
How hard is it to verify flat affine counter
systems with the finite monoid property ?

Radu Iosif1 and Arnaud Sangnier2

1 Verimag, Univ Grenoble Alpes, CNRS
2 IRIF, Univ Paris Diderot, CNRS

Abstract. We study several decision problems for counter systems with
guards defined by convex polyhedra and updates defined by affine trans-
formations. In general, the reachability problem is undecidable for such
systems. Decidability can be achieved by imposing two restrictions: (1) the
control structure of the counter system is flat, meaning that nested loops
are forbidden, and (2) the multiplicative monoid generated by the affine
update matrices present in the system is finite. We provide complexity
bounds for several decision problems of such systems, by proving that
reachability and model checking for Past Linear Temporal Logic stands
in the second level of the polynomial hierarchy ΣP

2 , while model checking
for First Order Logic is PSPACE-complete.

1 Introduction

Counter systems are finite state automata extended with integer variables, also
known as counter automata or counter machines. These are Turing-complete
models of computation, often used to describe the behavior of complex real-life
systems, such as embedded/control hardware and/or software systems. Because
many verification problems, of rather complex systems, can be reduced to deci-
sion problems for counter systems, it is important to understand the difficulties
faced by potential verification algorithms designed to work with the latter.

Due to their succinctness and expressive power, most decision problems, such
as reachability, termination and temporal logic model-checking, are undecidable
for counter systems, even when the operations on the counters are restricted to
increment, decrement and zero-test [24]. This early negative result motivated the
search for subclasses with decidable decision problems. Such classes include one-
counter systems [14], vector addition systems with states [22], reversal-bounded
counter machines [15] and flat counter systems [4,12].

Flat counter systems are defined by a natural syntactic restriction, which
requires that no state occurs in more than one simple cycle in the control flow
graph of the system. Decidability results on the verification of reachability prob-
lems for flat counter systems have been obtained by proving that, under certain
restrictions on the logic that defines the transition rules, the set of reachable
configurations is semilinear and effectively definable in Presburger arithmetic
[4,12,6]. Even though flatness is an important restriction (few counter systems

modeling real-life hardware and software artifacts are actually flat), this class
provides the grounds for a useful method that under-approximates the set of be-
haviors of a non-flat counter system by larger and larger sets of paths described
by flat counter systems. This method is currently used by model checking tools,
such as Fast [2] and Flata [19], and has been applied to improve the results
of static analysis [13], as well as the convergence of counterexample-driven ab-
straction refinement algorithms [17]. Moreover, several works define classes of
flattable counter systems, for which there exist flat unfoldings of the system
with identical reachability sets. Such is the case of timed automata [7] and of
2-dimensional vector addition systems with states [21,3]. For these systems, the
method of under-approximations by flat unfoldings is guaranteed to terminate.

In general, the flatness restriction is shown to reduce the computational com-
plexity of several decision problems, such as reachability or temporal logic model
checking. For instance, in the case of Kripke structures, flatness reduces the com-
plexity of the model-checking of Linear Temporal Logic (LTL) from PSPACE
to NP [20]. When considering flat counter systems whose updates are described
by translations, the complexity of these problems drops from undecidable to
NP-complete [10], while model checking for First Order Logic (FO) is coined to
be PSPACE-complete [8]. For branching time temporal logics, flatness yields
decidable problems, but with less remarkable complexity bounds [9].

In this work, we focus on the model of affine counter systems, in which
each transition is labeled with (i) a guard defined by (a disjunction of) convex
polyhedra, i.e. linear systems of inequalities of the form C · x ≤ d, and (ii) a
deterministic update defined by an affine transformations f(x) = A · x + b
where A,C ∈ Zn×n are square matrices with integer entries, b,d ∈ Zn are
vectors of integer constants and x = [x1, . . . , xn] is a vector of counters. For
such systems, the set of reachable configurations is semilinear (thus reachability
is decidable), provided that the multiplicative monoid generated by the matrices
used in update functions is finite. This condition is also known as the finite
monoid property [4,12]. Moreover, it has been shown that the model-checking
of such systems, for an extended version of the branching time logic CTL∗ is
decidable, also by reduction to the satisfiability of a Presburger formula, of size
exponential in the size of the counter system [11].

In this work, we show that for flat affine counter systems with the finite
monoid property, reachability and model checking for Past LTL are ΣP

2 , whereas
model checking for FO is PSPACE-complete. Our result generalizes the results
for flat counter systems with translations [8,10], since these systems are a strict
subclass of flat affine counter systems with the finite monoid property. For in-
stance, a transfer of values between different counters can be done in one step
with an affine counter system, whereas a translating counter system would need
a cycle to implement such operations. Our proof technique is based on an anal-
ysis of the behavior of the sequence of matrix powers in a finite multiplicative
monoid, and adapts several techniques for translating counter systems to this
more general case.

Due to lack of space, omitted proofs can be found in [18].

2

2 Counter Systems and their Decision Problems

We denote by N and Z the sets of natural and integer numbers, respectively.
We write [`, u] for the integer interval {`, `+ 1, . . . , u}, where ` ≤ u, and abs(n)
for the absolute value of the integer n ∈ Z. The cardinality of a finite set S is
denoted by ‖S‖.

We denote by Zn×m the set of matrices with n rows and m columns, where
A[i] is the i-th column and A[i][j] is the entry on the i-th row and j-th column
of A ∈ Zn×m, for each i ∈ [1, n] and j ∈ [1,m]. If n = m, we call this number the
dimension of A, and we denote by In the identity matrix in Zn×n. ForA ∈ Zn×m
and B ∈ Zm×p, we denote by A ·B ∈ Zn×p the matrix product of A and B.
For a matrix A ∈ Zn×n, we define A0 = In and Ai = Ai−1 ·A, for all i > 0.

We write Zn for Zn×1 in the following. Each v ∈ Zn is a column vector,
where v[i] is the entry on its i-th row. For a vector x of variables of length n
and a matrix A ∈ Zm×n, the product A · x is the vector of terms (A · x)[i] =∑n
j=1A[i][j]·x[j], for all i ∈ [1,m]. A row vector is denoted by v = [v1, . . . , vn] ∈

Z1×n. For a row vector v, we denote its transpose by v>.
For a vector v ∈ Zn, we consider the standard infinity ‖v‖∞= maxni=1 abs(v[i])

norm . GivenA ∈ Zm×n, consider the induced ‖A‖∞= maxmi=1

∑n
j=1 abs(A[i][j]),

and the maximum ‖A‖max= maxmi=1 maxnj=1 abs(A[i][j]) norms. The size of a

matrix is size(A) =
∑m
i=1

∑n
j=1 log2(A[i][j]+1), with integers encoded in binary.

2.1 Counter systems

Let Xn = {x1, x2, . . . , xn} be a finite set of integer variables, called counters, x
be the vector such that x[i] = xi, for all i ∈ [1, n], and AP = {a,b, c, . . .} be
a countable set of boolean atomic propositions. A guard is either true, denoted
by >, or a disjunction of systems of inequalities, denoted by

∨k
i=1Ci · x ≤ di

where Ci ∈ Zm×n and di ∈ Zm for all i ∈ [1, k]. A guard is said to be without
disjunction if it is either true or it consists of a single system of inequalities.

An integer vector v ∈ Zn satisfies the guard g, written v |= g, if either

(i) g := >, or (ii) g :=
∨k
i=1Ci · x ≤ di and v is a solution of a system

Ci ·x ≤ di, for some i ∈ [1, k]. The set of guards using Xn is denoted by CG(Xn).
An affine function f : Zn → Zn is a pair (A, b) ∈ Zn×n × Zn. Given a vector
v ∈ Zn, the result of the function f = (A, b) applied to v is f(v) = A · v + b.
We denote by Affn the set of affine functions over Zn. An affine function (A, b)
where A = In is called a translation.

Definition 1. [Affine Counter System] For an integer n ≥ 0, an affine counter
system of dimension n (shortly a counter system) is a tuple S = 〈Q,Xn, ∆,Λ〉,
where: (i) Q is a finite set of control states, (ii) Λ : Q → 2AP is a labeling
function, and (iii) ∆ ⊆ Q×CG(Xn)×Affn×Q is a finite set of transition rules
labeled by guards and affine functions (updates).

A counter system is said to be disjunction free if all its guards are without
disjunction. For a transition rule δ = 〈q, g, f, q′〉 ∈ ∆, we use the notations

3

source(δ) = q, guard(δ) = g, update(δ) = f and target(δ) = q′. A path π of S
is a non-empty sequence of transition rules δ1 . . . δm such that source(δi+1) =
target(δi) for all i ∈ [1,m− 1]. The path π is a simple cycle if δ1 . . . δm are pair-
wise distinct and source(δ1) = target(δm). In this case, we denote source(π) =
target(π) = source(δ1). A counter system S is flat if for each control state q ∈ Q
there exists at most one simple cycle π such that source(π) = q. In such a system
any path leaving a simple cycle cannot revisit it.

Example 1. Figure 1 shows a flat counter system whose control states q0, q1, q2, q3
are labeled by the atomic propositions a, b, c, d, respectively. From the initial
state q0 with all counters equal to 0, this system begins with incrementing x1 a
certain number of times by a transition δ0 then, with δ1, it transfers the value
of the counter x1 to x3 and resets x1; the loop labeled by δ2 increments both x1
and x2 until they both reach the value of x3 and finally the loop labeled by δ4 is
used to decrement x2 and increment x1 until the value of x1 is twice the value
of x3. As a consequence, when the system reaches q3 the value of x1 is twice the
value of x3 and the value of x2 is equal to 0. Hence, any run reaching q3 visits
the state q1 exactly the same number of times as the state q2. �

q0
{a}

>[
1 0 0
0 1 0
0 0 1

] [
1
0
0

]
δ0

q1
{b}

x1≥1[
0 0 0
0 0 0
1 0 0

] [
0
0
0

]
δ1

x3≥1[
1 0 0
0 1 0
0 0 1

] [
1
1
0

]
δ2

q2
{c}

x1=x3[
1 0 0
0 1 0
0 0 1

] [
0
0
0

]
δ3

x2≥1[
1 0 0
0 1 0
0 0 1

] [
1
−1
0

]
δ4

q3
{d}

x1=2x3[
1 0 0
0 1 0
0 0 1

] [
0
0
0

]
δ5

>[
1 0 0
0 1 0
0 0 1

] [
0
0
0

]
δ6

Fig. 1. A flat affine counter system

The size of a counter system S is size(S) =
∑
δ∈∆ size(δ) +

∑
q∈Q ‖Λ(q)‖,

where size(δ) = 1 + size(guard(δ)) + size(update(δ)), for a guard g :=
∨k
i=1Ci ·

x ≤ di we have size(g) = Σk
i=1size(Ci)+size(di), and for an update f = (A, b),

size(f) = size(A) + size(b).
A counter system of dimension n = 0 is called a Kripke structure. We de-

note by KS and KSf the sets of Kripke structures and flat Kripke structures,
respectively. A counter system of dimension n ≥ 1 is translating if all updates
labeling the transition rules are pairs (In, b). Let TS and TSf denote the sets of
translating and flat translating counter systems of any dimension n ≥ 1.

For a counter system S of dimension n ≥ 1, we consider MS ⊆ Zn×n to be
the smallest set of matrices, closed under product, which contains In and each
matrix A occurring in an update (A, b) of a transition rule in S. Clearly, MS

forms a monoid with the matrix product and identity In. We say that S has the

4

finite monoid property if the setMS is finite. Let ASfm be the set of flat counter
systems with the finite monoid property and ASdf

fm its restriction to disjunction
free systems. These latter classes are the main focus of this paper.

A configuration of the counter system S = 〈Q,Xn, ∆,Λ〉 is a pair (q,v) ∈
Q× Zn, where q is the current control state and v[i] is the value of the counter
xi, for all i ∈ [1, n]. Given two configurations γ = (q,v) and γ′ = (q′,v′) and

a transition rule δ, we write γ
δ−→ γ′ iff q = source(δ), q′ = target(δ), v |=

guard(δ) and v′ = update(δ)(v). We use the notation γ −→ γ′ when there exists

a transition rule δ such that γ
δ−→ γ′. A run of S is then an infinite sequence

of the form ρ : γ0
δ0−→ γ1

δ1−→ γ2
δ2−→ We say that such a run starts at

configuration γ0, furthermore we denote by trans(ρ) = δ0δ1δ2 . . . the infinite
sequence of transition rules seen during ρ. Without loss of generality we consider
deadlock-free counter systems only, where for each configuration γ ∈ Q × Zn,
there exists a configuration γ′ such that γ −→ γ′3.

Example 2. The sequence below is a run of the counter system from Figure 1:q0,
0

0
0

 δ0−→

q0,
1

0
0

 δ1−→

q1,
0

0
1

 δ2−→

q1,
1

1
1

 δ3−→

q2,
1

1
1

δ4−→

q2,
2

0
1

 δ5−→

q3,
2

0
1

 δ6−→

q3,
2

0
1

 δ6−→

q3,
2

0
1

 δ6−→ · · · �

2.2 Decision Problems

The reachability problem for a class of counter systems C, denoted by Reach(C),
can then be stated as follows: given a counter system S in C, an initial configu-
ration γ0, and a control state qf , does S have a run starting in γ0 and containing
a configuration (qf ,v), for some v ∈ Zn? It is well known that Reach(TS) is
undecidable for non-flat counter systems, even for only 2 counters with zero test
guards, and increment/decrement updates [24].

In this work we also consider model checking problems for two specification
logics, namely Past Linear Temporal Logic (PLTL) and First Order Logic (FO).
The formulae of PLTL are defined by the grammar: φ ::= p | ¬φ | φ ∧ φ | Xφ |
φUφ | X−1φ | φSφ, where p ∈ AP. As usual, we consider the derived modal

operators Fφ := >Uφ and Gφ := ¬F¬φ. Given a run ρ : γ0
δ0−→ γ1

δ1−→ γ2
δ2−→ . . .

of a counter system S and a PLTL formula φ, the semantics of PLTL is defined
by an inductive forcing relation ρ, i |=PLTL φ, where for all i ≥ 0: ρ, i |=PLTL p ⇔

3 We ensure deadlock-freedom by adding a sink state σ to S, with a self-loop σ
>−→ σ,

and a transition q
>−→ σ from each state q ∈ Q.

5

γi = (q,v) and p ∈ Λ(q); ρ, i |=PLTL Xφ ⇔ ρ, i + 1 |=PLTL φ; ρ, i |=PLTL φUψ ⇔
ρ, j |=PLTL ψ for some j ≥ i and ρ, k |=PLTL φ for all i ≤ k < j; ρ, i |=PLTL X−1φ ⇔
i > 0 and ρ, i − 1 |=PLTL φ; ρ, i |=PLTL φSψ ⇔ ρ, j |=PLTL ψ for some 0 ≤ j ≤
i and ρ, k |=PLTL φ for all j < k ≤ i. The semantics of the boolean connectives ∧
and ¬ is the usual one. We write ρ |=PLTL φ for ρ, 0 |=PLTL φ. For instance, each
run of the counter system from Figure 1 satisfies G((b ∧ Xb ∧ Fd)→ F(c ∧ Xc)),
because each run visiting q3 sees the same number of b’s and c’s.

The formulae of FO are defined by the grammar: φ ::= p(z) | z < z′ | ¬φ |
φ ∧ φ | ∃z.φ, where p ∈ AP and z belongs to a countable set of logical variables
Var. The semantics is given by a forcing relation ρ |=FO φ between runs ρ of S and
closed formulae φ, with no free variables, which interprets the quantified variables
z ∈ Var as positive integers denoting positions in the run. With this convention,
the semantics of FO is standard. For instance, each run of the counter system
from Figure 1 satisfies the FO property: ∀x∀x′.(x < x′ ∧ b(x)∧ b(x′)∧ ∃z.d(z))→
∃y∃y′ . c(y)∧ c(y′), which differs from the previous PLTL formula only in that x
and x′ (y and y′) are not necessarily consecutive moments in time. For both of
these logics, we consider the size of a formula as its number of subformulae.

The model-checking problem for counter systems in a class C with specifi-
cation language L (in this work either PLTL or FO), denoted by MCL(C), is
defined as follows: given a counter system S in C, an initial configuration γ0, and
a formula φ of L, does there exist a run ρ of S starting in γ0 such that ρ |=L φ.

Table 1. Known results

KS KSf TS TSf ASfm

Reach NLOGSPACE NLOGSPACE Undec. [24] NP-c.[10] 4EXPtime [12]

MCPLTL PSPACE-c.[25] NP-c.[10,20] Undec. NP-c. [10] 4EXPTIME [11]

MCFO NONELEM. [26] PSPACE-c. [8] Undec. PSPACE-c. [8] Decid. [11]

Table 1 gives an overview of the known complexity bounds for the previ-
ously mentioned decision problems looking at different classes of counter sys-
tems. For flat Kripke structures, it is proved in [10,20] that MCPLTL(KSf) is NP-
complete and in [8] that MCFO(KSf) is Pspace-complete, whereas MCPLTL(KS)
is Pspace-complete and MCFO(KS) is non-elementary. As explained in [8,10],
the complexity of these two last problems does not change if one considers flat
translating counter systems. For what concerns flat counter systems with the
finite monoid property, it has been shown that one can compute a Presburger
formula which characterizes the reachability set, which entails the decidability
of Reach(ASfm) [12]. Later on, in [11], the authors have shown that the model-
checking of an extension of the branching time logic CTL∗ is decidable. Hence we
know that MCPLTL(ASfm) and MCFO(ASfm) are decidable, however no precise
complexity for these problems is known. We only can deduce from the proofs in
[12,5,11] that for Reach(ASfm) and MCPLTL(ASfm) there exists a reduction to
the satisfiability problem for Presburger arithmetic where the built formula is

6

exponentially bigger than the size of the model, this leads to an upper bound
in 4EXPTIME (the satisfiability problem for Presburger arithmetic can in fact
be solved in 3EXPTIME, see e.g. [16]).

In this work, we aim at improving the complexity for the problems related
to affine counter systems with the finite monoid property. Note that for the pre-
sented results, the counter systems were manipulating natural numbers instead
of integers, but considering the latter option does not change the stated results.

3 A Hardness Result

In this section we prove that the reachability problem for flat affine counter
systems with the finite monoid property is ΣP

2 -hard, by reduction from the va-
lidity problem for the ∃∗∀∗ fragment of quantified boolean formulae (Σ2-QBF),
which is a well-known ΣP

2 -complete problem [1, §5.2]. Let us consider a formula
Φ := ∃y1 . . . ∃yp∀z1 . . . ∀zq . Ψ(y, z), where y = {y1, . . . , yp} and z = {z1, . . . , zq}
are non-empty sets of boolean variables, and Ψ is a quantifier-free boolean for-
mula. We shall build, in polynomial time, a flat counter system SΦ, with the
finite monoid property, such that Φ is valid if and only if SΦ has a run reaching
qf which starts in (q0,v0) for a certain valuation v0 of its counters.

q0 q1

(IN , e1)

(IN ,0)

q2

(IN , e2)

(IN ,0)

q3

(IN , e3)

(IN ,0)

· · · qp−1 qp

(IN , ep)

(IN ,0)

q

g1
(M ,0)

g1
(M ,0)

qf

g2
(IN ,0)

Fig. 2. The counter system SΦ corresponding to the Σ2-QBF Φ

Let πn denote the n-th prime number, i.e. π1 = 2, π2 = 3, π3 = 5, etc.
Formally, SΦ = 〈Q,XN , ∆,Λ〉, where Q = {q0, . . . , qp, q, qf}, N = p+

∑q
n=1 πn,

and Λ is the function associating to each state an empty set of propositions. We
recall that πn is a polynomial in the size of n, hence N is as well polynomial in
the size of n. The transition rules ∆ are depicted in Figure 2. Intuitively, each
existentially quantified boolean variable yi of Φ is modeled by the counter xi
in SΦ, each universally quantified variable zj of Φ is modeled by the counter
xp+

∑j
n=1 πn

, and the rest are working counters. All counters range over the set

{0, 1}, with the obvious meaning (0 stands for false and 1 for true).
The counter system SΦ works in two phases. The first phase, corresponding

to transitions q0 −→ . . . −→ qp, initializes the counters x1, . . . , xp to some values

from the set {0, 1}, thus mimicking a choice of boolean values for the existentially
quantified variables y1, . . . , yp from Φ. Here IN ∈ ZN×N is the identity matrix,

and ei ∈ {0, 1}N is the unit vector such that ei[j] = 0 if j 6= i and ei[i] = 1.
The second phase checks that Φ is valid for each choice of z1, . . . , zq. This

is done by the cycle q −→ q, which explores all combinations of 0’s and 1’s for

7

the counters xp+
∑j
n=1 πn

, corresponding to zj , for all j ∈ [1, q]. To this end,

we use the permutation matrix M , which consists of Ip and q rotation blocks

Mπj ∈ {0, 1}
πj×πj (Figure 3). The valuation v0 ensures that the initial value of

xp+
∑j
n=1 πn

is 1, for all j ∈ [1, q], the other counters being 0 initially (Figure 3).

Ip
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
Mπ1

0 0

0 0
. . .

0 0 0

0 0 0

0 0 0
Mπq

0
0

p

p
π1

π1

πq

πq

0 1 0 0 0

0 0 1
. . . 0

0 0
. . .

. . . 0

0 0 0 0 1

1 0 · · · 0 0

0

0

.

.

.

0

0

1

.

.

.

0

.

.

.

0

1

M Mπj

v0

Fig. 3. Matrix M and initial vector v0

Intuitively, after n iterations of the affine function (M ,0), labeling the cycle
q −→ q in SΦ, we have xp+

∑j
n=1 πn

= 1 iff n is a multiple of πj . This fact guarantees

that all combinations of 0’s and 1’s for z1, . . . , zq have been visited in Πq
j=1πj

iterations of the cycle. The guard g1, labeling the cycle, tests that, at each
iteration, the formula Ψ is satisfied, using a standard encoding of the formula Ψ .
Namely, each variable yi is encoded as the term xi ≥ 1 and each zj is encoded
as xp+

∑j
n=1 πn

≥ 1.

For instance, the formula y1 ∨ ¬z2 is encoded as x1 ≥ 1 ∨ ¬(xp+π1+π2
≥ 1))

which is equivalent to x1 ≥ 1 ∨ xp+π1+π2
< 1. Finally, the guard g2 simply

checks that xπ1
= . . . = xπ1+...+πq = 1, ensuring that the loop has been iterated

sufficiently many times. This allows us to deduce the following result.

Lemma 1. Reach(ASfm) is ΣP
2 -hard.

4 Bounding the Number of Cycle Iterations

In this section we prove a crucial property of counter systems from the ASdf
fm

class, namely that there exists a polynomial function Poly(x) such that, for each
run ρ starting at γ0 of the considered counter system, there exists another run
ρ′ starting at γ0, using the same transition rules as ρ, in exactly the same order,
and which iterates each simple cycle at most 2Poly(size(S)+size(γ0)) times.

In the rest of this section, we fix a flat disjunction free affine counter system
S = 〈Q,Xn, ∆,Λ〉 with the finite monoid property. We recall here that the set of

8

runs of a flat counter system can be captured by a finite (though exponential)
number of path schemas [8]. Formally, a path schema is a non-empty finite
sequence P := u1 . . . uN , where ui is either a transition rule from ∆ or a simple
cycle, such that (i) u1, . . . , uN are pairwise distinct, (ii) uN is a simple cycle,
called terminal, and (iii) target(ui) = source(ui+1), for all i ∈ [1, N − 1]. All
simple cycles on P , except for uN , are called nonterminal. We use then the
following notations: len(P) for N , P [i] for ui with i ∈ [1, N], and size(P) is the
sum of the sizes of all transition rules occurring in P .

Intuitively a path schema P represents a set of infinite paths obtained by iter-
ating the non-terminal cycles a certain number of times. We can hence represent
such a path by an associated path schema and an iteration vector. Formally,
an iterated path schema is a pair 〈P,m〉, such that P is a path schema, and
m ∈ Nlen(P)−1 is a vector, where for all i ∈ [1, len(P) − 1], m[i] ≥ 1 and
m[i] > 1 implies that P [i] is a cycle. An iterated path schema defines a unique
infinite word over ∆, denoted by trans(P,m) = P [1]m[1]P [2]m[2] · · · P [len(P)−
1]m[len(P)−1]P [len(P)]ω. We recall the following result:

Lemma 2. [10] Let S be a flat affine counter system. Then:

1. the length and the size of a path schema of S are polynomial in size(S);
2. for any run ρ of S, there exists an iterated path schema 〈P,m〉 such that

trans(ρ) = trans(P,m).

For a run ρ, we consider the set ips(ρ) = {〈P,m〉 | trans(ρ) = trans(P,m)}.
Observe that ips(ρ) 6= ∅ for any run ρ of S, due to Lemma 2 (2). Moreover, as a
consequence of Lemma 2 (1), the number of path schemas is bounded by a simple
exponential in the size of S. Note that ips(ρ) is not necessarily a singleton: if a
run enters and exits a loop in different states then, in the path schema, the loop
may begin either from the entering state or from the exiting state.

We fix a run ρ of S starting at γ0, and 〈P,m〉 ∈ ips(ρ) an iterated path
schema corresponding to ρ. We consider a simple cycle c = δ0 . . . δk−1 of P ,
whose transition rules are δi = 〈qi,Ci · x ≤ di, (Ai, bi), qi+1〉, for all i ∈ [0, k−1],
and qk = q0. Let fc = (Ac, bc) be the update of the entire cycle c, where Ac =

Ak−1 · · · A1 ·A0, denoted
∏0
i=k−1Ai, and bc =

∑k−1
i=0

∏i+1
j=k−1Aj · bi. Since S

has the finite monoid property, the set Mc =
{
Ai
c | i ∈ N

}
is finite. Then there

exist two integer constants α, β ∈ N, such that 0 ≤ α+β ≤‖Mc‖ +1, and Aα
c =

Aα+β
c . Observe that, in this case, we have Mc =

{
A0
c , . . . ,A

α
c , . . . ,A

α+β−1
c

}
.

Our goal is to exhibit another run ρ′ of S and an iterated path schema
〈P,m′〉 ∈ ips(ρ′), such that ‖m′ ‖∞≤ 2Poly(size(S)+size(γ0)), for a polynomial
function Poly(x). Because c = δ0 . . . δk−1 is a simple cycle of P and 〈P,m〉 ∈
ips(ρ), there exists a (possibly infinite) contiguous subsequence of ρ, let us call
it θ = (q0,v0)

τ0−→ (q1,v1)
τ1−→ . . . that iterates c, i.e. τi = δ(i mod k), for all i ≥ 0.

In the following, we call any subsequence of a run an execution.

The main intuition now is that θ can be decomposed into a prefix of length
(α + β)k and k infinite sequences of translations along some effectively com-
putable vectors w0, . . . ,wk−1. More precisely, all valuations vi of θ, for i ≥

9

(α + β)k, that are situated at distance βk one from another, differ by exactly
the same vector. We refer to Figure 4 for an illustration of this idea.

(q0,v0) (q1,v1)
δ0 . . .

δ1
(q0,vk)

δk−1
. . .

δ0
(qk−1,vαk−1)

δk−2

(q0,vαk)

δk−1

(q1,vαk+1)

δ 0

(q2,vαk+2)

δ 1

(qk−1,vαk+k−1)

(q0,vαk+k)

δ k
−
1

(q1,v(α+1)k+1)

δ 0

(qk−1,v(α+β)k−1)

δ k
−
2

(q0,v(α+β)k)

δ k
−
1

+w0

(q1,v(α+β)k+1)

δ 0

+w1

(q2,v(α+β)k+2)

δ 1

+w2

(qk−1,v(α+β)k+k−1)
+wk−1

(q0,v(α+β)k+k)

δ k
−
1

+w0

(q1,v(α+β+1)k+1)

δ 0

+w1

(qk−1,v(α+2β)k−1)

δ k
−
2

+wk−1

(q0,v(α+2β)k)

δ k
−
1

+w0

(q1,v(α+2β)k+1)

δ 0

+w1

(q2,v(α+2β)k+2)

δ 1

+w2

(qk−1,v(α+2β)k+k−1)
+wk−1

(q0,v(α+2β)k+k)

δ k
−
1

+w0

(q1,v(α+2β+1)k+1)

δ 0

+w1

(qk−1,v(α+3β)k−1)

δ k
−
2

+wk−1

Fig. 4. Behavior of an execution which iterates α+ 3β times the cycle c = δ0 . . . δk−1

Lemma 3. Given an execution (q0,v0)
δ0−→ . . .

δk−1−−−→ (qk,vk)
δ0−→ . . . of S that

iterates a simple cycle c = δ0 . . . δk−1, there exist w0, . . . ,wk−1 ∈ Zn, such that
v(α+pβ+r)k+q = v(α+r)k+q +p ·wq, for all p ≥ 0, r ∈ [0, β−1] and q ∈ [0, k−1],

where fc = (Ac, bc) is the update of c and α, β ≥ 0 are such that Aα
c = Aα+β

c .

We distinguish now the case when c is a nonterminal cycle of P , iterated
finitely many times, from the case when c is terminal, thus iterated ad infinitum.
We consider first the case when c is a nonterminal cycle, taken a finite number
of times. Viewing the sequence of counter valuations, that occur during the
unfolding of a simple loop, as a set of translations by vectors w0, . . . ,wk−1,
prefixed by an initial sequence, allows us to reduce the problem of checking the
validity of the guards along this sequence to checking the guards only in the
beginning and in the end of each translation by wq, for q ∈ [0, k − 1]. This is
possible because the counter systems is disjunction free and hence each guard
in the loop is defined by a convex vector set {v ∈ Zn | C · v ≤ d}, for a matrix
C ∈ Zm×n and a vector d ∈ Zm, thus a sequence of vectors produced by a

10

translation cannot exit and then re-enter the same guard, later on. This crucial
observation, needed to prove the upper bound, is formalized below.

We consider the relaxed transition relation ;⊆ (Q × Zn) × ∆ × (Q × Zn),

defined as (q,v)
δ
; (q′,v′) iff source(δ) = q, v′ = update(δ)(v) and target(δ) =

q′. Hence, ; allows to move from one configuration to another as in −→, but

without testing the guards. In the following, we fix a sequence of configurations
θ′ = (q0,v0)

τ0
; (q1,v1)

τ1
; . . . called a pseudo-execution. We assume, moreover,

that θ′ iterates the simple cycle c = δ0, . . . , δk−1 a finite number of times, i.e.
τi := δi mod k, for all i ≥ 0. To check whether θ′ is a real execution, it is enough
to check the guards in the first α+ β + 1 and the last β iterations of the cycle,
as shown by the following lemma:

Lemma 4. For any m > (α+β+1)k, given a finite pseudo-execution (q0,v0)
τ0
;

. . .
τm−1
; (qm,vm) of S, that iterates a nonterminal simple cycle c = δ0 . . . δk−1,

(q0,v0)
τ0−→ . . .

τm−1−−−→ (qm,vm) is an execution of S iff vi |= guard(τi), for all

i ∈ [0, (α+ β + 1)k − 1] ∪ [m− βk,m− 1].

The next step is to show that if a cycle is iterated ` times with ` = α+ β +
pβ + r for some p > 0 and r ∈ [0, β − 1], starting with values v ∈ Zn, then
[v[1], . . . ,v[n], p]> is the solution of a system of inequations M c · [y; z]> ≤ nc,
where [y; z] = [y1, . . . , yn, z] is a vector of n + 1 variables. The bound on the
number of iterations follows from the theorem below, by proving that the sizes
of the entries of M c and nc (in binary) are bounded by a polynomial in size(S).

Theorem 1. Given A ∈ Zm×n and b ∈ Zm, for n ≥ 2, the system A · x ≤ b
has a solution in Nn iff it has a solution such that ‖x‖∞≤ m2n· ‖A‖nmax · ‖b‖∞.

We recall that c = δ0, . . . , δk−1, where guard(δi) := Ci ·x ≤ di, update(δi) :=
(Ai, bi), and that fc = (Ac, bc) is the affine function defining the update of the
entire cycle. For any j > 0, we define bjc = Σj−1

i=0A
i
c · bc, hence f `c = (A`

c, b
`
c) is

the update corresponding to ` iterations of the cycle for a fixed integer constant
` > 0. The following set of inequalities expresses the fact that all guards are
satisfied within the `-th iteration of the cycle starting at v ∈ Zn:

Cp·(
0∏

i=p−1
Ai·(A`−1

c ·v+b`−1c)+

p−1∑
i=0

Ap−1 · · ·Ai+1·bi) ≤ dp, for all p = 0, . . . , k−1

In the sequel, we define M ` as the matrix obtained by vertically stacking the
matrices Cj ·

∏0
i=j−1Ai ·A`−1

c for j = 0, . . . , k− 1, with C0 ·A`−1
c on top. Also,

n` is the column vector with rows n`[j] = dj −
(
Cj ·

∏0
i=j−1Ai · b`−1c + Cj ·

(
∑j−1
i=0 Aj−1 · · ·Ai+1 ·bi)

)
, for j = 0, . . . , k−1. For technical reasons that will be

made clear next, we do not need to consider the case when the loop is iterated
less than α + 2β + 1 times. We know, from Lemma 4, that checking whether a
given cycle c can be iterated ` > α + 2β + 1 times from v, reduces to checking

11

the validity of the guards during the first α+β+1 and the last β iterations only.
This condition is encoded by the union of the linear inequality systems below:[

M1
. . .

Mα+β+1

]
· v ≤

[
n1
. . .

nα+β+1

] [
M1
. . .
Mβ

]
· f `−βc (v) ≤

[
n1
. . .
nβ

]

Since we assumed that ` > α+2β+1, it follows that `−β = α+pβ+r for some
p > 0 and r ∈ [0, β−1], thus f `−βc (v) = fα+rc (v)+p·w0 = Aα+r

c ·v+bα+rc +p·w0,
by Lemma 3. Then, for any finite execution starting with v, and consisting of
α+ pβ + r iterations of c, we have that the column vector [v[1], . . . ,v[n], p]> is
a solution of the linear system M c,r · [y; z]> ≤ nc,r, where:

M c,r =

M1 0

. . .
Mα+β+1 0
M1 ·Aα+r

c M1 ·w0
. . .

Mβ ·Aα+r
c Mβ ·w0

 nc,r =

n1
. . .

nα+β+1

n1 −M1 · bα+rc
. . .

nβ −Mβ · bα+rc

We now consider the case when the simple cycle c = δ0 . . . δk−1 is terminal

and let w0, . . . ,wk−1 ∈ Zn be the vectors from Lemma 3. We say that c is
infinitely iterable iff for all i ∈ [0, k−1], we have Ci ·wi ≤ 0. Since w0, . . . ,wk−1
are effectively computable vectors4, this condition is effective. The next lemma
reduces the existence of an infinite iteration of the cycle to the existence of an
integer solution of a linear inequation system.

Lemma 5. Given an infinite pseudo-execution (q0,v0)
τ0
; (q1,v1)

τ1
; . . . of S,

that iterates a terminal simple cycle c = δ0 . . . δk−1, (q0,v0)
τ0−→ (q1,v1)

τ1−→ . . .

is an infinite execution of S iff c is infinitely iterable and vi |= guard(τi), for all
i ∈ [0, (α+ β + 1)k − 1].

As a consequence, for an infinitely iterable cycle c, the existence of an execution
that iterates c infinitely often is captured by the linear system M c,ω · y ≤ nc,ω,
where M c,ω and nc,ω are obtained by stacking the matrices M1, . . . ,Mα+β+1

and vectors n1, . . . ,nα+β+1, respectively.
We have now all the ingredients needed to bound the number of cycle it-

erations within the runs of a flat disjunction free affine counter system having
the finite monoid property. The argument used in the proof relies on the result
of Theorem 1, namely that the size of a minimal solution of a linear system of
inequalities is polynomially bounded in the maximum absolute value of its co-
efficients, and the number of rows, and exponentially bounded in the number of
columns. Since the number of rows depends on the maximum size of the monoids
of the update matrices in the counter system, we use the result from [18, Lemma
13, §B.1], namely that the size of a finite monoid of a square matrix is simply
exponential in the dimension of that matrix.

4 They are defined in the proof of Lemma 3.

12

Theorem 2. Given a flat disjunction free affine counter system S = 〈Q,Xn, ∆,Λ〉,
with the finite monoid property, for any run ρ of S, starting in (q0,v0), and
any iterated path schema 〈P,m〉 ∈ ips(ρ), there exists a run ρ′, starting in
(q0,v0), and an iterated path schema 〈P,m′〉 ∈ ips(ρ′), such that ‖m′ ‖∞≤
2Poly(size(S)+size(v0)), for a polynomial function Poly(x).

5 The Complexities of Decision Problems for ASdf
fm

In this section, we will prove that the previous reasoning on iterated path
schemas allows us to deduce complexity bounds of the reachability problems and
of model-checking with PLTL and FO formulae for disjunction free flat counter
systems with the finite monoid property.

5.1 Reachability is ΣP
2

In this section we give the first upper bound, for the reachability problem and
show that Reach(ASdf

fm) is ΣP
2 . Even if this upper bound holds only for disjunc-

tion free counter system, we believe we could extend it to all the class ASfm by
adapting the method presented in [10] to eliminate the disjunctions. This would
allow us to match the lower bound from Section 3. However we did not wish to
enter into the heavy details of eliminating disjunctions in this work, in order to
focus more on the specific aspects of affine counter systems. Anyway the provided
result improves the 4EXPTIME upper bound from Table 1. The crux of the
proof is based on the result provided by Theorem 2 and it follows the following
reasoning: we use a polynomial-time bounded nondeterministic Turing machine
that guesses an iterated path schema and then a NP oracle to check whether a
guard has been violated. This gives us an NPNP algorithm for Reach(ASdf

fm),
which then lies in ΣP

2 . Theorem 2 ensures us the soundness of the Algorithm
and the correctness is provided by the fact that if, in an iterated path schema,
no guard is violated then it corresponds necessarily to a run.

Let us now explain how our NP oracle works. The next lemma is based on
the fact that any power Ak of a finite monoid matrix A can be computed in time
polynomial in size(A) and log2 k, using matrix exponentiation by squaring. The
reason is that the value of an entry of any power of a finite monoid matrix A is
bounded by an exponential in size(A), thus the size of its binary representation
is polynomially bounded by size(A), and each step of the squaring algorithm
takes polynomial time [18, Lemma 14, §B.1].

Lemma 6. Given an iterated path schema 〈P,m〉 of a counter system with the
finite monoid property S and an initial configuration γ0, checking whether there
is no run ρ starting at γ0 such that 〈P,m〉 ∈ ips(ρ) is in NP.

The next theorem gives the main result of this section.

Theorem 3. Reach(ASdf
fm) is ΣP

2 .

13

5.2 PLTL Model Checking is ΣP
2

For a PLTL formula φ, its temporal depth td(φ) is defined as the maximal nesting
depth of temporal operators in φ, and the size of φ is its number of subformulae.
In [10, Theorem 4.1], the authors have proved a stuttering theorem for PLTL
stating that if an ω-word w = w1w

M
2 w3 over the alphabet 2AP with w2 6= ε

satisfies a PLTL formula φ (i.e. w, 0 |=PLTL φ) and if M ≥ 2td(φ) + 5 then all ω-
words w′ = w1w

M ′

2 w3 with M ′ ≥ 2td(φ) + 5 are such that w′, 0 |=PLTL φ. In other
words, to verify if an ω-word with some repeated infix words satisfies a PLTL
formula it is enough to verify the property for the ω-words where each infix is
repeated at most 2td(φ)+5 times. This allows to deduce that the model-checking
of PLTL for flat translating counter systems is NP-complete. We rewrite now in
our terminology the main proposition which leads to this result.

In the sequel we consider a flat disjunction free counter system S = 〈Q,Xn, ∆,Λ〉
with the finite monoid property. For a finite sequence of transitions δ1 . . . dk, we
denote by Λ(δ1 . . . δk) = Λ(source(δ1)) . . . Λ(source(δk)) the finite word labeling
the sequence with sets of atomic propositions. We lift this definition to iterated
path schemas 〈P,m〉 as Λ(P,m) = Λ(P [1])m[1]Λ(P [2])m[2] · · · Λ(P [len(P) −
1])m[len(P)−1]Λ(P [len(P)])ω. Observe that, for a run ρ of a counter system, if
〈P,m〉 ∈ ips(ρ) is an iterated path schema, we have by definition of the se-
mantics of PLTL that ρ |=PLTL φ iff Λ(P,m), 0 |=PLTL φ

5 for all PLTL formulae
φ. Moreover, for each m ∈ N, we define the function ξm mapping each vector
v ∈ Nk to ξm(v) ∈ Nk, where, for all i ∈ [1, k]: ξm(v)[i] = v[i] if v[i] < m
and ξm(v)[i] = m otherwise. Let us now recall the main technical propositions
established in [10], which are a consequence of the stuttering theorem for PLTL
and of the result on the complexity of model-checking ultimately periodic path
with PLTL given in [23].

Lemma 7. Let 〈P,m〉 be an iterated path schema and φ a PLTL formula, then:
1. [10, Proposition 5.1] Λ(P,m), 0 |=PLTL φ iff Λ(P, ξ2td(φ)+5(m)), 0 |=PLTL φ,
2. [23, Theorem 3.2] Given finite words u and v, checking uvω, 0 |=PLTL φ can

be done in time polynomial in the sizes of uv and φ.

We need furthermore a version of Theorem 2 above, which ensures that given
an iterated path schema and a PLTL formula φ, we do not change the number of
times a loop is iterated if this one is less than 2.td(φ) + 5. The proof of the next
result can in fact be deduced by adapting the proof of Theorem 2 by unfolding
the loop which are iterated less than 2.td(φ) + 5 for a given formula φ. As a
consequence of Lemma 7, the new run ρ′, obtained in the next lemma, is such
that ρ |=PLTL φ iff ρ′ |=PLTL φ for the considered PLTL formula φ.

Lemma 8. For a run ρ of S starting in (q0,v0), an iterated path schema 〈P,m〉 ∈
ips(ρ) and a PLTL formula φ, there exists a run ρ′ starting in (q0,v0), and an it-
erated path schema 〈P,m′〉 ∈ ips(ρ′), such that ‖m′‖∞≤ 2Poly(size(S)+size(v0)+td(φ))

for a polynomial Poly(x) and ξ2td(φ)+5(m) = ξ2td(φ)+5(m′).

5 We take here the classical semantics of PLTL over infinite words.

14

We can now explain why the model-checking of flat counter systems with
the finite monoid property with PLTL formulae is in ΣP

2 . Given a flat counter
system S with the finite monoid property, an initial configuration γ0, and a PLTL
formula φ, we guess an iterated path schema 〈P,m〉 of polynomial size in the
size of S, γ0 and φ and we check whether Λ(P, ξ2td(φ)+5(m)), 0 |=PLTL φ. This
check can be done in polynomial time in the size of P and φ thanks to Lemma
7. Finally, we use the NP algorithm of Lemma 6 to verify that there exists a run
ρ starting at γ0, such that 〈P,m〉 ∈ ips(ρ). This gives us a ΣP

2 algorithm whose
correctness is ensured by Lemma 8 and Lemma 2.

Theorem 4. MCPLTL(ASdf
fm) is ΣP

2 .

5.3 FO Model Checking is PSPACE-complete

For a FO formula φ, its quantifier height qh(φ) is the maximal nesting depth
of its quantifiers, and the size of φ is its number of subformulae. Similarly, as
for the PLTL case, in [8, Theorem 6], a stuttering theorem for FO is provided,
which says that that two ω-words w = w1w

M
2 w3 and w = w1w

M ′

2 w3 with w 6= ε
are indistinguishable by a FO formula φ if M and M ′ are strictly bigger than
2qh(φ)+2. The main difference with PLTL is that this provides an exponential
bound in the maximum number of times an infix of an ω-word needs to be
repeated to satisfy a FO formula. In the sequel we consider a flat counter system
S = 〈Q,Xn, ∆,Λ〉 with the finite monoid property and we reuse the notations
introduced in the previous section. The results of [8] can be restated as follows.

Lemma 9. Given an iterated path schema 〈P,m〉 and a FO formula φ, then:
1. [8, Lemma 7] Λ(P,m) |=FO φ iff Λ(P, ξ2qh(φ)+2(m)) |=FO φ,
2. [8, Theorem 9] Checking Λ(P,m), 0 |=FO φ can be done in space polynomial

in the sizes of 〈P,m〉 and φ.

As for the PLTL case, this allows us to deduce a NPSPACE algorithm for the
model-checking problem of flat counter system with the finite monoid property
with FO formulae. Since the problem is already PSPACE-hard for flat translat-
ing counter systems [8, Theorem 9], we conclude by the following theorem.

Theorem 5. MCFO(ASdf
fm) is PSPACE-complete.

References

1. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

2. Bardin, S., Finkel, A., Petrucci, J.L.L.: Fast: Fast acceleration of symbolic transi-
tion systems. http://tapas.labri.fr/trac/wiki/FASTer

3. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in
two-dimensional vector addition systems with states is pspace-complete. CoRR
abs/1412.4259 (2014), http://arxiv.org/abs/1412.4259

15

http://tapas.labri.fr/trac/wiki/FASTer
http://arxiv.org/abs/1412.4259

4. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD, Univ.
de Liège (1999)

5. Bozga, M., Iosif, R., Konecný, F.: Deciding conditional termination. Logical Meth-
ods in Computer Science 10(3) (2014)

6. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: CAV. LNCS, vol. 6174, pp. 227–242 (2010)

7. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: CON-
CUR ’99, Proceedings. pp. 242–257 (1999)

8. Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular prop-
erties on flat counter systems,. In: ICALP’13. LNCS, vol. 7966, pp. 162–173 (2013)

9. Demri, S., Dhar, A.K., Sangnier, A.: Equivalence between model-checking flat
counter systems and presburger arithmetic. In: RP’14. LNCS, vol. 8762, pp. 85–97.
Springer (2014)

10. Demri, S., Dhar, A.K., Sangnier, A.: Taming past LTL and flat counter systems.
Inf. Comput. 242, 306–339 (2015)

11. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL* over
flat presburger counter systems. Journal of Applied Non-Classical Logics 20(4),
313–344 (2010)

12. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: FST TCS ’02. pp. 145–156 (2002)

13. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. LMCS 8(3) (2012)

14. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and
parametric one-counter automata. In: ICALP’10. LNCS, vol. 6199, pp. 575–586.
Springer (2010)

15. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. J. Computer and System Sciences 22, 220–229 (1981)

16. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In:
CSL-LICS ’14. pp. 47:1–47:10. ACM (2014)

17. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating Inter-
polants, pp. 187–202. Springer Berlin Heidelberg (2012)

18. Iosif, R., Sangnier, A.: How hard is it to verify flat affine counter systems with the
finite monoid property ? CoRR abs/1605.05836 (2016), http://arxiv.org/abs/
1605.05836

19. Konecny, F., Iosif, R., Bozga, M.: Flata: a verification toolset for counter machines.
http://nts.imag.fr/index.php/Flata (2009)

20. Kuhtz, L., Finkbeiner, B.: Weak Kripke structures and LTL. In: CONCUR’11.
LNCS, vol. 6901, pp. 419–433. Springer (2011)

21. Leroux, J., Sutre, G.: On Flatness for 2-Dimensional Vector Addition Systems with
States, pp. 402–416 (2004)

22. Lipton, R.J.: The reachability problem is exponential-space-hard. Tech. Rep. 62,
Yale University, Department of Computer Science (1976)

23. Markey, N., Schnoebelen, P.: Model checking a path. In: CONCUR’03. LNCS, vol.
2761, pp. 248–262 (2003)

24. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
25. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic.

J. ACM 32(3), 733–749 (1985)
26. Stockmeyer, L.J.: The complexity of decision problems in automata and logic.

Ph.D. thesis, MIT (1974)

16

http://arxiv.org/abs/1605.05836
http://arxiv.org/abs/1605.05836
http://nts.imag.fr/index.php/Flata

	How hard is it to verify flat affine counter systems with the finite monoid property ?

