
Towards model-checking programs with lists⋆

Alain Finkel1, Étienne Lozes1, and Arnaud Sangnier1,2

1 LSV, ENS Cachan & CNRS UMR 8643
61, av. Pdt Wilson 94235 Cachan Cedex, France

{finkel|lozes|sangnier}@lsv.ens-cachan.fr
2 EDF R&D

Abstract. We aim at checking safety and temporal properties over models repre-
senting the behavior of programs manipulating dynamic singly-linked lists. The
properties we consider not only allow to perform a classicalshape analysis, but
we also want to check quantitative aspect on the manipulatedmemory heap. We
first explain how a translation of programs into counter systems can be used to
check safety problems and temporal properties. We then study the decidability
of these two problems considering some restricted classes of programs, namely
flat programs without destructive update. We obtain the following results : (1)
the model-checking problem is decidable if the considered program works over
acyclic lists (2) the safety problem is decidable for programs without alias test.
We finally explain the limit of our decidability results, showing that relaxing one
of the hypothesis leads to undecidability results.

1 Introduction

Context. The model checking techniques of infinite-state systems arenow an active
research area. These techniques have been successfully applied to a lot of infinite-state
transition systems like counter systems, lossy channel systems, pushdown automata,
timed automata, hybrid automata, and rewriting systems. For some of these models,
there exist today both an impressive set of theoretical results and efficient automatic
tools for verifying safety properties.
Among the different models, counter systems enjoy a centralposition for both theo-
retical results and maturity of tools likeFAST [3], ASPIC [19], LASH [20] andTREX
[1]. Moreover, counter systems, defined by Presburger relations, allow to model and to
verify quantitative properties over various applicationssuch as the TTP protocol [2] and
broadcast protocols [16]. Different acceleration methodsfor computing the reachabil-
ity relation of such counter systems have been developed . Inparticular, an accelera-
tion method (recalled in [17]) has been completely implemented in the verification tool
FAST [3].
In this work, we study a peculiar class of infinite state systems, called pointer sys-
tems, which allows to model the behavior of programs workingover singly-linked lists.
For pointer systems, qualitative properties (absence of memory violation like invalid
pointer dereferencing, memory leak) are difficult to analyze, and may drastically rely on

⋆ This work has been partially supported by contract 4300038040 between EDF R&D/LSV and
by the AVERILES project.

quantitative properties (lists of equal length, finitely increasing memory allocation,...).
Some recent works illustrate this relation between quantitative and qualitative aspects
in pointer systems for the purpose of verifying termination[7] or safety [11].

Motivations. Our attempt in this paper is to demonstrate that this relation between
quantitative and qualitative properties is central in manyaspects of pointer systems.
Consider for example the following program that allocates acopy of a list, and then
disposes both lists. In this program, the variablesx,y,t andu are pointers to list ele-
ments.

1: void copy-and-delete(List x){ 9: y=x;
2: List y,t,u; 10: while (y!=NULL){
3: y = x; t=NULL; u=t; 11: y=y->next;
4: while (y!=NULL){ 12: u=u->next;
5: y=y->next; 13: free(x); x=y;
6: t=malloc(); 14: free(t);t=u;
7: t->next=u; 15: }
8: u=t;}

Such a program cannot be analyzed correctly by tools based onpurely qualitative shape
analysis, whereas combining shape analysis and quantitative analysis it can be automat-
ically established that this program is safe reminding thatboth lists are of equal length
after the first loop and that the initial list is acyclic. It istrue that this example program
seems quite artificial, but it has to be seen as an abstractionof a more complex program
in which all the operations which had no effect on the shape ofthe data structure have
been removed. In fact, in this work we consider programs which can only manipulate
singly-linked lists and which have to be considered as an abstraction of real programs.
We believe that situations such as the one we present with theabove example are not
so rare in programs manipulating pointers, and a quantitative shape analysis could be
worth to be considered in several practical cases. More generally, this is certainly a
promising perspective to consider systems that combine pointers and counters oper-
ations and design an analysis that relates both aspects of the computation. Counters
could model parameters of list-scanning algorithms (for instance, a procedure that re-
turns thenth element of a list), but also concurrency aspects like semaphores, thread
identifier, etc. Quantitative shape analysis could be well suited for model-checking tem-
poral properties relying on the algorithms already proposed for counter systems, such
as in [13]. Previous attempts of model-checking temporal properties on pointer systems
have been mostly based on either over-approximating, or nonterminating algorithms
for which completeness is usually poorly studied. Exact andcomplete algorithms for
rich classes of programs, though less efficient than others in general, can play a crucial
role in practice.
In broad lines, we would like to reuse the principles of standard shape analysis to define
a quantitative shape analysis, and specifically rely on the tool FAST for the quanti-
tative aspects.FAST implements a loops acceleration that succeeds in computingthe
reachability set of any flat counter system; the same acceleration can be exploited to
model-check CTL∗ properties on these systems [13]. By flat, we mean that the control
flow graph does not contain nested loops. Even if the class of such systems seems to be

2

quite restricted with respect to usual programs, several programs transformations can
be tried to flatten the system and cover a much richer class of programs. A flattening
procedure is implemented inFAST, and many classes of programs on which this pro-
cedure succeeds have been identified [21]. Furthermore manycase studies have been
verified with this approach.

Our research program, in this paper, was to try to follow the same tracks as for counter
systems in the framework of pointer systems. Thus, we and others considered the class
of flat pointer systems and tried to define an acceleration forthem. Unfortunately, it
has been shown that for flat pointer systems, and even for flat pointer systems without
destructive update, the problem of reachability of a control state is undecidable. This
result is somehow unsettling and we wanted to better understand for which classes of
pointer systems some CTL∗ properties (including reachability and safety) are decidable
or not.

Contribution. Our main contribution is to investigate the possibility of aquantitative
model-checker for singly-linked lists manipulating programs. We define a CTL∗ logic
which is able to express quantitative properties of the memory managed by pointer sys-
tems. For this temporal logic, we show that the model-checking problem reduces to
the one for counter systems developed in [13], provided an adequate translation from
pointers to counters is given. This result is important for us, since it serves as a foun-
dation for a two-steps analysis of pointer systems that consists in translating them into
counter systems and then, with the help ofFAST, to verify safety properties. It remains
to provide a good translation of pointer systems into counter systems. We obtain three
categories of results concerning the translations:

First, we show that, from the experimental point of view, thetranslation defined in [5]
allows us to verify all well-known singly-linked lists casestudies, and also some new
ones that are not immediately verifiable by the other tools and methodologies. Most of
the case studies yield flat counter systems for which we know in advance thatFAST
will terminate.

Second, we propose a new translation of pointer systems intocounter systems and we
characterize several classes of pointer systems without destructive update for which our
analysis terminates. The main feature of this new translation is that it preserves flatness
of the systems (unlike the first translation). Using this newtranslation, we prove the
decidability of the CTL∗ model-checking for flat pointer systems without destructive
update and with an acyclic initial configuration and the decidability of safety problems
for flat pointer systems without destructive update and without alias test. In [11], the
authors prove that some safety problems were decidable whenconsidering flat pro-
grams without destructive update and with an initial configuration containing at most
one cyclic list. We hence extend here these results to the model-checking when the
initial configuration is acyclic and we propose a new class offlat programs without
destructive update for which the safety problem is decidable.

Third, we explore the limits of our analysis, and of the decidability of CTL∗ model-
checking for classes of flat pointer systems. We show that we cannot extend our analysis
of flat pointer systems without destructive update and aliastest if cyclic initial configu-
rations are allowed. Conversely, we show that the safety problem becomes undecidable

3

for flat pointer systems that keep their memory configurations acyclic, but can perform
destructive update. This last point answers an open problemasked in [11].

Related work. Many tools and techniques to check safety properties on programs ma-
nipulating pointers have been developed recently.PALE [26] verifies safety properties
on programs annotated with loop invariants.TVLA [22] is another tool based on ab-
stract interpretation, where the user has the possibility to refine the abstraction pro-
viding adequate predicates. In [27], the framework of predicate abstraction is used to
manipulate boolean formulae representing the heap. In [15], the authors present a shape
analysis method based on separation logics formulae to analyze programs manipulat-
ing singly-linked lists. Their method always terminates but might yield false alarms
due to the over-approximation brought by the abstraction. Other methods have been
proposed which use already existing model-checking techniques. For instance, in [9],
the authors verify safety properties on programs manipulating singly-linked lists us-
ing abstract regular model-checking. They have extended their work to programs with
more complex data structures [10]. In [8], the authors also propose a translation towards
counter systems very similar to the one of [5]. In [24], the authors propose to combine
shape analysis and arithmetic analysis using the same kind of techniques. None of these
considers temporal model-checking or state a completenessresult for these analysis.
Some efforts have already been made to introduce temporal logic for pointer verifica-
tions as the Evolution Temporal Logic [29], which used techniques similar to the one
presented inTVLA, or the Navigation Temporal Logic presented in [14]. Recently, in
[12], the authors have introduced a temporal logic based on separation logic. But, to our
knowledge, these different logics do not allow to express quantitative properties of the
memory heaps.

2 Preliminaries

In this section, we collect some useful notions about counter and pointer systems. We
assume a setC of counter variables, and a setV of pointer variables.

2.1 Counter systems

We recall thatPresburger arithmeticis the first order theory of the structure〈N,+,=〉.
Given a Presburger formulaφ with free variables belonging toC anda ∈ N

C , we
write a |= φ if φ is true for the valuationa. We will denote byJφK the set described
by the formulaφ. A Presburger-linear functionf is a partial function which can be
represented by a tuple(A,b, φ) whereA is a square matrix inNC×C , b ∈ Z

C andφ is
a Presburger formula such thatf(a) = A.a+b for everya |= φ. We denote byΣC the
set of such functions.

Definition 1 (Counter system).A counter systemis a graph whose edges are labeled
with Presburger linear functions, that is a tupleCS = 〈Q,E〉 whereQ is a finite set of
control states andE ⊆ Q×ΣC ×Q is a finite set of transitions.

4

To a counter systemCS = 〈Q,E〉, we associate the transition systemTS(CS) =
〈Q × N

C ,→〉 defined by(q, a) → (q′,a′) if there is a transition(q, f, q′) in E with
f = (A,b, φ) such thata |= φ anda′ = f(a). We see here that when a transition of the
counter system is labelled with a Presburger-linear function (A,b, φ) the Presburger
formulaφ plays the role of a guard on the transition and the action of the transition is
represented by the translation which associates to eacha ∈ N

C the vectorA.a + b.

A simple cyclein a graphG = 〈Q,E〉 is a closed path (where the initial and final
vertices coincide) with no repeated edge.G is said to beflat if every q ∈ Q belongs
to at most one cycle. LetCS = 〈Q,E〉 be a counter system. We define the monoid
of CS, denoted by< CS >, as the multiplicative monoid generated by the matrices
present in the labels ofCS. More formally,< CS >=

⋃

i≥0{A1.A2.Ai | ∀j ∈
{1, . . . , i} there exists(q, (Aj ,b, φ), q′) ∈ E}. A counter systemCS is said to havethe
finite monoid propertyif the multiplicative monoid< CS > is finite. Note that since a
counter system has a finite number of control states and of transitions, one can decide
whether a counter system is flat or not. This also holds for thefinite monoid property,
in fact using a result of [25], one can prove that the problem of knowing whether the
monoid of a counter system is finite is decidable .

For the following theorem, we use the fact that the control states of a counter system
CS = 〈Q,E〉 can be encoded into positive integers (ieQ ⊆ N) and then the set of
configurations is represented byN

|C|+1.

Theorem 1. [17] Let CS be a flat counter system〈Q,E〉 with the finite monoid prop-
erty andTS(CS) = 〈N|C|+1,→〉 its associated transition system. Then the relation
→∗ is effectively Presburger definable.

Note that as mentioned in [17], this last result extends and completes previous results
on acceleration techniques for counter systems presented in [28].

Let us recall the syntax of the temporal logic for counter systems, called FOCTL∗(Pr)
in [13] :

Φ ::= q | ψ | ∃y.Φ | ¬Φ | Φ ∧ Φ | XΦ | ΦUΦ | AΦ

whereq is a control state,y is a variable of a countable set VAR andψ is a Presburger
formula overC ∪ VAR.
We now give the semantics of this temporal logic. We considera counter systemCS =
〈Q,E〉 and its associated transition systemTS(CS) = 〈Q × N

C ,→〉. Let π be a
configuration path inTS(CS). For an integeri, we denote byπ(i) ∈ Q× N

C thei-th
configuration ofπ, π≤i the initial part ofπ up to positioni and|π| the length ofπ. Let
ρ be a variable valuation, that is a partial map from VAR toN. For i ∈ N and a formula
Φ of FOCTL∗(Pr), the satisfaction relation|= is inductively defined at positioni of a
configuration pathπ as follows:

– π, i |=ρ q iff π(i) = (q, a) for somea ∈ N
C ;

– π, i |=ρ ψ iff π(i) = (q, a) with q ∈ Q and(a, ρ) |= ψ in Presburger arithmetic;

5

– π, i |=ρ ∃y.Φ iff there ism ∈ N such thatπ, i |=ρ[y 7→m] Φwhereρ[y 7→ m] denotes
the variable valuation equal toρ except that the variabley is mapped to the integer
valuem;

– π, i |=ρ ¬Φ iff π, i 6|= Φ;
– π, i |=ρ Φ ∧ Φ′ iff π, i |= Φ andπ, i |=ρ Φ

′;
– π, i |=ρ XΦ iff i < |π| andπ, i+ 1 |= Φ;
– π, i |=ρ ΦUΦ′ iff ∃j such thati ≤ j < |π| andπ, j |= Φ′, and for all k such that
i ≤ k < j, π, k |= Φ;

– π, i |=ρ AΦ iff for all configuration pathπ′ such thatπ≤i = π′
≤i, we haveπ′, i |=ρ

Φ.

We denote byCS |= Φ the fact that all the configurations pathsπ in TS(CS) ver-
ify π, 0 |= Φ. The next result shows that the theorem 1 can be extended to temporal
properties, in fact :

Theorem 2. [13] For a flat counter systemCS with the finite monoid property, and a
FOCTL∗(Pr) formulaΦ, it is decidable whetherCS |= Φ.

2.2 Pointer systems

We now define the model of pointer systems that will be the coreof our study. We
use pointer systems to represent the behavior of programs manipulating singly-linked
lists. The main idea of this model consists in representing the memory heap as a graph
in which each node has at most one successor. In the sequel, weuse the symbol⊥ to
express that a function is undefined.

Definition 2 (Memory graph). A memory graphis a labeled graph that can be repre-
sented by a tupleMG = (N, succ, loc) such that :

– N is a finite set of nodes such that{null,⊥} ∩N = ∅;
– succ is a function fromN toN ∪ {null,⊥} called the successor function;
– loc is a function fromV to N ∪ {null,⊥} which associates a node with each

pointer variable;
– for all nodesn ∈ N , there isv ∈ V andi ∈ N such thatn = succi(loc(v)).

Note that the last condition intuitively expresses that thememory graph represents a
heap without memory leak, i.e. all nodes are reachable in thegraph from a node pointed
to by a variable. We impose that memory graphs do not contain memory leaks because
anyway the nodes not reachable from a variable in a memory graph that could remain
after executing an instruction would not have any incidenceon the behavior of the pro-
gram. In the sequel, we will see that if an action performed a memory leak, we consider
it as a fault. Remark that we could also have a semantic with a garbage collector and
in this case we would delete in the graphs the nodes that are not reachable by a pointer
variable. We denote byMGV (MG for short) the set of all memory graphs overV .
We will say that two memory graphs are equal if there exists anisomorphism between
their underlying graphs which respects the positions of thevariables. Acyclic list in a
memory graph is a simple cycle in the underlying graph and a memory graph is said to

6

beacyclic if it does not contain any cyclic list.

We defineguarded pointer actionsas pairs denoted(g, a) where guards and actions are
defined by the following grammar :

g ::= True | Isnull(x) | x = y | ¬g | g ∧ g
a ::= x:=e | x.succ:=e | x:=malloc | free(x) | skip
e ::= NULL | x | x.succ

wherex, y are pointer variables belonging toV andx.succ represents the successor
node of the cell pointed to byx. We denote byG the set of pointer guards,A the set
of pointer actions andΣP = G × A. For a memory graphMG ∈ MG and a pointer
guardg ∈ G, we denote byMG |= g the fact thatMG satisfiesg. For a pointer action
a ∈ A, we define the partial functionJaKP : MG → MG which associates to a
memory graphMG the memory graphJaKP (MG) obtained after executing the action
a overMG. The functionJaKP is defined partially because there are some situations
in which the actiona realizes what we call a fault on a memory graphMG and in this
caseJaKP (MG) is not defined. In our approach, we consider as a fault both memory
violation and memory leak. Intuitively, a memory violationoccurs when an action tries
to move a pointer variable to the successor of thenull node or to the successor of
an undefined node; whereas a memory leak occurs when moving a variable leads to
a graph where there exists a node which is not reachable from anode labeled with a
variable. We also believe it would not change our results to consider garbage-collected
programs (ie programs for which a memory leak is not considered as an error).

Definition 3 (Pointer system).A pointer systemis a graph whose edges are labeled
with pairs of pointer guards and actions, that is a tuplePS = 〈Q,E〉 whereQ is a
finite set of control states andE ⊆ Q×ΣP ×Q.

We then associate a transition systemTS(PS) = 〈Q×MG,→〉 with a pointer system
PS = 〈Q,E〉. Its transition relation is defined by :(q,MG) → (q′,MG′) if there is a

transitionq
(g,a)
−−−→ q′ in E such thatMG |= g andMG′ = JaKP (MG). A configuration

of a pointer systemPS = 〈Q,E〉 is a pair(q,MG); for a set of configurationsC, we
write Reach(PS, C) to denote the set of configurations reachable inTS(PS) from
some configuration inC.

2.3 Representing infinite sets of memory graphs

We introduce now a symbolic representation of memory graphs. Intuitively, a memory
shape is a memory graph where the intermediate nodes of an unshared list segments are
skipped and replaced by a counter recording the length of this list segment.

Definition 4 (Memory shape).[5,6] A memory shapeis a tupleMS = (N, succ, loc, l)
such that :

– (N, succ, loc) is a memory graph verifying:
– for all nodesn ∈ N , eitherloc−1(n) 6= ∅, or |succ−1({n})| ≥ 2;

7

– l : N → C is an injective function which associates with each node a counter
variable.

We denote byMS the set of memory shapes. We will writeCMS for the set of coun-
ters appearing in a memory shapeMS (i.e. the image of the functionl). To a pair
(MS, a) ∈ MS×N

C (such that the values of the counters inCMS are strictly positive),
we associate the memory graphMS(a) obtained from the memory graph underlying
MS by inserting intermediate nodes on list segments in order tohave a list length equal
to the value of the counter. As said in [5,6], for a fixed setV there is a finite number of
memory shapes and for each memory graphMG there exists a memory shapeMS and
a valuationa such thatMG = MS(a). An example is given in figure 1.

x2x1

k2
k1 x2x1

MS MS(a)
a(k1) = 2;
a(k2) = 2;

Fig. 1.A memory graph associated with a memory shape and a valuation

To represent infinite sets of memory graphs, we define what we call thesymbolic mem-
ory shapes. A symbolic memory shape is a pair(MS,ψ) whereMS is a memory shape
andψ a Presburger formula overCMS . The interpretation of a symbolic memory shape
is given byJ(MS,ψ)K = {MS(a) | a |= ψ}.

Definition 5 (Symbolic memory state).A symbolic memory stateSMS is a finite set
{(MS1, ψ1), ..., (MSr, ψr)} of symbolic memory shapes(MSi, ψi).

For a symbolic memory stateSMS = {(MS1, ψ1), ..., (MSr, ψr)} the concrete in-
terpretation is given byJSMSK =

⋃

i∈{1,...,r}J(MSi, ψi)K. We denote bySMS the
set of symbolic memory states. In [6], the authors have shownthat symbolic memory
states enjoy good properties, in particular that it is possible to define complement and
intersection operators for this representation.

3 Model checking issues

In this section, we define the safety and temporal propertieswe consider in this work.
We first formally define the model-checking problems. Then, we recall a method, pre-
sented in [5], to analyze pointer systems translating them into a bisimilar counter sys-
tem.

8

3.1 Model-checking programs with pointers

We define now the notions of safety and model-checking when the considered model is
a pointer system.

A symbolic configuration of a pointer systemPS = 〈Q,E〉 is a finite set of pairs
(q, SMS), for q ∈ Q andSMS a symbolic memory state.

Definition 6 (Safety in pointer systems).The safety problem for a pointer system is
defined by :

– Input : A pointer systemPS = 〈Q,E〉, an initial symbolic configurationINIT
and a “bad” symbolic configurationBAD;

– Output : Reach(PS, JINITK) ∩ JBADK
?
= ∅.

Note that the problem of deciding whether a given pointer system may reach a given
control state, may performs a memory violation, or a memory leak, reduce to this
generic safety problem.
We now consider a temporal logic for pointer systems based onthe quantitative shape
logic of the previous section :

Φ ::= q | SMS | ¬Φ | Φ ∧ Φ | XΦ | ΦUΦ | AΦ

whereq is a control state andSMS is a symbolic memory state. We denote by CTL∗
mem

this logic. We give the semantics of this logic, defined by a relationπ, i |= Φ between
tracesπ of a pointer system and a formulaΦ of CTL∗

mem. We consider a pointer system
PS = 〈Q,E〉 and its associated transition systemTS(PS) = 〈Q × MG,→〉. Let π
be a configuration path inTS(PS). For an integeri, we denote byπ(i) ∈ Q × MG
the i-th configuration ofπ, π≤i the initial part ofπ up to positioni and|π| the length
of π. For i ∈ N and a formulaΦ of CTL∗

mem, the satisfaction relation|= is inductively
defined at positioni of a configuration pathπ as follows:

– π, i |= q iff π(i) = (q,MG) for someMG ∈ MG;
– π, i |= SMS iff π(i) = (q,MG) with q ∈ Q andMG ∈ JSMSK;
– π, i |= ¬Φ iff π, i 6|= Φ;
– π, i |= Φ ∧ Φ′ iff π, i |= Φ andπ, i |= Φ′;
– π, i |= XΦ iff i < |π| andπ, i+ 1 |= Φ;
– π, i |= ΦUΦ′ iff ∃j such thati ≤ j < |π| andπ, j |= Φ′, and for all k such that
i ≤ k < j, π, k |= Φ;

– π, i |= AΦ iff for all configuration pathπ′ such thatπ≤i = π′
≤i, we haveπ′, i |= Φ.

We are then interested in solving the model-checking problem of formulae of CTL∗mem

for pointer systems. We define here this problem.

Definition 7 (Model-checking). The model-checking problem for pointer systems is
defined by :

– Input : A pointer systemPS = 〈Q,E〉, an initial symbolic configurationINIT
and a formulaΦ ofCTL∗

mem;
– Output : Do we haveπ, 0 |= Φ for all tracesπ of TS(PS) such thatπ(0) ∈

JINITK?

9

3.2 From pointer systems to counter systems

LetPS = 〈QP , EP 〉 be a pointer system. In [5], we give an effective algorithm tobuild
a counter systemCS(PS) which is bisimilar toPS. Before to present this translation,
let us recall the definition of a bisimulation :

Definition 8 (Bisimulation). Given two transition systemsTS1 = (S1,→1) andTS2 =
(S2,→2), a relationR ⊆ S1 × S2 is a bisimulation if and only if, for all(s1, s2) ∈ R :

1. If ∃s′1 ∈ S1 such thats1 →1 s
′
1 then∃s′2 ∈ S2 such thats2 →2 s

′
2 and(s′1, s

′
2) ∈

R;
2. If ∃s′2 ∈ S2 such thats2 →2 s

′
2 then∃s′1 ∈ S1 such thats1 →1 s

′
1 and(s′1, s

′
2) ∈

R.

The translation presented in [5] used the memory shapes and is based on the follow-
ing principle : given a memory shapeMS ∈ MS and a pointer actiona ∈ A, it
is possible to define a setPOST (a,MS) of pairs((A,b, φ),MS′) where(A,b, φ)
represents a Presburger-linear function andMS′ a memory shape such that, for all
((A,b, φ),MS′) ∈ POST (a,MS), and for alla,a′ ∈ N

C , we have :

MS′(a′) = JaKp(MS(a)) if and only if a |= φ anda
′ = A.a + b

The counter systemCS(PS) is then equal to〈QC , EC〉 where :

– QC = QP ×MS,
– EC is the transition relation defined as follows((q,MS), (A,b, φ), (q′,MS′)) ∈
EC if and only if there exists a transition(q, (g, a), q′) ∈ EP such thatMS |= g
and((A,b, φ),MS′) ∈ POST (a,MS).

In this definition, we say that a memory shapeMS = (N, succ, loc, l) satisfies a guard
g if its underlying memory graph(N, succ, loc) satisfiesg. Note that since the setsMS
andQP are finite, the counter systemCS(PS) can effectively be built. Furthermore,
using the property of the functionPOST , we deduce that the relation :

B = {((q,MG), ((q′,MS),a)) ∈ (QP×MG)×(QC×N
C) | q = q′∧MG = MS(a)}

is a bisimulation between the transition systems ofPS and ofCS(PS). We can hence
use the counter systemCS(PS) to analyze the pointer systemPS.

The figure 2 gives an example of a connected component of the counter systemCS(PS)
obtained from the pointer systemPS = 〈{1}, {(1, x1.succ = x1, 1)}〉 with V =
{x1, x2}. We see with this example that this translation does not preserve the flatness of
systems. Table 1 gives a list of programs working over acyclic initial configurations (ex-
ceptparse-cyclic-acyclic) which we have translated into counter systems and
successfully analyzed. Some of these programs are described in the appendix A. Most
of them are classical programs, except the programcopy-and-delete presented in
the introduction, the programsplit which divides a single list in two lists and is safe
only if the input list has an even length, and the programparse-cyclic-acyclic
which parses a cyclic and an acyclic list in the same time. We remark that in most of

10

x1x2

k1

1,

x2

x1

k1k21,

k1 > 1?
k1 := 1;
k2 := k1 − 1;

k2 = 1?
k1 := k1 + 1;
k2 := 0;

k1 = 1?

k2 > 1?
k1 = k1 + 1;
k2 = k2 − 1;

Fig. 2.An example of a counter systemCS(PS) obtained from a pointer systemPS

the cases the corresponding counter system is flat (and has always, by definition of the
translation, the finite monoid property) which correspondsto the hypothesis of the the-
orems 1 and 2. When the system is not flat, it can still be analyzed sometimes, as for
themerge program, using a flattening procedure implemented in the tool FAST. But in
other cases it might not be fully verified, as for the programparse-cyclic-acyclic.

Program Is PS flat ? Is CS(PS) flat ? Analyzed with FAST ?
reverse YES YES YES
delete YES YES YES
deleteALL YES YES YES
merge NO NO YES
copy-and-delete YES YES YES
split YES YES YES
delete(n) YES YES YES
parse-cyclic-acyclic YES NO NO

Table 1.Examples of programs analyzed byFAST

Since the memory shapes appear in the control states ofCS(PS), it is possible to
translate any temporal logic formula over the symbolic configurations ofPS into a
temporal logic formula over the configurations ofCS(PS). Hence :

11

Theorem 3. LetΦP be aCTL∗
mem formula. Then there effectively exists a formulaΦC

ofFOCTL∗(Pr) such that for all pointer systemsPS :

PS |= ΦP if and only ifCS(PS) |= ΦC

Furthermore, the counter systemCS(PS) has the finite monoid property. In fact, in [5],
we can see that all the matrices labeling the transitions ofCS(PS) are composed of
columns in which all the elements are equal to0 except one which is equal to1. Using
the theorem 2 and the previous result, we hence have the following result.

Corollary 1. Let PS be a pointer system such thatCS(PS) is flat. Then the model-
checking is decidable forPS.

4 Decidability results for programs without destructive update

After having seen a general method to analyze pointer systems translating them into a
counter system, we aim in this section at finding some classesof pointer systems for
which the safety and the model-checking problems are decidable. We know that these
problems are undecidable for pointer systems in general because it is easy to simulate
a Minsky machine with a pointer system. Since there is no obvious notion equivalent
to finite monoid property for pointer systems, and since, as we will see, flatness is in
general not sufficient to decide reachability properties, we define other restrictions on
pointer systems. We will say that a pointer systemPS = 〈Q,E〉 is :

– without destructive updateif the actions inE are all of the formx := ewith x ∈ V ;
– without alias testif the guards inE do not contain any test likex = y with x, y ∈
V .

In [11], the authors have studied whether flat programs without destructive update,
working on a given special shape, could fail to satisfy some assert intructions inserted
in the code. This problem reduces to a particular case of safety problem, which is the
reachability of a control state. They proved, that this problem is undecidable for a flat
pointer system without destructive update, if any initial symbolic configuration is con-
sidered, but is decidable for initial symbolic configurations with at most one cyclic list.
Hence this result shows that even when we take strong restrictions such as flat pointer
systems without destructive update, the problem of reachability of a control state is un-
decidable.

The work we present here extends and completes the results presented in [11]. In this
section we establish the decidability of the safety and model-checking problems for two
restricted classes of flat pointer systems without destructive update. It is true that these
classes are very restricted, but we should see in the next section that it is hard to obtain
decidability results without considering such restrictions.

Theorem 4 (Decidability of safety).For flat pointer systems without destructive up-
date and without alias test, the safety problem is decidable.

12

With this theorem, we hence propose a new class of flat pointersystems without de-
structive update for which the safety problem is decidable,and for this class there is no
need to put restriction on the initial configuration.

With the second theorem, we extend to general temporal properties the results expressed
in [11] in the case of programs with an acyclic initial configuration.

Theorem 5 (Decidability of model-checking).For flat pointer systems without de-
structive update and with an initial acyclic symbolic configuration, the model-checking
is decidable.

The proofs of these theorems rely both on a translation that maps a pointer system
without destructive update to a bisimilar counter system. Moreover, this translation,
unlike the translation presented previously, preserves the flatness of the systems, and
relies on the notion of a new symbolic representation for memory graphs, called roots
memory shapes. We first introduce this notion, then present the translation and sketch
the proofs of the two theorems.

4.1 Roots memory shape

The basic ingredient of the new translation is the notion of roots memory shapes, that
are memory shapes in which all the variables appear only on root nodes or on cyclic
lists. They can be formally defined as follows :

Definition 9 (Roots memory shape).A roots memory shape is a memory shapeRMS
= (N, succ, loc, l) such that for alln ∈ N :

– eitherloc−1({n}) 6= ∅ andsucc−1({n}) = ∅ (root node);
– or loc−1({n}) = ∅ and|succ−1({n})| ≥ 2 (shared node);
– or loc−1({n}) 6= ∅ andsucc−1({n}) = {n} (unshared node on cyclic list).

Note that we do not really need to imposeloc−1({n}) = ∅ in the second condition,
but we do it to simplify the definition of the translation we give later. We suppose that
the set of variables isV = {x1, ..., xm} and we associate with each pointer variable
xi a counterci. We defineCV = {c1, ..., cm} and suppose thatCV ⊂ C. By giving a
value for the counters labeling the nodes, and also a value for the countersci associ-
ated to pointer variables (which was not the case with memoryshapes), we can obtain
a memory graph from a roots memory shape. Given a roots memoryshapeRMS and
a valuationa ∈ N

C , we define the memory graphRMS(a) as follows (see figure
3 for an example): first, we consider the memory graphMG = (N, succ, loc) ob-
tained from the interpretation ofRMS as a memory shape; then we defineRMS(a)
to be the memory graphMG′ = (N ′, succ′, loc′) whereN ′ = N , succ′ = succ and
loc′(xi) = succa(ci)(loc(xi)) for all variablesxi (wheresuccj represents thej-th suc-
cessor). Note that some valuations may not be admissible forthis definition, asloc′(xi)
may be undefined, or the condition on the absence of memory leaks in the definition of
memory graphs may not be satisfied (if all variables located on the same node inRMS
all have strictly positive values for their counters). We denote byRMS the set of roots
memory shapes. Since for a finite number of variables the number of memory shapes

13

x2

x1
k2

k1 x2

x1

RMS RMS(a)a(k1) = 2
a(k2) = 2
a(c1) = 0
a(c2) = 5

c1 andc2 are respectively associated tox1 andx2

Fig. 3.A memory graph associated with a roots memory shape and a valuation

is finite, we deduce thatRMS is also a finite set. Before to give the definition of the
new translation, we define here some useful notions on memorygraphs. We consider a
memory graphMG = (N, succ, loc).

A noden′ ∈ N ∪ {null,⊥} is said to bereachablein MG from an other node
n ∈ N if there exists a path in the graph fromn to n′, i.e. a finite ordered set of nodes
{n1, ..., nr} ⊆ N ∪ {null,⊥} such thatn1 = n, nr = n′ and∀i ∈ {1, ..., r − 1},
succ(ni) = ni+1. For a noden ∈ N , we denote byList(MG,n) the set{n′ ∈
N ∪ {null,⊥} | n′ is reachable fromn in MG}.

We introduce then the notion of shared nodes. Given two nodesn, n′ ∈ N , we define
the setShared(MG,n, n′) = List(MG,n)∩List(MG,n′), which represents the
nodes that are shared by the list beginning at the noden and the one beginning at the
noden′.

We propose also a notation to represent the set of nodes whichlay between two nodes.
Let n, n′ ∈ N , we defineBetween(MG,n, n′) such that:

– if n′ /∈ List(MG,n), Between(MG,n, n′) = ∅;
– else ifn′ = n, Between(MG,n, n′) = ∅;
– else (n′ ∈ List(MG,n) andn′ 6= n) Between(MG,n, n′) is the set of nodes
{n1, ..., nr} such thatn1 = succ(n),n′ = succ(nr), ∀i ∈ {1, ..., r−1}, succ(ni) =
ni+1 and∀i ∈ {1, ..., r}, ni /∈ {n, n′}.

Furthermore, we will say that a variablev ∈ V is singlein MG if:

– loc−1(loc(v)) = {v} (i.e.v is the only variable on the nodeloc(v)).

We recall that a noden ∈ N is called aroot nodeif succ−1({n}) = ∅.

4.2 From pointers to counters

We present now how to define a counter system that faithfully represents a pointer sys-
tem without destructive update using a translation which preserves the flatness of the
system. In this manner, we define two functionsTEST2 andPOST2, we will then use

14

to build the counter system.

The partial functionTEST2 takes as argument a pointer guardg ∈ G and a roots
memory shapeRMS and returns a Presburger-formulaφ. This function is defined such
that the following property is verified : ifφ = TEST2(g,RMS), for all admissible
a ∈ N

C (according toRMS), we have :

RMS(a) |= g if and only if a |= φ

Remark that ifRMS is a roots memory shape with a cyclic list and ifg is a pointer
guard of the formxi = xj then the arithmetic formula given by the functionTEST2

should use propositions of the formy is divided byx which do not belong to the Pres-
burger arithmetic. In fact, ifxi andxj are two pointer variables pointing inRMS to the
unique node of a cyclic list whose edge is labeled with the counterk, testing ifxi = xj

could be done using the formula(ci ≥ cj ⇒ k|ci−cj)∨(cj ≥ ci ⇒ k|cj−ci). To avoid
this situation, we restrict the definition domain ofTEST2 such thatdom(TEST2) =
{(g,RMS) ∈ G × RMS | g does not use alias test orRMS is acyclic}. The table 2
gives the formal definition of the functionTEST2.

As it has been done for the first introduced translation, we now define the partial func-
tion POST2 which takes as argument a pointer actiona ∈ A that is not a destructive
update and a root memory shapeRMS and returns a pair((A,b, φ), RMS′) such that
the following property is satisfied : if((A,b, φ), RMS′) = POST2(a,RMS), for all
admissiblea anda

′ in N
C (according toRMS andRMS′), we have :

RMS′(a) = JaKP (RMS(a′)) if and only if a |= φ anda
′ = A.a + b

Note that whereas the functionPOST was returning a set of pairs((A,b, φ),MS) the
functionPOST2 returns an unique pair. This feature allows us to define a translation
which preserves the flatness of systems. The table 3 gives thedefinition of the function
POST2 in the case of actions of the formxi := NULL. The definition for the others
actions is given in the appendix B. Note that sometimes the linear function(A, b) is
denoted for instanceci := cj which means that the function changes only the value of
the counterci giving it the value ofcj . In these tables, in the column describingRMS′,
it is sometimes written for instanceloc′(xi) = loc(xj), it means thatRMS′ is obtained
by moving inRMS the variablexi to the node wherexj points on.
The figure 4 presents an example of the results of the computation of POST2. Intu-
itively, the conditions ensuring some action will not yieldmemory fault can be defined
with a guard on the counter variables, just as in figure 4 wherethe guard(c1 = 0∨c2 =
0) ensures the absence of memory leak and the guard(c4 < k2) the absence of memory
violation. A pointer actionxi := xj will correspond to movingxi to the location ofxj

and doing the linear transformationci := cj on counters. In the case ofxi := xj .succ,
it is the same, we movexi to the location ofxj and we update the counter with the oper-
ationci := cj + 1. Finally, for the actionxi := NULL, we do the following operations,
we movexi to null and we set the counterci to 0.

UsingTEST2 andPOST2, we can associate with a pointer systemPS = 〈QP , EP 〉
the counter systemCS2(PS) = 〈QC , EC〉 where :

15

Hypothesis TEST2(g,RMS)

g := True True

g := ¬g′ ¬TEST2(g,RMS)

g := g′ ∧ g′′ TEST2(g,RMS) ∧ TEST2(g
′, RMS)

g := Isnull(xi)
and∃n such that False

n ∈ List(RMS, xj) andn is on a cyclic list

g := Isnull(xi)
andnull /∈ List(RMS, loc(xi))

and 6 ∃n such that False
n ∈ List(RMS, xj) andn is on a cyclic list

g := Isnull(xi)
andnull ∈ List(RMS, loc(xi))

and 6 ∃n such that ci = Σn∈List(RMS,loc(xi))∩N l(n)

n ∈ List(RMS, xj) andn is on a cyclic list

g := xi = xj

andRMS is acyclic False
andShared(RMS, loc(xi), loc(xj)) = ∅

g := xi = xj ci > Σn∈List(RMS,loc(xi))\Shared(RMS,loc(xi),loc(xj))l(n) ∧

andRMS is acyclic cj > Σn′∈List(RMS,loc(xj))\Shared(RMS,loc(xi),loc(xj))l(n
′) ∧

andShared(RMS, loc(xi), loc(xj)) 6= ∅ ci −Σn∈List(RMS,loc(xi))\Shared(RMS,loc(xi),loc(xj))l(n) =

cj −Σn′∈List(RMS,loc(xj))\Shared(RMS,loc(xi),loc(xj))l(n
′)

Table 2.Computation ofTEST2(g,RMS)

16

null

x1

x2
x3 x4

k1
k2

null

x1 x2 x3 x4

k1
k2

(c1 = 0 ∨ c2 = 0) ∧ c4 < k2? c3 := c4 + 1

RMS1 RMS2

Fig. 4.Effect of the actionx3 := x4.succ overRMS1

– QC = QP ×RMS
– EC is the transition relation defined by((q,RMS), (A, b, φ), (q′, RMS′)) ∈ EC

if and only if there exists a transition(q, (g, a), q′) ∈ EP and two Presburger for-
mulaeφ1 andφ2 such thatφ1 = TEST2(g,RMS) and((A,b, φ2), RMS′) =
POST2(a,RMS) andφ = φ1 ∧ φ2.

Note that sinceEP andQP × RMS are finite, we can effectively build the counter
systemCS2(PS).

We will show howPS andCS2(PS) are related. Let us consider the relationRT be-
tween the configurations of the pointer systemPS and the ones of its associated counter
systemCS2(PS) defined by :

RT =
{ (

(q,MG) , ((q,RMS),a)
)

|MG = RMS(a)}.

and the relationRac
T which is the restriction ofRT to acyclic memory graphs :

Rac
T =

{ (

(q,MG) , ((q,RMS),a)
)

|MG = RMS(a) andMG is acyclic}.

Proposition 1. For any pointer system without destructive updatePS, CS2(PS) en-
joys the following properties:

1. CS2(PS) has the finite monoid property.
2. If PS is flat thenCS2(PS) is flat.
3. Rac

T is a bisimulation.
4. If PS is without alias test,RT is a bisimulation.

Idea of the proof : CS2(PS) has the finite monoid property because all the matrices
given by the functionPOST2 are composed of lines in which all the elements are equal
to 0 except one which is equal to1, and the multiplicative monoid of such a set of ma-
trices is finite. The other points of this proposition are direct consequences of the way
we buildCS2(PS) and of the properties of the functionsTEST2 andPOST2. �

Properties 1 and 2 ensure that we will be able to use theorems 1and 2 (and also the
tool FAST), and properties 3 and 4 are essential to relate counter properties to pointer
properties.

17

Hypothesis (A,b) φ RMS′

xi is single inRMS

andloc(xi) /∈ {null,⊥} (Id,
−→
0) False RMS

loc(xi) ∈ {null,⊥} (Id,
−→
0) True loc′(xi) = null

xi is not single inRMS ci := 0 True loc′(xi) = null
andloc(xi) belongs

to a cyclic list

xi is not single inRMS ci := 0
W

xj∈loc−1({loc(xi)})\{xi}
cj = 0 loc′(xi) = null

andloc(xi) does not belong
to a cyclic list

Table 3. Computation of((A,b, φ), RMS′) = POST2(a,RMS) for the actiona of
the formxi := NULL.

4.3 Translating the symbolic configurations

To conclude the proofs of theorems 4 and 5, we have to extend the translation to sym-
bolic configurations and temporal formulae. We shall defineT (INIT), T (BAD) as two
symbolic configurations ofCS2(PS) that correspond toINIT andBAD in PS, and we
must moreover defineT (Φ) ∈ FOCTL∗(Pr) that corresponds toΦ ∈ CTL∗

mem. The key
of this translation is to find an effective symbolic representationT (q, (MS,ψ)) for the
set of (counter systems) configurations that are bisimilar to (pointer systems) configu-
rations inJ(q, (MS,ψ))K. That is, for all roots memory shape, we should represent the
set of counters values :

TRMS(MS,ψ) = {a | RMS(a) ∈ JMS,ψK}.

This set is not Presburger definable in general, due to cycliclists, but, as we will see with
the next proposition, it is definable in the logicL∃

| = 〈N,+, |,=〉∃ of the existentially
quantified formulae of the Presburger arithmetic with divisibilty. An essential result for
our proofs is that the satisfiability problem for this logic is decidable [23].

Proposition 2. TRMS(MS,ψ) is definable inL∃
| . Moreover, ifMS is acyclic, then it

is definable in Presburger arithmetic.

Before to give the proof of this proposition, we introduce some preliminary notions. We
will say that a memory shapeMS is compatiblewith a roots memory shapeRMS (de-
notedMS ⊏ RMS) if and only if J(MS, True)K ∩ J(RMS, T rue)K 6= ∅. Intuitively

18

a memory shapeMS is compatible with a roots memory shapeRMS if it is possible
to obtain a graph isomorphic toRMS fromMS moving the pointer variables to a root
node or to a node in a cyclic list they are connected to inMS. To be more formal, we
introduce the notion ofcompatibility function.

Let MS = (N, succ, loc) be a memory shape andRMS = (N ′, succ′, loc′, l′). We
denote byNR (resp.N ′

R) the set of root nodes inMS (resp. inRMS),N2 (resp.N ′
2)

the set of nodes with at least two predecessors inMS (resp. inRMS) andNC (resp.
N ′

C) the set of nodes belonging to a cyclic list not reachable from a root node inMS
(resp. inRMS). We say that a functiong : N ′ → N is acompatibility functionbetween
MS andRMS if g is a total injective function such that:

– g(N ′
R) = NR, g(N ′

2) = N2 andg(N ′
C) ⊆ NC ;

– for all nodesn, n′ ∈ N ′,n′ ∈ List(RMS, n) if and only ifg(n′) ∈ List(MS, g(n));
– for all nodesn ∈ N ′,null ∈ List(RMS, n) if and only ifnull ∈ List(MS, g(n));
– for all nodesn ∈ N ′, ⊥ ∈ List(RMS, n) if and only if⊥ ∈ List(MS, g(n));
– for all variablesv ∈ V , loc(v) ∈ List(MS, g(loc′(v)).

We can then deduce the following lemma.

Lemma 1. LetMS be a memory shape andRMS be a roots memory shape.MS ⊏

RMS if and only if there exists a compatibility function betweenMS andRMS.

We now give the proof of proposition 2.

Proof : In this proof we associate the setTRMS(MS,ψ) with the arithmetic formula
that characterizes it. Let(MS,ψ) be a symbolic memory shape andRMS a roots mem-
ory shape. We supposeCMS = {k1, ..., km}, MS = (N, succ, loc, l) andRMS =
(N ′, succ′, loc′, l′). We build a logic formulaTRMS(MS,ψ) overCRMS ∪CV as fol-
lows:

– If MS 6⊏ RMS, TRMS(MS,ψ) = False;
– Otherwise Letg be a function of compatibility betweenMS andRMS;

1. Rename inψ and inMS all the counterski with
_
ki Such that for alli ∈

{1, ...,m},
_
ki /∈ C to obtain a formula

_
ψ, and we denote by

_
l the function

which associates to each noden ∈ N the counter
_
ki such thatl(n) = ki.

2. For each noden in N ′, we define the formulaφn to ensure that the length on
the graphs correspond:

φn := l′(n) =
_
l(g(n)) +

∑

n′∈Between(MS,g(n),g(succ′(n))

_
l(n′)

3. LetNCl ⊆ N (resp.N ′
Cl ⊆ N ′) the set of nodes ofMS (resp. ofRMS)

which belong to a cyclic list. For each variablexi ∈ V , we define a formulaφi

to ensure the pointer variables are located at the same position.
• If loc(xi) ∈ {null,⊥}, then

φi := ci = 0

19

• If loc(xi) /∈ NCl:

φi :=
_
l(g(loc′(xi))) +

∑

n∈Between(MS,g(loc′(xi)),loc(xi))

_
l(n) = ci

• Otherwise ifloc(xi) ∈ NCl andloc′(xi) ∈ N ′
Cl (in this case, the cyclic

list wherexi points to is necessarily not reachable from a root node, we
write L =

∑

n∈List(MS,loc(xi))

_
l(n) the size of the cyclic listxi is on

then:

φi :=
∧

{xh|loc(xh)=loc(xl)}

(

ci.mod(L) = ch.mod(L)
)

∧
∧

{xj |loc(xj)∈List(MS,loc(xi)\loc(xi)}

(

cj .mod(L) =

(ci +
_
l(loc(xi)) +

∑

n∈Between(MS,loc(xi),loc(xj))

_
l(n)).mod(L)

)

• Otherwise (loc(xi) ∈ NCl andloc′(xi) /∈ N ′
Cl), and we denote byL =

∑

n∈List(MS,loc(xi))

_
l(n), intuitivelyL encodes the size of the cyclic list

pointed to byxi andS =
∑

n∈List(MS,g(loc′(xi)))\NCl

_
l(n) represents

the length of the segment leaving fromg(loc′(xi)) and finishing on the
cyclic list, we then have :

φi =
(

ci ≥ S ∧
_
l(g(loc′(xi))) +

∑

n∈Between(MS,g(loc′(xi)),loc(xi))

_
l(n) =

S + (ci − S).mod(L)
)

4. Finally we obtain:

TRMS(MS,ψ) := ∃
_
k1...∃

_
km.

_
ψ ∧

∧

n∈N ′ φn

∧

xi∈V φi

Remark that ifMS is acyclic, then by constructionTRMS(MS,ψ) is a Presburger
formula. And in the other cases,TRMS(MS,ψ) can be rewritten into an equivalent
formula of the logicL∃

| . This is due to the fact thata.mod[c] = b.mod[c] is equivalent
to the formulac | (a − b) and that any Presburger formula can be rewritten into an
equivalent Presburger formula with only existential quantifiers (by elimination of the
quantifiers [18]).�

When we associate an arithmetic formulaϕ over the countersCRMS ∪ CV with a
roots memory shapeRMS, we denote byJ(RMS,ϕ)K the set of memory graphs,
{RMS(a) | a |= ϕ} We have then the following result by construction ofTRMS :

Lemma 2. Let (MS,ψ) be a symbolic memory shape andRMS a roots memory
shape.

1. IfMS ⊏ RMS, J(RMS, TRMS(MS,ψ))K = J(MS,ψ)K.
2. IfMS 6⊏ RMS, J(RMS, TRMS(MS,ψ))K = ∅.

We will now see how we use this different results to prove the theorems 4 and 5. The
main idea consists in reducing the problems of safety and model-checking over pointer
systems without destructive update to similar problems over counter systems.

20

null

x2

x1

x3x4

null

x2x1
x3

x4

MS RMS

TRMS(MS,ψ) := ∃
_
k1.∃

_
k2.∃

_
k3.∃

_
k4.

_
ψ∧

k1 =
_
k1 +

_
k2 ∧ k2 =

_
k3 +

_
k4∧

c1 = 0 ∧ c2 =
_
k1∧

c4.mod[k2] = (c3 +
_
k3).mod[k2]∧

c3.mod[k2] = (c4 +
_
k4).mod[k2]

k3

k4

k2k1

k2

k1

Fig. 5.An example of the computation of the formulaTRMS(MS,ψ)

4.4 Proof of theorem 4

Let (q, (MS,ψ)) be a symbolic configuration of a pointer system. We define :

T (q, (MS,ψ)) =
⋃

RMS∈RMS

((q,RMS), TRMS(MS,ψ))

T (q, (MS,ψ)) represents a symbolic configuration forCS2(PS) and furthermore by
lemma 2, we have thatJ(MS,ψ)K =

⋃

RMS∈RMSJ(RMS, TRMS(MS,ψ))K . The
properties of the arithmetic formulaTRMS(MS,ψ) and the fact that the relationRT is
a bisimulation between the transition system ofPS and the one ofCS2(PS) allows us
to state the following lemma.

Lemma 3. Let PS be a pointer system without destructive update and without alias
test,(q0, (MS0, ψ0)) an initial symbolic configuration, and(qB , (MSB, ψB)) a bad
symbolic configuration forPS. Then :

Reach(PS, J(q0, (MS0, ψ0))K) ∩ J(qB , (MSB, ψB))K = ∅

if and only if

Reach(CS2(PS), JT (q0, (MS0, ψ0))K) ∩ JT (qB, (MSB, ψB))K = ∅

Using this last lemma and previous results, we can prove the theorem 4.

Proof of theorem 4
Let PS be a flat pointer system without destructive update and without alias test,
(q0, (MS0, ψ0)) an initial symbolic configuration, and(qB, (MSB, ψB)) a bad sym-
bolic configuration forPS. By proposition 1, the counter systemCS2(PS) is flat and

21

has the finite monoid property. By lemma 3, the considered safety problem reduces to
the safety problem forCS2(PS) with T (q0, (MS0, ψ0)) as initial symbolic configura-
tion andT (qB, (MSB, ψB)) as bad symbolic configuration. Furthermore, since for all
memory shapesMS, for all Presburger formulaψ overCMS and for all roots memory
shapeRMS , TRMS(MS,ψ) is a formula ofL∃

| , we can deduce from the theorem 1,

that this last problem reduces to the satisfiability problemof a formula ofL∃
| , which is

a decidable problem [23].�

4.5 Proof of theorem 5

We consider then a formulaΦ of CTL∗(MS). We define the formulaT (Φ) by induction
as follows:

– if Φ := (q, (MS,ψ)) with MS acyclic then :
T (Φ) :=

∨

RMS∈RMS((q,RMS), TRMS(MS,ψ));
– if Φ := (q, (MS,ψ)) with MS not acyclic then :
T (Φ) :=

∨

RMS∈RMS((q,RMS), False);
– if Φ := ¬Φ′ thenT (Φ) := ¬T (Φ′);
– if Φ := Φ′ ∧ Φ′′ thenT (Φ) := T (Φ′) ∧ T (Φ′′);
– if Φ := XΦ′ thenT (Φ) := XT (Φ′);
– if Φ := Φ′UΦ′′ thenT (Φ) := T (Φ′)UT (Φ′′);
– if Φ := AΦ′ thenT (Φ) := AT (Φ′).

Since, for all acyclic memory shapesMS, for all Presburger formulaeψ overCMS and
for all roots memory shapeRMS, TRMS(MS,ψ) is a Presburger formula, we deduce
that:

Remark 1.For all formulaeΦ of CTL∗(MS), T (Φ) is a formula of CTL∗(Pr).

Moreover, the following lemma holds.

Lemma 4. Let PS be a pointer system without destructive update,(q0, (MS0, ψ0))
an initial acyclic symbolic configuration ofPS, andΦ a formula of CTL∗(MS). We
have thatπ, 0 |= Φ for all configurations pathsπ of CS2(PS) such thatπ(0) ∈
J(q0, (MS0, ψ0))K, if and only ifπ′, 0 |= T (Φ) for all configuration pathsπ′ of the
transition systemTS(CS2(PS)) such thatπ′(0) ∈ JT (q0, (MS0, ψ0))K.

Proof
This lemma can be proved by induction on the length of the formulaΦ using the def-
inition of T (q0, (MS0, ψ0)). The first case of the induction is whenΦ is of the form
(q, (MS,ψ)), and it is proved using lemma 2. The other cases are then proved using
that the relationRac

T is a bisimulation between the transition system ofPS and the one
of CS2(PS).�

This allows us to conclude the result of theorem 5.

Proof of theorem 5
Let PS be a flat pointer system without destructive update,(q0, (MS0, ψ0)) an initial

22

acyclic symbolic configuration ofPS, andΦ a formula of CTL∗mem. By proposition
1, the counter systemCS2(PS) is flat and has the finite monoid property. Besides, by
lemma 4, the considered problem reduces to the model-checking problem forCS2(PS)
with the initial symbolic configurationT (q0, (MS0, ψ0)) and the FOCTL∗(Pr) for-
mulaT (Φ). Hence using theorem 2, we can deduce that the model-checking problem
for PS with (q0, (MS0, ψ0)) as symbolic initial configuration andΦ as temporal for-
mula is decidable.�

5 Undecidability results

In this section, we show that the decidability results we obtained for safety and tem-
poral properties are tight. In particular, these results become false if one relaxes any
hypothesis. For instance, theorem 4 does not hold without the hypothesis of absence of
alias test (this is proved in [11]). We list here some new decidability results for some
classes of pointer systems very close to the ones we studied in the previous section. All
our undecidability results are based on a reduction from satisfiability of Diophantine
equations, which is known as undecidable.
Diophantine equations are equations of the formP (k) = 0 whereP is some polyno-
mial over naturals andk a vector of positive integer variables. As explained in [11],
Diophantine equations can be encoded as a conjunction of arithmetic formulae of the
form k = k′ + k′′ or k = lcm(k′, k′′) or k = j wherek, k′, k′′ are counter variables
andj is a positive integer; the satisfiability problem of such formulae is then undecid-
able. Below, we use the term of Diophantine equations to describe such conjunctions of
arithmetic formulae. Following [11], we now associate witha Diophantine equationE
a pointer systemPSE for which a certain safety (resp. temporal) property holds if and
only if E has a solution.
Our first result shows that theorem 4 does not extend to model-checking :

Theorem 6. The model-checking problem is undecidable for flat pointer systems with-
out destructive update and without alias test.

The proof of this result is an adaption of the undecidabilityproof of [11]. Let us consider
E =

∧

Ei a Diophantine equation. We define the tuple(MSE , PSE , ΦE) such that:
MSE is a memory shape defined byMSE = MS1 ⊎ .. ⊎MSn (where⊎ represents
the disjunctive union of memory shapes andn coincides with the number of conjuncts
in E); ΦE =

∧

Φi is a temporal property; andPSE is a flat pointer system without
destructive update and without alias test defined byPSE = PS1; ..;PSn, where; is the
sequential composition and eachPSi is a flat program (without destructive update and
without alias test) that either exits correctly (exit(0)) and launches the execution of
PSi+1 or aborts (exit(1)):

– if Ei is k = k′ + k′′, MSi is the memory shape with three disjoint list segments
of length k, k′, k′′, whose heads are pointed to by some set of fresh variables
{x, x0}, {y, y0}, {z, z0} respectively, and whose tails are onnull. The pointer
systemPSi can be described by the program :

23

while (y 6=NULL) do x=x.succ; y=y.succ;end while;
while (z 6=NULL) do x=x.succ; z=z.succ;end while;
if (x=NULL) then exit(0); else exit(1);

The temporal propertyΦi expresses that theexit(0) is reached (which means
without error).

– if Ei is k = lcm(k′, k′′), we defineMSi to be the memory shape with two dis-
joint cyclic lists pointed to by sets of fresh variables{y, y0}, {z, z0} respectively,
of lengthsk′, k′′, and a single list of lengthk whose head is pointed by some set
of fresh variables{x, x0} and ends onnull. We moreover definePSi by the pro-
gram :

while (x 6=NULL) do x=x.succ;y=y.succ;z=z.succ;end while;
exit(0);

The temporal propertyΦi expresses that, each state of the loop verifies(y, z) 6=
(y0, z0) until (x, y, z) = (null, y0, z0) .

– if Ei is k = j,MSi is the memory shape with one list segment of lengthk, whose
head is pointed on by some set of fresh variables{x, x0} and whose tail is on
null. The pointer systemPSi can be described by a program without loop which
performsi timesx:=x.succ and doesexit(0) at the end ifx points onnull
andexit(1) otherwise. The temporal propertyΦi expresses that theexit(0)
is reached (which means without error).

By construction the Diophantine equation represented by the formulaE has a solution if
and only if there exists a configuration pathπ in PSE such thatπ(0) ∈ J(MSE , T rue)K
andπ, 0 |= ΦE , which is true if and only if the answer to the model-checkingproblem
on the inputsPSE , (MSE , T rue) and¬ΦE is no. We deduce from this the result of
theorem 6.

This last proof and the proof of undecidability in [11] buildflat pointer systems working
over cyclic lists. Hence one may think that the key point of these undecidability results
is the use of cyclic lists. We show here that this is not the case.
First, we say that a pointer systemPS = 〈Q,E〉 associated with an initial symbolic
configuration(q0, (MS0, ψ0)) is anacyclic pointer systemif the memory shapeMS0

is acyclic and all reachable memory graphsMG (i.e. ∃q ∈ Q such that(q,MG) ∈
Reach(PS, J(q0, (MS0, ψ0))K)) are acyclic.

Theorem 7. The safety problem is undecidable for acyclic flat pointer systems.

Proof : We adapt the previous proof, that works with cyclic lists, toa system that does
not work with cyclic lists but can use destructive updates. Note that we only need to
adapt the program that tests the equationk = lcm(k′, k′′), the rest of the proof being
then similar. Consider a list segmentl whose head is pointed to by{h, h′}, whose tail
is onnull, and whose last node beforenull is pointed byt; we thus define the sub-
program :
rotate(l)=h=h.succ;h’.succ=NULL;t.succ=h’;t=h’;h’=h;
This program moves the first element of the list at the tail of the list. We now consider
the memory shape with two such disjoint list segmentsl1, l2 with some pairs of extra

24

variables{y, y0}, {z, z0} at some point in the middle ofl1 andl2 respectively, and a dis-
joint standard list segmentl whose head is pointed by{x, x0} and whose tail is pointed
to null. Countersk, k′, k′′ represent the total length of the listsl, l1, l2 respectively.
Then the following program exits normally if and only ifk = lcm(k′, k′′):

while (x 6=null and not((y=y0) and (z=z0))) do
x=x.succ;y=y.succ;z=z.succ;
rotate(l1);rotate(l2);end while;
if (x=null and y=y0 and z=z0) then exit(0) else exit(1);

which ends the proof.�

Note that this last result answers a problem that was stated as open in [11].

6 Conclusion

Flat pointer Initial symbolic Safety Model-checking
systems configuration problem problem

Without destructive Acyclic Decidable Decidable
update

Without destructive No Undecidable Undecidable
update Restriction

Without destructive
update No Decidable Undecidable

and without alias test Restriction

Acyclic Acyclic Unecidable Undecidable

Table 4.Summary of main results

We have proposed a framework for model-checking pointer systems without destructive
update. Given any pointer system without destructive update, one may translate it into
a bisimilar counter system having the finite monoid property. Then a counter model-
checker,FAST for instance, may verify it; if the counter system is flat (or flattable [4]),
thenFAST will terminate computing the Presburger representation ofthe reachability

25

relation.

It was known that safety was undecidable for flat pointer systems without destructive
update. We have completed the classification of flat pointer systems without destructive
update in showing that the model-checking problem becomes decidable for flat pointer
systems without destructive update with an initial acyclicconfiguration. We prove that
if we replace the acyclic hypothesis by the hypothesis of absence of alias test, then
safety remains decidable but model-checking becomes undecidable. Moreover, if we
remove the hypothesis that the system is without destructive update, for even acyclic
flat pointer systems the safety problem is undecidable. The table 4 contains a summary
of the main decidability results when considering flat pointer systems

References

1. A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for reachability analysis of
complex systems. InCAV’01, volume 2102 ofLNCS, pages 368–372. Springer, 2001.

2. S. Bardin, A. Finkel, and J. Leroux. FASTer acceleration of counter automata in practice. In
TACAS’04, volume 2988 ofLNCS, pages 576–590. Springer, 2004.

3. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Acceleration from theory to practice.
International Journal on Software Tools for Technology Transfer, 2008. To appear.

4. S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in symbolic model
checking. InATVA’05, volume 3707 ofLNCS, pages 474–488. Springer, 2005.

5. S. Bardin, A. Finkel, É. Lozes, and A. Sangnier. From pointer systems to counter systems
using shape analysis. InAVIS’06, 2006.

6. S. Bardin, A. Finkel, and D. Nowak. Toward symbolic verification of programs handling
pointers. InAVIS’04, 2004.

7. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for
programs with shape-shifting heaps. InCAV’06, volume 4144 ofLNCS, pages 386–400,
2006.

8. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists
are counter automata. InCAV’06, volume 4144 ofLNCS, pages 517–531. Springer, 2006.

9. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dynamic 1-
selector-linked structures in regular model checking. InTACAS’05, volume 3440 ofLNCS,
pages 13–29. Springer, 2005.

10. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree model
checking of complex dynamic data structures. InSAS’06, volume 4134 ofLNCS, pages
52–70. Springer, 2006.

11. M. Bozga and R. Iosif. On flat programs with lists. InVMCAI’07, volume 4349 ofLNCS,
pages 122–136. Springer, 2007.

12. R. Brochenin, S. Demri, and É. Lozes. Reasoning about sequences of memory states. In
LFCS’07, volume 4514 ofLNCS, pages 100–114. Springer, June 2007.

13. S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Towards a model-checker for
counter systems. InATVA’06, volume 4218 ofLNCS, pages 493–507. Springer, 2006.

14. D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? InFSTTCS’04,
volume 3328 ofLNCS, pages 250–262. Springer, 2004.

15. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on separation logic.
In TACAS’06, volume 3920 ofLNCS, pages 287–302. Springer, 2006.

16. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. InLICS’99,
pages 352–359. IEEE Computer Society Press, 1999.

26

17. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications to broad-
cast protocols. InFSTTCS’02, volume 2556 ofLNCS, pages 145–156. Springer, 2002.

18. S. Ginsburg and E. H. Spanier. Semigroups, presburger formulas, and languages.Pacific
Journal of Mathematics, 16(2):285–296, 1966.

19. L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear relation
analysis. InSAS’06, volume 4134 ofLNCS, pages 144–160. Springer, 2006.

20. Homepage of LASH. http://www.montefiore.ulg.ac.be/∼boigelot/research/lash .
21. J. Leroux and G. Sutre. Flat counter automata almost everywhere! InATVA’05, volume 3707

of LNCS, pages 489–503. Springer, 2005.
22. T. Lev-Ami and M. Sagiv. Tvla: A system for implementing static analyses. InSAS’00,

volume 1824 ofLNCS, pages 280–301. Springer, 2000.
23. L. Lipshitz. The diophantine problem for addition and divisibility. Transactions of the

American Mathematical Society, 235:271–283, 1978.
24. S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmeticstrengthening of shape analyses

based on separation logic. InSAS’07, LNCS. Springer, 2007. To appear.
25. A. Mandel and I. Simon. On finite semigroups of matrices.Theoretical Computer Science,

5(2):101–111, 1977.
26. A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. InPLDI’01, pages

221–231. ACM, 2001.
27. A. Podelski and T. Wies. Boolean heaps. InSAS’05, volume 3672 ofLNCS, pages 268–283.

Springer, 2005.
28. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In

CAV’98, volume 1427 ofLNCS, pages 88–97. Springer, 1998.
29. E. Yahav, T. W. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties spec-

ified via evolution logic. InESOP’03, volume 2618 ofLNCS, pages 204–222. Springer,
2003.

27

A Examples of programs

In this section, we give the description of some of the programs which feature in the
table 1.

The programsplit :

1: void split(List x){
2: List y,z,t,u;
3: u=NULL;
4: y=x;
5: while(y!=NULL){
6: t=y->next;
7: z=t->next;
8: t->next=u;
9: y->next=z;

10: u=t;
11: y=z;}
11: }

This program is safe when the acyclic list given in input (pointed to byx) has an even
length.

The programdelete(n) :

1: void delete(List x,int n){
2: List y;
3: int i=n;
4: while(i!=0){
5: y=x->next;
6: free(x);
7: x=y;
8: i--;
9: }

This program is safe when the acyclic list given in input (pointed to byx) has a length
greater than the integern.

The programparse-cyclic-acyclic :

1: void parse-cyclic-acyclic(List x,List t){
2: List y,u;
3: y=x;
4: u=t;
5: while(y!=NULL){
6: y=y->next;
7: u=u->next;}
8: u->next=NULL;
9: }

28

For this last program, we assume that the variablex is pointed to an acyclic list, and
the variablet to a cyclic list. One can check that this program yields a memory leak
when the number of elements in the list pointed to byt does not divides the number of
elements in the list pointed to byx to which we add1.

B Description of the translation POST2

Hypothesis (A,b) φ RMS′

xi is single inRMS

andloc(xi) /∈ {null,⊥} (Id,
−→
0) False RMS

andxi 6= xj

xi is single inRMS
andloc(xi) ∈ {null,⊥} ci := cj True loc′(xi) = loc(xj)

andxi 6= xj

xi = xj (Id,
−→
0) True RMS

xi is not single inRMS ci := cj True loc′(xi) = loc(xj)
andxi 6= xj

andloc(xi) belongs
to a cyclic list

xi is not single inRMS ci := cj
W

xl∈loc−1({loc(xi)})\{loc(xi)}
cl = 0 loc′(xi) = loc(xj)

andxi 6= xj

andloc(xi) does not belong
to a cyclic list

Table 5. Computation of((A,b, φ), RMS′) = POST2(a,RMS) for the actiona of
the formxi := xj

29

Hypothesis (A,b) φ RMS′

loc(xj) ∈ {null,⊥} (Id,
−→
0) False RMS

xi is single inRMS

andloc(xi) is not on a cyclic list (Id,
−→
0) False RMS

andloc(xi) /∈ {null,⊥}

xi is single inRMS

andloc(xi) is on a cyclic list (Id,
−→
0) True RMS

andxi = xj

xi is single inRMS

andloc(xi) is on a cyclic list (Id,
−→
0) False RMS

andxi 6= xj

loc(xi) ∈ {null,⊥}
and∃n such that ci := cj + 1 True loc′(xi) = loc(xj)

n ∈ List(RMS, xj) andn is on a cyclic list

loc(xi) ∈ {null,⊥}
and 6 ∃n such that

n ∈ List(RMS, xj) andn is on a cyclic listci := cj + 1 cj < Σn∈List(RMS,xj)∩N l(n) loc′(xi) = loc(xj)

andloc(xj) /∈ {null,⊥}

Table 6. Computation of((A,b, φ), RMS′) = POST2(a,RMS) for the actiona of
the formxi := xj .succ (I)

30

Hypothesis (A,b) φ RMS′

xi is not single inRMS
andxi does belong to a cyclic list

and∃n such that ci := cj + 1
W

xl∈loc−1({loc(xi))\{loc(xi)}}
cl = 0 loc′(xi) = loc(xj)

n ∈ List(RMS, xj) andn is on a cyclic list

xi is not single inRMS
andxi does not belong to a cyclic list

and 6 ∃n such that ci := cj + 1 cj < Σn∈List(RMS,xj)∩N l(n)∧ loc′(xi) = loc(xj)

n ∈ List(RMS, xj) andn is on a cyclic list
W

xl∈loc−1({loc(xi)})\{loc(xi)}
cl = 0

andloc(xj) /∈ {null,⊥}

xi is not single inRMS
andxi belongs to a cyclic list

and∃n such that ci := cj + 1 True loc′(xi) = loc(xj)
n ∈ List(RMS, xj) andn is on a cyclic list

xi is not single inRMS
andxi belongs to a cyclic list

and 6 ∃n such that ci := cj + 1 cj < Σn∈List(RMS,xj)∩N l(n) loc′(xi) = loc(xj)

n ∈ List(RMS, xj) andn is on a cyclic list
andloc(xj) /∈ {null,⊥}

Table 7. Computation of((A,b, φ), RMS′) = POST2(a,RMS) for the actiona of
the formxi := xj .succ (II)

31

	Towards model-checking programs with lists
	Alain Finkel and al.

