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Abstract. We extend the class of reversal-bounded counter machines by autho-
rizing a finite number of alternations between increasing and decreasing mode
over a given bound. We prove that extended reversal-bounded counter machines
also have effective semi-linear reachability sets. We also prove that the property
of being reversal-bounded is undecidable in general even when we fixthe bound,
whereas this problem becomes decidable when considering Vector Addition Sys-
tem with States.

1 Introduction

The verification of infinite state systemshas shown in the last years to be an efficient
technique to model and verify computer systems. Various models of infinite-state sys-
tems have also been proposed as for instance counter systems, lossy channel systems,
pushdown automata, timed automata, etc, in order to obtain an automatic verification
procedure. Among them, counter systems which consist in finite automata extended
with operations on integer variables enjoy a central position for both theoretical results
and maturity of tools likeFAST [4], LASH [1] andTREX [2].

Reachability problem for counter systems.It has been proved in [18] that Min-
sky machines, which correspond to counter systems where each counter can be incre-
mented, decremented or tested to zero, have an undecidable reachability problem, even
when they manipulate only two counter variables. Because ofthat, different restrictions
over counter systems have been proposed in order to obtain the decidability. For in-
stance, Vector Addition Systems with States (or Petri nets)are a special class of counter
systems, in which it is not possible to perform equality tests (equivalent to zero-tests),
and for which the reachability problem is decidable [13,17].

Counter systems with semi-linear reachability sets.In many verification problems,
it is convenient not only to have an algorithm for the reachability problem, but also to
be able to compute effectively the reachability set. In the past, many classes of counter
systems with a semi-linear reachability set have been found. Among the VASS (or Petri
nets), we distinguish the BPP-nets [6], the cyclic Petri nets [3], the persistent Petri
nets [14,16], the regular Petri nets [19], the2-dimensional VASS [8]. In [9], the class of
reversal-bounded counter machines is introduced as follows : each counter can only per-
form a bounded number of alternations between increasing and decreasing mode. The
author shows that reversal-bounded counter machines have asemi-linear reachability
set and these results have been extended in [10] authorizingmore complex guards and
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restricting the way the alternations are counted. In [15], it has been shown that most of
the counter systems with a semi-linear reachability set arein fact flattable, which means
that their control graph can be replaced equivalently w.r.t. reachability, by another one
with no nested loops. In fact, it has been proved in [7], that counter machines with no
nested loops in their control structure have a semi-linear reachability set.

Our contribution.In this paper, we first propose an extension of the definition of
reversal-bounded machines saying that a counter machine isk-reversal-b-bounded if
each counter does at mostk alternations between increasing and decreasing mode above
a given boundb. We show that these new reversal-bounded counter machines do also
have a semilinear reachability set, which can be effectively computed. We study the
decidability of the reversal-boundedness of a given counter machine, proving that the
only case, which is decidable, is the one when the two parametersb andk are provided.
Finally, we study reversal-bounded VASS, showing that one can decide using the cov-
erability graph whether a VASS is reversal-bounded or not. Doing so, we propose a
new recursive class of VASS with semi-linear reachability sets which contains all the
bounded VASS. Furthermore, to the best of our knowledge, it is not known whether one
can or cannot decide if a VASS has a semi-linear reachabilityset or if it is flattable.

Due to lack of space, some details can be found in the technical appendix.

2 Preliminaries

2.1 Useful notions

Let N (resp.Z) denotes the set of nonnegative integers (resp. integers).The usual total
order overZ is written≤. By Nω, we denote the setN ∪ {ω} whereω is a new symbol
such thatω /∈ N and for allk ∈ Nω, k ≤ ω. We extend the binary operation+ and−
to Nω as follows : for allk ∈ N, k + ω = ω andω − k = ω. Fork, l ∈ Nω with k ≤ l,
we write[k..l] for the interval of integers{i ∈ N | k ≤ i ≤ l}.

Given a setX andn ∈ N, Xn is the set ofn-dim vectors with values inX. For any
indexi ∈ [1..n], we denote byv(i) theith component of an-dim vectorv. We write0
the vector such that0(i) = 0 for all i ∈ [1..n]. The classical order onZn is also denoted
≤ and is defined byv ≤ w if and only if for all i ∈ [1..n], we havev(i) ≤ w(i). We
also define the operation+ overn-dim vectors of integers in the classical way (ie forv,
v′ ∈ Z

n, v + v′ is defined by(v + v′)(i) = v(i) + v′(i) for all i ∈ [1..n]).
Let n ∈ N. A subsetS ⊆ N

n is linear if there existk + 1 vectorsv0, v1, . . . , vk in
N

n such thatS = {v | v = v0 + λ1.v1 + . . . + λk.vk with λi ∈ N for all i ∈ [1..k]}. A
semi-linear setis any finite union of linear sets. We extend the notion of semi-linearity
to subsets ofQ × Z

n whereQ is a finite (non-empty) set.
For an alphabetΣ, we denote byΣ∗ the set of finite words overΣ andǫ represents

the empty word.

2.2 Counter machines

A Minsky machineis a finite control state automaton which manipulates integer vari-
ables, called counters. From each control state, the machine can do the following op-
erations : 1) Increment a counter and go to another control state, 2) Test the value of
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a counter, if it is0, it passes to a control state, and if not, it decrements the counter
and goes to another control state. There is also a control state called the final state (or
halting state) from which the machine cannot do anything. The Minsky machine is said
to halt when it reaches this control state. We define here a slight extension of Minsky
machines.

We call an-dim guarded translation(shortly a translation) any functiont : N
n →

N
n such that there exist# ∈ {=,≤}n, µ ∈ N

n andδ ∈ Z
n with 0 ≤ µ + δ and

dom(t) = {v ∈ N
n | µ#v} and for allv ∈ dom(t), t(v) = v + δ. We will sometimes

use the encoding(#, µ, δ) to represent a translation. In the following,Tn will denote
the set of then-dim guarded translations. Lett = (#, µ, δ) be a guarded translation in
Tn. We define the vectorDt ∈ Z

n as follows,∀i ∈ [1..n], Dt(i) = δ(i). We extend
this definition to words of guarded translations, recursively as follows, if σ ∈ T ∗

n and
t ∈ Tn, we haveDtσ = Dt + Dσ and by convention,Dǫ = 0.

Definition 1. A n-dim counter machine(shortlycounter machine) is a finite valuated
graph S = 〈Q,E〉 whereQ is a finite set of control states andE is a finite relation
E ⊆ Q × Tn × Q.

The semantics of a counter machineS = 〈Q,E〉 is given by its associated transition
systemTS(S) = 〈Q×N

n,→〉 where→⊆ Q×N
n×Tn×Q×N

n is a relation defined
as follows :

(q, v)
t
→ (q′, v′) iff ∃ (q, t, q′) ∈ E such thatv ∈ dom(t) andv′ = t(v)

We write(q, v) → (q′, v′) if there existst ∈ Tn such that(q, v)
t
→ (q′, v′). The relation

→∗ represents the reflexive and transitive closure of→. Given a configuration(q, v) of
TS(S), Reach(S, (q, v)) = {(q′, v′) | (q, v) →∗ (q′, v′)}. Furthermore, we extend the
relation→ to words inT ∗

n . We have then(q, v)
ǫ
→ (q, v) and if t ∈ Tn andσ ∈ T ∗

n ,

(q, v)
tσ
→ (q′′, v′′) if (q, v)

t
→ (q′, v′) σ

→ (q′′, v′′).
Given a counter machineS = 〈Q,E〉 and an initial configurationc ∈ Q × N

n,
the pair(S, c) is an intialized counter machine. Since, the notations are explicit, in the
following we shall write counter machine for both(S, c) andS.

It is true that any counter machine can be easily encoded intoa Minsky machine.
For instance to encode a test of the formxi = c, the Minsky machine can decrement
c times the counter, test to0 and increment againc times the counter. Note that this
encoding modifies the number of alternations between increasing and decreasing mode
for the counters, which is the factor we are interested in when considering reversal-
boundedness. That is the reason why we propose this extension of Minsky machine.
We do not go further for instance extending the guards, because in [10], it is proved that
the reachability problem for reversal-bounded counter machines with linear guards (of
the formx = y wherex, y are two counters variables) is undecidable.

3 New reversal-bounded counter machines

3.1 Reversal-bounded counter machines

We would like to extend the notion of reversal-bounded to capture and verify a larger
class of counter machines. In fact, if we consider the counter machine represented by

3



q1 q2

x′ = x + 2

x′ = x − 2

Fig. 1. A simple not reversal-bounded counter machine

the figure 1 with the initial configuration(q1, 0). Its reachability set is finite equal to
{(q1, 0), (q2, 2)} and consequently semi-linear but the counter machine is notreversal-
bounded. We propose here an extension of the notion of reversal-bounded, which allows
us to handle such cases and more generally every bounded counter machines.

Given an integerb ∈ N, we now consider the number of alternations between in-
creasing and decreasing mode when the value of a counter goesabove the boundb. Let
S = 〈Q,E〉 be an-dim counter machine andTS(S) = 〈Q × N

n,→〉. From it, we de-
fine another transition systemTSb(S) = 〈Q×{↓, ↑}n ×N

n ×N
n,→b〉. Intuitively for

a configuration(q, m, v, r) ∈ Q×{↓, ↑}n ×N
n ×N

n, the vectorm is used to store the
current mode of each counter -increasing (↑) or decreasing (↓)-, the vectorv contains
the values and the vectorr the numbers of alternations performed overb. Formally, we

have(q, m, v, r) t
→b (q′, m′, v′, r ′) if and only if the following conditions hold :

1. (q, v)
t
→ (q′, v′)

2. for eachi ∈ [1..n], the relation expresses by the following array is verified :

v(i) − v′(i) m(i) m′(i) v(i) r(i)
> 0 ↓ ↓ − r(i)
> 0 ↑ ↓ ≤ b r(i)
> 0 ↑ ↓ > b r(i) + 1
< 0 ↑ ↑ − r(i)
< 0 ↓ ↑ ≤ b r(i)
< 0 ↓ ↑ > b r(i) + 1
= 0 ↓ ↓ − r(i)
= 0 ↑ ↑ − r(i)

We denote by→∗
b the reflexive and transitive closure of→b. Given a configuration

(q, m, v, r) of TSb(S), Reachb(S, (q, m, v, r)) = {(q′, m′, v′, r ′) | (q, m, v, r , ) →∗
b

(q′, m′, v′, r ′)}. We extend this last notation to the configurations ofTS(S), saying that
if (q, v) ∈ Q × N

n is a configuration ofTS(S), thenReachb(S, (q, v)) is equal to the
setReachb(S, (q, ↑, v, 0)) where↑ denotes here the vector with all components equal
to ↑.

Definition 2. Let b, k ∈ N. A counter machine(S, c) is k-reversal-b-boundedif and
only if for all (q, m, v, r) ∈ Reachb(S, c) and for all i ∈ [1..n], we haver(i) ≤ k.

We then say that :

1. A counter machine isreversal-boundedif there existk, b ∈ N such that it isk-
reversal-b-bounded,
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2. For a givenk ∈ N, a counter machine isk-reversal-bounded, if there existsb ∈ N

such that it isk-reversal-b-bounded,
3. For a givenb ∈ N, a counter machine isreversal-b-bounded, if there existsk ∈ N

such that it isk-reversal-b-bounded.

We remark that this definition includes the definition of reversal-bounded given in [9],
which corresponds to reversal-0-bounded. In comparison to what is presented in [9],
there is a slight difference because we do not have here accepting states and conse-
quently we consider all the possible runs of the counter machine as accepted runs. We
will see in section 4 that this difference can change some decidability results. Note that
in later works [10], the counter machines are also defined without any accepting state.

3.2 Reachability set

In [9], it has been proved that the reversal-0-bounded counter machines have an ef-
fectively computable semi-linear reachability set. We extend here this result to all the
reversal-bounded counter machines.

q1 q2

x′
1 = x1 + 1

x′
2 = x2 + 1

x′
1 = x1 − 1

x′
2 = x2 + 1

q3

x2 ≥ 5 ?

x′
2 = x2 − 2

Fig. 2.A 1-reversal-1-bounded counter machine

The idea consists in building from ak-reversal-b-bounded counter machine(S, c) a k-
reversal-0-bounded counter machine(S′, c′) as it is done for the counter machine of the
figure 2 (with the initial configuration(q1, (0, 0))) from which we obtain the counter
machine represented in the figure 3 (with the initial configuration ((q1, 0, 0), (0, 0))).
We assumeS = 〈Q,E〉 andS′ = 〈Q′, E′〉. First we introduce two symbols⊥ and
ωb which are not integers.ωb represents a counter value strictly greater thanb and⊥ a
counter value for which it is not known whether it is greater or not thanb. The location
setQ′ is then equal toQ×Bn whereB = {0, . . . , b}∪{ωb,⊥}. Intuitively, the counter
machineS′ encodes the run ofS and when a counter value inS is under the boundb,
its value is stored into the control state ofS′ and the corresponding value of the counter
in S′ is 0, but when the value goes aboveb in S then it is restored in the counter inS′.
Furthermore(S′, c′) beingk-reversal-0-bounded, we use the results of [9] to compute
the reachability setReach(S′, c′) from which we deduceReach(S, c).

Theorem 3. Given a reversal-bounded counter machine, its reachability set is an ef-
fectively computable semi-linear set.

5



Proof. Let k, b ∈ N and(S, c) be an initializedn-dim counter machinek-reversal-b-
bounded. AssumeS = 〈Q,E〉. We define two functions+B and−B from B×N to B,
which verify the following rules, for alld ≥ 0 :

– ωb +B d = ωb,
– ωb −B d = ⊥,
– for e ∈ [1..b], d +B e = d + e if d + e ≤ b elsed +B e = ωb,
– for e ∈ [1..b] andd ≤ e, e −B d = e − d.

These operations can be extended in the obvious way to vectors.
We then build another counter machineS′ = 〈Q′, E′〉 such thatQ′ = Q × Bn andE′

is defined as follows :

– For each(q, (#, µ, δ), q′) ∈ E and eachu ∈ Bn such that :

(i) there is noi ∈ [1..n] such thatu(i) = ⊥, and
(ii) for all i ∈ [1..n] such that1 ≤ u(i) ≤ b, µ(i) #(i) u(i)

Add toE′ the transition((q, u), (#′, µ′, δ′), (q′, u′)) defined by :
• u′ = u +B δ
• for all i ∈ [1..n] :

∗ if 1 ≤ u(i) ≤ b and1 ≤ u′(i) ≤ b, then#′(i) ∈ {≤} andµ′(i) = δ′(i) =
0,

∗ if 1 ≤ u(i) ≤ b andu′(i) = ωb, then#′(i) ∈ {≤} andµ′(i) = 0 and
δ′(i) = u(i) + δ(i),

∗ if u(i) = ωb then#′(i) = #(i), µ′(i) = µ(i) andδ′(i) = δ(i)

– For all u ∈ Bn, for all u′ ∈ (B \ {⊥})n such that :
(i) there isj ∈ [1..n] such thatu(j) = ⊥, and
(ii) for all j ∈ [1..n] such thatu(i) 6= ⊥, u(i) = u′(i)

For all q ∈ Q, add toE′ the transitions((q, u), (#′, µ′, δ′), (q, u′)) defined as
follows, for all i ∈ [1..n] :

• if u(i) 6= ⊥, then#′(i) ∈ {≤} andµ′(i) = δ′(i) = 0,
• if u(i) = ⊥ andu′(i) = ωb, then#′(i) ∈ {≤}, µ′(i) = b + 1 andδ′(i) = 0,
• if u(i) = ⊥ and1 ≤ u′(i) ≤ b, then#′(i) ∈ {=}, µ′(i) = u′(i) andδ′(i) =
−u′(i).

Given the initial configurationc = (q, v) of S, we build the initial configurationc′ =
(q, u, v′) of S′ as follows, for alli ∈ [1..n] :

– if v(i) ≤ b, u(i) = v(i) andv′(i) = 0,
– if v(i) > b, u(i) = ωb andv′(i) = v(i).

We define the following relation∼b⊆ (Q × N
n) × (Q′ × N

n) as follows(q, v) ∼b

(q, u, v′) if and only if, for all 1 ≤ i ≤ n :

– u(i) 6= ⊥,
– if 1 ≤ u(i) ≤ b, v(i) = u(i) andv′(i) = 0,
– if u(i) = ωb, v(i) > b andv(i) = v′(i).
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By construction of(S′, c′), we have then the following properties.(q, v) ∈ Q × N
n

belongs toReach(S, c) if and only if there exists(q, u, v’) ∈ Q′ × N
n such that

(q, v) ∼b (q, u, v′) and (q, u, v′) belongs toReach(S′, c′). Furthermore, if(S, c)
is k-reversal-b-bounded, by construction(S′, c′) is k-reversal-0-bounded, in fact in
(S′, c′) none of the counters changes mode underb between increasing and decreas-
ing modes, and all the counters change mode aboveb as they do in(S, c). From [9],
we deduce thatReach(S′, c′) is semi-linear and can effectively be computed. Using
the first property we have just mentioned, we are able to compute Reach(S, c) using
Reach(S′, c′) and a Presburger formula, in factReach(S, c) = {(q, v) | ∃(q, u, v′) ∈
Reach(S′, c′) such that ∀i ∈ [1..n], (u(i) ≤ b ⇒ v(i) = u(i)) ∧ (u(i) = ωb ⇒
v(i) = v′(i))}. �

q1, 0, 0 q2, 1, 1 q1, 0, ωb

x′
2 = x2 + 2

q2, 1, ωb

x′
2 = x2 + 1

x′
2 = x2 + 1

q3, 1, ωb

x2 ≥ 5 ?

q3, 1,⊥
x′

2 = x2 − 1

q3, 1, 0 x2 = 0 ?

q3, 1, 1
x2 = 1 ? x′

2 = x2 − 1

q3, 1, ωb

x2 ≥ 2 ?x′
2 = x2 − 2

Fig. 3. A 1-reversal-0-bounded counter machine obtained from the counter machine of Fig. 2

4 Deciding reversal-boundedness

In this section, we will study the decidabilty of reversal-boundedness.

4.1 Undecidability

In [9], the author shows that it is not possible to decide whether a counter machine is
reversal-0-bounded or not. We prove here that this theorem is still truewhen considering
reversal-boundedness.

Theorem 4. Verifying if a counter machine is reversal-bounded is undecidable.
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Proof. We reduce the halting problem for2-counters deterministic Minsky Machines.
We consider a deterministic Minsky MachineS with the initial configuration(q0, (0, 0))
working over two counter variablesx1 andx2. “Deterministic” here means that there is
a unique possible run starting on(q0, (0, 0)). FromS, we build a counter machineS′

working over three counter variablesx1,x2 andx3, such that for each(q, t, q′) ∈ E, we
add two control statesq1 andq2 and the transitions(q, t1, q1), (q1, t2, q2) and(q2, t, q

′)
wheret1 and t2 only change the counter variablex3 doing x′

3 = x3 + 2 for t1 and
x′

3 = x3 − 1 for t2. Note thatS′ starting on(q0, (0, 0, 0)) is also deterministic. Fur-
thermore(S′, (q0, (0, 0, 0))) is reversal-bounded if and only if its unique run is finite,
which is equivalent to halting. SinceS′ starting with(q0, (0, 0, 0)) halts if and only ifS
starting from(q0, (0, 0)) halts and since this last problem is undecidable, we conclude
the theorem.�

4.2 Fixing one parameter

We will see here that fixing one of the parameters is not enoughto obtain decidability
for the reversal-boundedness.

Theorem 5. Givenb ∈ N, verifying if a counter machine is reversal-b-bounded is un-
decidable.

Sketch of Proof,For eachb in N, we can reuse the same proof as for the theorem 4, we
can show that the3-counter machine(S′, (q0, (0, 0, 0))) is reversal-b-bounded if and
only if the deterministic Minsky machine(S, c) from which it is built halts.�

Theorem 6. Given k ∈ N, verifying if a counter machine isk-reversal-bounded is
undecidable.

Proof.This result can also be proved using the proof of theorem 4. For instance ifk = 0,
deciding if the deterministic3-counter machine(S′, (q0, (0, 0, 0))) built in the proof is
0-reversal-bounded is equivalent to know if all its counter are bounded which can only
happen if the Minsky machine(S, c) halts. To obtain the result for anyk ∈ N, we can
plug2k states such that in the even states, either we increment the counter and we stay
in the same state or we go to the next odd states and in the odd states, or we decrement
the counter and stay in the same state or we test to zero and go to the next even states.
Finally, we connect the last odd state to the initial stateq0 with a test to zero. So for all
boundb, there exists a run that do overb at leastk alternations between increment and
decrement modes and consequently, the counter machine isk-reversal-b-bouned if and
only if (S′, (q0, (0, 0, 0)))) is 0-reversal-b-bounded.�

4.3 Fixing the two parameters

We will now prove that if the two parametersb andk are fixed, it is possible to decide if a
counter machine isk-reversal-b-bounded. Letb, k ∈ N and(S, c) be a counter machine.
The idea consists in building a counter machine(S′, c′) which will be (k + 1)-reversal-
b-bounded and which will reach a special control stateqerr if and only if (S, c) is notk-
reversal-b-bounded. Note that since(S′, c′) is reversal-bounded, it is possible to decide
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whether the control stateqerr is reachable or not. In the control state of(S′, c′), we
store the mode -increasing (↑) or decreasing (↓)- for each counter and also the number
of alternations already performed overb. We also add some control states to test at each
step if each counter value is strictly greater (denoted byb>) or smaller thanb (denoted
by b≤). The figure 4 gives an example of the counter machine we buildto decide if
the counter machine from figure 1 with the initial configuration (q1, 0) is 1-reversal-1-
bounded.

q1, ↑, 0

q1, ↑, 0, 1>

x > 1?

q1, ↑, 0, 1≤

x ≤ 1?

q2, ↑, 0

x′ = x + 2 x′ = x + 2

q2, ↑, 0, 1>
x > 1? q2, ↑, 0, 1≤

x ≤ 1?

q1, ↓, 0

x′ = x − 2

q1, ↓, 0, 1≤

x ≤ 1?

x′ = x + 2

q1, ↓, 0, 1>

x > 1?

q1, ↓, 1

x′ = x − 2

q1, ↓, 1, 1>

x > 1?

qerr

x′ = x + 2

q1, ↓, 1, 1≤

x ≤ 1?

q2, ↑, 1

x′ = x + 2

x′ = x + 2

q2, ↑, 1, 1>

x > 1?

x′ = x − 2

q2, ↑, 1, 1≤

x ≤ 1?

x′ = x − 2

Fig. 4. A 2-reversal-1-bounded counter machine to decide if the counter machine of Fig. 1 is
1-reversal-1-bounded

Theorem 7. Givenb, k ∈ N, verifying if a counter machine isk-reversal-b-bounded is
decidable.

Proof.Let S = 〈Q,E〉 be an-dim counter machine andc = (q0, v) an initial configu-
ration (withv ∈ N

n). We will build a counter-machine(S′, c′) which will be (k + 1)-
reversal-b-bounded and which will have a special locationqerr such thatqerr will be
reachable inS′ from c′ if and only if (S, c) is not k-reversal-b-bounded. We define
S′ = 〈Q′, E′〉 as follows :

– Q′ = Q′′ ∪Qb ∪{qerr} whereQ′′ = Q×{↑, ↓}n ×{1, . . . , k}n. For each counter
we store in the control state the current mode (incrementation or decrementation)
and the number of alternations (overb) already done,Qb = Q′′×{b≤, b>}

n is used
to know if the different counter values are strictly greateror smaller thanb;
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– E′ is then defined as follows :

1. for each(q, m, r) ∈ Q′′ andu ∈ {b≤, b>}, we have((q, m, r), (#, µ, 0), (q, m, r , u)) ∈
E′ with for eachi ∈ [1..n] :

• if u(i) = b≤ then#(i) ∈ {≥} (we can in fact simulate this inequality with
b transitions doing an equality test) andµ(i) = b

• if u(i) = b> then#(i) ∈ {≤} andµ(i) = b + 1

2. for each(q, (#, µ, δ), q′) ∈ E, ((q, m, r , u), 〈#, µ, δ〉, (q, m′, r ′)) belongs to
E′ if and only if for eachi ∈ [1..n] :

• if m(i) =↑ and0 ≤ δ(i) thenm′(i) =↑ andr ′(i) = r(i),
• if m(i) =↓ andδ(i) ≤ 0 thenm′(i) =↓ andr ′(i) = r(i),
• if m(i) =↑ andδ(i) < 0 andu(i) = b≤ thenm′(i) =↓ andr ′(i) = r(i),
• if m(i) =↓ and0 < δ(i) andu(i) = b≤ thenm′(i) =↑ andr ′(i) = r(i),
• if m(i) =↑ andδ(i) < 0 andu(i) = b> andr(i) < k thenm′(i) =↓ and

r ′(i) = r(i) + 1,
• if m(i) =↓ and0 < δ(i) andu(i) = b> andr(i) < k thenm′(i) =↑ and

r ′(i) = r(i) + 1,

3. for each(q, (#, µ, δ), q′) ∈ E, ((q, m, r , u), 〈#, µ, δ〉, qerr) belongs toE′ if
and only if there existsi ∈ [1..n] such that :

• m(i) =↑ andδ(i) < 0 andu(i) = b> andr(i) = k, or,
• m(i) =↓ and0 < δ(i) andu(i) = b> andr(i) = k.

We then definec′ as follows,c′ = (q0, ↑, 0, 0). From the way, the initialized counter
machine(S′, c′) is built, we deduce the following property,(q, m, r , u, v) ∈ Q × {↑, ↓
}n × {1, . . . , k}n × {b≤, bn

>} × N
n belongs toReach(S′, c′) if and only if :

(i) (q, m, v, r) ∈ Reachb(S, c) and
(ii) for all i ∈ [1..n], r(i) ≤ k and
(iii) for all i ∈ [1..n], u(i) = b> ⇔ v(i) > b andu(i) = b≤ ⇔ v(i) ≤ b

Using this property and the way we connect the control stateqerr in S′ and the defini-
tion of reversal-boundedness, we deduce that(S, c) is k-reversal-b-bounded if and only
if there does not existv ∈ N

n such that(qerr, v) ∈ Reach(S′, c′). By construction
(S′, c′) is (k + 1)-reversal-b-bounded, we in fact count the exact number of alterna-
tions performed overb in the control states and when the counter machines performs
the (k + 1)-th alternations, it moves to the control stateqerr from which there is no
outgoing translation. So using the theorem 3, we can deduce whether the control state
qerr is reachable or not and hence whether(S, c) is k-reversal-b-bounded or not.�

This result contrasts with the one given in [9], which says that givenk ∈ N, ver-
ifying if a counter machine isk-reversal-0-bounded is undecidable. This is due to the
fact that in [9], the considered counter machines have accepting control states, whereas
our definition is equivalent to have all the control states asaccepting. In fact, when we
define the reversal-bounded counter machines, we consider all the possible runs and not
only the one ending in an accepting state.
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4.4 Computing the parameters

When a counter machine is reversal-bounded, it could be useful to characterize the pairs
(k, b) for which it is k-reversal-b-bounded, first because it gives us information on the
behavior of the counter machine but also because these parameters are involved in the
way the reachability set is built as one can see in the proof oftheorem 3 and in [9].

Let (S, c) be a counter machine. We define the following set to talk aboutthe pa-
rameters of reversal-bounded counter machines :

RB(S, c) = {(k, b) ∈ N × N | (S, c) is k-reversal-b-bounded}

ThenRB(S, c) = ∅ if and only if (S, c) is reversal-bounded, hence the non-emptiness
problem forRB(S, c) is in general not decidable, but this set is recursive (cf. theo-
rem 7). Furthermore, if there exist(k, b) in RB(S, c) and(k′, b′) ∈ N × N such that
(k, b) ≤ (k′, b′) then we know, by definition of reversal-boundedness that(S, c) is also
k′-reversal-b′-bounded, ie(k′, b′) ∈ RB(S, c). Since the order relation≤ on N × N is
a well-ordering we can deduce :

Lemma 8. Let (S, c) be a reversal-bounded counter machine. The setRB(S, c) is
upward-closed, it has a finite number of minimal elements, which can effectively be
computed.

Proof.Let (S, c) be a reversal-bounded initializedn-dim counter machine. We recall
that a setA ∈ N

n is upward-closed (according to the order relation≤) if for all v ∈ S,
if there existsv′ ∈ N

n such thatv ≤ v′, thenv′ belongs toA. It is obvious that the set
RB(S, c) ⊆ N

2 is upward-closed using the definition of reversal-boundedness.
We will now see how to compute the minimal elements ofRB(S, c). Note that in

the construction we propose, we use the reachability set of(S, c) which is obtained
when knowing at least a pair(k, b) ∈ RB(S, c) (see the proof of theorem 3). Since
we know(S, c) is reversal-bounded, finding an element ofRB(S, c) can be done for
instance enumerating the pairs(k, b) ∈ N

2 and testing if(S, c) is k-reversal-b-bounded
(possible by theorem 7).

We now assume that(S, c) is k-reversal-b-bounded. In a first step, we will compute
b0 the smallestb′ such that(S, c) is reversal-b′-bounded. This constantb0 can easily be
found addingb counters variables to each counter variable, in order to count the num-
ber of alternations done over eachb′ smaller thanb. In factb0 will then be the smallest
b′ such that the number of alternations overb′ is bounded. This method gives us also
the constantk0 such that(S, c) is k0-reveral-b0-bounded and not(k0 − 1)-reversal-
b0-bounded. Note that(k0, b0) is already one of the minimal elements ofRB(S, c).
If (k′, b′) is a minimal element ofRB(S, c) different from (k0, b0), we necessarily
haveb′ > b0 andk′ < k0 by definition ofb0 andk0. From then-dim counter ma-
chine(S, c), we build the counter machine(S′, c′) described in the proof of theorem 7
to decide if(S, c) is k0-reversal-b0-bounded. We transform(S′, c′) into a (n.k0)-dim
counter machine(S′′, c′′). To do that we add, for each counter variable,k0 counter
variables, whose roles are to store for each of thek0 alternations between increasing
and decreasing mode done overb the counter value at the moment of the alternation.
We can then use the reachability set and the new counters to decide if the first counter
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machine isk′-reversal-bounded and this for eachk′ < k0. In fact, for eachi ∈ [1..n],
we look at the reachable configurations((q, m, r), v) ∈ Q × {↑, ↓} × [1..k0]

n × N
k0.n

in Reach(S′′, c′′), such thatr(i) = k0, we denote byR(i) the set of such reachable
configurations. If(S, c) is (k0−1)-reversal-bounded, there should be ab′ ∈ N such that
for all i ∈ [1..n], for all the configurations((q, m, r), v) in R(i) , if the valuesv(i + 1),
...v(i+k0) represent the values of thei-th counter at each of the alternation, then one of
thesev(i+k′) with k′ ∈ [1..k0] should be smaller thanb. Since(S′′, c′′) is k0-reversal-
b0-bounded (we have only added counters which always increase), its reachability set
is semi-linear and we can build from it (using Presburger formulae for instance) and the
previous information the minimal elements ofRB(S, c).�

5 Analysis of VASS

In this section, we recall the definition of Vector Addition System with States and show
that the notion of reversal-boundedness we newly introduceis well-suited for the veri-
fication of these systems.

5.1 VASS and their coverability graphs

Definition 9. An-dim counter machine〈Q,E〉 is aVector Addition System with States
(shortly VASS) if and only if for all transitions(q, t, q′) ∈ E, t is a guarded translation
(#, µ, δ) such that# = (≤, . . . ,≤),

Hence in VASS, it is not possible to test if a counter value is equal to a constant but
only if it is greater than a constant.

In [12], the authors provide an algorithm to build from a VASSa labeled tree, the
Karp and Miller tree. We recall here the construction of this tree. We first define a
functionAcceleration : N

n
ω × N

n
ω → N

n
ω as follows, forw, w′ ∈ N

n
ω such that

w ≤ w′, we havew′′ = Acceleration(w, w′) if and only if for all i ∈ [1..n] :

– if w(i) = w′(i) thenw′′(i) = w(i),
– if w(i) < w′(i) thenw′′(i) = ω.

The Karp and Miller tree is a labeled tree(P,R, l) where :

– P is a finite set of nodes,
– l : P → Q × N

n
ω is a labeling function,

– R ⊆ P × Tn × P is the transition relation.

To represent a nodep with the labell(p) = (q, w), we will sometimes directly write
p(q, w). The algorithm 1 shows how the Karp and Miller tree is obtained from an ini-
tialized counter machine.

The main idea of this tree is to cover in a finite way the reachable configurations
using the symbolω, when a counter is not bounded. They have shown that their algo-
rithm always terminates and that it enjoys some good properties. In particular, this tree
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Algorithm 1 T =KMTree(〈Q,E〉, c)

Input : (〈Q, E〉, c) an initialized VASS;
Output : T = 〈P, R, l〉 the Karp and Miller tree;
1: P = {p0}, R = ∅, l(p0) = c

2: ToBeTreated = {p0}
3: while ToBeTreated 6= ∅ do
4: Choosep(q, w) ∈ ToBeTreated

5: if there does not exist a predecessorp′(q, w) of p in T then
6: for each(q, (#, µ, δ), q′) ∈ E do
7: if µ ≤ w then
8: letw′ = w + δ

9: if there exists a predecessorp′(q′, w′′) of p in T

such thatw′ > w′′ then
10: letw′ = Acceleration(w′, w′′)
11: end if
12: Add a new nodep′ to P such thatl(p′) = (q′, w′)
13: Add(p, 〈#, µ, δ〉, p′) to R

14: Addp′ to ToBeTreated

15: end if
16: end for
17: end if
18: Removep of ToBeTreated

19: end while

can be used to decide the boundedness of a VASS. In [19], the authors have proposed
a further construction based on the Karp and Miller tree in order to test the regularity
of the language of the unlabeled traces of a VASS. This last construction is known as
thecoverability graph. To obtain it, the nodes of the Karp and Miller tree with the same
labels are grouped together. Formally if(S, c) is an-dim initialized VASS, we denote
by CG(S, c) its coverability graph defined as follows,CG(S, c) = 〈N,∆〉 where :

– N ⊆ Q × N
n
ω is a finite set of nodes,

– ∆ ⊆ N × Tn × N is a finite set of edges labeled with guarded transitions.

We call acircuit in the coverability graph a path ending in the starting node and a
circuit will be said to beelementaryif all nodes are different with the exception of
the starting and ending nodes. For a vectorw ∈ N

n
ω, we denote byInf(w) the set

{i ∈ [1..n] | w(i) = ω} andFin(w) = [1..n] \ Inf(w). Using these notions, it has
been proved that the coverability graph verifies the following properties.
Let (S, c) be an-dim initialized VASS withS = 〈Q,E〉, TS(S) = 〈Q × N

n,→〉 its
associated transition system andG = 〈N,∆〉 its coverability graph.

Theorem 10. [12,19]

1. If (q, w) is a node inG, then for allk ∈ N, there exists(q, v) ∈ Reach(S, c) such
that for all i ∈ Inf(w), k ≤ v(i) and for all i ∈ Fin(w), w(i) = v(i).

2. Forσ ∈ T ∗
n , if c

σ
→ (q, v) then there is a unique path inG labeled byσ and leading

from c to a node(q, w) and for all i ∈ Fin(w), v(i) = w(i).
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3. If σ ∈ T ∗
n is a word labeling a circuit inG and (q, w) is the initial node of this

circuit, then there exist(q, v) ∈ Reach(S, c) and(q′, v′) such that(q, v) σ
→ (q, v′)

and for all i ∈ Fin(w), w(i) = v(i) = v′(i).

From this theorem, we deduce the following lemma, we will then use to decide the
reversal-boundedness of a VASS :

Lemma 11. If there exists an elementary circuit((q1, w1)
t1→ (q2, w2)

t2→ . . .
tf

→
(q1, w1)) in G, then for allk, l ∈ N, there existv1, . . . , vl ∈ N

n such that :

(i) c →∗ (q1, v1)
σ
→ (q1, v2)

σ
→ . . .

σ
→ (q1, vl) in TS(S) with σ = t1 . . . tf , and,

(ii) for all j ∈ [1..l], for all i ∈ Inf(w1), k ≤ vj(i) and for all i ∈ Fin(w1),
w1(i) = vj(i).

Proof. We fix k ∈ N. We defineDmin = Min{Dσ(i) | i ∈ [1..n]}. Sinceσl−1 is
a circuit, by the point 3 of theorem 10, we deduce there existv′1, . . . , v′l ∈ N

n such
that c →∗ (q1, v′1)

σ
→ (q1, v′2)

σ
→ . . .

σ
→ (q1, v′l) in TS(S) and such that for all

j ∈ [1..l], ∀i ∈ Fin(u1), vj(i) = w1(i). We consider the integerk′ defined as follows
k′ = Max(k + l.|Dmin|,Max{v1(i) | i ∈ Inf(w1)}) (where|Dmin| represents the
abolute value ofDmin). From point 1 of theorem 10, we deduce that there exists a
v1 ∈ N

n such that(q1, v1) ∈ Reach(S, c) and∀i ∈ Fin(w1), v1(i) = w1(i) and
∀i ∈ Inf(w1), k′ ≤ v1(i). By definition ofk′, we deduce thatv′1 ≤ v1, consequently
there existv2, . . . , vl such that(q1, v1)

σ
→ (q1, v2)

σ
→ . . .

σ
→ (q1.vl). Furthermore, for

all j ∈ [1..l], ∀i ∈ Fin(w1), vj(i) = w1(i) (it is in fact true forv1, and it can be
deduced using the fact thatσ is a circuit starting from node(q1, w1)). And by property
of k′, we also deduce that for allj ∈ [1..l], ∀i ∈ Inf(w1), k ≤ vj(i). �

5.2 Deciding if a VASS is reversal-b-bounded

In this section, we show that its possible to decide if a VASS is reversal-b-bounded us-
ing a characterization over its coverability graph.

Let S = 〈Q,E〉 be an-dim counter machine. We build a2n-dim counter ma-
chine S̃ = 〈Q′, E′〉 adding for each counter another counter, whose role is to count
the alternation of the first counter between increasing and decreasing mode. Formally,
Q′ = Q × {↑, ↓}n and T ′ is built as follows, for each(q, (#, µ, δ), q′) ∈ E and
m, m′ ∈ {↑, ↓}n, we have((q, m), (#′, µ′, δ′), (q′, m′)) ∈ E′ if and only if :

– for all i ∈ [1..n], #′(i) = #(i), µ′(i) = µi andδ′(i) = δ(i);
– for all i ∈ [n + 1..2n], #′(i) ∈ {≤} andµ′(i) = 0;
– δ, m, m′ andδ′ satisfy for alli ∈ [1..n] the conditions described in the following

array :
δ(i) m(i) m′(i) δ′(n + i)

= 0 ↑ ↑ 0
= 0 ↓ ↓ 0
> 0 ↑ ↑ 0
> 0 ↓ ↑ 1
< 0 ↓ ↓ 0
< 0 ↑ ↓ 1
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By construction, we remark that ifS is a VASS theñS is a VASS too. We define then the
relation∼∈ (Q×{↑, ↓}n×N

n×N
n)×(Q×{↑, ↓}n×N

2n) between the configurations
of TS0(S) and the ones ofTS(S̃) saying that(q, m, v, r) ∼ (q′, m′, v′) if and only if :

– q = q′,
– m = m′,
– for all i ∈ [1..n], v(i) = v′(i) andr(i) = v′(n + i).

The relation∼ is a bisimulation betweenTS0(S) andTS(S̃). Given an initial config-
urationc = (q, v), we have(q, ↑, v, 0) ∼ (q, ↑, (v, 0)). Hence, if we denote bỹc the
triple (q, ↑, (v, 0)), we can deduce that the VASS(S, c) is reversal-0-bounded if and
only if there existsk ∈ N such that for all(q, m, v) ∈ Reach(S̃, c̃), for all i ∈ [1..n],
v(n+ i) ≤ k. Using the coverability graph of(S̃, c̃), this last property is decidable for a
VASS. Generalizing this method for anyb ∈ N, counting only the alternations that are
done aboveb, we can deduce that :

Theorem 12. Givenb ∈ N, verifying if a VASS is reversal-b-bounded is decidable.

5.3 Deciding if a VASS is reversal-bounded

We will now show that the analysis of the coverabilty graph of(S̃, c̃) allows us to
decide if a VASS is reversal-bounded (without a fixed bound).Note that this is not a
direct consequence of the previous theorem, because it is not possible to enumerate the
different boundsb and test if the VASS is reversal-b-bounded, since this method never
terminates when the VASS is not reversal-bounded.

Lemma 13. A n-dim VASS(S, c) is reversal-b-bounded if and only if for alli ∈ [1..n],
all nodes(q, w) belonging to an elementary circuit labeled byσ ∈ T ∗

n of CG(S̃, c̃) with
Dσ(n + i) > 0 verify w(i) ≤ b.

In other words, this last lemma states that(S, c) is reversal-b-bounded if and only if for
all i ∈ [1..n], there is no elementary circuit in the coverability graphCG(S̃, c̃) which
strictly increases the(n + i)-th counter and which has a node, whosei-th component is
strictly greater thanb or equal toω. In fact, applying the lemma 11, we deduce that if
such an elementary circuit exists, we can build a run of the VASS(S, c) which does not
respect the definition of reversal-b-boundedness.

Before to prove this lemma, we need some technical lemmas.

Lemma 14. Let (S, (q, v)) be an-dim counter machine andb, i ∈ N. If there exists
c1, c2, c3 ∈ Q × {↓, ↑}n × N

n × N
n andσ1, σ2, σ3 ∈ T ∗

n such that :

(i) (q, ↑, v, 0)
σ1→0 c1

σ2→0 c2

σ3→0 c3 in TS0(S), and,
(ii) for all j ∈ [1..3], b < vj(i) andr1(i) < r2(i) < r3(i) (with cj = (qj , mj , vj , rj))

then there existc′1, c
′
2, c

′
3 ∈ Q × {↓, ↑}n × N

n × N
n such that :

(q, ↑, v, 0)
σ1→b c′1

σ2→b c′2
σ3→b c′3 in TSb(S) andr′1(i) < r′3(i)
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Sketch of proof.By definition of→0 and→b, if we havec1, c2 andc3 such that(q, ↑,
v, 0)

σ1→0 c1

σ2→0 c2

σ3→0 c3, there exist necessarlyc′1, c
′
2, c

′
3 ∈ Q × {↓, ↑}n × N

n × N
n

such that(q, ↑, v, 0)
σ1→b c′1

σ2→b c′2
σ3→b c′3. Remark that we have for allj ∈ [1..3],

qj = q′j , mj = m′
j andvj = v′j . Furthermore, sincer1(i) < r2(i) < r3(i), we de-

duce that there has been at least two alternations between increasing and decreasing
mode while doing the sequenceσ1σ2σ3, furthermore sincev1(i) > b, v2(i) > b and
v3(i) > b, we can deduce that one of this alternation has been done, when the i-th
counter value was strictly aboveb, hence we haver ′1(i) < r ′3(i).�

From this lemma, we can directly deduce, the following lemma:

Lemma 15. Let(S, (q, v)) be a counter machine andk, b ∈ N. If there existc1, c2, . . . , c2k+1 ∈
Q × {↓, ↑}n × N

n × N
n andσ1, . . . , σ2k+1 ∈ T ∗

n such that :

(q, ↑, v, 0)
σ1→0 c1

σ2→0 . . .
σ2k+1

→ c2k+1

and if there existsi ∈ [1..n], such that for allj ∈ [1..2k + 1], b < vj(i) and for all
j ∈ [1..2k], rj(i) < rj+1(i), then(S, (q, v)) is notk-reversal-b-bounded.

Sketch of proof.Using the lemma 14, we can in fact build a run inTSb(S) starting from
(q, ↑, v, 0), which does not verify the property of beingk-reversal-b-bounded, since it
does more thank alternations overb between increasing and decreasing mode.�

Lemma 16. Let (S, (q, v)) be a counter machine andb ∈ N. If (S, c) is not reversal-
b-bounded, then there existsi ∈ [1..n] such that for allk ∈ N, there existc1, . . . , ck ∈
Q × {↓, ↑}n × N

n × N
n which verify :

(i) (q, ↑, v, 0) →∗
0 c1 →∗

0 . . . →∗
0 ck in TS0(S), and

(ii) for all j ∈ [1..k], b < vj(i) and for all j ∈ [1..k − 1], rj(i) < rj+1(i) (with
cj = (qj , mj , vj , rj)).

Proof.Let k ∈ N. Assume(S, (q, v)) is not reversal-b-bounded, in particular(S, (q, v))
is not(k+1)-reversal-b-bounded. Hence there exists(q′, m′, v′, r’ ) ∈ Reachb(S, (q, v))
andi ∈ N such thatr ′(i) ≥ k + 1. Since the counters which count the alterations be-
tween increasing and decreasing mode only increase at most of one integer value and
only when the associated counter is strictly greater thanb, we deduce that there exist
c′1, . . . , c

′
k ∈ Q × {↓, ↑}n × N

n × N
n such that(q, ↑, v, 0) →∗

b c′1 →∗
b . . . →∗

b c′k
in TSb(S) and such that for allj ∈ [1..k], c′j = (q′j , m′

j , v′j , r ′j) with b < v′j(i) and
r ′j(i) = j. Furthermore, by definition of→b and→0, we can deduce that there exist
c1, ..., ck ∈ Q× {↓, ↑}n ×N

n ×N
n which verify the properties given in the lemma.�

From these last lemmas, we are able to proof the lemma 13.

Proof of lemma 13.First, we suppose that the VASS(S, (q, v)) is reversal-b-bounded.
So there existsk ∈ N such that(S, (q, v)) is k-reversal-b-bounded. The proof isad
absurdum. Assume that there isi ∈ N and a node(q′, w), which belongs to an ele-

mentary circuit((q1, w1)
t1→ (q2, w2)

t2→ . . . (qf , wf )
tf

→ (q1, w1)) of CG(S̃, c̃) with
Dt1...tf

(n+ i) > 0, such thatb < w(i). First we remark, that sincew(i) > b this means
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thatw(i) = b′ > b or w(i) = ∞. We denote byσ the wordt1t2 . . . tf . By the lemma
11, we deduce that there existv1, . . . , v2k+1 ∈ N

2n such that inTS(S̃), we have :

c0 →∗ (q′, v1)
σ
→ . . .

σ
→ (q′, v2k+1)

with for all j ∈ [1..2k + 1], b < vj(i), furthermore sinceDσ(n + i) > 0, we deduce
that for allj ∈ [1..2k], vj(n + i) < vj+1(n + i). Using the fact that the relation∼ is a
bisimulation betweenTS(S̃) andTS0(S) and by lemma 15, we deduce that(S, (q, v))
is notk-reversal-b-bounded, which is a contradiction.

We will now suppose that for alli ∈ [1..n], for all nodes(q, w) belonging to an

elementary circuit((q1, w1)
t1→ (q2, w2)

t2→ . . . (qf , wf )
tf

→ (q1, w1)) of CG(S̃, c̃)
with Dt1...tf

(n + i) > 0, we havew(i) ≤ b. Once again, the proof isad absurdum.
Assume that(S, (q, v)) is not reversal-b-bounded. LetN be the number of nodes in
CG(S̃, c̃). Using lemma 16 and the fact that∼ is a bisimulation betweenTS(S̃) and
TS0(S), we deduce that there existi ∈ N and(q1, v1), . . . , (qN+1, vN+1) ∈ Q × N

2n

andσ1, . . . σN such that we have inTS(S̃) c̃ →∗ (q1, v1)
σ1→ . . .

σN→ (qN+1, vN+1) and
for all j ∈ [1..N + 1], b < vj(i) and for allj ∈ [1..N ], vj(n + i) < vj+1(n + i).
First, from this very last point we can immediatly deduce, bydefinition ofD, that for
all 1 ≤ j ≤ N , Dσj

(n + i) > 0. Second, from theorem 10, we can say, that there

exist (q1.w1), . . . , (qN+1, wN+1) nodes inCG(S̃, c̃) such that we have inCG(S̃, c̃),
(q1, w1)

σ1→ . . .
σN→ (qN+1, wN+1) and for allj ∈ [1..N + 1],vj ≤ wj . Since,N is the

number of nodes inCG(S̃, c̃), we deduce that there exist(q′1.w
′
1), . . . , (q

′
f , w′

f ) nodes

in CG(S̃, c̃) andt1, . . . , tf ∈ Tn such that :((q′1, w′
1)

t1→ (q′2, w′
2)

t2→ . . . (q′f , w′
f )

tf

→

(q′1, w′
1)) is a circuit inCG(S̃, c̃) andDt1...tf

(n + i) > 0 and there existj ∈ [1..N ]
such that(q′j , w′

j) = (qj , wj). We recall that for all the guarded translationt appearing

in the2n-dim VASS S̃, for all i ∈ [1..n], Dt(n + i) ≥ 0 (by construction of̃S). We
now take the smallestr and the biggests such that1 ≤ r ≤ s ≤ f andDtr

(n + i) > 0
and Dts

(n + i) > 0. SinceDt1...tf
(n + i) > 0 and by the previous recall, these

integersr and s necessarly exist. We have then inCG(S̃, c̃) the circuit (q′r, w′
r)

tr→

(q′, w′)
σ′

1→ (q′1.w
′
1)

σ′

2→ (q′s.w
′
s)

ts→ (q′′, w′′)
σ′

3→ (q′r, w′
r), where(q′, w′), (q′′, w′′) ∈

{(q′1, w′
1), . . . , (q

′
f , w′

f )} andσ′
1, σ

′
2, σ

′
3 ∈ T ∗

n . By definition ofr ands, we have that

Dσ′

1
= Dσ′

2
= 0. Since(q′r, w′

r)
tr→ (q′, w′) belongs to a circuit, it belongs to an

elementary circuit, and sinceDtr
(n + i) > 0, by hypothesisw′

r(i) ≤ b andw′(i) ≤ b.
For the same reason, we also havew′

s(i) ≤ b andw′′(i) ≤ b. By definition of w′
1,

there existsj ∈ [1..N ] such thatw′
1 = wj and as we have pointed out, we haveb <

vj(i) ≤ wj(i), consequentlyb < w′
1(i). If we summarize, we have inCG(S̃, c̃), a

circuit (q′r, w′
r)

tr→ (q′, w′)
σ′

1→ (q′1.w
′
1)

σ′

2→ (q′s.w
′
s)

ts→ (q′′, w′′)
σ′

3→ (q′r, w′
r) such that :

(i) w′(i) ≤ b, w′
s(i) ≤ b, b < w′

1(i) and
(ii) Dσ′

1
= Dσ′

2
= 0.

We recall that inS0 then + i-th counter counts the alternation between the increasing
and decreasing mode of thei-th counter. We can deduce that it would be possible to
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build a run ofS0 from c0 which passes by a configuration where thei-th counter is
smaller thanb, then by a configuration where thei-th counter is strictly greater than
b and finally by a configuration where thei-th counter is smaller thanb, without that
then + i-th counter to change, which is a contradiction. We concludeby saying that
(S, (q, v)) has to be reversal-b-bounded.�

For a VASS(S, c), the lemma 13 gives us a necessary and sufficient condition over
the coverability graph of(S̃, c̃), and this condition can effectively be tested. This allows
us to deduce the following decidability result.

Theorem 17. Verifying if a VASS is reversal-bounded is decidable.

Unfortunately, the decision algorithm we propose here builds entirely the coverability
graph of a VASS, and this building is known to be non-primitive-recursive in space
(some details can be found in [11]).

6 Perspectives

In [5], the authors have proved that some liveness problems are decidable for reversal-0-
bounded counter machines and others not. For instance, it isdecidable to verify if a run
of a reversal-bounded counter machine passes infinitely often through a semilinear set
of possible configurations; but the same problem becomes undecidable when all the runs
are considered. It seems that this result can easily be extended to the class of reversal-
bounded counter machines, we have introduced. It would thenpave the way to verify
more complex properties than reachability over reversal-bounded counter machines. It
could also be interesting to look at these liveness problemsin the particular case of
reversal-bounded VASS.

An other perspective for our work would be to use reversal-bounded counter ma-
chines to analyze counter machines which are not necessarily reversal-bounded. In fact,
we have seen with the proof of theorem 7, that for anyk, b ∈ N and from any counter
machine, it is possible to build another counter machine, which isk-reversal-b-bounded
and whose runs represent an under-approximation of the set of runs of the first one.
We could consequently build a tool which given a counter machine would build suc-
cessively, incrementing the parametersk andb, the correspondingk-reversal-b-bounded
counter machines, and would test at each step if the reachability set of the initial counter
machine has been built (this can be easily done, since this set is a fixpoint of the reflexive
and transitive closure of the transition relation). This algorithm might never terminate,
if the reachability set is not semilinear for instance, but it will refine at each step the
under-approximation of the reachability set.
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