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Abstract9

We study networks of processes which all execute the same finite-state protocol and communicate10

thanks to a rendez-vous mechanism. Given a protocol, we are interested in checking whether there11

exists a number, called a cut-off, such that in any networks with a bigger number of participants,12

there is an execution where all the entities end in some final states. We provide decidability and13

complexity results of this problem under various assumptions, such as absence/presence of a leader14

or symmetric/asymmetric rendez-vous.15
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1 Introduction20

Networks with many identical processes. One of the difficulty in verifying distributed systems21

lies in the fact that many of them are designed for an unbounded number of participants.22

As a consequence, to be exhaustive in the analysis, one needs to design formal methods23

which takes into account this characteristic. In [21], German and Sistla introduce a model24

to represent networks with a fix but unbounded number of entities. In this model, each25

participant executes the same protocol and they communicate between each other thanks26

to rendez-vous (a synchronization mechanism allowing two entities to change their local27

state simultaneously). The number of participants can then be seen as a parameter of the28

model and possible verification problems ask for instance whether a property holds for all the29

values of this parameter or seeks for some specific value ensuring a good behavior. With the30

increasing presence of distributed mechanisms (mutual exclusion protocols, leader election31

algorithms, renaming algorithms, etc) in the core of our computing systems, there has been32

in the last two decades a regain of attention in the study of such parameterized networks.33

Surprisingly, the verification of these parameterized systems is sometimes easier than the34

case where the number of participants is known. This can be explained by the following35

reason: in the parameterized case the procedure can adapt on demand the number of36

participants to build a problematic execution. It is indeed what happens with the liveness37

verification of asynchronous shared-memory systems. This problem is Pspace-complete38

for a finite number of processes and in NP when this number is a parameter [14]. It is39

hence worth studying the complexity of the verification of such parameterized models and40

many recent works have attacked these problems considering networks with different means41

of communication. For instance in [16, 13, 7, 6] the participants communicate thanks to42

broadcast of messages, in [11, 2] they use a token-passing mechanism , in [10] a message43

passing mechanism and in [18] the communication is performed through shared registers.44
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The relative expressiveness of some of those models has been studied in [4]. Finally in his45

survey [15], Esparza shows that minor changes in the setting of parameterized networks,46

such as the presence of a controller (or equivalently a leader), might drastically change the47

complexity of the verification problems.48

Cut-off to ease the verification. When one has to prove the correctness of a distributed49

algorithm designed to work for an unbounded number of participants, one technique consists50

in proving that the algorithm has a cut-off, i.e. a bound on the number of processes such51

that if it behaves correctly for this specific number of processes then it will still be correct52

for any bigger networks. Such a property allows to reduce the verification procedure to the53

analysis of the algorithm with a finite number of entities. Unfortunately, as shown in [3],54

many parameterized systems do not have a cut-off even for basic properties. Instead of55

checking whether a general class of models admits a cut-off, we propose in this work to study56

the following problem: given a representation of a system and a class of properties, does57

it admit a cutoff ? To the best of our knowledge, looking at the existence of a cutoff as a58

decision problem is a subject that has not received a lot of attention although it is interesting59

both practically and theoretically. First, in the case where this problem is decidable, it60

allows to find automatically cutoffs for specific systems even though they belong to a class61

for which there is no general results on the existence of cutoff. The search of cutoffs has been62

studied in [1] where the authors propose a semi-algorithm for verification of parameterized63

networks with respect to safety properties. This algorithm stops when a cutoff is found.64

However it is not stated how to determine the existence of this cutoff, neither if this is65

possible or not. In [25], the authors propose a way to compute dynamically a cutoff, but66

they consider systems and properties for which they know that a cutoff exists. Second,67

from the theoretical point of view, the cutoff decision problem is interesting because it goes68

beyond the classical problems for parameterized systems that usually seek for the existence69

of a number of participants which satisfies a property or check that a property hold for all70

possible number of participants. Note that in the latter case, one might be in a situation71

that for a property to hold a minimum number of participants is necessary (and below this72

number the property does not hold), such a situation can be detected with the existence of a73

cutoff but not with the simple universal quantification.74

Rendez-vous networks. We focus on networks where the communication is performed by75

rendez-vous. There are different reasons for this choice. First, we are not aware of any76

technique to decide automatically the existence of a cut-off in parameterized systems, it is77

hence convenient to look at this problem in a well-known setting. Another aspect which78

motivates the choice of this model is that the rendez-vous communication corresponds79

to a well-known paradigm in the design of concurrent/distributed systems (for instance80

rendez-vous in the programming languages C or Java can be easily implemented thanks to81

wait/notify mechanisms). Rendez-vous communication seems as well a natural feature for82

parameterized systems used to model for instance crowds or biological systems (at some point83

we consider symmetric rendez-vous which can be seen less common in computing systems but84

make sense for these other applications). Last but not least, rendez-vous networks are very85

close to population protocols [5] for which there has been in the last years a regain of interest86

in the community of formal methods [17, 8, 9]. Population protocols and rendez-vous networks87

are both based on rendez-vous communication, but in population protocols it is furthermore88

required that all the fair executions converge to some accepting set of configurations (see89

[17] for more details). In our case, we seek for the existence of an execution ending with all90

the processes in a final state. The similarities between the two models let us think that the91

formal techniques we use could be adapted for the analysis of some population protocols.92
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Our contributions. We study the Cut-off Problem (C.O.P.) for rendez-vous networks. It93

consists in determining whether, given a protocol labeled with rendez-vous primitives, there94

exists a bound B, such that in any networks of size bigger than B where the processes all run95

the same protocol there is an execution which brings all the processes to a final state. We96

assume furthermore that in our network, there could be one extra entity, called the leader,97

that runs its own specific protocol. We first show that C.O.P. is decidable by reducing it to a98

new decision problem on Petri nets. Unfortunately we show as well that it is non elementary99

thanks to a reduction from the reachability problem in Petri nets[12]. We then show that100

better complexity bounds can be obtained if we assume the rendez-vous to be symmetric101

(i.e. any process that requests a rendez-vous can as well from the same state accept one102

and vice-versa) or if we assume that there is no leader. For each of these restrictions, new103

algorithmic techniques for the analysis of rendez-vous networks are proposed. The following104

table sums up the complexity bounds we obtain.105

Asymmetric rendez-vous Symmetric rendez-vous

Presence of a leader Decidable and non-elementary PSpace
Absence of leader EXPSpace NP

Table 1 Complexity results obtained for the Cut-Off Problem

Due to lack of space, omitted details and proofs can be found in [23].106

2 Modeling networks with rendez-vous communication107

We write N to denote the set of natural numbers and [i, j] to represent the set {k ∈ N | i ≤108

k and k ≤ j} for i, j ∈ N. For a finite set E, the set NE represents the multisets over E. For109

two elementsm,m′ ∈ NE , we denotem+m′ the multiset such that (m+m′)(e) = m(e)+m′(e)110

for all e ∈ E. We say that m ≤ m′ if and only if m(e) ≤ m′(e) for all e ∈ E. If m ≤ m′,111

then m′ −m is the multiset such that (m′ −m)(e) = m′(e)−m(e) for all e ∈ E. The size112

of a multiset m is given by |m| = Σe∈Em(e). For e ∈ E, we use sometimes the notation e113

for the multiset m verifying m(e) = 1 and m(e′) = 0 for all e′ ∈ E \ {e} and the notation114

〈〈e1, e1, e2, e3〉〉 to represent the multiset with four elements e1, e1, e2 and e3.115

2.1 Rendez-vous protocols116

We are now ready to define our model of networks. We assume that all the entities in the117

network (called sometimes processes) behave similarly following the same protocol except one118

entity, called the leader, which might behave differently. The communication in the network is119

pairwise and is performed by rendez-vous through a communication alphabet Σ. Each entity120

can either request a rendez-vous, with the primitive ?a, or answer to a rendez-vous, with the121

primitive !a where a belongs to Σ. The set of actions is hence RV (Σ) = {?a, !a | a ∈ Σ}.122

IDefinition 1 (Rendez-vous protocol). A rendez-vous protocol P is a tuple 〈Q,QP , QL,Σ, qi, qf ,123

qL
i , q

L
f , E〉 where Q is a finite set of states partitioned into the processes states QP and the124

leader states QL, Σ is a finite alphabet, qi ∈ QP [resp. qL
i ∈ QL] is the initial state of the125

processes [resp. of the leader], qf ∈ QP [resp. qL
f ∈ QL] is the final state of the processes126

[resp. of the leader], and E ⊆ (QP ×RV (Σ)×QP )∪ (QL ×RV (Σ)×QL) is the set of edges.127

A configuration of the rendez-vous protocol P is a multiset C ∈ NQ verifying that there128

exists q ∈ QL such that C(q) = 1 and C(q′) = 0 for all q′ ∈ QL \ {q}, in other words there129
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is a single entity corresponding to the leader. The number of processes in a configuration130

C is given by |C| − 1. We denote by C(n) the set of configurations C involving n processes,131

i.e. such that |C| = n + 1. The initial configuration with n processes C(n)
i is such that132

C
(n)
i (qi) = n and C(n)

i (qL
i ) = 1 and C(n)

i (q) = 0 for all q ∈ Q \ {qi, q
L
i }. Similarly the final133

configuration with n processes C(n)
f verifies C(n)

f (qf ) = n and C(n)
f (qL

f ) = 1 and C(n)
f (q) = 0134

for all q ∈ Q \ {qf , q
L
f }. Hence in an initial configuration all the entities are in their initial135

state and in a final configuration they are all in their final state. The notation C represents136

the whole set of configurations equals to
⋃

n∈N C(n).137

We are now ready to formalize the behavior of a rendez-vous protocol. In this matter,138

we define the relation →⊆
⋃

n≥1 C(n) × C(n) as follows : C → C ′ if, and only if, there is139

a ∈ Σ and two edges (q1, ?a, q2), (q′1, !a, q′2) ∈ E such that C(q1) > 0 and C(q′1) > 0 and140

C(q1) +C(q′1) ≥ 2 and C ′ = C − (q1 + q′1) + (q2 + q′2). Intuitively it means that in C there is141

one entity in q1 that requests a rendez-vous and one entity in q′1 that answers to it and they142

both change their state to respectively q2 and q′2. We need the hypothesis C(q1) +C(q′1) ≥ 2143

in case q1 = q′1. We use →∗ to represent the reflexive and transitive closure of →. Note144

that if C →∗ C ′ then |C| = |C ′|, in other words there is no deletion or creation of processes145

during an execution.146

qi qf

?c

?d
q?a

?b

!d

?a
qL qL

i

!a

!b
qL

f
!c

Figure 1 A rendez-vous protocol

I Example 2. Figure 1 provides an example of rendez-vous protocol where the process states147

are represented by circles and the leader states by diamond.148

2.2 The cut-off problem149

We can now describe the problem we address. It consists in determining given a protocol150

whether there exists a number of processes such that if we put more processes in the network151

it is always possible to find an execution which brings all the entities from their initial state152

to their final state. This cut-off problem (C.O.P.) can be stated formally as follows:153

Input: A rendez-vous protocol P;154

Output: Does there exist a cut-off B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B ?155

I Example 3. The rendez-vous network represented in Figure 1 admits a cut-off equal to 3.156

For n = 3, we have indeed an execution C(3)
i →∗ C(3)

f : 〈〈qL
i , qi, qi, qi〉〉

d−→ 〈〈qL
i , qi, q, qf 〉〉

a−→157

〈〈qL, qi, q, qf 〉〉
b−→ 〈〈qL

i , qi, qf , qf 〉〉
c−→ 〈〈qL

f , qf , qf , qf 〉〉 (we indicate for each transition the158

label of the corresponding rendez-vous). For n = 4, the following sequence of rendez-vous leads159

to an execution C(4)
i →∗ C(4)

f : 〈〈qL
i , qi, qi, qi, qi〉〉

d−→ 〈〈qL
i , qi, qi, q, qf 〉〉

a−→ 〈〈qL, qi, qi, qi, qf 〉〉
d−→160

〈〈qL, qi, q, qf , qf 〉〉
b−→ 〈〈qL

i , qi, qf , qf , qf 〉〉
c−→ 〈〈qL

f , qf , qf , qf , qf 〉〉. Then for any n > 4, we can161

always come back to the case where n = 3 (if n is odd) or n = 4 (if n is even). In fact, we162

can always let 3 or 4 processes in qi and move pairwise the other processes, one in q and one163

in qf . Then the processes in q can be brought in qf thanks to the rendez-vous a and b and164
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the leader loop between qL
i and qL. Note that if we delete the edge (q, ?a, qi), this protocol165

does not admit anymore a cut-off but for all odd number n ≥ 3, we have C(n)
i →∗ C(n)

f .166

2.3 Petri nets167

As we shall see there are some strong connections between rendez-vous protocols and Petri168

nets, this is the reason why we recall the definition of this latter model.169

I Definition 4 (Petri net). A Petri net N is a tuple 〈P, T, Pre, Post〉 where P is a finite170

set of places, T is a finite set of transitions, Pre : T 7→ NP is the precondition function and171

Post : T 7→ NP is the postcondition function.172

A marking of a Petri net is a multiset M ∈ NP . A Petri net defines a transition relation173

⇒⊆ NP × T × NP such that M t=⇒M ′ for M,M ′ ∈ NP and t ∈ T if and only if M ≥ Pre(t)174

and M ′ = M − Pre(t) + Post(t). The intuition behind Petri nets is that marking put175

tokens in some places and each transition consumes with Pre some tokens and produces176

others thanks to Post in order to create a new marking. We write M ⇒M ′ iff there exists177

t ∈ T such that M t=⇒ M ′. Given a marking M ∈ NP , the reachability set of M is the set178

Reach(M) = {M ′ ∈ NP |M ⇒∗ M ′} where ⇒∗ is the reflexive and transitive closure of ⇒.179

One famous problem in Petri nets is the reachability problem:180

Input: A Petri net N and two markings M and M ′;181

Output: Do we have M ′ ∈ Reach(M) ?182

This problem is decidable [32, 27, 28, 29] and non elementary [12]. Another similar problem183

that we will refer to and which is easier to solve is the reversible reachability problem:184

Input: A Petri net N and two markings M and M ′;185

Output: Do we have M ′ ∈ Reach(M) and M ∈ Reach(M ′)?186

It has been shown in [31] to be EXPSpace-complete.187

3 Back and forth between rendez-vous protocols and Petri nets188

3.1 From Petri nets to rendez-vous protocols189

We will see here how the reachability problem for Petri nets can be reduced to the C.O.P.190

which gives us a non-elementary lower bound for this latter problem. We consider in the191

sequel a Petri net N = 〈P, T, Pre, Post〉 and two markings M,M ′ ∈ NP . Without loss of192

generality we can assume that M and M ′ are of the following form: there exists pi ∈ P193

such that M(pi) = 1 and M(p) = 0 for all p ∈ P \ {pi} and there exists pf ∈ P such that194

M ′(pf ) = 1 and M ′(p) = 0 for all p ∈ P \ {pf}. Taking these restrictions on the markings195

does not alter the complexity of the reachability problem.196

We build from N a rendez-vous protocol PN which admits a cut-off if and only if197

M ′ ∈ Reach(M). The states of the processes in PN are matched to the places of N , the198

number of processes in a state corresponding to the number of tokens in the associated199

place, and the leader is in charge to move the processes in order to simulate the changing200

on the number of tokens. The protocol is equipped with an extra state R, the reserve state,201

where the leader stores at the beginning of the simulation the number of processes which202

will simulate the tokens: when a transition produces a token in a place p, the leader moves a203

process from R to p and when it consumes a token from a place p, the leader moves a process204

from p to qf . Figure 2 provides an example of a Petri net and its associated rendez-vous205

network. In this net, the transition letter a is used to put as many processes as necessary206

to simulate the number of tokens in the places in the reserve state R. The letters pr(pj)207
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pi

t1

p2 p3

t2

pf

qL
i!a

qL
s

!pr(pi)

!b

!co(p
i )

!p
r(
p

2)

!pr(
p3)

!co(
p2)

!c
o(
p

3)!pr(p
f )

qL
f

!co(pf )

R

qi

?a

pi
?pr(pi)

p2

?p
r(
p 2

) p3
?pr(p3)

pf

?pr(p
f )

qf

?co(p
2 ) ?c

o(
p f

)?co(p
i ) ?c

o(
p 3

)

?b

Figure 2 A Petri net N and its associated rendez-vous network PN

are used to simulate the production of a token in the place pj by moving a process from208

R to pj and the letter co(pj) are used to simulate the consumption of a token in the place209

pj by moving a process from pj to qf . It is then easy to see that each loop on the state210

qL
s simulates a transition of the Petri net whereas the transition from qL

i to qL
s is used to211

build the initial marking and the transition from qL
s to qL

f is used to delete one token from212

the single place pf and move the corresponding process to qf . Finally, the letter b is used213

to ensure the cutoff property by moving from qi to qf the extra processes not needed to214

simulate the tokens. This construction gives us a hardness result for the C.O.P. thanks to215

the fact that the reachability problem in Petri nets is non-elementary [12].216

I Theorem 5. The C.O.P. is non-elementary.217

3.2 From rendez-vous protocols to Petri nets218

We now show how to encode the behavior of a rendez-vous protocol into a Petri net219

and give a reduction from the C.O.P. to a problem on the built Petri net. We consider220

a rendez-vous protocol P = 〈Q,QP , QL,Σ, qi, qf , q
L
i , q

L
f , E〉. From P, we build a Petri221

net NP = 〈P, T, Pre, Post〉 with P = {pq | q ∈ Q} and T = {ti, tLf } ∪ {t(q1,q2,a,q′
1,q′

2) |222

q1, q2, q
′
1, q
′
2 ∈ Q and a ∈ Σ and (q1, !a, q′1), (q2, ?a, q′2) ∈ E}. Intuitively in NP , we have a223

place for each state of P , the transition ti puts tokens corresponding to new processes in the224

place corresponding to the initial state qi, the transition tLf consumes a token in the place225

corresponding to the final state of the leader qL
f and each transition t(q1,q2,a,q′

1,q′
2) simulates226

the protocol respecting the associated semantics (it checks that there is one process in q1227

another one in q2 and that they can communicate thanks to the communication letter a ∈ Σ228

moving to q′1 and q′2). Figure 3 represents the Petri net NP for the protocol P of Figure 1229

(the transitions are only labeled with the letter of the rendez-vous).230

Unfortunately we did not find a way to reduce directly the C.O.P. to the reachability231

problem in Petri nets which would have lead directly to the decidability of C.O.P. However we232

will see how the C.O.P. on P can lead to a decision problem on NP . We consider the initial233

marking M0 ∈ NP such that M0(pqL
i

) = 1 and M0(p) = 0 for all p ∈ P \{pqL
i
} and the family234

of markings (M (n)
f ){n∈N} such that M (n)

f (pqf
) = n and M (n)

f (p) = 0 for all p ∈ P \ {pqf
}.235

From the way we build the Petri net NP , we deduce the following lemma:236

I Lemma 6. For all n ∈ N, C(n)
i →∗ C(n)

f in P iff M
(n)
f ∈ Reach(M0) in NP .237
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pqf

pqi

pq

pqL
f

pqL
i

pqL

ti

d
2

c

a

a

b

tL
f

Figure 3 The Petri net NP for the protocol P of Figure 1

This leads us to propose a cut-off problem for Petri nets, which asks whether given an238

initial marking and a specific place, there exists a bound B ∈ N such that for all n ≥ B it is239

possible to reach a marking with n tokens in the specific place and none in the other. This240

single place cut-off problem (single place C.O.P.) can be stated formally as follows:241

Input: A Petri net N , an initial marking M0 and a place pf ;242

Output: Does there exist B ∈ N such that for all n ≥ B, we have M (n) ∈ Reach(M0)243

in N where M (n) is the marking verifying M (n)(pf ) = n and M (n)(p) = 0 for all244

p ∈ P \ {pf}?245

Thanks to Lemma 6, we can then conclude the following proposition which justifies the246

introduction of the single place C.O.P. in our context.247

I Proposition 7. The C.O.P. reduces to the single place C.O.P.248

4 Solving C.O.P. in the general case249

We show how to solve the C.O.P. by solving the single place C.O.P. To the best of our250

knowledge this latter problem has not yet been studied and we do not see direct connections251

with existing studied problems on Petri nets. It amounts to check if for some B ∈ N we have252

{M ∈ NP | M(p) = 0 for all p ∈ P \ {pf} and M(pf ) ≥ B} ⊆ Reach(M0). We know from253

[26] that the projection of the reachability set on the single place pf is semilinear (that can254

be represented by a Presburger arithmetic formula), however this does not help us since we255

furthermore require the other places different from pf to be empty.256

4.1 Formal tools and associated results257

For P,P′ ⊆ Nn, we let P+P′ = {p+p′ | p ∈ P and p′ ∈ P′} and we shall sometimes identify258

an element p ∈ Nn with the singleton {p}. A subset P of Nn for n > 0 is said to be periodic259

iff 0 ∈ P and P + P ⊆ P. Such a periodic set P is finitely generated if there exists a finite set260

of elements {p1, . . . ,pk} ⊂ Nn such that P = {λ1.p1 + . . .+ λk.pk | λi ∈ N for all i ∈ [1, k]}.261

A semilinear set of Nk is then a finite union of sets of the form b + P where b ∈ Nk and P262

is finitely generated. Semilinear sets are particularly useful tools because they are closed263

under the classical operations (union, complement and projection) and they provide a finite264

representation of infinite sets of vectors of naturals. Furthermore they can be represented265
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by logical formulae expressed in Presburger arithmetic which is the decidable first-order266

theory of natural numbers with addition. A formula φ(x1, . . . , xk) of Presburger arithmetic267

with free variables x1, . . . , xk defines a set JφK ⊆ Nk given by {v ∈ Nk | v |= φ} (here268

|= is the classical satisfiability relation for Presburger arithmetic and it holds true if the269

formula holds when replacing each xi by v[i]). In [22], it was proven that a set S ⊆ Nk
270

is semilinear iff there exists a Presburger formula φ such that S = JφK. Note that the set271

{M ∈ NP | M(p) = 0 for all p ∈ P \ {pf}} has a single interesting component, the other272

being 0. We will hence need the following result to show it is indeed semilinear.273

I Lemma 8. Every periodic subset P ⊆ N is semilinear.274

We now recall some connections between Petri nets and semilinear sets. Let N =275

〈P, T, Pre, Post〉 be a Petri net with P = {p1, . . . , pk}, this allows us to look at the markings276

as elements of Nk or of NP . Given a language of finite words of transitions L ⊆ T ∗ and a277

marking M , let Reach(M,L) be the reachable markings produced by L from M defined by278

{M ′ ⊆ Nk | ∃w ∈ L such that M w=⇒M ′} where we extend in the classical way the relation279

⇒ over words of transitions by saying M ε=⇒M and if w = t.w′, we have M w=⇒M ′ iff there280

existsM ′′ such thatM t=⇒M ′′
w′

=⇒M ′. A flat expression of transitions is a regular expression281

over T of the form T1T2 . . . T` where each Ti is either a finite word in T ∗ or of the form w∗282

with w ∈ T ∗. For a flat expression FE, we denote by L(FE) its associated language. In [20],283

the following result relating flat expressions of transitions and their produced reachability284

set is given (it has then been extended to more complex systems [19]).285

I Proposition 9. [20] Let N = 〈P, T, Pre, Post〉 be a Petri net, FE a flat expression286

of transitions and M ∈ NP a marking. Then Reach(M,L(FE)) is semilinear (and the287

corresponding Presburger formula can be computed).288

4.2 Deciding if a bound is a single-place cut-off289

We prove that if one provides a bound B ∈ N, we are able to decide whether it corresponds290

to a cut-off as defined in the single place C.O.P. Let N = 〈P, T, Pre, Post〉 be a Petri291

net with an initial marking M0 ∈ NP , a specific place pf ∈ P and a bound B ∈ N. We292

would like to decide whether the following inclusion holds {M ∈ NP |M(p) = 0 for all p ∈293

P \ {pf} and M(pf ) ≥ B} ⊆ Reach(M0). An important point to decide this inclusion lies in294

the fact that the set {M ∈ NP |M(p) = 0 for all p ∈ P \{pf} and M(pf ) ≥ B} is semilinear295

and this allows us to use a method similar to the one proposed in [24] to check whether the296

reachability set of a Petri net equipped with a semilinear set of initial markings is universal.297

One key point is the following result which is a reformulation of a Lemma in [30]. This result298

was originally stated for Vector Addition System with States (VASS), but it is well known299

that a Petri net can be translated into a VASS with an equivalent reachability set.300

I Proposition 10. [24, Theorem 1] Let N = 〈P, T, Pre, Post〉 be a Petri net, M ∈ NP a301

marking and S ⊆ NP a semilinear set of markings. If S ⊆ Reach(M) then there is a flat302

expression FE of transitions such that S ⊆ Reach(M,L(FE)).303

Following the technique used in [24], this proposition provides us a tool to solve our304

inclusion problem. We use two semi-procedures, one searches for a M ′ ∈ {M ∈ NP |305

M(p) = 0 for all p ∈ P \ {pf} and M(pf ) ≥ B} but not in Reach(M0) and the other one306

searches a flat expression of transitions FE such that {M ∈ NP | M(p) = 0 for all p ∈307

P \ {pf} and M(pf ) ≥ B} ⊆ Reach(M0, L(FE)).308
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I Proposition 11. For a Petri net N = 〈P, T, Pre, Post〉, a marking M0 ∈ NP , a place309

pF ∈ P and a bound B ∈ N, testing whether {M ∈ NP | M(p) = 0 for all p ∈ P \310

{pf} and M(pf ) ≥ B} ⊆ Reach(M0) is decidable.311

4.3 Finding the bound312

We now show why the single-place C.O.P. is decidable. Let N = 〈P, T, Pre, Post〉 be a313

Petri net with a marking M0 ∈ NP and a place pf ∈ P . One key aspect is that the set of314

markings reachable from M0 with no token in the other places except pf is semilinear. This315

is a consequence of the following proposition.316

I Proposition 12. [30, Lemma IX.1] Let S ⊆ NP be a semilinear set of markings. Then317

the set Reach(M0) ∩ S is a finite union of sets b + P where b ∈ NP and P ⊆ NP is periodic.318

From this proposition and Lemma 8, we can deduce the following result.319

I Proposition 13. Reach(M0) ∩ {M ∈ NP |M(p) = 0 for all p ∈ P \ {pf}} is semilinear.320

Another key point for the decidability of the single-place C.O.P. is the ability to test321

whether the intersection of the reachability set of a Petri net with a linear set is empty. In322

fact, it reduces to the reachability problem.323

I Lemma 14. If S ⊆ NP is a linear set of the form b + P where P is finitely generated,324

then testing whether Reach(M0) ∩ S = ∅ is decidable.325

The previous results allow us to design two semi-procedures to decide the single place326

C.O.P. The first one enumerates the B ∈ N and uses the result of Proposition 11 to check if327

one is a cut-off. The other one uses the fact that if there does not exist a cut-off then the328

set {M /∈ Reach(M0) |M(p) = 0 for all p ∈ P \ {pf}} is semi-linear (by Proposition 13) and329

infinite and it includes a semi-linear set of the form {b + λ.p | λ ∈ N} with b,p ∈ NP and330

0 < p. In this latter case we have Reach(M0) ∩ {b + λ.p | λ ∈ N} = ∅ and we use the result331

of Lemma 14 to enumerate the b,p and find a pair satisfying this property.332

I Theorem 15. The single place C.O.P. is decidable.333

Thanks to Proposition 7, we obtain the result which concludes this section.334

I Corollary 16. The C.O.P. is decidable.335

5 The specific case of symmetric rendez-vous336

Even though the C.O.P. is decidable, the lower bound is quite bad as mentioned in Theorem337

5 and the decision procedure presented in the proof of Theorem 15 is quite technical. We338

show here that for a specific family of rendez-vous protocols, solving C.O.P. is easier.339

5.1 Definition and basic properties340

A rendez-vous protocol P = 〈Q,QP , QL,Σ, qi, qf , q
L
i , q

L
f , E〉 is symmetric if it respects the341

following property: for all q, q′ ∈ Q and a ∈ Σ, we have (q, !a, q′) ∈ E iff (q, ?a, q′) ∈ E. In342

this context we denote such transitions by (q, a, q′). We furthermore assume w.l.o.g. that343

in the underlying graph of P for every states q in QP there is a path from qi to q and a344

path from q to qf (otherwise an initial configuration can never reach a configuration with a345
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process in q or from a configuration with a process in q a final configuration can never been346

reached). We now work under these hypotheses.347

In symmetric rendez-vous protocols, it is always possible to bring in any state as many348

pairs of processes one desires from the initial state qi and to remove as many pairs of processes349

(and bring them to the final state qf ). To perform such actions, it is enough to move pairs350

of processes following the same path (as the rendez-vous are symmetric, this is allowed351

by the semantics of rendez-vous protocols). We now state these properties formally. Let352

P = 〈Q,QP , QL,Σ, qi, qf , q
L
i , q

L
f , E〉 be a symmetric rendez-vous protocol.353

I Lemma 17. Let C ∈ C verifying C(|C|−1)
i →∗ C. Then:354

1. for all C ′ ∈ C such that C(q) ≤ C ′(q) and (C(q) = C ′(q)) mod 2 for all q ∈ Q, we have355

C
(|C′|−1)
i →∗ C ′,and,356

2. for all C ′ ∈ C such that |C ′| = |C| and C ′(q) ≤ C(q) for all q ∈ Q \ {qf} and (C(q) =357

C ′(q)) mod 2 for all q ∈ Q, we have C(|C′|−1)
i →∗ C ′.358

As a consequence, we show that there is a cut-off in P iff a final configuration with an359

even number and another one with an odd number of processes are reachable in P.360

I Lemma 18. There exists B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B iff there exists an361

even nE ∈ N and an odd nO ∈ N such that C(nE)
i →∗ C(nE)

f and C(nO)
i →∗ C(nO)

f .362

5.2 The even-odd abstraction363

We now present our tool to decide C.O.P. for a symmetric rendez-vous protocol P =364

〈Q,QP , QL,Σ, qi, qf , q
L
i , q

L
f , E〉. We build an abstraction of the transition system (C,→)365

where we only remember the state of the leader and whether the number of processes in366

each state is even (denoted by E) or odd (O). Let Ê = O and ̂̂E = E. The set of even-odd367

configurations is ΓEO = QL × {E,O}QP . To an even-odd configuration (qL, γ) ∈ ΓEO, we368

associate the set of configurations J(qL, γ)K ⊆ C such that J(qL, γ)K = {C ∈ C | C(qL) =369

1 and C(q) = 0 mod 2 iff γ(q) = E}. We now define the even-odd transition relation370

99K⊆ ΓEO×E×E×ΓEO. We have (qL
1 , γ1)

e,e′

99K (qL
2 , γ2) iff one the following conditions holds:371

1. e = (qL
1 , a, q

L
2 ) and e′ = (q1, a, q2) belongs to QP × RV (Σ) × QP and if q1 = q2 then372

γ2 = γ1 else γ2(q1) = γ̂1(q1), γ2(q2) = γ̂1(q2) and γ2(q) = γ1(q) for all q ∈ QP \ {q1, q2}.373

2. e, e′ ∈ QP × RV (Σ)×QP and qL
1 = qL

2 and e = (q1, a, q2) and e′ = (q3, a, q4) and there374

exists γ′ ∈ {E,O}QP such that:375

if q1 = q2 then γ′ = γ1 else γ′(q1) = γ̂1(q1), γ′(q2) = γ̂1(q2) and γ′(q) = γ1(q) for all376

q ∈ QP \ {q1, q2}, and,377

if q3 = q4 then γ2 = γ′ else γ2(q3) = γ̂′(q3), γ2(q4) = γ̂′(q4) and γ2(q) = γ′(q) for all378

q ∈ QP \ {q3, q4}.379

The relation
e,e′

99K reflects how the parity of the number of processes changes when performing380

a rendez-vous involving edges e and e′. For instance, the first case illustrates a rendez-vous381

between the leader and a process, hence the parity of the number of states in q1 and in382

q2 changes except when these two control states are equal. The second case deals with a383

rendez-vous between two processes and it is cut in two steps to take care of the cases like for384

instance q1 6= q2 and q3 6= q4 and q1 6= q4 and q2 = q3; in fact here the parity of the number385

of processes in q2 should not change, since the first transition adds one process to q2 and the386

second one removes one from it. We write (qL
1 , γ1) 99K (qL

2 , γ2) iff there exists e, e′ ∈ E such387

that (qL
1 , γ1)

e,e′

99K (qL
2 , γ2) and 99K∗ denotes the reflexive and transitive closure of 99K.388
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As said earlier, (ΓEO, 99K) is an abstraction of (C,→). We will prove that this abstraction389

is enough to solve the C.O.P. For this, we define the following abstract configurations in ΓEO:390

(qL
i , γ

E
i ) and (qL

f , γ
E
f ) are such that γE

i (q) = γE
f (q) = E for all q ∈ QP ;391

(qL
i , γ

O
i ) and (qL

f , γ
O
f ) are such that γO

i (q) = γO
f (q) = E for all q ∈ QP \ {qi, qf} and392

γO
i (qf ) = γO

f (qi) = E and γO
i (qi) = γO

f (qf ) = O.393

Note that we have then {C(n)
i | n is even} ⊆ J(qL

i , γ
E
i )K and {C(n)

i | n is odd} ⊆ J(qL
i , γ

O
i )K394

and {C(n)
f | n is even} ⊆ J(qL

f , γ
E
f )K and {C(n)

f | n is odd} ⊆ J(qL
f , γ

O
f )K. According to the395

definitions of the relations → and 99K, we can easily deduce this first result.396

I Lemma 19 (Completeness). Let n ∈ N. If C(n)
i →∗ C(n)

f and n is even [resp. n is odd]397

then (qL
i , γ

E
i ) 99K∗ (qL

f , γ
E
f ) [resp. (qL

f , γ
O
i ) 99K∗ (qL

f , γ
O
f )].398

The two next lemmas show that our abstraction is sound for C.O.P. The first one can be399

proved by induction on the length of the path in (ΓEO, 99K) using Point 1. of Lemma 17.400

I Lemma 20. If (qL
i , γ

E
i ) 99K∗ (qL, γ) [resp. (qL

i , γ
O
i ) 99K∗ (qL, γ)] then there exists n ∈401

N \ {0} such that n is even [resp. n is odd] and C(n)
i →∗ C with C ∈ J(qL, γ)K.402

Using Point 2. of Lemma 17 we obtain the soundness of our abstraction.403

I Lemma 21 (Soundness). If (qL
i , γ

E
i ) 99K∗ (qL

f , γ
E
f ) [resp. (qL

i , γ
O
i ) 99K∗ (qL

f , γ
O
f )] then there404

exists n ∈ N such that n is even [resp. n is odd] and C(n)
i →∗ C(n)

f .405

Thanks to the Lemmas 18, 19 and 21 to solve the C.O.P. when the considered rendez-vous406

protocol is symmetric it is enough to check whether (qL
i , γ

E
i ) 99K∗ (qL

f , γ
E
f ) and (qL

i , γ
O
i ) 99K∗407

(qL
f , γ

O
f ). But since the transition system (ΓEO, 99K) has a finite number of vertices whose408

number is bounded by |QL| ·2|QP |, these two reachability questions can be solved in NPspace409

in |Q|. By Savitch’s theorem, we obtain the following result.410

I Theorem 22. C.O.P. restricted to symmetric rendez-vous protocols is in PSpace.411

6 Supressing the leader412

6.1 Definition and properties413

A rendez-vous protocol P = 〈Q,QP , QL,Σ, qi, qf , q
L
i , q

L
f , E〉 has no leader when QL = {qL

f }414

and qL
i = qL

f and the transition relation does not refer to the state in QL, i.e. E ⊆415

QP ×RV (Σ)×QP . We can then assume that P = 〈QP ,Σ, qi, qf , E〉 and delete any reference416

to the leader state. We suppose again w.l.o.g. that in the considered rendez-vous protocols417

without leader there is a path from qi to q and a path from q to qf for all q in QP . Rendez-vous418

protocols with no leader enjoy some properties easing the resolution of the C.O.P.419

I Lemma 23. Let P = 〈QP ,Σ, qi, qf , E〉 be a rendez-vous protocol with no leader. Then the420

following properties hold:421

1. If C(n)
i →∗ C(n)

f and C(m)
i →∗ C(m)

f for m,n ∈ N, then C(n+m)
i →∗ C(n+m)

f .422

2. There exists B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B iff there exists N ∈ N such423

that C(N)
i →∗ C(N)

f and C(N+1)
i →∗ C(N+1)

f .424

Proof. 1. This point is a direct consequence of the semantics of rendez-vous protocols425

associated with the fact that there is no leader. In fact assume C(n)
i →∗ C(n)

f and426

C
(m)
i →∗ C(m)

f . And consider the configuration C such that C(qi) = m, C(qf ) = n and427
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C(q) = 0 for all q ∈ QP \{qi, qf}. Then it is clear that we have C(n+m)
i →∗ C →∗ C(n+m)

f ,428

the first part of this execution mimicking the execution C(n)
i →∗ C(n)

f and the last part429

mimics the execution C(m)
i →∗ C(m)

f on the m processes left in qi in C.430

2. If there exists B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B, then we have C(B)
i →∗ C(B)

f431

and C(B+1)
i →∗ C(B+1)

f . Assume now that there exists N ∈ N such that C(N)
i →∗ C(N)

f432

and C
(N+1)
i →∗ C(N+1)

f . We show that for all n ≥ N2, we have C(n)
i →∗ C(n)

f . Let433

n ≥ N2 and let R ∈ [0, N−1] be such that (n = R) mod N . By definition of the modulo,434

there exists A ≥ 0 such that n = A ·N +R. Since n ≥ N2, we have necessarily A ≥ N .435

As a consequence we can rewrite n as: n = R · (N + 1) + (A− R) ·N . But then since436

C
(N)
i →∗ C(N)

f , by 1. we have C((A−R)·N)
i →∗ C((A−R)·N)

f and since C(N+1)
i →∗ C(N+1)

f ,437

by 1. we have C(R·(N+1))
i →∗ C(R·(N+1))

f . By a last application of 1. we get C(n)
i →∗ C(n)

f .438

J439

6.2 The symmetric case440

We will now see how the procedure proposed in the proof of Theorem 22 to solve in polynomial441

space the C.O.P. for symmetric rendez-vous protocols can be simplified when there is no442

leader. Let P = 〈QP ,Σ, qi, qf , E〉 be a symmetric rendez-vous protocol with no leader and443

let (ΓEO, 99K) be the abstract transition system of (C,→) as defined in Section 5.2. If we444

adapt the results of Lemmas 18, 19 and 21 to the no leader case, we deduce that to solve445

the C.O.P. it is enough to check whether γE
i 99K∗ γE

f and γO
i 99K∗ γO

f (we have deleted the446

leader states from these results). Note that by definition γE
i = γE

f , hence the only thing to447

verify is if γO
i 99K∗ γO

f holds. This check can be made efficiently using the fact that there448

is no leader, because any reodering of a path is still a path in (ΓEO, 99K) (since we do not449

need to worry anymore about the leader state) and we can delete the pairs of edges that450

consecutively repeat since they have the same action on the parity.451

I Lemma 24. If γ 99K∗ γ′ then there exists k ≤ |E|2 and e1, e
′
1, e2, e

′
2, . . . , ek, e

′
k ∈ E such452

that γ
e1,e′

1
99K γ1

e2,e′
2

99K . . .
ek,e′

k
99K γ′.453

It means that if γO
i 99K∗ γO

f then there is a path of polynomial length (in the size of P)454

between these two abstract configurations. It is hence enough to guess such a sequence of455

polynomial length and to check that it effectively corresponds to a path in (ΓEO, 99K).456

I Theorem 25. C.O.P. for symmetric rendez-vous protocols with no leader is in NP.457

6.3 Upper bound for the C.O.P. with no leader458

We now prove that the C.O.P. for rendez-vous protocols with no leader reduces to the459

reversible reachability problem in Petri nets. Let P = 〈QP ,Σ, qi, qf , E〉 be a rendez-vous460

protocol with no leader and such that w.l.o.g. there is no edge going out of qf
1.461

Let NP = 〈P, T, Pre, Post〉 be the Petri net whose construction is provided in Section462

3.2 (where we have removed all the places corresponding to leader states as well as the463

transition tLf ). From NP , we build the reverse Petri net NR
P obtained by keeping the same464

set of places and reversing all the transitions. Formally NR
P = 〈PR, TR, P reR, PostR〉, where465

1 To achieve this, we can simply duplicate qf adding a new final state q′
f and for each edge going into qf

we add an edge from the same state to q′
f
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!a
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qi
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Figure 4 A rendez-vous protocol with no leader P and the associated Petri net N ′
P

PR = {pR | p ∈ P}, TR = {tR | t ∈ T} and for all pR ∈ PR and tR ∈ TR, we have466

PreR(tR)(pR) = Post(t)(p) and PostR(tR)(pR) = Pre(t)(p). Let MR
0 be the marking such467

that MR
0 (pR) = 0 for all pR ∈ PR and (MR,(n)

f ){n∈N} be the family of markings verifying468

M
R,(n)
f (pR

qf
) = n and MR,(n)

f (p) = 0 for all p ∈ PR \ {pR
qf
}. A direct consequence of Lemma469

6 and of the definition of NR
P is that C(n)

i →∗ C(n)
f iff MR

0 ∈ Reach(MR,(n)
f ) for all n ∈ N.470

From NP and NR
P , we build the Petri net N ′P obtained by taking the disjoint unions of471

places and transitions of the two nets except for the place pqf
and pR

qf
which are merged472

in a single place pqf
. Formally, N ′P = 〈P ′, T ′, P re′, Post′〉 where P ′ = (P ∪ PR) \ {pR

qf
},473

T ′ = T ∪ TR, Pre′(t)(p) = Pre(t)(p) and Post′(t)(p) = Post(t)(p) and Pre′(t)(pR) =474

Post′(t)(pR) = 0 for all p ∈ P , pR ∈ PR and t ∈ T , Pre′(tR)(pR) = PreR(tR)(pR) and475

Post′(tR)(pR) = PostR(tR)(pR) and Pre′(tR)(p) = Post′(tR)(p) = 0 for all pR ∈ PR,476

p ∈ P \ {pqf
} and t ∈ T , and Pre′(tR)(pqf

) = PreR(tR)(pR
qf

)) and Post′(tR)(pqf
) =477

PostR(tR)(pR
qf

)) (this last case corresponds to the merging of pqf
and pR

qf
). Figure 4 provides478

an example of this latter Petri net.479

We now explain why this new net is useful to solve the C.O.P. when there is no leader.480

First remember that thanks to Point 2. of Lemma 23 it is enough to check whether there481

exists N ∈ N such that C(N)
i →∗ C(N)

f and C
(N+1)
i →∗ C(N+1)

f . Intuitively, in N ′P this482

property will be witnessed by the fact that we can bring N + 1 tokens in pqf
using transitions483

in T and remove N tokens from pqf
thanks to the transitions in TR letting hence one token484

in pqf
and similarly if there is already a token in pqf

we can bring N others and remove485

afterwards N + 1. As for NP , we let M0 be the marking with no token, and (M (n)){n∈N}486

be the family of markings such that M (n)(pqf
) = n and M (n)(p) = 0 for all p ∈ P ′ \ {pqf

}.487

Note that since there is no leader, we have here M0 = M (0). The next lemma states the488

correctness of our reduction to the reversible reachability problem.489

I Lemma 26. There exists N ∈ N such that C(N)
i →∗ C(N)

f and C(N+1)
i →∗ C(N+1)

f iff490

M (1) ∈ Reach(M0) and M0 ∈ Reach(M (1)) in the Petri net N ′P .491

Since we know that the reversible reachability problem for Petri net is EXPspace-complete492

[31], we obtain the following complexity result.493

I Theorem 27. C.O.P. restricted to rendez-vous protocols with no leader is in EXPSpace.494

We were not able to propose a lower bound for the C.O.P. apart for the general case,495

but when there is no leader, we know that there is a protocol which admits a cut-off whose496

value is exponential in the size of a protocol. This protocol is shown on Figure 5. To bring497

a process in q1, we need in fact two processes, to bring a process in q2 and empty q1, we498

need four processes and so on. The letter a is then used to ensure that as soon as we have499
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qi q1?1
!1

q2
!2

?2

q3
!3

?3

· · · qn
!n

?n

!a

qf
!a

?a

Figure 5 A rendez-vous protocol with no leader and an exponential cut-off

processes only in qn and in qi (and at least one of them in each of these states), there is a500

way to bring all of them in qf .501

7 Conclusion502

We have shown here that the C.O.P. is decidable for rendez-vous networks. Furthermore503

we have provided complexity upper bounds when considering restrictions on the networks504

such as symmetric rendez-vous or absence of leader. Unfortunately, we did not succeed in505

finding matching lower bounds. Reducing other problems to the C.O.P. is in fact tedious506

without leader or when allowing only symmetric rendez-vous, because it is then quite hard507

to enforce that a specific number of processes are in some states which is a property that508

is in general needed to design reductions. However we have some hope to either improve509

our upper bounds or find matching lower bounds. We wish as well to understand in which510

matters the techniques we used could be adapted to other parameterized systems and more511

specifically to population protocols. Finally, one of the justification to consider the cutoff512

problem is that in some distributed systems it could be the case that a correctness property513

does not hold for any number of processes, but that a minimal number of participants is514

needed to reach a goal. It could be interesting to study a variant of our cutoff problem where515

we do not require all the processes to reach a final state but we want to know given a number516

of processes how many among them can be brought in such a state. An interesting property517

could be to check whether there exists a bound b such that for any number of processes, the518

minimal number that can not be brought to a final state by any execution is always lower519

than b. In such networks, it would mean that at most b entities have to be sacrificed to let520

the others reach the final state.521
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