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Abstract. We extend the class of reversal-bounded counter machines by autho-
rizing a finite number of alternations between increasing and decreasidg m
over a given bound. We prove that extended reversal-boundederanachines

also have effective semi-linear reachability sets. We also prove thatapeny

of being reversal-bounded is undecidable in general even when wefbound,
whereas this problem becomes decidable when considering Vector Adgito

tem with States.

1 Introduction

The verification of infinite state systerhas shown in the last years to be an efficient
technique to model and verify computer systems. Variouseatsoaf infinite-state sys-
tems have also been proposed as for instance counter sysdssyschannel systems,
pushdown automata, timed automata, etc, in order to obtasugomatic verification
procedure. Among them, counter systems which consist itefautomata extended
with operations on integer variables enjoy a central pmsitor both theoretical results
and maturity of tools likd=AST [4], LASH[1] and TREX [2].

Reachability problem for counter systentishas been proved in [18] that Min-
sky machines, which correspond to counter systems wherecamter can be incre-
mented, decremented or tested to zero, have an undecidéalsteability problem, even
when they manipulate only two counter variables. Becausieadf different restrictions
over counter systems have been proposed in order to ob&idetidability. For in-
stance, Vector Addition Systems with States (or Petri resh special class of counter
systems, in which it is not possible to perform equalityg€squivalent to zero-tests),
and for which the reachability problem is decidable [13,17]

Counter systems with semi-linear reachability setanany verification problems,
it is convenient not only to have an algorithm for the readitglproblem, but also to
be able to compute effectively the reachability set. In thstpmany classes of counter
systems with a semi-linear reachability set have been foimebng the VASS (or Petri
nets), we distinguish the BPP-nets [6], the cyclic Petrsri8l, the persistent Petri
nets [14,16], the regular Petri nets [19], theimensional VASS [8]. In [9], the class of
reversal-bounded counter machines is introduced as fsli@ach counter can only per-
form a bounded number of alternations between increasidglaoreasing mode. The
author shows that reversal-bounded counter machines hsgmilinear reachability
set and these results have been extended in [10] authorizing complex guards and
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restricting the way the alternations are counted. In [13jas been shown that most of
the counter systems with a semi-linear reachability seirefeect flattable, which means

that their control graph can be replaced equivalently wedchability, by another one
with no nested loops. In fact, it has been proved in [7], tlatnter machines with no

nested loops in their control structure have a semi-lineachability set.

Our contribution.In this paper, we first propose an extension of the definition o
reversal-bounded machines saying that a counter machikeegersalb-bounded if
each counter does at mdsalternations between increasing and decreasing mode above
a given bound. We show that these new reversal-bounded counter machinatsal
have a semilinear reachability set, which can be effegticeimputed. We study the
decidability of the reversal-boundedness of a given caungchine, proving that the
only case, which is decidable, is the one when the two paesieandk are provided.
Finally, we study reversal-bounded VASS, showing that aredecide using the cov-
erability graph whether a VASS is reversal-bounded or n@in® so, we propose a
new recursive class of VASS with semi-linear reachabild@jsswvhich contains all the
bounded VASS. Furthermore, to the best of our knowledgs nibt known whether one
can or cannot decide if a VASS has a semi-linear reachabiityr if it is flattable.

Due to lack of space, some details can be found in the tedrapgendix.

2 Preliminaries

2.1 Useful notions

LetN (resp.Z) denotes the set of nonnegative integers (resp. integers)usual total
order ovelZ is written <. By N, we denote the s&f U {w} wherew is a new symbol
such thatw ¢ N and for allk € N,,, £ < w. We extend the binary operatiop and —
toN, as follows : forallk € N, k +w = wandw — k = w. Fork,l € N, with & <,
we write [k..[] for the interval of integer$i € N | k <4 <[}.

Given a setX andn € N, X" is the set of.-dim vectors with values itX'. For any
indexi € [1..n], we denote by/(i) thei® component of a-dim vectorv. We write0
the vector such thd@(:) = 0 for all i € [1..n]. The classical order oA™ is also denoted
< and is defined by < w if and only if for alli € [1..n], we havev(i) < w(i). We
also define the operatioh overn-dim vectors of integers in the classical way (ie ¥or
V' € Z", v+ V' is defined by(v + V') (i) = v(i) + V'(¢) for all i € [1..n]).

Letn € N. A subsetS C N" is linear if there existk + 1 vectorsvg, vy, ...,V in
N™suchthatS = {v | v =Vvg+ A\1.v1 + ...+ Ag.vp With \; € Nforalli € [1..k]}. A
semi-linear sets any finite union of linear sets. We extend the notion of skmeiarity
to subsets of) x Z™ whereQ is a finite (non-empty) set.

For an alphabek’, we denote by* the set of finite words over’ ande represents
the empty word.

2.2 Counter machines

A Minsky machines a finite control state automaton which manipulates intege-
ables, called counters. From each control state, the madain do the following op-
erations : 1) Increment a counter and go to another contate,sP) Test the value of



a counter, if it is0, it passes to a control state, and if not, it decrements thateo
and goes to another control state. There is also a contttel ch#led the final state (or
halting state) from which the machine cannot do anything Minsky machine is said
to halt when it reaches this control state. We define herggatstixtension of Minsky
machines.

We call an-dim guarded translatioifshortly a translation) any function: N* —
N™ such that there exis#t € {=,<}", p € N” andd € Z" with 0 < 1+ ¢ and
dom(t) = {v € N* | pu#v} and for allv € dom(t), t(v) = v + ¢. We will sometimes
use the encoding#, 1, 0) to represent a translation. In the followiri}, will denote
the set of the:-dim guarded translations. Let= (#, 11, 0) be a guarded translation in
T,,. We define the vectoD; € Z" as follows,Vi € [1..n], D:(i) = d(i). We extend
this definition to words of guarded translations, recutgias follows, ifc € 7 and
t € T,,, we haveD,, = D, + D, and by convention), = 0.

Definition 1. A n-dim counter machinéshortly counter machineis a finite valuated
graph S = (Q, E) where( is a finite set of control states anfd is a finite relation
ECQxT,xQ.

The semantics of a counter machifie= (Q, E) is given by its associated transition
systeml'S(S) = (@ x N, —) where—C Q x N" x T;, x Q@ x N" is a relation defined
as follows :

(¢,V) 5 (¢ V) iff 3(q,t,¢') € E such thav € dom(t) andv’ = ¢(v)

We write (q,v) — (¢, V') if there existg € T,, such tha{q, v) 4 (¢’,V"). The relation
—* represents the reflexive and transitive closure-0fGiven a configuratiofig, v) of
TS(S),Reach(S,(q,v)) =1{(¢,V') | (¢,v) —* (¢’,V')}. Furthermore, we extend the
relation— to words in7*. We have theriq,v) - (¢,v) and ift € T,, ando € T},
(V) % (" V") if (g,v) = (¢, V') 2 (" V"),

Given a counter maching = (@, E) and an initial configuratiom € @ x N,
the pair(9S, ¢) is an intialized counter machine. Since, the notations gpéat, in the
following we shall write counter machine for bofh, ¢) andS.

It is true that any counter machine can be easily encodedaimfiinsky machine.
For instance to encode a test of the farm= ¢, the Minsky machine can decrement
¢ times the counter, test t® and increment again times the counter. Note that this
encoding modifies the number of alternations between isorgand decreasing mode
for the counters, which is the factor we are interested innmbensidering reversal-
boundedness. That is the reason why we propose this exteokidinsky machine.
We do not go further for instance extending the guards, tscen10], it is proved that
the reachability problem for reversal-bounded counterhimes with linear guards (of
the formz = y wherez, y are two counters variables) is undecidable.

3 New reversal-bounded counter machines

3.1 Reversal-bounded counter machines

We would like to extend the notion of reversal-bounded tawagpand verify a larger
class of counter machines. In fact, if we consider the cauntechine represented by
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Fig. 1. A simple not reversal-bounded counter machine

the figure 1 with the initial configuratiofy,0). Its reachability set is finite equal to
{(¢1,0), (g2, 2)} and consequently semi-linear but the counter machine isenetsal-
bounded. We propose here an extension of the notion of imEvieosinded, which allows
us to handle such cases and more generally every boundetécouachines.
Given an integeb € N, we now consider the number of alternations between in-

creasing and decreasing mode when the value of a countengoes the bound. Let

S = (Q, E) be an-dim counter machine arffiS(S) = (Q x N", —). From it, we de-
fine another transition systesS, (S) = (@ x {[, 1}™ x N x N™  —,). Intuitively for

a configuratior(¢g, m,v,r) € @Q x {[, 1}"™ x N* x N", the vectom is used to store the
current mode of each counter -increasify @r decreasing|(-, the vectorv contains
the values and the vectoithe numbers of alternations performed okelFormally, we

have(q, m,v,r) i>b (¢’,m’,v',r’) if and only if the following conditions hold :

L (q,v) > (¢',V)
2. for each € [1..n], the relation expresses by the following array is verified :

V() — V(@) [m@) [m'() [v(i) [ r(5) |
>0 | Lol =1 r@
>0 1 L [<b] ()
>0 1 L | >bfr@@)+1
<0 T T =1 r@
<0 ! EINI0)
<0 ) T [>b[r@)+1
=0 ! ! - r(i)
=0 T T =1 r®

We denote by—; the reflexive and transitive closure e$,. Given a configuration
(g,m,v,r) of T'S,(S), Reachy(S, (¢, m,v,r)) = {(¢’,m", V', r') | (¢,m,v,r,) —;
(¢',m’, V' r")}. We extend this last notation to the configurationg'6%.5), saying that

if (¢,v) € Q x N" is a configuration of"'S(5), thenReach; (S, (¢,Vv)) is equal to the
setReach, (S, (¢, T,Vv,0)) where] denotes here the vector with all components equal
to1.

Definition 2. Letb, k € N. A counter machinés, ¢) is k-reversalb-boundedif and
only if for all (¢, m,v,r) € Reach,(S,¢) and for alli € [1..n], we have (i) < k.

We then say that :

1. A counter machine iseversal-boundedf there existk,b € N such that it isk-
reversalb-bounded,



2. For a giverk € N, a counter machine is-reversal-boundedf there exist9) € N
such that it isk-reversalb-bounded,

3. For a giverh € N, a counter machine igversald-boundedif there existsk € N
such that it isk-reversalb-bounded.

We remark that this definition includes the definition of msad-bounded given in [9],
which corresponds to reversabounded. In comparison to what is presented in [9],
there is a slight difference because we do not have here @ugegtates and conse-
quently we consider all the possible runs of the counter inachs accepted runs. We
will see in section 4 that this difference can change somaldbiity results. Note that

in later works [10], the counter machines are also definedowitany accepting state.

3.2 Reachability set

In [9], it has been proved that the reversabounded counter machines have an ef-
fectively computable semi-linear reachability set. Weeext here this result to all the
reversal-bounded counter machines.

Fig. 2. A 1-reversali-bounded counter machine

The idea consists in building fromZareversalb-bounded counter machirié, ¢) a k-
reversalf-bounded counter machiri®’, ¢’) as it is done for the counter machine of the
figure 2 (with the initial configuratioriq;, (0,0))) from which we obtain the counter
machine represented in the figure 3 (with the initial configion ((q;,0,0), (0,0))).
We assumés' = (@, E) andS’ = (Q', E’). First we introduce two symbols and

wyp Which are not integersu, represents a counter value strictly greater thand L a
counter value for which it is not known whether it is greatenot thanb. The location
set®’ is then equal t@) x B" whereB = {0, ...,b}U{ws, L}. Intuitively, the counter
machineS’ encodes the run of and when a counter value Bis under the bound,

its value is stored into the control state$jfand the corresponding value of the counter
in S” is 0, but when the value goes abavén S then it is restored in the counter .
Furthermorg(S’, ¢') beingk-reversald-bounded, we use the results of [9] to compute
the reachability seReach(.S’, ¢’) from which we deduc®each(S, ¢).

Theorem 3. Given a reversal-bounded counter machine, its reachagbdigt is an ef-
fectively computable semi-linear set.



Proof. Let k,b € N and (5, ¢) be an initializedn-dim counter machiné-reversals-
bounded. Assumg& = (Q, F). We define two functiong- 5 and— 5 from B x N to B,
which verify the following rules, for all > 0 :

- wy +pd=wp,

—wy—pd=1,
—foree[l.b],d+pe=d+eifd+e<belsed+p e =w,
—foree[l..b]andd <e,e—pd=e—d.

These operations can be extended in the obvious way to gector
We then build another counter machifie= (Q’, E’) such that)’ = Q x B™ andE’
is defined as follows :

— For eachq, (#,11,6),¢') € E and eachu € B™ such that :
(i) thereisna € [1..n] such thau(i) = L, and
(i) foralli € [1..n] suchthatl < u(i) <b, u(i) #(i) u(z)
Add to E’ the transition((q, u), (#, 1/, ¢’), (¢’,u’)) defined by :

e U =U+p0

o foralli e [l.n]:
x if 1 <u(z) <bandl < U'() < b, then#'(i) € {<}andy/ (i) = d'(z) =

0,
« if 1 < u(i) < bandu'(i) = wy, then#'(:) € {<} andy/(i) = 0 and
§'(i) = u(i) +6(4),

x if u(i) = wp then# (i) = #(4), /' (¢) = (i) andd’ (i) = §(7)

— Forallu € B, forallu’ € (B\ {L})" such that :
(i) thereisj € [1..n] such thau(j) = L, and
(i) forallj € [1..n] such thau(i) # L, u(i) = u’'(4)
For all¢ € @, add toE’ the transitions((q, u), (#',1',9’), (¢,u’)) defined as
follows, for alli € [1..n] :

o if u(z) # L, then#'(i) € {<} andy/(i) = d'(:) = 0,
e if u(i) = L andu’(i) = wy, then#'(i) € {<}, /(i) = b+ 1andd’(i) =
e ifu(z) = Landl < U'(i) < b, then#'(i) € {=}, /(i) = u/'(i) andd’ (i) =

—u’(i).
Given the initial configuratiom = (¢, Vv) of S, we build the initial configuration’ =
(g,u,Vv") of S" as follows, for alli € [1..n] :

— if v(i) < b, u(i) = v(i) andv’(i) = 0,
—if v(i) > b, u(i) = wp andV’ (i) = v(i).

We define the following relation-,C (Q x N™) x (Q" x N™) as follows(g,V) ~
(g,u,V')ifand only if, forall1 < i < n:

—u(i) £ 1L,
—if1<u(i) < bv() u(i) andv’(i) = 0,
— if u(?) = wp, v(7) > bandv(i) = V'(i).



By construction of(S’, ¢’), we have then the following propertieg, v) € @ x N*
belongs toReach(S, ¢) if and only if there existgq,u,v') € @’ x N such that
(q,v) ~p (g,u,Vv') and (q,u,Vv’) belongs toReach(S’,¢'). Furthermore, if(S, c)

is k-reversalb-bounded, by constructiofiS’, ¢’) is k-reversale-bounded, in fact in
(S’, ") none of the counters changes mode uridbetween increasing and decreas-
ing modes, and all the counters change mode aba®they do in(S, ¢). From [9],

we deduce thaReach(S’, ') is semi-linear and can effectively be computed. Using
the first property we have just mentioned, we are able to ceerfiReach (.S, ¢) using
Reach(S’,¢’) and a Presburger formula, in faRéach (S, c¢) = {(q,v) | I(q,u,V) €
Reach(S’,¢) such that Vie [l.n],(u(z) <b=v(i)=u(@)) A U) =w, =

v(i) = V'(i)}.0

Th=x0+2 Th=1x2+1

YN
—(@.0,0—(@, 1) (@.0,w) @, 1w,

th=wo+1 [T2257

Fig. 3. A 1-reversalp-bounded counter machine obtained from the counter machine of Fig. 2

4 Deciding reversal-boundedness

In this section, we will study the decidabilty of reversaldndedness.

4.1 Undecidability

In [9], the author shows that it is not possible to decide Wweet counter machine is
reversalf-bounded or not. We prove here that this theorem is stillwiien considering
reversal-boundedness.

Theorem 4. Verifying if a counter machine is reversal-bounded is uidigale.



Proof. We reduce the halting problem f@rcounters deterministic Minsky Machines.
We consider a deterministic Minsky Machifewith the initial configuratior{¢o, (0, 0))
working over two counter variables andx,. “Deterministic” here means that there is
a unique possible run starting g, (0,0)). From S, we build a counter maching’
working over three counter variables,z» andzs, such that for eacly, ¢,¢') € E, we
add two control stateg andg, and the transition&g, t1, 1), (¢1,t2, g2) and(gz, ¢, q’)
wheret; andt, only change the counter variablg doing =% = x5 + 2 for ¢; and
x = x3 — 1 for t5. Note thatS’ starting on(qo, (0,0,0)) is also deterministic. Fur-
thermore(S’, (¢o, (0,0,0))) is reversal-bounded if and only if its unique run is finite,
which is equivalent to halting. Sine® starting with(qo, (0,0, 0)) halts if and only ifS
starting from(qo, (0, 0)) halts and since this last problem is undecidable, we coeclud
the theorent]

4.2 Fixing one parameter

We will see here that fixing one of the parameters is not endogivtain decidability
for the reversal-boundedness.

Theorem 5. Givenb € N, verifying if a counter machine is reversi@bounded is un-
decidable.

Sketch of Proofi-or eachb in N, we can reuse the same proof as for the theorem 4, we
can show that th&-counter machings’, (qo, (0,0,0))) is reversalk-bounded if and
only if the deterministic Minsky machings, ¢) from which it is built halts[J

Theorem 6. Givenk € N, verifying if a counter machine is-reversal-bounded is
undecidable.

Proof. This result can also be proved using the proof of theorem#instance ifk = 0,
deciding if the deterministi8-counter machinés’, (¢o, (0, 0,0))) built in the proof is
0-reversal-bounded is equivalent to know if all its counter laounded which can only
happen if the Minsky machingS, ¢) halts. To obtain the result for arly€ N, we can
plug 2k states such that in the even states, either we incremenbthter and we stay
in the same state or we go to the next odd states and in the atéd sbr we decrement
the counter and stay in the same state or we test to zero ardtige hext even states.
Finally, we connect the last odd state to the initial stgtevith a test to zero. So for all
boundb, there exists a run that do ovieat leastk alternations between increment and
decrement modes and consequently, the counter machineeigersalb-bouned if and
only if (57, (qo, (0,0,0)))) is 0-reversalb-bounded

4.3 Fixing the two parameters

We will now prove that if the two parametdrandk are fixed, it is possible to decide if a
counter machine is-reversalb-bounded. Leb, &k € N and(S, ¢) be a counter machine.
The idea consists in building a counter mach(fg ¢’) which will be (k + 1)-reversal-
b-bounded and which will reach a special control state if and only if (S, ¢) is notk-
reversalb-bounded. Note that sing&’, ¢') is reversal-bounded, it is possible to decide



whether the control statg.,.,. is reachable or not. In the control state(6f,¢’), we
store the mode -increasing)(or decreasing|()- for each counter and also the number
of alternations already performed oveiVe also add some control states to test at each
step if each counter value is strictly greater (denoted-byor smaller tharb (denoted

by b<). The figure 4 gives an example of the counter machine we baildecide if

the counter machine from figure 1 with the initial configuat{q; , 0) is 1-reversali-
bounded.

Fig. 4. A 2-reversali-bounded counter machine to decide if the counter machine of Fig. 1 is
1-reversali-bounded

Theorem 7. Givenb, k € N, verifying if a counter machine is-reversalb-bounded is
decidable.

ProofLet S = (Q, E) be an-dim counter machine and= (¢, V) an initial configu-
ration (withv € N™). We will build a counter-machingS’, ¢’) which will be (& + 1)-
reversalb-bounded and which will have a special locatign, such thatg,.,. will be
reachable inS’ from ¢ if and only if (S, ¢) is not k-reversalb-bounded. We define
S" =(Q', E") as follows :

- Q' =Q"UQpU{¢er} whereQ” = Q x {1,1}™ x{1,...,k}"™. For each counter
we store in the control state the current mode (incrememtadi decrementation)
and the number of alternations (ovgmrlready doneQ), = Q" x {b<, b }"™ is used
to know if the different counter values are strictly greaiesmaller tharb;



— FE’ is then defined as follows :
1. foreach(q,m,r) € Q" andu € {b<, b}, we have((q,m,r), (#, 11,0), (.M, T,u)) €
E’ with for eachi € [1..n] :
o if u(i) = b< then#(i) € {>} (we can in fact simulate this inequality with
b transitions doing an equality test) an¢i) = b
o if u(i) =bs then#(i) € {<}andu(i) =b+1
2. for each(q, (#,/1,6),¢') € E, ((¢,m,1,u), (#,41,5), (q,m', ")) belongs to
E’ ifand only if for eachi € [1..n] :

e if m(i) =T and0 < 6(¢) thenm’(:) =1 andr’() = r(4),

e if m(i) =] andd(i) < 0thenm’(:) =] andr’(i) = r(4),

e if m(i) =T andd(i) < 0 andu(i) = b< thenm/(7) =| andr’(i) = r(i),

e if m(i) =] and0 < 4(¢) andu(i) = b< thenm/(7) =1 andr’(i) = r (i),

e if m(i) =7 ando(i) < 0 andu(i) = b~ andr(i) < k thenm’(i) =] and

r'(s) =r(i) +1,
e if m(:) =| and0 < §(i) andu(i) = b~ andr (i) < k thenm’(:) =7 and
r'(s) =r(i) +1,
3. for each(q, (#,11,9),q") € E, (g m,r,u), (#, i, ), gerr) belongs toE" if
and only if there exists$ € [1..n] such that :
e m(i) =1 andd(i) < 0 andu(i) = b andr (i) = k, or
e m(i) =] and0 < §(¢) andu(z) = b andr (i) = k.

We then define’ as follows,¢’ = (qo, T, 0,0). From the way, the initialized counter
machine(S’, ¢') is built, we deduce the following propertyy, m,r,u,v) € Q x {1,
Prx {1, kP x {b<, b2} x N™ belongs taReach(S’, ¢) if and only if :

() (¢,m,v,r) € Reach,(S,c) and
(i) foralli e [1..n],r(i) < kand
(i) foralli e [1..n],u(i) =bs < V(i) >bandu(i) =b< < V(i) <b

Using this property and the way we connect the control statein S’ and the defini-

tion of reversal-boundedness, we deduce tKat) is k-reversalb-bounded if and only

if there does not exist € N" such that(¢.,..,v) € Reach(S’,¢’). By construction
(8',) is (k + 1)-reversalb-bounded, we in fact count the exact number of alterna-
tions performed oveb in the control states and when the counter machines performs
the (k + 1)-th alternations, it moves to the control state, from which there is no
outgoing translation. So using the theorem 3, we can dedhethsr the control state
gerr IS reachable or not and hence whethgrc) is k-reversalb-bounded or nofl

This result contrasts with the one given in [9], which saya tivenk € N, ver-
ifying if a counter machine ig-reversalp-bounded is undecidable. This is due to the
fact that in [9], the considered counter machines have a&iccepgontrol states, whereas
our definition is equivalent to have all the control statea@septing. In fact, when we
define the reversal-bounded counter machines, we conditlez aossible runs and not
only the one ending in an accepting state.
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4.4 Computing the parameters

When a counter machine is reversal-bounded, it could be lusefharacterize the pairs
(k,b) for which it is k-reversalb-bounded, first because it gives us information on the
behavior of the counter machine but also because these et@nare involved in the
way the reachability set is built as one can see in the protifedirem 3 and in [9].

Let (S, ¢) be a counter machine. We define the following set to talk abimipa-
rameters of reversal-bounded counter machines :

RB(S,c) = {(k,b) € Nx N| (S, ¢) is k-reversal-b-bounded

ThenRB(S,c) = 0 if and only if (S, ¢) is reversal-bounded, hence the non-emptiness
problem for RB(S, ¢) is in general not decidable, but this set is recursive (&oth
rem 7). Furthermore, if there exiék, b) in RB(S,c) and (k',b’) € N x N such that
(k,b) < (K, V") then we know, by definition of reversal-boundedness ¢fat) is also
E'-reversaly’-bounded, i€k’,b’) € RB(S, ¢). Since the order relatiod onN x N is

a well-ordering we can deduce :

Lemma 8. Let (S, ¢) be a reversal-bounded counter machine. The B&(S, ¢) is
upward-closed, it has a finite number of minimal elementschvban effectively be
computed.

ProofLet (S, c) be a reversal-bounded initializeddim counter machine. We recall
that a setd € N" is upward-closed (according to the order relationif for all v € S,

if there existsy’ € N such that < V/, thenv’ belongs toA. It is obvious that the set
RB(S, ¢) C N? is upward-closed using the definition of reversal-bounésdn

We will now see how to compute the minimal elementsia (.S, ¢). Note that in
the construction we propose, we use the reachability séfof) which is obtained
when knowing at least a paik,b) € RB(S,c) (see the proof of theorem 3). Since
we know (S, ¢) is reversal-bounded, finding an element/B(S, ¢) can be done for
instance enumerating the paifs b) € N? and testing if( S, c) is k-reversalb-bounded
(possible by theorem 7).

We now assume thds, c) is k-reversalb-bounded. In a first step, we will compute
bo the smallest’ such that S, ¢) is reversal’-bounded. This constabg can easily be
found addingh counters variables to each counter variable, in order totcthe num-
ber of alternations done over eatsmaller tharb. In factby will then be the smallest
b’ such that the number of alternations ovbeis bounded. This method gives us also
the constant, such that(S, ¢) is kq-reveraldy-bounded and notk, — 1)-reversal-
bp-bounded. Note thatk,, by) is already one of the minimal elements BB (S, c).

If (k',0) is a minimal element ofRB(S, ¢) different from (ko, by), we necessarily
havet’ > by andk’ < kq by definition ofbg andky. From then-dim counter ma-
chine (S, ¢), we build the counter machin&’, ¢’) described in the proof of theorem 7
to decide if(S, ¢) is ko-reversalby-bounded. We transformiS’, ¢') into a (n.ko)-dim
counter machinésS”, ¢). To do that we add, for each counter varialig,counter
variables, whose roles are to store for each ofithalternations between increasing
and decreasing mode done ovwethe counter value at the moment of the alternation.
We can then use the reachability set and the new countersitedié the first counter
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machine isk’-reversal-bounded and this for each< k. In fact, for each € [1..n],

we look at the reachable configuratiafig, m,r),v) € @ x {T, ]} x [1..ko]" x Nko-n

in Reach(S”, "), such that (i) = k&, we denote byR(:) the set of such reachable
configurations. I{.S, ¢) is (ko — 1)-reversal-bounded, there should bé¢ & N such that
forall i € [1..n], for all the configuration$(q, m,r),v) in R(i) , if the valuesv(i + 1),
...v(1+ ko) represent the values of tiieh counter at each of the alternation, then one of
thesev (i + k') with &’ € [1..ko] should be smaller than Since(S”, ¢”') is kq-reversal-
bo-bounded (we have only added counters which always incyeiégseeachability set

is semi-linear and we can build from it (using Presburgemidee for instance) and the
previous information the minimal elements BB (S, ¢).0]

5 Analysis of VASS

In this section, we recall the definition of Vector Additiogissem with States and show
that the notion of reversal-boundedness we newly introdgieell-suited for the veri-
fication of these systems.

5.1 VASS and their coverability graphs

Definition 9. An-dim counter machinéy, E) is aVector Addition System with States
(shortly VASS) if and only if for all transitiong, ¢t,¢’) € E, t is a guarded translation
(#, 1, 8) such that# = (<, ..., <),

Hence in VASS, it is not possible to test if a counter valuegaat to a constant but
only if it is greater than a constant.

In [12], the authors provide an algorithm to build from a VAS$abeled tree, the
Karp and Miller tree We recall here the construction of this tree. We first define a
function Accel eration : N x N — N’ as follows, forw,w’ € N" such that
w < w', we haven” = Accel erati on(w,w’) ifand only if foralli € [1..n] :

— if w(i) = w'(7) thenw” (i) = w(i),
— if w(i) < w'(i) thenw” (i) = w.

The Karp and Miller tree is a labeled tréB, R, 1) where :

— P is afinite set of nodes,
—1: P — @ x N is alabeling function,
— R C P x T, x P isthe transition relation.

To represent a node with the labell(p) = (¢, w), we will sometimes directly write
p(g,w). The algorithm 1 shows how the Karp and Miller tree is obtdifrem an ini-
tialized counter machine.

The main idea of this tree is to cover in a finite way the reathabnfigurations

using the symbab, when a counter is not bounded. They have shown that their alg
rithm always terminates and that it enjoys some good priggeiin particular, this tree
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Algorithm 1 T =KMTr ee({Q, E), ¢)

Input: ({(Q, E),c) an initialized VASS;
Output: T = (P, R,!l) the Karp and Miller tree;
1: P={po}, R=10,l(po) = c

2: ToBeTreated = {po}

3: while ToBeT'reated # () do

4:  Choosep(q,w) € ToBeTreated
5: if there does not exist a predecessdy, w) of p in T then
6: for each(q, (#, 1,9),q') € E do
7 if © < w then
8: letw =w +§
9: if there exists a predecesgd(q’,w") of pin T'
such thaw’ > w” then
10: letw’ = Accel erati on(w’,w")
11: end if
12: Add a new node’ to P such that (p') = (¢’,w’)
13: Add (p, (#, 11,8),p ) to R
14: Addp’ to ToBeTreated
15: end if
16: end for
17:  endif
18: Remove of ToBeTreated
19: end while

can be used to decide the boundedness of a VASS. In [19], therathave proposed
a further construction based on the Karp and Miller tree tteoto test the regularity
of the language of the unlabeled traces of a VASS. This lasstcoction is known as
thecoverability graph To obtain it, the nodes of the Karp and Miller tree with themsa
labels are grouped together. Formally( ff, ¢) is an-dim initialized VASS, we denote
by CG(S, ¢) its coverability graph defined as followSG (S, ¢) = (N, A) where :

— N C @ x N7 is afinite set of nodes,
- AC N x T, x N is afinite set of edges labeled with guarded transitions.

We call acircuit in the coverability graph a path ending in the starting nodé a
circuit will be said to beelementaryif all nodes are different with the exception of
the starting and ending nodes. For a veatore N, we denote byl nf (w) the set
{i € [1..n] | w(i) = w} andFi n(w) = [1..n] \ | nf (w). Using these notions, it has
been proved that the coverability graph verifies the foltayyroperties.

Let (S, ¢) be an-dim initialized VASS withS = (Q, E), TS(S) = (Q x N", =) its
associated transition system afid= (N, A) its coverability graph.

Theorem 10. [12,19]

1. If (¢, w) is a node inG, then for allk € N, there existgq,Vv) € Reach(sS, ¢) such
that for alli € I nf (w), & < v(i) and for alli € Fi n(w), w(i) = v(i).

2. Foro € T, if ¢ % (g, V) then there is a unique path @ labeled byo and leading
from ¢ to a node(q, w) and for all: € Fi n(w), v(i) = w(7).
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3. If o € T is a word labeling a circuit inG and (¢, w) is the initial node of this
circuit, then there existg, v) € Reach(S, ¢) and(¢’, V') such that(q, v) % (g,V')
and for alli € Fi n(w), w(i) = v(i) = V/(i).

From this theorem, we deduce the following lemma, we willnthese to decide the
reversal-boundedness of a VASS :

Lemma 11. If there exists an elementary circuifq;, w; ) 4, (g2, Ws) B4

(g1,wy)) in G, then for allk, [ € N, there exisvy,...,v; € N such that :

(l) c—* (Q17V1) 5 (q17V2) 5.2 (Q17Vl) in TS(S) witho = ¢; .. .tf, and,
(i) forall j € [1..1], forall i € I nf(w;), & < v;(i) and for all i € Fi n(w,),
Wi (i) = V; (4).
Proof. We fix k& € N. We defineD,,;, = Min{D,(i) | i € [1..n]}. Sincec'~! is
a circuit, by the point 3 of theorem 10, we deduce there aXist..,v; € N™ such
thate —* (qi,V4) = (qi,Vh) = ... = (qi,V)) in TS(S) and such that for all
J € [1..0],Vi € Fin(uy), v;(¢) = wq (7). We consider the integét’ defined as follows
k' = Max(k + 1.|Dpin|, Max{vi(i) | i € | nf (w1)}) (Where|D,,,;,| represents the
abolute value ofD,,;,,). From point 1 of theorem 10, we deduce that there exists a
vi € N™ such that(q1,v1) € Reach(S,¢) andVi € Fi n(wy), v1(i) = wy (i) and
Vi € 1 nf (wy), k' < vy(i). By definition of’, we deduce that| < v;, consequently
there exists, . .., v; such that(qi,vi) % (q1,V2) = ... % (q1.v;). Furthermore, for
all j € [1..0], Yi € Fin(wy), v;(i) = wy(¢) (it is in fact true forv, and it can be
deduced using the fact thatis a circuit starting from nodéy;, w, )). And by property
of k', we also deduce that for aglle [1..1], Vi € | nf (wy), £ < v;(3). O

5.2 Deciding if a VASS is reversab-bounded

In this section, we show that its possible to decide if a VAS&versab-bounded us-
ing a characterization over its coverability graph.

Let S = (Q, E) be an-dim counter machine. We build 2n-dim counter ma-
chineS = (@, E') adding for each counter another counter, whose role is tatcou
the alternation of the first counter between increasing @wlahsing mode. Formally,
Q = Q x {1,1}" andT” is built as follows, for eaclgq, (#,1,9),q¢') € E and
m,m’ € {1, [}", we have((q,m), (#,1//,¢), (¢’,m’)) € E' ifand only if :

— foralli € [1..n], #'(i) = #(i), 1/ (i) = p; @andd’ (i) = 6(i);
—foralli € [n+1..2n), # (i) € {<}andy/ (i) = 0;
— 6, m, m’ and¢’ satisfy for alli € [1..n] the conditions described in the following

array :
[50) [m@) [ () [ 6 (n+3) ]
=0 1 | 1 0
=0 | [ I 0
>0 1 | 1 0
>0 | | 1 1
<ol | | | 0
<0l 1 | | 1
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By construction, we remark thatif is a VASS therf is a VASS too. We define then the
relation~€ (Q x {1, |}" xN"xN") x (@ x {T, | }" x N?") between the configurations
of TSy (S) and the ones df'S(S) saying thai(g, m,v,r) ~ (¢/,m’,V') if and only if :

-q=4d,

-m=m,

— foralli € [1..n],v(i) = V/'(:) andr (i) = V' (n + ).

The relation~ is a bisimulation betwee#S,(S) and7'S(S). Given an initial config-
urationc = (q,v), we have(q, T,v,0) ~ (¢, 1, (v,0)). Hence, if we denote by the
triple (¢, 1, (v,0)), we can deduce that the VASS, ¢) is reversalB-bounded if and
only if there exists: € N such that for al(g, m,v) € Reach(S,?), foralli € [1..n],
v(n+1i) < k. Using the coverability graph céﬁ, ¢), this last property is decidable for a
VASS. Generalizing this method for ahye N, counting only the alternations that are
done abové, we can deduce that :

Theorem 12. Givenb € N, verifying if a VASS is reversaHbounded is decidable.

5.3 Deciding if a VASS is reversal-bounded

We will now show that the analysis of the coverabilty graph(EfE) allows us to
decide if a VASS is reversal-bounded (without a fixed bouhitite that this is not a
direct consequence of the previous theorem, because it fgossible to enumerate the
different bounds and test if the VASS is reversétbounded, since this method never
terminates when the VASS is not reversal-bounded.

Lemma 13. An-dim VASSS, ¢) is reversalb-bounded if and only if for all € [1..n],
all nodes(q, w) belonging to an elementary circuit labeled by 7" of CG(S, ¢) with
D, (n +14) > 0 verifyw(i) < b.

In other words, this last lemma states théiic) is reversab-bounded if and only if for
all i € [1..n], there is no elementary circuit in the coverability grap&¥(5, ¢) which
strictly increases thén + )-th counter and which has a node, whesk component is
strictly greater tham or equal tow. In fact, applying the lemma 11, we deduce that if
such an elementary circuit exists, we can build a run of th8S$/AS, ¢) which does not
respect the definition of reversaboundedness.

Before to prove this lemma, we need some technical lemmas.

Lemma 14. Let (S, (¢,V)) be an-dim counter machine anbl: € N. If there exists
c1,c9,63 € Q x {],1}" x N* x N* andoy, 09,03 € T, such that :

(I) (q, T,v, 0) go C1 2>0 C2 2>0 c3in TSO(S), and,
(i) forall j € [1..3], b < v;(4) andry(z) < ra(i) < rs(i) (withc; = (g;, m;,V;,15))

then there exist], ¢4, c5 € Q@ x {|,1}" x N* x N™ such that :

(¢:1,v,0) By ) By 2 ¢4 in T'Sy(S) andr (i) < rj(4)
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Sketch of proofBy definition of —; and—, if we havec;, ¢; andcs such that(q, 1,
v,0) Zo 1 Bo o By c3, there exist necessany, ¢y, cs € Q x {|, 1} x N* x N”
such that(q, T,v,0) 2, ¢ &y ¢, 22 ¢. Remark that we have for ajl € [1..3],
¢ = ¢j, mj = m} andv; = V. Furthermore, since, (i) < ry(i) < rs(i), we de-
duce that there has been at least two alternations betwessaging and decreasing
mode while doing the sequenegosyos, furthermore sincer; (i) > b, va(z) > b and
vs(i) > b, we can deduce that one of this alternation has been done thieg-th
counter value was strictly abovehence we have, (i) < r5(i).0

From this lemma, we can directly deduce, the following lemma

Lemma 15. Let(S, (¢, V)) be a counter machine aridb € N. If there existy, ca, ..., cort1 €
Qx{l,1}" xN"xN"andoy,...,0941 € T, such that :
(¢, 1,v,0) Boe1 Bo ... 75 g
and if there exists € [1..n], such that for allj € [1..2k + 1], b < v;(¢) and for all
J € [1.2K], r;(i) < rj41(2), then(S, (¢,V)) is notk-reversalb-bounded.

Sketch of proofUsing the lemma 14, we can in fact build a rurfi§, (.S) starting from
(¢,1,Vv,0), which does not verify the property of beikgreversalb-bounded, since it
does more thah alternations oveb between increasing and decreasing made.

Lemma 16. Let (5, (¢, V)) be a counter machine aride N. If (S, ¢) is not reversal-
b-bounded, then there exists [1..n] such that for allk € N, there existy, ..., ¢ €
Q x {l,7}"™ x N" x N™ which verify :

() (q,7,v,0) =8 c1 —f§ ... =5 e inTSy(S), and
(i) forall j € [1..k], b < v;(i) and for all j € [1..k — 1], r;(z) < rj11(¢) (with
¢; = (g5, My, V5, T5))-

Proof.Let &k € N. Assume(S, (¢,V)) is not reversab-bounded, in particulatS, (¢, Vv))

is not(k+1)-reversalb-bounded. Hence there exigtg, m’, v/, 1" ) € Reach (S, (¢,V))
andi € N such that’(i) > k + 1. Since the counters which count the alterations be-
tween increasing and decreasing mode only increase at rhosednteger value and
only when the associated counter is strictly greater thame deduce that there exist
oo € Q@ x{],7}" x N* x N* such that(¢, 7,v,0) —} ¢i —; ... =} ¢

in T'.9,(S) and such that for alj € [1..k], ¢; = (g, m},V},r’;) with b < Vv’(i) and
r’.(i) = j. Furthermore, by definition of>, and—, we can deduce that there exist

J
e, ek € Q x {], 1} x N™ x N™ which verify the properties given in the lemma.

From these last lemmas, we are able to proof the lemma 13.

Proof of lemma 13First, we suppose thatthe VASS, (¢, v)) is reversab-bounded.
So there existé € N such that(S, (¢,Vv)) is k-reversalb-bounded. The proof iad
absurdum Assume that there is € N and a nod€¢’, w), which belongs to an ele-
mentary circuit((g;, wy) 4 (g2, Ws2) L o (gr,wy) WA (q1,w1)) of CG(S,¢) with
Dy, .+, (n+1) > 0, such thab < w(i). First we remark, that sinag(i) > b this means
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thatw(i) = b > b orw(i) = oco. We denote by the wordt;t, . ..¢;. By the lemma
11, we deduce that there exist, . .., Vo1 € N27 such that i"’S(.S), we have :

co =" (q',vi) ... 5 (' Vaks)

with for all j € [1..2k + 1], b < v; (i), furthermore sinc&,(n + i) > 0, we deduce
that for allj € [1..2k], v;(n + 1) < V,41(n +4). Using the fact that the relation is a
bisimulation betweetTS(§) andT'Sy(S) and by lemma 15, we deduce th{&t (¢, Vv))
is notk-reversalb-bounded, which is a contradiction.

We will now suppose that for all € [1..n], for all nodes(q, w) belonging to an
elementary circuit (g1, w;) LN (g2, W2) R o (gf,wy) A (q1,wq)) of CG(§, c)
with Dy, ¢, (n +1i) > 0, we havew(i) < b. Once again, the proof iad absurdum
Assume that S, (¢,V)) is not reversab-bounded. LetN be the number of nodes in
CG(S,¢). Using lemma 16 and the fact thatis a bisimulation betweei'S(S) and
TSy(S), we deduce that there exisE N and(ql,vl) (qN+1,VN+1) €Q x N
ando,...oy such that we have m”S(S) (ql,vl) L (gn+1,VN41) and
forall j € [1..N +1],b < v;(z) and for aIIJ el ..N],vj(nJri) < Vjpi(n + ).
First, from this very last point we can immediatly deduce definition of D, that for
all <j <N, D, (n+ i) > 0. Second, from theorem 10, we can say, that there
exist (¢1.W1), ..., (qn41, Wy1) hodes inCG(S, ) such that we have if'G(S, @),
(q1,w1) & ... 28 (gny1,Wa1) and for allj € [1..N + 1],v; < w;. Since,N is the
number of nodes i'G(S, ¢), we deduce that there exi@gt’1 W), ..., (g}, W}) nodes
in CG(S,é) andty, ... t; € T, such that {(¢},w},) (q2,W2) )
(¢}, w4)) is a circuit inCG(S, ¢) and Dy, _, (n +4) > 0 and there exisj € [1..N]
such that(g;, w}) = (g;,w;). We recall that for all the guarded translatioappearing
in the 2n-dim VASS S, for all i € [1..n], Dy(n + i) > 0 (by construction of5). We
now take the smallestand the biggest such thatl <r < s < fandD; (n+1i) >0
and Dy (n + i) > 0. Since Dy, ;,(n + ) > 0 and by the previous recall, these

integersr and s necessarly exist. We have thenG}G(S ¢) the circuit (¢..,w..) b

(@' W) 5 (gh.w)) =3 %3 (@w,) = (¢",w") 2 % (¢, w;.), where(q',w'), (¢",w") €

{(g1, W), ..., (¢}, W})} andoy, 05, 05 € T;. By definition ofr ands, we have that
D, = Dy, = 0. Since(q;.,w;.) Ly (¢’,w’) belongs to a circuit, it belongs to an

eIementary circuit, and sind®,, (n + ) > 0, by hypothesisv,. (i) < b andw’ (i) < b.
For the same reason, we also havgi) < b andw”(i) < b. By definition of w/,
there existsj € [1..N] such thaw| = w; and as we have pointed out, we hédve:

V(i) < wj(i), consequentl;b < wl( ) If we summarize, we have i6'G(S,¢), a
circuit (q;-,W,) (q W) (Q1 Wl) (Q5 s) (q aW ) g (q7‘7 r) such that :

@) w'(i) < b,w.(i) < b, b <wW,(i)and
(II) Di—Daé—O

We recall that inSy then + i-th counter counts the alternation between the increasing
and decreasing mode of thigh counter. We can deduce that it would be possible to
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build a run ofS, from ¢, which passes by a configuration where thié counter is
smaller tharb, then by a configuration where thigh counter is strictly greater than
b and finally by a configuration where thieh counter is smaller thaby without that
then + i-th counter to change, which is a contradiction. We conclylsaying that
(S, (¢,V)) has to be revers@-bounded

For a VASS(S, ¢), the lemma 13 gives us a necessary and sufficient conditien ov
the coverability graph ofS, ¢), and this condition can effectively be tested. This allows
us to deduce the following decidability result.

Theorem 17. Verifying if a VASS is reversal-bounded is decidable.

Unfortunately, the decision algorithm we propose heredsudntirely the coverability
graph of a VASS, and this building is known to be non-pringitiecursive in space
(some details can be found in [11]).

6 Perspectives

In [5], the authors have proved that some liveness probleendexidable for reversak-
bounded counter machines and others not. For instanceldtidable to verify if a run
of a reversal-bounded counter machine passes infiniteiy dfirough a semilinear set
of possible configurations; but the same problem becomesoithable when all the runs
are considered. It seems that this result can easily beaedetio the class of reversal-
bounded counter machines, we have introduced. It would plage the way to verify
more complex properties than reachability over reversaldded counter machines. It
could also be interesting to look at these liveness problientse particular case of
reversal-bounded VASS.

An other perspective for our work would be to use reversaldoed counter ma-
chines to analyze counter machines which are not necgssardrsal-bounded. In fact,
we have seen with the proof of theorem 7, that for anly € N and from any counter
machine, it is possible to build another counter machinéchvis £-reversals-bounded
and whose runs represent an under-approximation of thef sahs of the first one.
We could consequently build a tool which given a counter rimeckvould build suc-
cessively, incrementing the parameteendb, the corresponding-reversalsb-bounded
counter machines, and would test at each step if the redithhabt of the initial counter
machine has been built (this can be easily done, since thisaéxpoint of the reflexive
and transitive closure of the transition relation). Thigaaithm might never terminate,
if the reachability set is not semilinear for instance, tuwwiil refine at each step the
under-approximation of the reachability set.
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