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Abstract. We study Vector Addition Systems with States (VASS) extended in
such a way that one of the manipulated integer variables can be tested to zero. For
this class of system, it has been proved that the reachability problem is decidable.
We prove here that boundedness, termination and reversal-boundedness are de-
cidable for VASS with one zero-test. To decide reversal-boundedness, we provide
an original method which mixes both the construction of the coverability graph
for VASS and the computation of the reachability set of reversal-bounded counter
machines. The same construction can be slightly adapted to decide boundedness
and hence termination.

1 Introduction

Vector Addition Systems with States (VASS), which are equivalent to Petri nets, are a
model which has received a lot of attention and thousands of papers exist on this subject
[17]. Whereas many problems are decidable for VASS [4], it is well-known that VASS
with the ability for testing to zero (or with inhibitor arcs)have the power of Turing
machines. Hence all the non-trivial problems are undecidable for this class of models.
Recently in [18], Reinhardt proved that the reachability problem for VASS with an
unique integer variable (or counter) tested to zero is decidable in reducing this problem
to the reachability problem for Petri nets, which is decidable (see the papers of Kosaraju
[12] and Mayr [14] and Leroux [13] for a conceptual decidability proof of reachability).
For VASS, many problems like zero reachability, coverability (is it possible to reach a
configuration larger than a given configuration?), boundedness (whether the reachabil-
ity set is finite?) and termination (is there an infinite execution?) can be reduced to
reachability and this is still true for extended (well-structured) Petri nets [3,9] (poly-
nomial reductions of reachability for well-structured Petri nets extensions are given in
[2]). For VASS with one zero-test, coverability reduces (asusual) to reachability but it
is less clear for the other properties like boundedness whether the known reductions can
be adapted. Note that in [1], Abdulla and Mayr proposes a method to decide coverabil-
ity for VASS with one zero-test without using the Reinhardt’s result.
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In many verification problems, it is convenient not only to have an algorithm for the
reachability problem, but also to be able to compute effectively the reachability set.
In [10], the class of reversal-bounded counter machines is introduced as follows: each
counter can only perform a bounded number of alternations between increasing and
decreasing mode. Ibarra shows that reversal-bounded counter machines enjoy the fol-
lowing nice property: their reachability set is a semi-linear set which can be effectively
computed. In a recent work [7], we have proved that reversal-boundedness is decidable
for VASS, whereas for VASS extended with two counters which can be tested to zero
this property is undecidable.
Our contribution.We investigate here the three following problems: given a VASS with
one zero-test, can we decide whether it is bounded, whether it is reversal-bounded and
whether it terminates. We first consider the most difficult problem, which is the reversal-
boundedness problem and from the algorithm for solving it, we deduce another algo-
rithm for solving boundedness. The decidability of termination is then obtained by a
classical reduction into boundedness. The algorithm we propose mix the classical con-
struction of the coverability graph for VASS [11] and the computing of the reachability
set of reversal-bounded counter machines.

Due to lack of space, some details are omitted and can be foundin [8].

2 VASS with one zero-test and reversal-bounded property

2.1 Useful notions

Let N (resp.Z) denotes the set of nonnegative integers (resp. integers).The usual total
order overZ is written≤. By Nω, we denote the setN ∪ {ω} whereω is a new symbol
such thatω /∈ N and for allk ∈ Nω, k ≤ ω. We extend the binary operation+ and−
to Nω as follows : for allk ∈ N, k + ω = ω andω − k = ω. Fork, l ∈ Nω with k ≤ l,
we write[k..l] for the interval of integers{i ∈ N | k ≤ i ≤ l}.
Given a setX andn ∈ N, Xn is the set ofn-dim vectors with values inX. For any
indexi ∈ [1..n], we denote byv(i) theith component of an-dim vectorv. We write0
the vector such that0(i) = 0 for all i ∈ [1..n]. The classical order onZn is also denoted
≤ and is defined byv ≤ w if and only if for all i ∈ [1..n], we havev(i) ≤ w(i). We
also define the operation+ overn-dim vectors of integers in the classical way (ie forv,
v′ ∈ Z

n, v + v′ is defined by(v + v′)(i) = v(i) + v′(i) for all i ∈ [1..n]).
Let n ∈ N. A subsetS ⊆ N

n is linear if there existk + 1 vectorsv0, v1, . . . , vk in N
n

such thatS = {v | v = v0 + λ1.v1 + . . . + λk.vk with λi ∈ N for all i ∈ [1..k]}. A
semi-linear setis any finite union of linear sets. We extend the notion of semi-linearity
to subsets ofQ × N

n whereQ is a finite (non-empty) set. This can be easily done
assumingQ is for instance a finite subset ofN. For an alphabetΣ, we denote byΣ∗ the
set of finite words overΣ andǫ represents the empty word.

2.2 Counter machines

We call an-dim guarded translation(shortly a translation) any functiont : N
n → N

n

characterized by# ∈ {=,≤,≥}n, µ ∈ N
n andδ ∈ Z

n such thatdom(t) = {v ∈
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N
n | v#µ andv + δ ∈ N

n} and for allv ∈ dom(t), t(v) = v + δ. We will sometimes
use the encoding(#, µ, δ) to represent a translation. With this notation# andµ encode
a test andδ an update. In the following,Tn will denote the set of then-dim guarded
translations.

Definition 1. An-dim counter machine(shortlycounter machine) is a tupleS = 〈Q,E〉
whereQ is a finite set of control states andE is a finite relationE ⊆ Q × Tn × Q.

The semantics of a counter machineS = 〈Q,E〉 is given by its associated transition
systemTS(S) = 〈Q × N

n,→〉 where→⊆ (Q × N
n) × Tn × (Q × N

n) is a relation

defined as follows :(q, v)
t
→ (q′, v′) iff ∃ (q, t, q′) ∈ E such thatv ∈ dom(t) andv′ =

t(v). We write(q, v) → (q′, v′) if there existst ∈ Tn such that(q, v)
t
→ (q′, v′). The

relation→∗ represents the reflexive and transitive closure of→. Given a configuration
(q, v) of TS(S), Reach(S, (q, v)) = {(q′, v′) | (q, v) →∗ (q′, v′)}. Given a counter
machineS = 〈Q,E〉 and an initial configurationc0 ∈ Q × N

n, the pair(S, c0) is an
intialized counter machine. Since, the notations are explicit, in the following we shall
write counter machine for both(S, c0) andS.

Definition 2. A counter machine(S, c0) is bounded if there existsk ∈ N such that for
all (q, v) ∈ Reach(S, c0) and for all i ∈ [1..n], we havev(i) ≤ k.

Note that a counter machine has a finite number of reachable configurations if and only
if it is bounded. It is well-known [15] that many verificationproblems, such as the
reachability of a control state or the boundedness, are undecidable for2-dim counter
machines. We present in the sequel some restricted classes of counter machines for
which these problems become decidable.

2.3 VASS with one zero-test

Definition 3. A n-dim counter machine〈Q,E〉 is aVector Addition System with States
(shortly VASS) if for all transitions(q, t, q′) ∈ E, t is a guarded translation(#, µ, δ)
such that# = (≥, . . . ,≥),

Hence in VASS, it is not possible to test if a counter value is equal to a constant but
only if it is greater than a constant. In opposite to general counter machines, many
problems are decidable for VASS, for instance the problem ofthe reachability of a
configuration or the boundedness [11,12,14]. We finally present here another class of
counter machine, which extends the VASS.

Definition 4. A n-dim counter machineS = 〈Q,E〉 is a VASS with one zero-test
if Q = Q′ ⊎ {q?0, q=0}, E = E≥ ⊎ {(q?0, g=0?, q=0)} whereg=0? is the guarded
translation((=,≥, . . . ,≥), 0, 0) andS≥ = 〈Q′ ⊎ {q?0}, E≥〉 is a VASS.

Without loss of generality we will impose that the transition (q?0, g=0?, q=0) is the only
transition leading toq=0 in S. We see that in a VASS with one zero-test, the transition
(q?0, g=0?, q=0) has the ability to test if the value of the first counter is0. Even if this
class of counter machines has been less studied than VASS, ithas been proved in [18]
that the problem of reachability of a configuration is decidable for it. Note that we re-
strict this class of machines to use only one transition withan equality test over the first
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counter, but this is only to improve the readability of our work. In fact, our results still
hold for any VASS with more than one zero-test on the first counter.

If we define the≤1 in N
n × N

n as follows,v ≤1 v′ if and only if v ≤ v′ andv(1) =
v′(1), then VASS with one zero-test enjoy the following property:

Lemma 5. Let S = 〈Q,E〉 be an-dim VASS with one zero-test andTS(S) = 〈Q ×
N

n,→〉 its associated transition system. We consider(q, v), (q, w) in Q × N
n, if v ≤1

w and if there exists(q′, v′) ∈ Q × N
n such that(q, v) → (q′, v′) then there exists

(q′, w′) ∈ Q × N
n such that(q, w) → (q′, w′) andv′ ≤1 w′.

In the following, we will propose a new method to analyze VASSwith one zero-test.

2.4 Reversal-bounded counter machines

In [10], the class of reversal-bounded counter machines hasbeen introduced as follows:
each counter can only perform a bounded number of alternations between increasing
and decreasing mode. This class of counter machines is interesting because it has been
shown that these machines have a semi-linear reachability set which can be effectively
computed. We recall here their formal definition.
Let S = 〈Q,E〉 be an-dim counter machine andTS(S) = 〈Q×N

n,→〉 its associated
transition system . From it, we define another transition systemTSrb(S) = 〈Q×N

n ×
{↓, ↑}n × N

n,→rb〉. For a configuration(q, v, m, r) ∈ Q × N
n × {↓, ↑}n × N

n, the
vectorv contains the values of each counter, the vectorm is used to store the current
mode of each counter -increasing (↑) or decreasing (↓)- and the vectorr the numbers of
alternations performed by each counter. A formal definitionof TSrb(S) is given in [8].
We denote by→∗

rb the reflexive and transitive closure of→rb. Given a configuration
(q, v, r , m) of TSrb(S), Reachrb(S, (q, v, m, r)) = {(q′, v′, m′, r ′) | (q, v, m, r) →∗

rb

(q′, v′, m′, r ′)}. We extend this last notation to the configurations ofTS(S), saying that
if (q, v) ∈ Q×N

n is a configuration ofTS(S), thenReachrb(S, (q, v)) is equal to the
setReachrb(S, (q, v, ↑, 0)) where↑ denotes here the vector with all components equal
to ↑.

Definition 6. A counter machine(S, c0) is reversal-boundedif and only if there exists
k ∈ N such that for all(q, v, m, r) ∈ Reachrb(S, c0) and for all i ∈ [1..n], we have
r(i) ≤ k.

Using a translation into a finite automaton and the fact that the Parikh map of a regular
language is a semi-linear set [16], Ibarra proved in [10] thefollowing result:

Theorem 7. [10] The reachability set of a reversal-bounded counter machine is an
effectively computable semi-linear set.

3 Computing coverability

3.1 Coverability graph of a VASS

In [11], Karp and Miller provide an algorithm to build from a VASS a labeled tree,
the Karp and Miller tree. We recall here the construction of this tree. We first define
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a functionAcceleration : N
n
ω × N

n
ω → N

n
ω as follows, forw, w′ ∈ N

n
ω such that

w ≤ w′, we havew′′ = Acceleration(w, w′) if and only if for all i ∈ [1..n]:

– if w(i) = w′(i) thenw′′(i) = w(i),
– if w(i) < w′(i) thenw′′(i) = ω.

The Karp and Miller tree is a labeled tree(P, δ, r, l) whereP is a finite set of nodes,
δ ⊆ P × Tn × P is the transition relation,r ∈ P is the root of the tree, andl : P →
Q × N

n
ω is a labeling function. To represent a nodep with the labell(p) = (q, w), we

will sometimes directly writep[q, w]. The Algorithm 1 shows how the Karp and Miller
tree is obtained from an initialized VASS.

Algorithm 1 T = KMT(〈Q,E〉, c0)

Input : (〈Q, E〉, c0) an initialized VASS;
Output : T = 〈P, δ, r, l〉 the Karp and Miller tree;
1: P = {r}, δ = ∅, l(r) = c0

2: ToBeTreated = {r}
3: while ToBeTreated 6= ∅ do
4: Choosep[q, w] ∈ ToBeTreated

5: if there does not exist a predecessorp′[q, w] of p in T then
6: for each(q, (#, µ, δ), q′) ∈ E do
7: if µ ≤ w then
8: letw′ = w + δ

9: if there exists a predecessorp′[q′, w′′] of p in T

such thatw′′ < w′ then
10: letw′ = Acceleration(w′′, w′)
11: end if
12: Add a new nodep′ to P such thatl(p′) = (q′, w′)
13: Add(p, 〈#, µ, δ〉, p′) to δ

14: Addp′ to ToBeTreated

15: end if
16: end for
17: end if
18: Removep of ToBeTreated

19: end while

The main idea of this tree is to cover in a finite way the reachable configurations using
the symbolω, when a counter is not bounded. It has been proved that the Algorithm
1 always terminates and that the produced tree enjoys some good properties. In par-
ticular, this tree can be used to decide the boundedness of a VASS. In [19], Vack and
Vidal-Naquet have proposed a further construction based onthe Karp and Miller tree
in order to test the regularity of the language of the unlabeled traces of a VASS. This
last construction is known as thecoverability graph. To obtain it, the nodes of the Karp
and Miller tree with the same label are gathered in an unique node. If(S, c0) is an-dim
VASS, we denote byKMG(S, c0) its coverability graph.
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For a vectorw ∈ N
n
ω, we denote byInf(w) the set{i ∈ [1..n] | w(i) = ω} and

Fin(w) = [1..n]\Inf(w). Using these notions, it has been proved that the coverability
graph satisfies the following properties.

Theorem 8. [11,19] Let (S, c0) be an-dim VASS withS = 〈Q,E〉, TS(S) = 〈Q ×
N

n,→〉 its associated transition system andKMG(S, c) = 〈P, δ, r, l〉 its coverability
graph.

1. If p[q, w] is a node inKMG(S, c0), then for allk ∈ N, there exists(q, v) ∈ Reach(S, c0)
such that for alli ∈ Inf(w), k ≤ v(i) and for all i ∈ Fin(w), w(i) = v(i).

2. For σ ∈ T ∗
n , if c

σ
→ (q, v) then there is a unique path inKMG(S, c0) labeled byσ

and leading fromr to a nodep[q, w] and for all i ∈ Fin(w), v(i) = w(i).

3.2 Minimal covering set

We present here the notion of minimal covering set of a set, notion that we will use later
to build the coverability graph of a reversal-bounded VASS with one zero-test. The
minimal covering set of a possibly infinite set of vectors is the smallest set of vectors
which cover all the vectors belonging to the considered set.Before giving its definition,
we introduce some notations.
If V ⊆ N

n, we denote byInc(V ), the set of the increasing sequences of elements of
V . Each(vn)n∈N ∈ Inc(V ) has a least upper bound inNn

ω denotedlub((vn)n∈N). We
then define the setLub(V ) of elements ofNn

ω as the set{lub(vn)n∈N | (vn)n∈N ∈
Inc(V )}. Note that in [6], this last set is defined using the least upper bound of the
directed subsets ofV , but in the case of vectors of integers, it is equivalent to use the
set of increasing sequences. If we consider the maximal elements ofLub(V ) under the
classical order overNn

ω, we obtain what is called the minimal covering set ofV .

Definition 9. [5,6] Let n ∈ N \ {0} and V ⊆ N
n. Theminimal covering setof V ,

denoted byMinCover(V ), is the setMax(Lub(V )).

Using the definition ofMinCover(V ) and the fact that(Nn
ω,≤) is a well-quasi-order,

we have the following proposition.

Proposition 10. [5] Let V ⊆ N
n. We have then:

– MinCover(V ) is finite, and,
– for all u ∈ MinCover(V ), ∀k ∈ N, there existsv ∈ V such that∀i ∈ Fin(u),

v(i) = u(i) and∀i ∈ Inf(v), k ≤ v(i) and,
– for all v ∈ V , there existsu ∈ MinCover(V ) such thatv ≤ u.

Furthermore, for what concerns the minimal covering set of asemi-linear set, we have
the following result.

Lemma 11. Given a semi-linear setL, the setMinCover(L) can effectively be com-
puted.

Note that this last result can not be extended to any recursive setV . In fact if we were
able to compute the minimal covering set of a recursive setV , we would be able to
deduce if it is finite or not, which is known as an undecidable problem (this being a
consequence of Rice’s theorem).
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4 Decidability results for VASS with one zero-test

4.1 Counting the number of alternations in a VASS

In [10], it has been proved that the problem to decide whethera counter machine is
reversal-bounded or not is undecidable, but this problem becomes decidable when con-
sidering VASS [7]. We recall here how this last result is obtained.
Let S = 〈Q,E〉 be an-dim counter machine. We build a2n-dim counter machine
S̃ = 〈Q × {↑, ↓}n, E′〉 in which then-th last counters count the alternations between
increasing and decreasing modes of then-th first counters. A formal definition ofE′ is
is given in [8]. Note that by construction, since we never test the values of the added
counters, ifS is a VASS theñS is a VASS too. For an initial configurationc0 = (q0, v0),
if we denote bỹc0 the pair((q0, ↑), (v0, 0)), we have the following proposition:

Proposition 12. A n-dim counter machine(S, c0) is reversal-bounded if and only if
there existsk ∈ N such that for all((q, m), v) ∈ Reach(S̃, c̃0) and for all i ∈ [1..n],
v(n + i) ≤ k.

Using the result of Theorem 8, we deduce that a VASS(S, c0) is reversal-bounded if
and only if for all nodesp[q, w] of the coverability graph of(S̃, c̃0) and for alli ∈ [1..n],
w(n + i) 6= ω. Hence:

Theorem 13. [7] Reversal-boundedness is decidable for VASS.

In the sequel, we will see how this method can be adapted to thecase of VASS with one
zero-test, which will allow us to extend the result of the previous theorem.

4.2 Mixing the coverability graph and reachability analysis

In this section, we will give an algorithm to build a labeled graph which will provide
us a necessary and sufficient condition to decide whether a VASS with one zero-test
is reversal-bounded. The classical construction of the Karp and Miller Tree cannot be
used in the case of VASS with one zero-test, because when we introduce the symbolω
for the counter which might be tested to zero, we do not know for which values thisω
stands for, and hence it is not possible to evaluate the test to zero when it occurs.

Let (S, c0) be an-dim counter machine withS = 〈Q,E〉. We define a(S, c0)-labeled
graphG as a tuple〈P, δ, r, l〉 whereP is a set of nodes,δ ⊆ P ×Tn×P is a set of edges
labeled with guarded commands,r ∈ P is the initial node andl : P → Q × Nn

ω is a
labeling function such thatl(r) = c0. If G = 〈P, δ, r, l〉 is a(S, c0)-labeled graph, then
〈P, δ〉 defines a counter machine we will denote bySG. Furthermore toSG we associate
the initial configurationr0 = (r, v0) wherev0 is the valuation function associated toc0.
In the sequel we will consider an-dim VASS with one zero-test(S, c0) and its as-
sociated2n-dim counter machine(S̃, c̃0) in which we count the alternations between
increasing and decreasing mode. Note that since when we build S̃ we only introduce
counters which never decrease, we have that(S, c0) is reversal-bounded if and only
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Algorithm 2 G = CoverGraph(S, c0)

Input : (S, c0) VASS with one zero-test
Output : G = 〈P, δ, r, l〉 a graph
1: HasChanged = True /*This boolean becomes True whenG is changed*/
2: Compute(eS, ec0) /*See the definition on the previous page*/
3: 〈P, δ, r, l〉 = KMG(eS≥, ec0) /* eS≥ is a VASS obtained fromeS deleting the zero-tests*/
4: G = 〈P, δ, r, l〉
5: while HasChanged = True andConditionRB(G) = True do
6: HasChanged = False

7: for eachp[(q?0, m), u] ∈ P do
8: Vp = {v | (p, v) ∈ Reach(SG, r0) ∧ v(1) = 0}

/*(SG, r0) is the counter machine obtained fromG */
9: ComputeMinCover(Vp)

10: for eachu ∈ MinCover(Vp) do
11: if there exists a predecessor1 p′[(q=0, m), u′]of p such thatu′ ≤1 u then
12: u = Acceleration(u′, u)
13: end if
14: if there is no one-step successor2 p′′[(q=0, m), u′′]of p such thatu ≤ u′′ then
15: HasChanged = True

16: Lett ∈ T2n with dom(t) = {v | ∀i ∈ Fin(u). v(i) ≤ u(i)} and∀v.t(v) = v
17: if there exists a predecessorp′′′[(q=0, m), u]of p then
18: Add(p, t, p′′′) to δ

19: else
20: Add a new nodenewp[(q=0, m), u] to P

21: Add(p, t, newp) to δ

22: G′ = KMG(eS≥, ((q=0, m), u))
23: AddG′ to G merging the root node ofG′ andnewp

24: end if
25: end if
26: end for
27: end for
28: end while

if (S̃, c̃0) is reversal-bounded. As forS, we denote bỹS≥ the2n-dim VASS obtained
from S̃ removing all the transitions of the form(q, g=0?, q

′).

We propose the Algorithm 2 to build a partial coverability graph of(S̃, c̃0). We will then
use this graph to decide whether the input VASS with one zero-test is reversal-bounded
or not. Our algorithm builds a(S̃, c̃0)-labeled graphG as follows:

– First, we build the coverability graph of(S̃≥, c̃0) and test if(S̃≥, c̃0) is reversal-
bounded. The predicateConditionRB(G) will ensure that.

– If (S̃≥, c̃0) is not reversal-bounded, we can already deduce that(S̃, c̃0) is not reversal-
bounded and we stop our construction.

1 p′ is a predecessor ofp if there exists a path inG of length greater than or equal to1 from p′

to p.
2 p′′ is a one step successor ofp if there existst such that(p, t, p′′) ∈ δ.
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– If (S̃≥, c̃0) is reversal-bounded, so is(SG, r0). We then compute the reachability
set of(SG, r0) to know which test to zero will be accepted and we compute the
minimal covering set of the vectors we obtain after realizing one test to zero (Lines
8-9 of Algorithm 2).

– From this covering set, we obtain a new set of labeled nodes from which we build
again the coverability graph of̃S≥. Doing so we complete the graphG. We then
again test if(SG, r0) is reversal-bounded and if it is the case we proceed as previous
considering again all the nodes from which a zero-test is done.

– Finally, in order to ensure termination (in caseConditionRB(G) is always eval-
uated toTrue) we insertω when computing the reachability set for the zero-test we
encounter a covering vector bigger than a preceding one (Line 11-12 of Algorithm
2).

An example of the result of the computation of Algorithm 2 is provided in [8].

We will now analyze more formally the Algorithms 2. First, wedefine the condition
ConditionRB(G) for a (S̃, c̃0)-labeled graphG as follows:ConditionRB(G) =
True if and only if for all nodesp[q, u] of G, for all i ∈ [1..n], we haveu(n + i) 6= ω.

Note that the first graph we compute being the coverability graph of(S̃≥, c̃0), according
to Proposition 12, we have that(S̃≥, c̃0) is reversal-bounded if and only if the predicate
ConditionRB(G) is true.

In order to prove that our algorithm is correct, we need to prove the following points:

1. If G is a (S̃, c̃0)-labeled graph computed during the execution of the Algorithm 2
and ifConditionRB(G) = True then(SG, r0) is reversal-bounded,

2. For any VASS with one zero-test(S, c0), the algorithmCoverGraph(S, c0) ter-
minates.

The first point is a sufficient condition which allows us to compute effectively the set
Vp at Line 8 of the Algorithm 2 and also the setMinCover(Vp). In fact, if (SG, r0)
is reversal-bounded, according to Theorem 7, the setReach(SG, r0) is an effectively
computable semi-linear set and consequently so is the corresponding setVp = {v |
(p, v) ∈ Reach(SGi

, r0) ∧ v(1) = 0}, and hence from Lemmas 10 and 11, we also
deduce thatMinCover(Vp) is finite and can be effectively computed.

Let (S, c0) be an-dim VASS with one zero-test and letG = (P, δ, r, l) be a(S̃, c̃0)-
labeled graph obtained at Line 4 after some iterations of theloop of Algorithm 2. We
recall that by construction,l(r) = c̃0 and that the initial configurationr0 of the counter
machineSG associated to the graphG is the pair(r, v0) wherev0 is the vector associ-
ated to the configuratioñc0. We have then the following lemma:

Lemma 14. For all (p, v) ∈ Reach(SG, r0), if l(p) = (q, u), then for alli ∈ [1..2n],
we havev(i) ≤ u(i).

Since by construction in the counter machineSG then-th last counters count the num-
bers of alternations of then-th first counters and since the graphG has a finite number
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of nodes we deduce that ifConditionRB(G) = True then there exists a constantk
which bounds the number of alternations for each counter in(SG, r0), consequently:

Proposition 15. If ConditionRB(G) = True then(SG, r0) is reversal-bounded.

At Line 8 of Algorithm 2, when we compute the reachability setReach(SG, r0), we
are hence sure that the counter machine(SG, r0) is effectively reversal-bounded and
according to Theorem 7 and Lemma 11 we can effectively compute this set and also its
minimal covering set. Finally, we have the following proposition:

Proposition 16. The Algorithm 2 always terminates when its input is a VASS with one
zero-test.

Idea of proof:This is ensured by the fact that if the algorithm does not terminate we
can extract an infinite sequence of vectors(ui)i∈N such that for alli ∈ N, ui(1) = 0
andui belongs to a node predecessor of the node containingui+1 and for alli, j ∈ N,
ui 6= uj . Using that{u ∈ N

2n
ω | u(1) = 0} together with the order≤1 is a well-quasi

order, we deduce that we can extract from this sequence an infinite strictly increasing
sequence of vectors, but this is not possible because ifu preceedsu′ in this sequence
then there are strictly more components equal toω in u′ than inu (thanks to the function
Acceleration) and so this sequence cannot be infinite.�

4.3 Reversal-boundedness

In this last section, we will show how to use the(S̃, c̃0)-labeled graph produced in
output of the Algorithm 2 to decide whether the VASS with one zero-test(S, c0) is
reversal-bounded or not. First, we will show that if the graphG = CoverGraph(S, c0)
is such thatConditionRB(G) = False, i.e. there exists a nodep[q, u] andi ∈ [1..n]

such thatu(n + i) = ω then the counter machine(S̃, c̃0) is not reversal-bounded. This
is due to the following lemma:

Lemma 17. If p[q, u] is a node ofCoverGraph(S, c0) and if i ∈ Inf(u) then for all
k ∈ N, there exists a configuration(q, v) ∈ Reach(S̃, c̃0) such thatv(i) > k.

We then prove that ifG = CoverGraph(S, c0) is such thatConditionRB(G) =

True then(S̃, c̃0) and hence(S, c0) are reversal-bounded. To prove this, we have to
prove that for each reachable configuration(q, v) of (S̃, c̃0) there is a node ofG which
"covers" this configuration. This point can be proved by induction on the length of any
execution ofReach(S̃, c̃0) and leads to the following lemma:

Lemma 18. If G = CoverGraph(S, c0) is such thatConditionRB(G) = True

then for all configurations(q, v) ∈ Reach(S̃, c̃0), there exists a nodep[q′, u] in G such
that q = q′ and for all i ∈ [1..2n], v(i) ≤ u(i).

Using the two previous lemma and the result of Proposition 12, we deduce the following
theorem:
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Theorem 19. A n-dim VASS with one zero-test(S, c0) is reversal-bounded if and only
if for all nodesp[q, u] in CoverGraph(S, c0), for all i ∈ [1..n], u(n + i) 6= ω.

Proof: Assume there exists a nodep[q, u] in CoverGraph(S, c0) and i ∈ [1..n],
such thatu(n + i) = ω. Then according to Lemma 17 for allk ∈ N, there exists
a configuration(q, v) ∈ Reach(S̃, c̃0) such thatv(n + i) > k, hence using Propo-
sition 12, we deduce that(S, c0) is not reversal-bounded. If for all nodesp[q, u] in
CoverGraph(S, c0), for all i ∈ [1..n], u(n + i) 6= ω, since the number of nodes in
CoverGraph(S, c0) is finite, we can find ak ∈ N such that for all nodesp[q, u] in
CoverGraph(S, c0), for all i ∈ [1..n], u(n+ i) ≤ k. Using lemma 18, we deduce that
for all configurations(q, v) ∈ Reach(S̃, c̃0), for all i ∈ [1..n], we havev(n + i) ≤ k,
hence according to Proposition 12(S, c0) is reversal-bounded.�

Consequently, we obtain that:

Corollary 20. Reversal-boundedness is decidable for VASS with one zero-test.

4.4 Boundedness and termination

We can adapt the reasoning we have performed to decide reversal-boundedness in order
to decide boundedness for VASS with one zero-test. In fact, we still use the Algorithm
2 but instead of building the coverability graph of(S̃, c̃0), we build directly the one of
(S, c0) and instead of using conditionConditionRB, we use the following condition
on a(S, c0)-labeled graphG:

– for all i ∈ [1..n], for all nodesp[q, u] of G, we haveu(i) 6= ω.

The idea here is exactly the same as for reversal-boundedness. In fact, at the first step of
the Algorithm 2, the coverability graph of(S≥, c0) is computed and it can be directly
tested if this VASS is bounded or not. If it is not bounded, thealgorithm stops, because
all the executions in(S≥, c0), are also executions in(S, c0) and hence if(S≥, c0) is
not bounded, then(S, c0) is also not bounded. In the other case, if(S≥, c0) is bounded,
then its coverability graph corresponds exactly to its reachability graph. The algorithm
can then proceed its computation exactly as for deciding reversal-boundedness. This
consideration allows us to deduce the following result:

Theorem 21. Boundedness is decidable for VASS with one zero-test.

Note that this implies also the decidability of the termination problem for VASS with
one zero-test. In fact, the termination problem for countermachines, which consists
in deciding whether the counter machine has an infinite execution or not, can be re-
duced easily to the boundedness. This is due to the followingconsideration: if a counter
machine is not bounded, then it has an infinite execution and if it is bounded, then it
is possible to build its reachability graph and hence to decide whether there exists an
infinite execution or not.

Corollary 22. Termination is decidable for VASS with one zero-test.
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5 Conclusion

In this paper, we have provided an original method to decide whether a VASS extended
with one-zero test is reversal-bounded (resp. bounded) or not. The main idea consists in
mixing the construction of the classical coverability graph for VASS and the computing
of the reachability set of reversal-bounded VASS. In the future, we would like to con-
tinue our investigation on methods to analyze this class of system and our aim would
be to find a construction of a complete coverability graph forVASS with one-zero test.
This would in particular gives us a way to decide the problem of place-boundedness
which consists in deciding whether a set of counters has bounded values or not. In fact,
the method we present in this paper does not allow us to solve this problem, because
the graph we build is partial and the construction stops whenever it encounters a non
reversal-bounded (resp. non bounded) behavior.
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