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Abstract. We study Vector Addition Systems with States (VASS) extended in
such a way that one of the manipulated integer variables can be tested.tbaer
this class of system, it has been proved that the reachability problemidatkr

We prove here that boundedness, termination and reversal-boexdedre de-
cidable for VASS with one zero-test. To decide reversal-boundegwegzovide

an original method which mixes both the construction of the coverabilityrgrap
for VASS and the computation of the reachability set of reversal-baliodenter
machines. The same construction can be slightly adapted to decide Hoesde
and hence termination.

1 Introduction

Vector Addition Systems with States (VASS), which are egl@nt to Petri nets, are a
model which has received a lot of attention and thousandaéis exist on this subject
[17]. Whereas many problems are decidable for VASS [4], itédlaknown that VASS
with the ability for testing to zero (or with inhibitor arcéave the power of Turing
machines. Hence all the non-trivial problems are undedédialo this class of models.
Recently in [18], Reinhardt proved that the reachabilitpkgpem for VASS with an
unigue integer variable (or counter) tested to zero is @ddedin reducing this problem
to the reachability problem for Petri nets, which is declddbee the papers of Kosaraju
[12] and Mayr [14] and Leroux [13] for a conceptual decidapibroof of reachability).
For VASS, many problems like zero reachability, cover&pflis it possible to reach a
configuration larger than a given configuration?), boundsdrfwhether the reachabil-
ity set is finite?) and termination (is there an infinite ex@mf) can be reduced to
reachability and this is still true for extended (well-stiwred) Petri nets [3,9] (poly-
nomial reductions of reachability for well-structured iPaets extensions are given in
[2]). For VASS with one zero-test, coverability reduces{asal) to reachability but it
is less clear for the other properties like boundednesshehéte known reductions can
be adapted. Note that in [1], Abdulla and Mayr proposes a ottt decide coverabil-
ity for VASS with one zero-test without using the Reinhasd€sult.
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In many verification problems, it is convenient not only toséan algorithm for the
reachability problem, but also to be able to compute effettithe reachability set.
In [10], the class of reversal-bounded counter machinestisduced as follows: each
counter can only perform a bounded number of alternatiohsd®n increasing and
decreasing mode. Ibarra shows that reversal-boundederomaichines enjoy the fol-
lowing nice property: their reachability set is a semi-inset which can be effectively
computed. In a recent work [7], we have proved that revdyealhdedness is decidable
for VASS, whereas for VASS extended with two counters whiah be tested to zero
this property is undecidable.

Our contribution.We investigate here the three following problems: given &8Awith
one zero-test, can we decide whether it is bounded, whetlsereversal-bounded and
whether it terminates. We first consider the most difficubigdem, which is the reversal-
boundedness problem and from the algorithm for solving &,deduce another algo-
rithm for solving boundedness. The decidability of terntima is then obtained by a
classical reduction into boundedness. The algorithm wpg®e mix the classical con-
struction of the coverability graph for VASS [11] and the qmurting of the reachability
set of reversal-bounded counter machines.

Due to lack of space, some details are omitted and can be fayBH

2 VASS with one zero-test and reversal-bounded property

2.1 Useful notions

LetN (resp.Z) denotes the set of nonnegative integers (resp. integers)usual total
order overZ is written <. By N,,, we denote the séf U {w} wherew is a new symbol
such thatv ¢ N and for allk € N, k¥ < w. We extend the binary operatiopn and—
toN, as follows : forallk € N, k +w = wandw — k = w. Fork,l € N, with k </,
we write [k..[] for the interval of integerg: € N | k < ¢ <}.

Given a setX andn € N, X" is the set ofn-dim vectors with values inX. For any
indexi € [1..n], we denote by(i) thei’® component of a-dim vectorv. We write0
the vector such thd@(:) = 0 for all i € [1..n]. The classical order oA™ is also denoted
< and is defined by < w if and only if for all i € [1..n], we havev(i) < w(i). We
also define the operation overn-dim vectors of integers in the classical way (ie ¥or
V' € Z", v+ V is defined by(v + V') (i) = v(i) + V' (z) for all i € [1..n]).

Letn € N. A subsetS C N™ is linear if there existk + 1 vectorsvg, vy, ...,V in N
suchthatS = {v | v =vy+ A1.vy + ...+ A\p.vp with \; € Nforalli € [1..k]}. A
semi-linear sets any finite union of linear sets. We extend the notion of skmeiarity
to subsets of) x N™ where( is a finite (non-empty) set. This can be easily done
assuming? is for instance a finite subset bf. For an alphabel’, we denote by.* the
set of finite words ovel. ande represents the empty word.

2.2 Counter machines

We call an-dim guarded translatiorgshortly a translation) any function: N* — N™
characterized byt € {=,<,>}", p € N" andé € Z" such thatdom(t) = {v €



N™ | v#p andv + ¢ € N} and for allv € dom(t), t(v) = v + ¢. We will sometimes
use the encodin@#, i, d) to represent a translation. With this notatiérandu encode
a test andd an update. In the followingdl,, will denote the set of the-dim guarded
translations.

Definition 1. An-dim counter machingshortlycounter machings atupleS = (Q, E)
where( is a finite set of control states ardis a finite relationt C Q x T}, x Q.

The semantics of a counter machifie= (Q, E) is given by its associated transition
systemI’S(S) = (Q x N, —) where—C (@ x N") x T,, x (@ x N") is a relation
defined as follows(y, v) 4 (¢',Vv)iff 3(q,t,q') € E suchthav € dom(t) andv’ =

t(v). We write (¢,v) — (¢',V') if there existst € T,, such that(q, V) 5A (¢',V"). The

relation—* represents the reflexive and transitive closure-ofGiven a configuration
(q,v) of TS(S), Reach(S, (¢,v)) = {(¢',V') | (¢,v) —* (¢',V')}. Given a counter
machineS = (Q, E) and an initial configuratior, € ) x N", the pair(, ¢o) is an

intialized counter machine. Since, the notations are eitpin the following we shall
write counter machine for bottb, ¢g) andS.

Definition 2. A counter machings, ¢,) is bounded if there exists € N such that for
all (¢,v) € Reach(S, ¢p) and for alli € [1..n], we havev(i) < k.

Note that a counter machine has a finite number of reachabfegooations if and only
if it is bounded. It is well-known [15] that many verificatiqoroblems, such as the
reachability of a control state or the boundedness, areainhalde for2-dim counter
machines. We present in the sequel some restricted classesimter machines for
which these problems become decidable.

2.3 VASS with one zero-test

Definition 3. An-dim counter maching), E) is aVector Addition System with States
(shortly VASS) if for all transitiongq, ¢, ¢') € E, t is a guarded translatiori#, u, 9)
such that# = (>,...,>),

Hence in VASS, it is not possible to test if a counter valuegaat to a constant but
only if it is greater than a constant. In opposite to genecainter machines, many
problems are decidable for VASS, for instance the problerthefreachability of a

configuration or the boundedness [11,12,14]. We finally gmesere another class of
counter machine, which extends the VASS.

Definition 4. A n-dim counter maching = (Q, E) is a VASS with one zero-test
if Q@ = Q W {qu,q=0}, £ = E> W {(qe0,9=07,9=0)} Whereg_o is the guarded
translation((=,>,...,>),0,0) andS> = (Q' W {g+0}, E>) is a VASS.

Without loss of generality we will impose that the transit{@-o, g—o7, ¢—o) is the only
transition leading tg— in S. We see that in a VASS with one zero-test, the transition
(g20, 9=07, ¢—0) has the ability to test if the value of the first countefigEven if this
class of counter machines has been less studied than VA& lieen proved in [18]
that the problem of reachability of a configuration is debid&or it. Note that we re-
strict this class of machines to use only one transition aitlequality test over the first



counter, but this is only to improve the readability of ourrudn fact, our results still
hold for any VASS with more than one zero-test on the first teun

If we define the<; in N” x N” as follows,v <; V' if and only ifv < v/ andv(1) =
V/(1), then VASS with one zero-test enjoy the following property:

Lemmab5. Let S = (@, E) be an-dim VASS with one zero-test afith(S) = (Q x
N™ —) its associated transition system. We considgr), (¢, w) in @ x N, if v <y
w and if there existgq’, V') € @ x N" such that(¢,v) — (¢’,V) then there exists
(¢',w) € @ x N" such that(¢q,w) — (¢/,w) andV' <; w'.

In the following, we will propose a new method to analyze VASiS one zero-test.

2.4 Reversal-bounded counter machines

In [10], the class of reversal-bounded counter machinedéas introduced as follows:
each counter can only perform a bounded number of altemmbetween increasing
and decreasing mode. This class of counter machines ie#titeg because it has been
shown that these machines have a semi-linear reachalgtitytsich can be effectively
computed. We recall here their formal definition.

LetS = (Q, E) be an-dim counter machine ariiS(S) = (Q x N*, —) its associated
transition system . From it, we define another transitionesyg™S,;,(S) = (Q x N™ x

{l, T} x N*, — ;). For a configuratiorig,v,m,r) € @ x N* x {|,7}"™ x N”, the
vectorv contains the values of each counter, the venids used to store the current
mode of each counter -increasirg 6r decreasing|()- and the vector the numbers of
alternations performed by each counter. A formal definiobf'S,.,(.S) is given in [8].
We denote by—7, the reflexive and transitive closure of,,. Given a configuration
(g,v,r,m) of T'S,;,(S), Reach,,(S, (¢, v.m,r)) = {(¢',v,m’",r") | (g,v,m,r) =%,
(¢',v',m’,r")}. We extend this last notation to the configurationg'6f.5), saying that

if (¢,v) € @ x N"™is a configuration of'S(S), thenReach, (.5, (¢, Vv)) is equal to the
setReach,(S, (¢,v, T,0)) where] denotes here the vector with all components equal
toT.

Definition 6. A counter machinés, ¢,) is reversal-boundei and only if there exists
k € N such that for all(g,v,m,r) € Reach,;(S,cy) and for alli € [1..n], we have
r(i) < k.

Using a translation into a finite automaton and the fact tietarikh map of a regular
language is a semi-linear set [16], Ibarra proved in [10Jfthlewing result:

Theorem 7. [10] The reachability set of a reversal-bounded counter hiae is an
effectively computable semi-linear set.

3 Computing coverability

3.1 Coverability graph of a VASS

In [11], Karp and Miller provide an algorithm to build from aA8S a labeled tree,
the Karp and Miller tree We recall here the construction of this tree. We first define



a functionAccel erati on : N7 x N — N” as follows, forw,w’ € N’ such that
w < w', we haven’ = Accel erati on(w,w’) if and only if for alli € [1..n]:

— if w(i) = w'(7) thenw” (i) = w(i),
— if w(i) < w'(i) thenw” (i) = w.

The Karp and Miller tree is a labeled tré®, 4, r, 1) where P is a finite set of nodes,
0 C P x T, x P isthe transition relatior; € P is the root of the tree, and: P —

@ x N is a labeling function. To represent a ngadwith the labell(p) = (¢, w), we
will sometimes directly write[g, w]. The Algorithm 1 shows how the Karp and Miller
tree is obtained from an initialized VASS.

Algorithm 1 T' = KMT((Q, E), o)
Input: ({(Q, E),co) aninitialized VASS;
Output: T = (P, 6,r,1) the Karp and Miller tree;
LP={r},6=0,lr)=co
2: ToBeTreated = {r}
3: while ToBeT'reated # () do

4:  Chooseplq,w] € ToBeTreated
5: if there does not exist a predecessdy, w] of p in 7" then
6: for each(q, (#, 1,9),q') € E do
7 if © < w then
8: letw =w +§
9: if there exists a predecesgdfq’, w"] of pin T'
such thaw’” < w’ then
10: letw’ = Accel erati on(w”,w')
11: end if
12: Add a new nodg’ to P such thaf(p) = (¢’,w’)
13: Add (p, (#, 11,8),p’) to
14: Addp’ to ToBeTreated
15: end if
16: end for
17:  endif
18: Remove of ToBeTreated
19: end while

The main idea of this tree is to cover in a finite way the realhabnfigurations using
the symbolw, when a counter is not bounded. It has been proved that theri&ign

1 always terminates and that the produced tree enjoys soot goperties. In par-
ticular, this tree can be used to decide the boundedness AE&Mn [19], Vack and
Vidal-Naquet have proposed a further construction baseith@iiKarp and Miller tree
in order to test the regularity of the language of the unktbétaces of a VASS. This
last construction is known as tleeverability graph To obtain it, the nodes of the Karp
and Miller tree with the same label are gathered in an unigaenif (.S, ¢y) is an-dim
VASS, we denote b¥MG(.S, ¢o) its coverability graph.



For a vectow € N, we denote byl nf (w) the set{i € [1..n] | w(i) = w} and
Fi n(w) = [1..n]\| nf (w). Using these notions, it has been proved that the covesabili
graph satisfies the following properties.

Theorem 8. [11,19] Let (S, ¢p) be an-dim VASS witht = (Q, E), TS(S) = (Q x
N™, —) its associated transition system a®MG(S,c) = (P,d,r,[) its coverability
graph.

1. Ifp[g,w] is a node irkMG(S, ¢y), then for allk € N, there exist$q, v) € Reach(S, c¢g)
such that for alki € | nf (w), & < v(i) and for all: € Fi n(w), w(i) = v(7).
2. Foro € T, if ¢ % (q,v) then there is a unique path KMG(S, ¢,) labeled byo

and leading from- to a nodep[q, w] and for alli € Fi n(w), v(i) = w(i).

3.2 Minimal covering set

We present here the notion of minimal covering set of a s¢ipmthat we will use later
to build the coverability graph of a reversal-bounded VASiEhvene zero-test. The
minimal covering set of a possibly infinite set of vectorshie smallest set of vectors
which cover all the vectors belonging to the consideredBefore giving its definition,
we introduce some notations.

If V' C N", we denote byinc(V), the set of the increasing sequences of elements of
V. Each(v,)nen € Inc(V) has aleast upper boundliff, denotedLub((v,, )nen). We
then define the satub(V') of elements ofN”, as the sef{1lub(v,)nen | (Vn)nen €
Inc(V)}. Note that in [6], this last set is defined using the least ujyoeind of the
directed subsets df, but in the case of vectors of integers, it is equivalent ® the
set of increasing sequences. If we consider the maximaleglesofLub(1") under the
classical order oveR?, we obtain what is called the minimal covering selaf

Definition 9. [5,6] Letn € N\ {0} andV C N". Theminimal covering sebf V,
denoted by nCover (V), is the seMax(Lub(V)).

Using the definition oM nCover (V) and the fact thatN”, <) is a well-quasi-order,
we have the following proposition.

Proposition 10. [5] Let V' € N”. We have then:

— M nCover (V) is finite, and,

— for all u € M nCover (V), Vk € N, there exist¥ € V such thatvi € Fi n(u),
V(i) = u(i) andVi € | nf (v), k < v(i) and,

— forall v e V, there existsi € M nCover (V) such thatv < u.

Furthermore, for what concerns the minimal covering setémi-linear set, we have
the following result.

Lemma 11. Given a semi-linear seft, the setM nCover (L) can effectively be com-
puted.

Note that this last result can not be extended to any re@usstl/. In fact if we were
able to compute the minimal covering set of a recursivelsetve would be able to
deduce if it is finite or not, which is known as an undecidaliebfem (this being a
consequence of Rice’s theorem).



4 Decidability results for VASS with one zero-test

4.1 Counting the number of alternations in a VASS

In [10], it has been proved that the problem to decide whestheounter machine is
reversal-bounded or not is undecidable, but this problecoines decidable when con-
sidering VASS [7]. We recall here how this last result is ated.

Let S = (@, E) be an-dim counter machine. We build Zn-dim counter machine

S = (Q x {1, 1}, E') in which then-th last counters count the alternations between
increasing and decreasing modes ofithih first counters. A formal definition of’ is

is given in [8]. Note that by construction, since we nevet tes values of the added
counters, ifS'is a VASS thert is a VASS too. For an initial configuratia = (qgo, Vo),

if we denote by, the pair((qo, 1), (Vo, 0)), we have the following proposition:

Proposition 12. A n-dim counter machings, co) is reversal-bounded if and only if
there existg: € N such that for all((¢,m),v) € Reach(S,¢) and for alli € [1..n],
v(n+1i) <k.

Using the result of Theorem 8, we deduce that a VA(S%:O) is reversal-bounded if
and only if for all node|[q, w] of the coverability graph ofS, ¢;) and for alli € [1..n],
w(n + i) # w. Hence:

Theorem 13. [7] Reversal-boundedness is decidable for VASS.

In the sequel, we will see how this method can be adapted tweiteof VASS with one
zero-test, which will allow us to extend the result of thevioas theorem.

4.2 Mixing the coverability graph and reachability analysis

In this section, we will give an algorithm to build a labeledygh which will provide
us a necessary and sufficient condition to decide whether @SWith one zero-test
is reversal-bounded. The classical construction of thepkaud Miller Tree cannot be
used in the case of VASS with one zero-test, because whentweuce the symbab
for the counter which might be tested to zero, we do not knawvtaich values thisv
stands for, and hence it is not possible to evaluate thedesrd when it occurs.

Let (S, ¢p) be an-dim counter machine witly = (Q, E). We define &5, ¢y )-labeled
graphG as a tupld P, §, r, 1) whereP is a set of nodes, C P x T,, x P is a set of edges
labeled with guarded commandsge P is the initial node and : P — @ x N is a
labeling function such thdtr) = ¢o. If G = (P, d,7,1) is a(S, co)-labeled graph, then
(P, 0) defines a counter machine we will denotedyy. Furthermore t& we associate
the initial configuration-y = (r, vo) wherev, is the valuation function associateddp

In the sequel we will consider a-dim VASS with one zero-testS, ¢y) and its as-
sociatec2n-dim counter machinésS, &) in which we count the alternations between
increasing and decreasing mode. Note that since when wet Buile only introduce
counters which never decrease, we have {at,) is reversal-bounded if and only



Algorithm 2 G = Cover Gr aph(S, ¢p)
Input: (S, co) VASS with one zero-test
Output: G = (P,0,r,1) agraph

1: HasChanged = True [*This boolean becomes True whéhs changed*/
2: Compute(:S, ¢o) [*See the definition on the previous page*/
3: (P, 6,7, 1) = KMG(S>, co) I*S> is a VASS obtained frois deleting the zero-tests*/

4: G =(P,4,r]l)
5: while HasChanged = T'rue andCondi t i onRB(G) = True do

6: HasChanged = False
7. for eachp[(gz0,m),u] € P do
8: Vo ={v | (p,v) € Reach(Sg,r0) A V(1) = 0}
/*(Sa, o) is the counter machine obtained frag*/
9: ComputetinCover(V})
10: for eachu € M nCover (V,,) do
11: if there exists a predecesbpf[(g—o, m), u’Jof p such that’ <; u then
12: u = Accel eration(u’,u)
13: end if
14: if there is no one-step successpf[(g—o, m), u”]of p such thau < u” then
15: HasChanged = True
16: Lett € Ty, with dom(t) = {v | Vi € Fi n(u). v(¢) <u(s)}andvv.t(v) =v
17: if there exists a predecesgd¥[(g—o0, m), u]of p then
18: Add(p,t,p"") 10§
19: else
20: Add a new nodeewp|(g=o0, m), u] to P
21: Add (p, t, newp) to 6
22: G’ = KMG(S>, ((g=0, M), u))
23: AddG’ to G merging the root node @&’ andnewp
24: end if
25: end if
26: end for
27:  endfor
28: end while

if (S,¢) is reversal-bounded. As faf, we denote by5- the 2n-dim VASS obtained
from S removing all the transitions of the forfg, g—o2, ¢).

We propose the Algorithm 2 to build a partial coverabilitggh of(§, ¢o). We will then
use this graph to decide whether the input VASS with one #sbis reversal-bounded
or not. Our algorithm builds &S, ¢)-labeled grapltz as follows:

— First, we build the coverability graph céﬁz,éo) and test if(§2,50) is reversal-
bounded. The predicatondi t i onRB(G) will ensure that.

— If (S5, ) is not reversal-bounded, we can already deduce that,) is not reversal-
bounded and we stop our construction.

Ly is a predecessor gfif there exists a path i’ of length greater than or equal tdrom p’
top.

2" is a one step successoroif there exists such that(p, ¢, p”’) € 6.



—If (§2,’50) is reversal-bounded, so {$¢, ). We then compute the reachability
set of (S, 70) to know which test to zero will be accepted and we compute the
minimal covering set of the vectors we obtain after reatizime test to zero (Lines
8-9 of Algorithm 2).

— From this covering set, we obtain a new set of labeled noaes Wwhich we build
again the coverability graph &f-. Doing so we complete the gragh We then
again testif Sq, o) is reversal-bounded and if it is the case we proceed as u®vio
considering again all the nodes from which a zero-test igdon

— Finally, in order to ensure termination (in caSendi t i onRB(G) is always eval-
uated tdl'rue) we insertv when computing the reachability set for the zero-test we
encounter a covering vector bigger than a preceding one (L1n12 of Algorithm
2).

An example of the result of the computation of Algorithm 2 iseyaded in [8].

We will now analyze more formally the Algorithms 2. First, wlefine the condition
Condi ti onRB(G) for a (S, ¢)-labeled graphG as follows:Condi t i onRB(G) =
True if and only if for all nodes|q, u] of G, for all i € [1..n], we haveu(n + i) # w.

Note that the first graph we compute being the coverabiliay)grof(gz , o), according
to Proposition 12, we have thé$, ¢,) is reversal-bounded if and only if the predicate
Condi ti onRB(G) is true.

In order to prove that our algorithm is correct, we need toerbhe following points:

1. IfGis a(§, ¢p)-labeled graph computed during the execution of the Alpari
and ifCondi t i onRB(G) = True then(Sg, ro) is reversal-bounded,

2. For any VASS with one zero-teg$, ¢ ), the algorithmCover Gr aph (S, ¢) ter-
minates.

The first point is a sufficient condition which allows us to qmurte effectively the set
V,, at Line 8 of the Algorithm 2 and also the ddtnCover (V},). In fact, if (S¢, ro)

is reversal-bounded, according to Theorem 7, theRsatch(Sg, o) is an effectively
computable semi-linear set and consequently so is thespomeling sel, = {v |
(p,v) € Reach(Sg,,r0) Av(1) = 0}, and hence from Lemmas 10 and 11, we also
deduce thaM nCover (V},) is finite and can be effectively computed.

Let (S, ¢o) be an-dim VASS with one zero-test and 16t = (P, 4, r,1) be a(S, ¢)-
labeled graph obtained at Line 4 after some iterations ofdbp of Algorithm 2. We
recall that by constructiori(r) = ¢, and that the initial configuratior, of the counter
machineS associated to the gragghis the pair(r, vy) wherev, is the vector associ-
ated to the configuratiofy,. We have then the following lemma:

Lemma 14. For all (p,v) € Reach(Sg, ), if I(p) = (q,u), then for alli € [1..2n],
we havev(i) < u(i).

Since by construction in the counter mach#e then-th last counters count the num-
bers of alternations of the-th first counters and since the gra@ghhas a finite number



of nodes we deduce that@ndi t i onRB(G) = True then there exists a constant
which bounds the number of alternations for each countéfin ry), consequently:

Proposition 15. If Condi t i onRB(G) = T'rue then(S¢, ro) is reversal-bounded.

At Line 8 of Algorithm 2, when we compute the reachability Betach(Sq, o), we
are hence sure that the counter machifig, o) is effectively reversal-bounded and
according to Theorem 7 and Lemma 11 we can effectively coenyhiigs set and also its
minimal covering set. Finally, we have the following projias:

Proposition 16. The Algorithm 2 always terminates when its input is a VASE avie
zero-test.

Idea of proof:This is ensured by the fact that if the algorithm does not ieate we
can extract an infinite sequence of vect(us);cy such that for alk € N, u;(1) = 0
andu; belongs to a node predecessor of the node containipgand for alli, j € N,
U; # U; . Using that{u € N2 | u(1) = 0} together with the ordex; is a well-quasi
order, we deduce that we can extract from this sequence aiténdirictly increasing
sequence of vectors, but this is not possible becauseieceedsl in this sequence
then there are strictly more components equal o u’ than inu (thanks to the function
Acceleration) and so this sequence cannot be infirite.

4.3 Reversal-boundedness

In this last section, we will show how to use thﬁ, ¢p)-labeled graph produced in
output of the Algorithm 2 to decide whether the VASS with omeoztest(S, ¢g) is
reversal-bounded or not. First, we will show that if the dgrépb= Cover G aph(S, ¢o)
is such thaCondi t i onRB(G) = False, i.e. there exists a noggq, u] andi € [1..n]

such thati(n + i) = w then the counter machin&, &) is not reversal-bounded. This
is due to the following lemma:

Lemma 17. If p[g, u] is a node ofCover Gr aph(S, o) and ifi € I nf (u) then for all
k € N, there exists a configuratiofy, v) € Reach(S, ¢y) such thatv(i) > k.

We then prove that if7 = Cover Graph(S, ¢g) is such thatCondi ti onRB(G) =
True then(S,¢) and hence S, ;) are reversal-bounded. To prove this, we have to
prove that for each reachable configuratignv) of (S, ) there is a node off which
"covers" this configuration. This point can be proved by ictéhn on the length of any
execution ofReach (S, ¢y) and leads to the following lemma:

Lemma 18. If G = Cover Gr aph(S, ¢) is such thatCondi t i onRB(G) = True

then for all configurationgq, v) € Reach(S, ¢), there exists a nodgl¢’, u] in G such
thatq = ¢/ and for alli € [1..2n], v(i) < u(i).

Using the two previous lemma and the result of Propositigm&Exdeduce the following
theorem:
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Theorem 19. A n-dim VASS with one zero-tgsf, ) is reversal-bounded if and only
if for all nodesp|q, u] in Cover Graph(S, c), forall i € [1..n], u(n + i) # w.

Proof: Assume there exists a nogigy, u] in Cover Graph(S,cp) andi € [1..n],
such thatu(n + i) = w. Then according to Lemma 17 for &l € N, there exists
a configuration(¢,v) € Reach(S,¢,) such thatv(n + i) > k, hence using Propo-
sition 12, we deduce thdtS, ¢g) is not reversal-bounded. If for all nodegy, u] in
Cover Graph(S,cp), for all i € [1..n], u(n + %) # w, since the number of nodes in
Cover Graph(S, ¢p) is finite, we can find & € N such that for all nodeg[q, u] in
Cover Graph(S,c), foralli € [1..n], u(n+1i) < k. Using lemma 18, we deduce that
for all configurationg¢, v) € Reach(S, ), for all i € [1..n], we havev(n + i) < k,
hence according to Proposition 12, ¢() is reversal-bounded]

Consequently, we obtain that:

Corollary 20. Reversal-boundedness is decidable for VASS with one estro-t

4.4 Boundedness and termination

We can adapt the reasoning we have performed to decide atengndedness in order
to decide boundedness for VASS with one zero-test. In fagtstill use the Algorithm
2 but instead of building the coverability graph(df, ¢y ), we build directly the one of
(S, ¢p) and instead of using conditid@ondi t i onRB, we use the following condition
on a(s, ¢o)-labeled graplt:

— foralli € [1..n], for all nodes[q, u] of G, we haveu(i) # w.

The idea here is exactly the same as for reversal-boundedndact, at the first step of
the Algorithm 2, the coverability graph @5, c¢y) is computed and it can be directly
tested if this VASS is bounded or not. If it is not bounded, dfgorithm stops, because
all the executions if{.S>, ¢o), are also executions ifiS, ¢g) and hence if(.S>, ¢o) is
not bounded, thefS, ¢y) is also not bounded. In the other casé St , ¢o) is bounded,
then its coverability graph corresponds exactly to its hebdity graph. The algorithm
can then proceed its computation exactly as for decidingreal-boundedness. This
consideration allows us to deduce the following result:

Theorem 21. Boundedness is decidable for VASS with one zero-test.

Note that this implies also the decidability of the termioatproblem for VASS with
one zero-test. In fact, the termination problem for coumb@chines, which consists
in deciding whether the counter machine has an infinite di@twr not, can be re-
duced easily to the boundedness. This is due to the folloaemgideration: if a counter
machine is not bounded, then it has an infinite execution faitdsi bounded, then it
is possible to build its reachability graph and hence todkegihether there exists an
infinite execution or not.

Corollary 22. Termination is decidable for VASS with one zero-test.
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5 Conclusion

In this paper, we have provided an original method to decidetier a VASS extended
with one-zero test is reversal-bounded (resp. bounded)toiThe main idea consists in
mixing the construction of the classical coverability drdpr VASS and the computing
of the reachability set of reversal-bounded VASS. In thereitwe would like to con-

tinue our investigation on methods to analyze this clasystesn and our aim would
be to find a construction of a complete coverability grapha8S with one-zero test.

This would in particular gives us a way to decide the probldmlace-boundedness
which consists in deciding whether a set of counters hasdexlialues or not. In fact,
the method we present in this paper does not allow us to sbigeptoblem, because
the graph we build is partial and the construction stops whenit encounters a non
reversal-bounded (resp. non bounded) behavior.
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