;;..; P.S,,, where; is the
sequential composition and eafld; is a flat program (without destructive update and
without alias test) that either exits correctgx(t (0)) and launches the execution of
PS;y, orabortséxit(1)):

—if &isk =K + k", MS, is the memory shape with three disjoint list segments
of length k, k', k', whose heads are pointed to by some set of fresh variables
{x,%0},{y,v0}, {z, 20} respectively, and whose tails are onl | . The pointer
systemP.S; can be described by the program :

23

while (y#NULL) do x=x.succ; y=y.succ;end while;

while (z#NULL) do x=x.succ; z=z.succ;end while;

if (x=NULL) then exit(0); else exit(1l);
The temporal propertp; expresses that thexi t (0) is reached (which means
without error).

—if &isk = lem(K', k"), we defineM S; to be the memory shape with two dis-

joint cyclic lists pointed to by sets of fresh variables yo}, {z, zo} respectively,
of lengthsk’, k”, and a single list of lengtk whose head is pointed by some set
of fresh variablegx, xo} and ends omul | . We moreover defin@S, by the pro-
gram :

whil e (x#NULL) do x=x.succ; y=y.succ; z=z.succ; end whil e;
exit(0);
The temporal property; expresses that, each state of the loop verifies) #
(v0,2z0) until (x,y,z) = (nul I ,yo,z0) .

— if &isk = j, MS; is the memory shape with one list segment of lerigttvhose
head is pointed on by some set of fresh varialjlesz,} and whose tail is on
nul | . The pointer systen®.S; can be described by a program without loop which
performsi timesx: =x. succ and doe®xi t (0) atthe end ifr points onnul |
andexi t (1) otherwise. The temporal propery expresses that thexi t (0)
is reached (which means without error).

By construction the Diophantine equation represented&jaimulal has a solution if
and only if there exists a configuration patin PS¢ such thatr(0) € [(M Sg, True)]
andr,0 = @¢, which is true if and only if the answer to the model-checkingblem
on the inputsPSe, (M Sg, True) and—P¢ is no. We deduce from this the result of
theorentib.

This last proof and the proof of undecidability in [11] buildt pointer systems working
over cyclic lists. Hence one may think that the key point &St undecidability results
is the use of cyclic lists. We show here that this is not thecas

First, we say that a pointer systeRS = (Q, F) associated with an initial symbolic
configuration(qo, (M Sy, 10)) is anacyclic pointer systerif the memory shapé/ S,

is acyclic and all reachable memory graphs~ (i.e. 3¢ € @ such that(q, M G) €
Reach(PS, [(qo, (M Sy, 10))])) are acyclic.

Theorem 7. The safety problem is undecidable for acyclic flat pointstems.

Proof : We adapt the previous proof, that works with cyclic listsateystem that does
not work with cyclic lists but can use destructive updatesteNthat we only need to
adapt the program that tests the equatios lem(k', k"), the rest of the proof being
then similar. Consider a list segménivhose head is pointed to Ky, h'}, whose tall
isonnul | , and whose last node befamel | is pointed byt; we thus define the sub-
program :

r ot at e(l)=h=h. succ; h’ . succ=NULL; t. succ=h";t=h"; h’ =h;

This program moves the first element of the list at the taihefltst. We now consider
the memory shape with two such disjoint list segménts, with some pairs of extra

24

variables|y, yo}, {z, zo} at some pointin the middle &f andi, respectively, and a dis-
joint standard list segmehtwvhose head is pointed Hk, xo} and whose tail is pointed
tonul | . Countersk, k/, k" represent the total length of the ligtd;, > respectively.
Then the following program exits normally if and onlykif= lem(k’, k”):

while (x#null and not((y=y0) and (z=z0))) do

X=X. SUCC; Y=Y. SUCC; Z=Z. SUCC;

rotate(l1);rotate(l?2);end while;

if (x=null and y=y0 and z=z0) then exit(0) else exit(1l);
which ends the prodf]

Note that this last result answers a problem that was stategen in[[11].

6 Conclusion

Flat pointer Initial symbolic Safety Model-checkingL
systems configuration| problem problem

Without destructive Acyclic Decidable| Decidable

update
Without destructive No Undecidablqe Undecidable
update Restriction

Without destructive
update No Decidable| Undecidable
and without alias tegt Restriction

Acyclic Acyclic Unecidablel Undecidable

Table 4. Summary of main results

We have proposed a framework for model-checking pointéesyswithout destructive
update. Given any pointer system without destructive ugdate may translate it into
a bisimilar counter system having the finite monoid propérhen a counter model-
checkerFAST for instance, may verify it; if the counter system is flat (@attble [4]),
thenFAST will terminate computing the Presburger representatiomefreachability

25

relation.

It was known that safety was undecidable for flat pointeresyst without destructive
update. We have completed the classification of flat poiystesns without destructive
update in showing that the model-checking problem becoraeisldble for flat pointer
systems without destructive update with an initial acycbofiguration. We prove that
if we replace the acyclic hypothesis by the hypothesis okabs of alias test, then
safety remains decidable but model-checking becomes idaide. Moreover, if we
remove the hypothesis that the system is without destricipdate, for even acyclic
flat pointer systems the safety problem is undecidable. able[# contains a summary
of the main decidability results when considering flat peirgystems

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tofor reachability analysis of

complex systems. I@AV’01, volume 2102 oL NCS pages 368—-372. Springer, 2001.

S. Bardin, A. Finkel, and J. Leroux. FASTer acceleratibocaunter automata in practice. In
TACAS’'04 volume 2988 of. NCS pages 576-590. Springer, 2004.

S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Aleration from theory to practice.
International Journal on Software Tools for Technologyrigter, 2008. To appear.

. S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Faelaration in symbolic model

checking. INATVA’05 volume 3707 oL NCS pages 474-488. Springer, 2005.

. S. Bardin, A. Finkel, E. Lozes, and A. Sangnier. From pmisystems to counter systems

using shape analysis. AV/IS'06 2006.

. S. Bardin, A. Finkel, and D. Nowak. Toward symbolic veafion of programs handling

pointers. INAVIS'04 2004.

. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Autimtermination proofs for

programs with shape-shifting heaps. @#&V’'06, volume 4144 ofLNCS pages 386-400,
2006.

. A. Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Morogdn Vojnar. Programs with lists

are counter automata. DAV’'06, volume 4144 of NCS pages 517-531. Springer, 2006.

. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Veinfy programs with dynamic 1-

selector-linked structures in regular model checkingTACAS’'05 volume 3440 oLNCS
pages 13-29. Springer, 2005.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnabstract regular tree model
checking of complex dynamic data structures. SAS’06 volume 4134 ofLNCS pages
52-70. Springer, 2006.

M. Bozga and R. losif. On flat programs with lists. UMCAI'07, volume 4349 oLNCS
pages 122-136. Springer, 2007.

R. Brochenin, S. Demri, and E. Lozes. Reasoning aboutesegs of memory states. In
LFCS’07 volume 4514 o NCS pages 100-114. Springer, June 2007.

S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. @&ods a model-checker for
counter systems. IATVA'06 volume 4218 o£. NCS pages 493-507. Springer, 2006.

D. Distefano, J.-P. Katoen, and A. Rensink. Who is pogtihen to whom? IFSTTCS'04
volume 3328 oLNCS pages 250-262. Springer, 2004.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shapdyamabased on separation logic.
In TACAS'06 volume 3920 of NCS pages 287—-302. Springer, 2006.

J. Esparza, A. Finkel, and R. Mayr. On the verificationroiocast protocols. IbICS'99,
pages 352-359. IEEE Computer Society Press, 1999.

26

17

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

. A. Finkel and J. Leroux. How to compose Presburger-acatbns: Applications to broad-
cast protocols. IfFSTTCS’02volume 2556 oL NCS pages 145-156. Springer, 2002.

S. Ginsburg and E. H. Spanier. Semigroups, presburgewufas, and languagesacific
Journal of Mathematicsl6(2):285-296, 1966.

L. Gonnord and N. Halbwachs. Combining widening and lacaton in linear relation
analysis. INSAS’06 volume 4134 of. NCS pages 144-160. Springer, 2006.

Homepage of LASH. http://www.montefiore.ulg.ac-bledigelot/research/lash .

J. Leroux and G. Sutre. Flat counter automata almosywhere! INATVA'05 volume 3707
of LNCS pages 489-503. Springer, 2005.

T. Lev-Ami and M. Sagiv. Tvla: A system for implementingtic analyses. I/8AS’00
volume 1824 oLNCS pages 280-301. Springer, 2000.

L. Lipshitz. The diophantine problem for addition andisibility. Transactions of the
American Mathematical Societ®35:271-283, 1978.

S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmeticengthening of shape analyses
based on separation logic. 8AS'07 LNCS. Springer, 2007. To appear.

A. Mandel and I. Simon. On finite semigroups of matricEseoretical Computer Science
5(2):101-111, 1977.

A. Mgller and M. I. Schwartzbach. The pointer assertagid engine. IlPLDI'01, pages
221-231. ACM, 2001.

A. Podelski and T. Wies. Boolean heapsSKS’'05 volume 3672 of NCS pages 268—283.
Springer, 2005.

P. Wolper and B. Boigelot. Verifying systems with infenibut regular state spaces. In
CAV’'98 volume 1427 of.NCS pages 88—-97. Springer, 1998.

E. Yahav, T. W. Reps, M. Sagiv, and R. Wilhelm. Verifyirgrporal heap properties spec-
ified via evolution logic. INESOP’03 volume 2618 ofLNCS pages 204-222. Springer,
2003.

27

A Examples of programs

In this section, we give the description of some of the progravhich feature in the

table[1.

The progranmspl it :

1: void split(List x){
2 List y,z,t,u;

3: u=NULL;

4: y=X;

5: while(y!=NULL){

6

7

8

t =y- >next;
Z=t - >next ;
: t - >next =u;
9: y->next =z;
10: u=t;
11: y=z;}
11: '}

This program is safe when the acyclic list given in input (ged to byx) has an even
length.

The prograndel et e(n) :

1: void delete(List x,int n){
2: List y;

3: int i=n;

4: while(i!=0){

5: y=X- >next ;

6: free(x);

7: X=y;

8: i--:

9: }

This program is safe when the acyclic list given in input (ed to byz) has a length
greater than the integer.

The progranpar se-cycl i c-acyclic:

1: void parse-cyclic-acyclic(List x,List t){
2 Li st vy, u;

3 y=x;

4: u=t;

5: while(y!=NULL){

6: y=y- >next ;

7 u=u- >next ;}

8 u- >next =NULL;

9: }

28

For this last program, we assume that the variabig pointed to an acyclic list, and
the variablet to a cyclic list. One can check that this program yields a mgnteak
when the number of elements in the list pointed ta lopes not divides the number of
elements in the list pointed to hyto which we addl.

B Description of the translation PO ST,

Hypothesis (A,b) 1) RMS’

x; is single inRM S
andloc(z;) ¢ {nul | , L} | (Id,0) False RMS
andz; # T

x; is single inRM S

andloc(z;) € {nul | , L} |¢; :=¢; True loc' (z;) = loc(z;)
andz; # T
-
Ti = (Id, 0) True RMS
x; isnot single iNRMS | ¢; :=¢; True loc (z;) = loc(x;)
andz; # T

andloc(z;) belongs
to a cyclic list

ziis not single INRMS | ¢i := ¢; |V, croe—1 (floe(a) 1)\ {1oc(,)} € = O] o€ (z:) = loc(x;)
andz; # x;
andloc(z;) does not belon
to a cyclic list

«Q

Table 5. Computation of (A4, b, ¢), RM S’") = POST»(a, RMS) for the actiona of
the formz; := z;

29

andloc(z;) ¢ {nul | , L}

Hypothesis (A, b) 1) RMS'
loc(z;) € {nul | , L} (1d,0) False RMS
z; is single inRM S
andloc(z;) is not on a cyclic list (Id, 0) False RMS
andloc(x;) ¢ {nul | , L}
x; is single inRM S
andloc(z;) is on a cyclic list (Id, 0) True RMS
andz; = z;
z; is single inRM S
andloc(z;) is on a cyclic list (Id, 0) False RMS
andx,; 7& T
loc(z;) € {nul'l , L}
and3n such that ci=cj+1 True loc (z;) = loc(z;)
n € Li st (RM S, z;) andn is on a cyclic lis
loc(z;) € {nul'l , L}
and An such that
n € Li st (RMS,z;) andn is on a cyclic lisjc; := ¢; + 1|c; < X, (| j st (R]V[S,mf)ﬁNl(n) loc' (x;) = loc(w;)

Table 6. Computation of (A, b, ¢), RM S’") = POSTy(a, RMS) for the actiona of

the formz; := z;.succ (1)

30

Hypothesis

RMS’

x; IS not single inRM S
andzx; does belong to a cyclic list
and3n such that
n € Li st (RM S, z;) andn is on a cyclic lis

',ZZCjJrl

Vzleloc’1({loc(zi))\{loc(zi)}} a=0

locd (z;) = loc(z;)

x; is not single inRM S
andzx; does not belong to a cyclic list
and An such that
n € Li st (RMS,z;) andn is on a cyclic lis
andloc(x;) ¢ {nul | , L}

ci

=cj+1

¢j < Xcli st (RJMS‘xj)ﬂNl(n)/\
leezofl({zoc(wl)})\{zoc(m} a=0

locd (z;) = loc(z;)

x; is not single inRM S
andz; belongs to a cyclic list
and3n such that
n € Li st (RMS, z;) andn is on a cyclic lis

(&

=cj+1

True

locd (z;) = loc(z;)

x; is not single inRM S
andz; belongs to a cyclic list
and An such that
n € Li st (RMS, z;) andn is on a cyclic lis
andloc(z;) ¢ {nul | , L}

Ci

::Cj+1

¢ < ZnELi st (RJVIS,IJ)QNZ(”)

lod () = loc(x;)

Table 7. Computation of (A, b, ¢), RM S") = POST»(a, RMS) for the actiona of

the formz; := z;.succ (Il)

31

	Towards model-checking programs with lists
	Alain Finkel and al.

