Formal verification of industrial software
with dynamic memory management

Sébastien BBBE Arnaud SANGNIER

EDF Research & Development LIAFA - Université Paris 7 - CNRS
Chatou, France Paris, France

Email: sebastien.labbe@edf.fr Email: sangnier@liafa.jussieu.fr

Abstract—Tool-based analytic techniques such as formal software, or have more configuration features. This sibnati
verification may be used to justify the quality, correctnessand may cause more “complex” programming mechanisms to
dependability of software involved in digital control sysems. be used in the implementation of software, which in return

This paper reports on the development and application of a - o .
tool-based methodology, the purpose of which is the formal will be more difficult to formally analyze: e.g. concurrency

verification of freedom from intrinsic software faults related interrupts, dynamic memory management.
to dynamic memory management. The paper introduces the This paper reports on research in software formal verifi-

operational and research context in the power generation cation done during a project namedeRILES?. Its purpose
industry, in which this work takes place. The theoretical 45 1o develop advanced techniques and tools for analyzing

framework and the tool at the cornerstone of the methodology d . | bedded soft A the i
are then presented. The paper also presents the practical and verifying complex embedded software. Among the im-

aspects of the research: software under analysis, experimgal portant properties to be verified is the freedom from intdns
results and lessons learned. The results are seen promising faults (i.e., faults that can be identified independently of

as the methodology scales accurately in identified conditis of functional specifications) in memory management:

analysis, and has a number of perspectives which are currelyt .

under study in ongoing work. « Memory leak: a memory leak occurs_when a program

becomes unable to release memory it has allocated;

« lllegal dereference of pointers, e.g. when a program
tries to dereference a pointer which may be null, or to
access to an unauthorized memory area;

o Multiple consecutive releases of a given memory cell.
Digital equipment is increasingly used in the design of Semantics are indeed undefined in ANSI

mdustnal contro! systems, pgrtlcularly n the power gene Some of the theoretical developments achieved during the

tion mdusFry. This tgchnologlcal evolution entalls_ beaoiedi project have been implemented in formal verification tools,

effects: digital equm_ent is usqally more rellable_ th,ansuch asTOPI CS [2], [3], or L2CA [4].

counterpart analog equipment, while providing the cajigbil This paper reports on the development and application of

to implement more complex functionalities. Monitoring, ,q|-based methodology usifEOPI CS and other tools
fault detection and diagnosis are also facilitated, piogd ¢, toma) verification of industrial software with dynamic
basis for improving the overall safety in industrial plants memory management. The paper presents both theoretical

On the other hand, detrlmenta! effects may also be €Nand practical aspects of the research: the theoreticalefram
countered, such as complexity increased, and teChnOIOg36\70rk on which is built theTOPI CS tool, and the tool itself,

specific issues raised. To address those, additional OfiSpEC 56 gy piained respectively in sections Il and 111, A caselgtu
effort is needed in qualification of digital control systemsiS then described in section IV, from which the results and

and licensing of industrial |.nstfalllat|ons, particularbyrfthe lessons learned are synthesized in section VI.
purpose of safety and reliability assessments. In current

industrial practices, dependability assessment of soffwa Il. FORMAL VERIFICATION FRAMEWORK

using formal verification techniques is mainly carried out | this section, we present the verification framework we
on critical software, cf. examples in [1]. Besides, relyoy paye ysed to analyze the case study. The main idea lies in
recent technical advances, current work at EDF R&D aims translation which takes in input programs with different
at extending these approaches to more complex and less

critical software, e.g. software important to availagiluch 1AVERILES : Analysis and verification of software with dynamic

software may be implemented in control systems whichdata structures(2006 — 2009). Partners involved: LSV (Ecole Normale
Supérieure de Cachan), EDF R&D (Electricité de France), NG

operate _m a Iarger variety of enV|r0r_1ments, address _mgrRBrenoble University), LIAFA (Paris 7 University) and Aligch France.
demanding functional needs, make wider use of pre-existingroject partially supported by the French National ReseAgency (ANR).

Keywords-Digital control systems, software dependability,
formal verification, memory allocation, data structures.

|. INTRODUCTION

variables and produces a model instance which belongs t@utput: Is there a vectov such thatq,v) € Reach(M,I)?

the classes of counter machines. From [8], we know that the reachability problem is un-

A. Counter Machines d_ecidab_le even when restricted to counter machines of
. - ... dimension2. However, some methods have been proposed
Counter machines are finite automata extended with ing o qor 1o try to solve this problem, and succeed in some
teger variables which are manipulated by the transition,acag yye shortly present here two methods which have been
relation. In the field of verification, this model enjoys a implemented in two toolSAST [5] andASPI C[7]. Given a
central position for both theoretical results and matuty ¢, nter machina/ and a Presburger definable set of initial

too!s like FAST [_5]_,_TReX [6]_or ASPI C[7]. Before o give configurationd these two methods compute approximations
their formal definitions, we introduce some notations. of the setReach(M, I)

We recall thatPresburger arithmetids the first order the- The first method originally presented in [9] computes

ory of the structurgN,jL,_:). The syntax_of the formulae Of_ a sequence of Presburger definable sets of configurations
the Presburger arithmetic can be described by the foIIowmgjl Cy which underapproximateeach(M, T), i.e. such

grammar where described a term ang a formula andc, y that for all i € N, C; C Reach(M,I). This algorithm

belongs to a set of variables: stops whenever it has computed a set of configurations
t 0| 1] x| t+t Cx = Reach(M, I). The advantage of this algorithm is that
o t=t|-¢|dAN¢|Iy.o it aims at computing exactly the sk¢ach(M, I) but it may
also not terminate — for instance if the $etach(M, 1) is
We denote then by’resb(k) the set of Presburger formulae ot 4 presburger definable set. Nevertheless as shown in [10]
Whosek free variables are ifwy, ..., x}. Given a Vector i many practical cases the Algorithm succeeds in computing
v € N and a formulap € Presb(k), we write v = ¢ if e reachability set. This algorithm has been implemented i
the formula obtained by replacing eaeh by v(i) is true ihe tool FAST [5].
and let[¢] be the se{v € N* | v |= ¢}. Finally Linear (k) The second method introduced in [11] computes, using

i i oifi k
represents the set of linear functions froifi to N". abstract interpretation [12], a sétwhich overapproximates
Definition 1: A k-dim counter machine (shortly counter Reach(M, I) (i.e. Reach(M,I) C C). In opposite to the

machine)M is a tuple(Q, E) where: previous method, this algorithm always terminate but is als

o k > 0 characterizes the number of counters manipudiess accurate. In fact, to decide the reachability of a cbntr
lated by the machine; state ¢ from an initial configuration in/: if there is no

« Q is a finite set of control states; configuration containing in the computed set, then we are

o B CQ x Presb(k) x Linear(k) x @ is a finite set of sure thatg is not reachable fronT in M. Otherwise ifq
edges, each of which is labelled with a guard on theappears inC' then it is not possible to know whetheris
counters expressed by a Presburger formula and with afeachable or whether it appears in the computed set because
update of the counters values given by a linear functionof the overapproximation. The to@SPI C [7] implements

The semantics of a counter machiné is given by its this second method.

associated transition systefis(M) = (Q x N*, —) where
Q x N¥ is the set of configurations ané is the transition
relation defined as follows: for allg, v), (¢, V') € Q x N¥, In [13], the authors have proposed a model to represent the
(q,v) — (¢',V') iff there exists(q, ¢, f,q') € E such that behavior of sequential programs manipulating singledahk
V= ¢ andV = f(v). We denote by—* the reflexive and lists. The main idea is to abstract the contents of the célls o
transitive closure of- and given a sef C Q x N* of initial the linked lists and to represent the memory heap as a finite
configurationsReach(M, I) is the set{(¢’,v') € Q x N¥ | graphin which each node has at most one successor. There is
(q,v) € I s.t.(q,v) —* (¢',V')} of configurations which furthermore a special node in this graph which characterize
are reachable from configurations In Given a Presburger the NULL pointer. These graphs are defined as follows.
formula ¢ € Presb(k), we write (¢, [¢o]) to represent the Definition 2: Given a finite set” of pointer variables, a

set of initial configurations built up of pair§;,v) where memory graph ovel is a labelled grapliz = (N, next,)

V = ¢o. We will say that a sef C Q x N* is Presburger such that:

definable if there existg)| Presburger formulas, , ..., ¢|q| « N is a finite set of nodes such thatn {NULL} = 0;
such thatl = U;cq1 o3 (4, [¢4])- o next: N — NU{NULL} is a partial function assigning
A famous problem in verification of infinite-state systems to each node its successor;

is the control state reachability problem (shortly readlitsib « 1:V — NU{NULL} is a partial function assigning a
problem) which can be written in our framework as follows: node to each pointer variable;

Input: A counter machinél/, a set of initial configurations ~ * for all nodesn € N, there isv € V andi € N such
I and a control state; thatn = next'(I(v))

B. From programs with lists to counter machines

U1 V4 V3
by v3. Concerning the action, := malloc its effect would
Vg be to add to the graph a disconnected node labelled with the

variablev, while the actionfree(vs) would simply delete
from the graph the label,. We can now define our model
to represent programs which manipulate single-linked.list

NULL Definition 3: A pointer machinePM over a (finite) set
of pointer variabled/ is a tuple(Q, E) where:

o (is a finite set of control states;

e ECQxGuard(V)x Action(V') x @Q is a finite set of
edges, each of which being labelled with a guard and
Note that the last condition in Definition 2 ensures that all an action over/.

the nodes in the memory graph can be reached from a node The semantics of a pointer machiR&/ is given by its as-

labelled with a pointer variable, in other words we do notsociated transition systeiS(PM) = (Q x G}, —) where

allow memory leak in the considered graphs. Furthermor&) x G;; is the set of configurations ane is the transition

the functionl is partial because some of the pointer variableselation defined as follows: for ally, G), (¢, G') € Q@ x G,

might refer to an undefined location in the memory. We(q, G) — (¢’, G") iff there exists(q, g,q,q’) € E such that

denote byGy the set of memory graphs ovér. Inorderto G = g and [a] (G) = G’. As for counter machines above,
characterize the behaviors of programs working over singlewe will also use the notations:* andReach(PM, I) with
linked lists, we will consider models labelled with guards 1 C @ x G;, for pointer machines. The safety problem we

and actions to be performed over such memory graphsre interested in can then be defined as follows:
Given a set of pointer variablds, we first define the set of

pointer guards; over V' by the following grammar:

Figure 1. A memory graph

Input: A pointer machinePM and a set of initial configu-
rations/;

g = v==NULL | v==0" | =g | gAg Output: Do we have{(q, SegF), (q, MemLeak) | q €
Q} NReach(PM,I)=0?

As mentioned in [13] this problem is undecidable, how-
ever in [14] and [4] a method has been proposed which
@Hlows to use techniques developed for the analysis of
counter machines in order to verify pointer machines. This
method relies on a reduction from the safety problem for
i= w:i=e|v.next :=ec|v:=malloc| free(v) pointer machines to the reachability problem for counter
e = NULL | v | v.next machines. In fact, these works have proved that given a
pointer machinePM = (Q, E') and an initial configuration
¢o = (g0, Go) of M itis possible to build a counter machine
M’ = (Q',E') equipped with two special states.,r and
MemLeak 1N @ @nd an initial configuration), = (g;, Vo)
of M’ such that an execution of machifd\/ leaving from
co Will lead to a segmentation fault [resp. a memory leak]
if and only if the control stategseqr [r€SP. ¢rremLeak]
is reachable inM’ from the initial configuratiorn{,. Note
that as discussed in [14] and [15] this construction can be
extended to some special infinite sets of configurations for
the pointer machine, obtaining then Presburger definabde se
of configurations for the counter machines. The verification
method we have used then follows two main steps:

wherev,v" € V. We denote byzuard(V) this set of pointer
guards. Given a memory grapi € Gy and a pointer
guard g, we write G = ¢ if the conditions expressed by
the guard are satisfied by the graph. We now define a set
pointer actions: over V' as follows:

wherev € V. We denote byAction(V) this set of pointer
actions. Given a pointer actiom, we define the function
[a] : Gv — Gy U{SegF, MemLeak} which describes the
effect ofa on a given memory graph. Note that the effect of
an action can be an error of tygteg F, i.e. a segmentation
fault, or MemLeak, i.e. a memory leak. In the sequel, we
will denoteG;, the setGy U{SegF, MemLeak}. A formal
definition of [a] can be found in [3], we only provide here
some informal explanations.

Figure 1 gives an example of a memory gra&plover the
set of variableq vy, v2, v3, v4 }. This memory graph satisfies
—(v1 == v2), since the variables, andv, are associated to
two different nodes, and also for instaneév; == NULL)] . o
since the variables; is not associated to the special node 1) Translation of the pointer machine into the corre-
NULL. The following gives some examples of actions effects sponding counter machine; _
on this graph. The action; := v» would lead toMem Leak; 2) Reachability analysis of the counter machine.
indeed, after having moved the variable to the node We stress the fact that already the first step provides some
pointed to byws, the list reachable bys is subsequently pieces of information concerning the safety problem for
no longer reachable by any variable. This situation is dalle pointer machines. In fact it can be the case that after having
a memory leak. Also, the action, := v3.next moves the built the corresponding counter machine, one of the special
variablev, to the successor in the graph of the node labelledcontrol stateyseqr [F€SP.¢aremLeak] 1S NOt cONnected to the

typedef struct List {

control statey, of the initial configuration, then we are sure struct List snext:
that the pointer machine do not perform any segmentation }x Liste;
void main () {
fault [resp. any memory leak]. Liste y,z;
y=NULL;
1. TooL while (any){
i i z=malloc (sizeof(struct List));
We give here a presentation of the t@@PI CS (Transla- z—>next=y;
tion of Programs Into Counter Systems) [2] which is founded) y=z:
on the framework introduced in section Il, and implements }
the translation from pointer machines to counter machines Figure 2. A program written in the syntax 30OPI CS

in order to verify the behavior of programs manipulating

dynamically the memory heap.
page [2]. In reality, a feature which does not existdrnas

A. Features offCPI CS been added to the syntax ®OPI CS, in order for this tool

TOPI CSis a tool written inJAvA which takes in input a o handle non deterministic branching. The programs given
program written into a syntactic subset of tGeprogram- in input of TOPI CS can actually make use of an additional
ming language. The programs which can be analyzed byeywordany in conditional statements.
TOPI CS manipulate integers variables, bounded size arrays gqr instance, let us consider the program in Figure 2. In
of integers, single-linked lists and bounded size arrays ofpjg program, the functiomai n builds an acyclic single-
linked lists. Function calls (excluding recursive call§nc |inked list of a non-deterministically chosen size. In the
also be used. The use of recursion is forbidden in order t@onditional statement of thehi | e loop, the keyworcany
ensure that, given a program and the name of a functiopy ysed to stipulate that this loop will eventually termimat
appearing in the program, a unique control flow graph carnfter a finite arbitrary number of iterations.
be built. This graph can then be seen as a finite automaton, Thjs is actually a nice feature of the tool because it allows
each edge of which is labelled with a guard and an action,gers to give directly in input th€ programs they want to
on the different variables (integers, arrays, lists) malaied verify, once having abstracted away parts which don’tsyric
by the_program. Henca,0PI CStransIa}tes t_his control flow_ follow the syntax of TOPI CS — non conformance to this
graph into a counter machine, partly in using the transtatio gyntax is automatically identified by the underlying parser
from pointer machines to counter machines. In order to deaq notified to the user. Note that if we use the keyword
with finite arrays, each cell of an array is associated to g ; e (or 1) instead ofany in the example of Figure 2,

varia_bl_ez, and the translation can then be performed withouhen the semantics associated to this program is different
modifying the actions on integer variableBOPI CS seeks pecause in this case the loop never terminates.

for the four following categories of faults: Apart from the keywordany, the syntax accepted by
1) Memory Le_ak; TOPI CS is exactly the one of programs (i.e. it is compat-
2) Segmentation Fault; ible with any standareC compiler).

3) Out of bound errors which happen when the program
manipulates indexes of an array greater than the siz€. UsingTOPI CS
of the array; In order to verify a program witifOPI CS, the user gives
4) Testing of undefined variable errors which happenthe source code as input to the tool and specifies which
when there is an instruction of the program which testsfynction of the program he wishes to analyze. With these
variables that have not been previously initialized. dataTOPI CS performs the translation into counter machines
For each of these categories of faults, identification can bend produces files foASPI C and FAST. As mentioned in
reduced to a reachability problem over a translation of thesection 1I-B, at the translation stage the tool can already
program into counter machine. Descriptions of translategprove the absence of faults in some cases. Alternativety, su
counter machines are written BYOPI CS into files using outputs also inform the user that some faults may exist.
the input syntax of the toolEAST and ASPI C which can Specifically, if TOPI CS returns a message saying that the
then be run to solve the reachability problems. analyzed function is free of Segmentation Fault then there i
B. Syntax offOPI CS no need to analyze the produced c_ognter machine to detect
such an error, on the other hand if it says that there may
As said previously, the program syntax accepted byhe 3 Segmentation Fault, then the user has to perform a
TOPI CS is a syntactic subset of th€ programming lan- yeachability analysis of the counter machine using the files
guage. A complete description of the syntax can be found "E)roduced byTOPI CS. Note thatTOPI CS produces one
the User's manual of the tool which is available on the Webinput file for the toolFAST but as many files as there might
2For arrays of integers [resp. of lists], integer [resp. paihvariables be errors for the tooASPI C. This is due to the syntax of
are used. ASPI C, which does not allow users to describe complex sets

(as union of control states) to be tested for reachabiliyn& —— ,

. . . . Application messages provided
experimental results on classical programs manipulating [Thread 4 to data interface
single-linked lists can be found on the web page of the Read datan buﬁem&
tool [2]; the produced counter machines for these programs
are also provided.

Copy filtered TSDU frames
into circular buffer 3

IV. PRACTICAL ASPECTS Read data in buffer 2§©

To support advanced features of digital technologies for
monitoring, fault detection and diagnosis of equipment and

Copy filtered TPDU frames
into circular buffer 2

systems (cf. section I), I&C architectures including dajit Read data in b“ﬁer1§lg
networks for inter- and intra-system data communication) Lot
are currently being proposed. This section presents pedcti o artistyimeny e it

aspects of formal verification applied to software involved

in digital communication. %@ network frame

A. Software under analysis Figure 3. Overview of software architecture

The software under analysis is a preliminary (conse-
quently not supposed as error-free) version of a “network
spy” application which is embedded in a network monitoring
system for local industrial networks. The main functiotyali
of the network spy is to capture OSI frames exchange

between non classified applications on local industriat net® ' &Y types, where "basic” types canibet , char, char x,

works. For the purpose of the experimentation reportedatc' For instance in Thread 3, dynamic allocation and releas

in this paper, focus has been placed on a multi-threade$@" oceur both on basic fields, and on nested array fields,

. . .___at each index of an array.
program making use of complex programming mechanisms

such as dynamic allocation of memory, circular buffers-syn B. Models
chronization by events, socket communication, and shared gom original source code, models have been extracted
memory. The size of this software applicationais 7000 according to the syntax accepted HYOPI CS (cf. sec-
lines of C code. tion 11I-B). This activity mainly involved removing system
Specifically, the software architecture is composed of Six:5||s that are not included iTOPI CS syntax and other
threads which are synchronized by events. The main Prosrocessings not relevant to memory management, and re-
cessings of the analyzer, as sketched above and at Figure ﬁacing selected conditional statements by the keyvaory
are performed incrementally in four threads. Each of these_ typically for statements which depend on the software en-
four threads contribute at one stage of putting applicatioR;ironment, e.g. actual contents of incoming network frames
messages together again, starting from network frames angl; i, Figure 4. The main requirement implemented when
progressively filtering out inappropriate, incorrect odue- extracting models is to keep thewonservativelyrepre-
dant frames. Collected information at each stage is storegantative of the original program, with respect to memory
in dynamically allocated variables or copied into circular management. That is to say, behaviors and features retated t
buffers. Typically, each circular buffer is shared between memory management in the original program are preserved

threads, where one is writing and the other one is readingiy the corresponding model, e.g. reachability of memory
Figure 3 also illustrates the symmetry in software archi-management primitives, control flow.

tecture, where each stage of the incremental processing is)

realized by one thread using data from the previous stage- EXxperimental results

and eventually writing data for use at the subsequent stage. This section explains how our verification approach has
Concerning management of memory, the symmetry stilbeen firstly applied to a model of one of the threads, and
holds where each thread allocates cells to store extraeated d then to a second model as a double-check (resp. Threads 3
locally and temporarily; once the processing is achievedand 2 in Figure 3).

filtered data is copied in global variables and buffers, &iedt 1) Thread 3: The implementation of Thread 3 has been
temporary cells are released. Dynamic memory managementodeled according to the principles mentioned in sec-
is thus performed intra-thread (i.e. for a given dynamiction IV-B, resulting in a compilableC file (=~ 500 lines).
variable, allocation and release are both performed by th&igure 4 shows typical models for the parts of code where
same thread), whereas shared variables and circular suffememory is allocated or released. As mentioned in sec-
are indeed statically allocated at initialization phase. tion IV-A, dynamic memory management in this program

Typical data structures involved in dynamic allocation are
of size several hundreds, and are formed of nested arrays
&md C-structures — fields, each of which can have basic or

I/l Typical model excerpt: allocation
if (any){ /x condition depending on actual data

received in framessx/

if (info[index] == NULL){
tmp = malloc(sizeof(struct cel)); /« type used

for modeling memory allocationx/

info[index] = tmp;
if (info[index] == NULL)
return SPYKO; // modeling of memory overflow

return SPYOK; /x successful extraction of
information */
}

$ java —jar TOPICS.jar modThread3.c srcThread3
+ NO MEMORY LEAK
+ MAYBE A SEGMENTATION FAULT
+ MAYBE AN OUT OF BOUND ERROR
+ MAYBE AN UNDEF ERROR

$ time fast srcThread3. fst

nb accelerations 17

"There is a Segmentation Fault."
"There is no Out of Bound error."
"There is no Undef error."

user 2739m51.210s

$ aspic srcThread3_SegF_aspic. fst
&% aspic srcThread3_OOBound_aspic . fst

/Il Typical model excerpt: release

if (info[index]!= NULL) { & aspic srcThread3_Undef_aspic. fst

tmp=info[index]; Result : Don’t know
free (tmp); Result : All the bad locations are unreachable
__bad_0- > > empty(26)
info[index] = NULL; Result : All the bad locations are unreachable

__bad_0— > > empty(26)

Figure 4. Typical model excerpts: allocation and release
Figure 6. TOPI CS, FAST and ASPI C results with Thread 3

Region NoSegF:={!state=SegF};
Region NoOOB:={!state=00Bound};
Region NoUndef:={!state=Undef};
Region Reach:=post(init ,t,3);

if (subSet(Reach,NoMemLeak))

lines shown in figure 5. The basic idea is to verify with
e ey oo femory Leak ") : FAST if error states are included in reachable states; results
else print("There is a Memory Leak."): are shown in figure 6. On the other hand, the syntax of
endif input files to ASPI C requires TOPI CS to generate one
if (subSet(Reach,NoSegF)) X
then print("There is no Segmentation Fault."): file per fault category. For instance, the following line is
[.-.] inserted below the extracted counter machine infat
Figure 5. Input toFAST for Thread 3 (excerpt) file, for the purpose of memory leak verificatioRegi on
bad: =st at e=Menl; . Figure 6 also shows the text output
of ASPI C verification with Thread 3 model; computation
involves sizable composite arrays and data structure$ Wittime is here negligible.
the original sizes, computations BYPI CS are overly time- The results obtained show the followinbOPI CS proves
consuming. The chosen workaround is to define a smallethe absence of memory leak; the generated files consequently
size for these structures. Again, the justifying argumenton’t handle this category of fault. Concerning “Out of
is symmetry: considering that allocation and release obounds” and “Undef” errorsTOPI CS is not conclusive, but
memory follow the same program paths for any row in anfault freedom is proved biAST, and confirmed byASPI C.
array, the presence or absence of a fault related to memo@oncerning segmentation faultS8AST indicates it has iden-
management is independent of the absolute size of arraysfied one instance, where#@sSPI C is not conclusive. Typ-
This statement has been verified by checking that results agally, FAST is more accurate thaASPI C on this case
analyses remain unchanged when array sizes vary. study, while the computation time &fAST is considerably
Given the resulting model of Thread BOPI CS generates longer than that oASPI C. These observations are consistent
a counter machine and outputs it in files, whenever there iwith the underlying formal techniques: computation of the
a category of faults for which the tool in non conclusive. exactset of configurations reachable from a given set of
Output files with. f st extension can be given as input initial configurations [5], resp. accelerated linear rielat
to FAST and ASPI C tools. Figure 6 shows the resulting analysis [7]. It is also noticeable that no contradictiopesar
information displayed byfOPI CS on the terminal window. between the results of the three tools.
TOPI CS indicates it has proved the absence of memory Additionally, there is currently up to our knowledge no
leak in Thread 3. For other categories of faults handled byyommercial tool available, for which formal verification of
TOPI CS, the verdict is not conclusive andf st files are dynamic memory issues is claimed. Still, numerous tools are
accordingly generated~ 900 lines), allowing the user to able of identifying dynamic memory faults (e.g., tools dite
verify the property of freedom from such intrinsic faults, in section V). This case study was further analyzed with one
with FAST or ASPI C. of these tools, for which “Leak”, “Null pointer derefererice
We recall that given a f st file, FAST can be used and “Free null pointer” belong to the list of software faults
to verify several reachability properties, provided thia¢ t susceptible to be identified. This analysis (computatiometi
file defines a counter machine and several “regions” ok 1 minute) gives several verdicts to locate possible faults,
interest — each region associated to a fault category. Herdéncluding 1 “Leak”, 1 “Free Null Pointer” and 4 “Null
the file Thread3. f st output by TOPI CS contains the Pointer Dereference”.
counter machine translated from Thread 3 model and the After code inspection at the associated line number,

$ java —jar TOPICS.jar modThread2.c srcThread2

the “Leak” verdict appears to be a false positive, con- + MAYBE A MEMORY LEAK
sequently not compromising the correctnessT@Pl CS + MAYBE A SEGMENTATION FAULT
. + NO OUT OF BOUND ERROR

results (cf. Figure 6): this verdict is indeed associated to + MAYBE AN UNDEF ERROR
a normal allocation of a variable immediately after its A

. Ly $ time fast srcThread2. fst
declaration, as shown within the short extract of code below nb accelerations 111

int «IndexAdd: "There is a Memory Leak."

"There is a Segmentation Fault."

IndexAdd=malloc (ksizeof (int)); “There is an Undef error.”

Faults related to as “Null pointer dereference” and “Free user 2527mi18.230s
null pointer” by the commercial tool used here are both $ aspic srcThread2_MemlL_aspic. fst
« : ” [&% aspic srcThread2_SegF_aspic. fst
denot_ed as Segmentatllon Faults ByoPI CS. “Code in % aspic srcThread2 Undef aspic. fst
spections at the respective lines for the four “Null pointer Result : Don't know
dereference” verdicts led us to identifyreal faults, due to Result - Don’t know
Result : Don’t know

the factrmal | oc might return anul | pointer (in case no
memory is available or some error prevented memory from
being allocated), while there is no defensive test agalrest t

E““ | value at th?se points of the program. Similarly, thei Thread 3 in the first part of section IV-C is also applicable
Free null p_omter verdict is V|S|ply linked to the fact one i, the case of Thread 2: firstly perform formal analysis,
of the functions of Thread 3 which allocates a buffer hasyq then if needed, try and complement with external tools

an error case where the returned buffernisl |, and a (¢ 4 commercial) and code inspection to locate possibly
aubsequent call tbr ee is not protected by a defensive test. \emaining faults, and finally iterate until demonstration
NB. It has been checked additionally that every identifiedy¢ freedom from intrinsic faults among the considered

fault indeed exists in the original program. _ categories. Further issues related to this methodology are
These observations lead us to write a corrected Versiofiscussed in section IV-D.

of Thread 3 model, where the identified faults are re-
moved. With this modelTOPI CS proves the absence of D. Lessons learned
segmentation fault: the output is similar to that of Figure 6 The tool-based methodology and experiments reported in
with +NO SEGVENTATI ON FAULT instead of +MAYBE this paper show that memory safety can be formally proved
A SEGVENTATI ON FAULT (achieving this result actually in local processings of industrial software (e.g. analysis
took a couple of iterations between commercial and acathread by thread). A version ofOPI CS has also been
demic tools). Finally, this second version of Thread 3 mOdEHevek)ped in order to tackle concurrency more directly
was also analyzed with the same commercial tool. Thgwith synchronous products). However, the techniques im-
resulting verdicts still indicate some possible faultsemttie plemented for that matter are presently not efficient enough
category of 'segmentation fault’. These remaining veslict to scale to this case study (the combinatorial calculations
appeared to be false positives after code inspection, fogan be handled on smaller case studies; experiments not
similar reason as earlier. Then we had got a confirmationeported in this paper). Designing a tool to this purpose is
of TOPI CS results that freedom from segmentation faultcurrently a theoretical and practical challenge. With ihis
had been reached. mind, methods for modular thread analysis and interleaving
2) Thread 2: The same methodology as explained abovereduction belong to the approaches worth of investigation.
for Thread 3 has been applied to Thread 2. Experimental Experiments performed have also shown that separate
results with this model are shown in figures 7and 7. Analyz-trans|ati0n and ana|ysis phases may lead to a situation
ing Thread 2 modelTOPI CS proves the absence of out-of- \yhere generated models are large, with a consequently time-
bounds access and, as expected, produces a counter machi@@suming analysis with existing tools. Performance may
for third-party tools to check the three other types ofthen be significantly improved by on-the-fly analyzes in
considered faUltS; NB. regions defined are similar to that Obrder to reduce the size of generated counter machines.
Figure 5, withNoMenLeak: =! st at e=MenL; instead of Finally, potential for improving the maturity of this
NoQOB: =! st at e=00Bound,; . In each case, one instance gpproach particularly resides in automation of the model
is found by FAST, while ASPI Cis not conclusive. extraction phase briefly described in section IV-B, which

Observations made for Thread 3 about accuracy, compiractically requires substantial effort on real-size wafe.
tation time and consistency between the results of diffteren The |earnings above are providing guidance and aims in

tools still hold in the case of Thread 2. As earlier, this ongoing work, cf. section VI.

case study was further analyzed with the same commercial

tool, which notably produces 4 “Leak”, 1 “Uninitialized V. RELATED WORKS AND TOOLS

Variable”, 2 “Free Null Pointer” and 3 “Null Pointer Deref- ~ Many tools and techniques to check safety properties
erence” verdicts. So far, the tool-based methodology edpli on programs manipulating pointers have been developed

Figure 7. TOPI CS, FAST and ASPI C results with Thread 2

recently. In [16], the framework of predicate abstraction [4] A. Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Moro,
is used to manipulate boolean formulae representing the and T. Vojnar, “Programs with lists are counter automata,” i
heap. In [17], the authors present a shape analysis method CAV, 2006, pp. 517-531.

based on separation logics formulae to analyze programgs] FAST: Fast Acceleration of Symbolic Transition systems.
manipulating singly-linked lists. Their method always-ter http://www.Isv.ens-cachan.fr/Software/fast.

mlnate_s bqt might yield false alarms_ due to the over- [6] TReX: A Tool for Reachability Analysis of CompleX Sys-
approximation brought by the abstraction. Other methods™ ~ tems. hitp://www.liafa.jussieu.fr/~sighirealtrex.

have been proposed which use already existing model- _ _

checking techniques. For instance, in [18], the authorigywer [7] ASPI C: Accelerated Symbolic Polyhedral Invariant Compu-
safety properties on programs using abstract regular model tation. http://laure.gonnord.org/pro/aspic/aspiclhtm
checking and in [19] the authors propose to combine shap€8] M. L. Minsky, Computation: finite and infinite machines

analysis and arithmetic analysis. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1967.
As seen in section IV, software analysis tools such as [20][9] A. Finkel and J. Leroux, “How to compose presburger-
can be useful to complement our tool-based formal verifi- accelerations: Applications to broadcast protocols,” in

cation methodology. Most of the main available software FSTTC$2002, pp. 145-156.

ana_llysis tools — a_LIthc_)ugh practical and effic_:ient in their[lO] S. Bardin, A. Finkel, and J. Leroux, “Faster accelenatbf
main targeted application cases (e.g. supporting devedope” ~ counter automata in practice,” IPACAS 2004, pp. 576-590.

in improving code quality, robustness or security during th) o o
development process) — may however infer false negatives!] L. Gonnord and N. Halbwachs, “Combining widening and
acceleration in linear relation analysis,” BAS 2006, pp.

i.e. actual faults that remain undetected within the caiego 144-160.
of faults identifiable by the tool. Besides, some of the . . .
available commercial software analysis tools are desigmed [12] lF’~ttCOUSOtdaFII? R. tC?_USOt, l‘AbStrﬁ]}Ct mterpretabtlon: N;Bd .
exclude false negatives, but to our knowledge, the categori attice modet for static analysis of programs by constarcy

. o ' . t f f ts,” irPOPL, 1977, pp. 238—-252.
of faults considered in this study are currently not in the Or approximation of fixpornts, | L PP
scope of such tools. [13] S. Bardin, A. Finkel, and D. Nowak, “Toward symbolic

The Fr ana- C toolset [21] is considered as a promising verification of programs handling pointers,” A/IS 2004.

solution to go further on this methodology (see also secf14] s. Bardin, A. Finkel, E. Lozes, and A. Sangnier, “From
tion VI). The CMBC tool [22] could also be investigated on pointer systems to counter systems using shape analysis,” i
a case study, as a complementary approach. AVIS 2006.

[15] A. Finkel, E. Lozes, and A. Sangnier, “Towards model-
VI. CONCLUSION checking programs with lists,” itL.C, 2007, pp. 56—86.

This paper reports on the development of a tool-baseglig] A. Podelski and T. Wies, “Boolean heaps,” 8AS'05 ser.
methodology and its application to industrial software. As LNCS, vol. 3672. Springer, 2005, pp. 268-283.
an important conc_lusmn, the considered approach hfa\s bei{nn D. Distefano, P. W. O’'Hearn, and H. Yang, “A local shape
shown to be applicable accurately to local processings of ° analysis based on separation logic TACAS'06 ser. LNCS,
industrial software involved in control systems. Identfie vol. 3920. Springer, 2006, pp. 287-302.
I|m_|tat|ons k(Cf_'I_ sectlr?_n IV-t? arti to be addre_ssetd |2r; On-[18] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vajna
going work. To achieve this, th#ERIDYC project [23] “Abstract regular tree model checking of complex dynamic

will notably investigate modularization of formal analgze data structures.” iSAS'06 ser. LNCS, vol. 4134. Springer,
and build onFr ama- C[21] capabilities, such as analyzing 2006, pp. 52-70.

full C language, program slicing, and allowing the use of

. . [19] S. Magill, J. Berdine, E. Clarke, and B. Cook, “Arithritet
independently developed plug-in analyzers.

strengthening of shape analyses based on separation’ logic.
in SAS’07 ser. LNCS, vol. 4634. Springer, 2007, pp. 419—

REFERENCES 436.
[1] N. Thuy and A. Ourghanlian, “Dependability assessment o [20] Software Analysis Tools, e.g. Grammatech CodeSonar,
safety-critical system software by static analysis mestidd Coverity Static Analysis, Cppcheck, Fortify 360 Source €od
DSN 2003, pp. 75-79. Analyzer, Klocwork Insight, etc.

21] Frama-C Software Analyzers — http://frama-c.com.
[2] TOPI CS: Translation Of Programs Into Counter Systems.[] y P

http://www.Isv.ens-cachan.fr/~sangnier/TOPICS/inghp. [22] CBMC Model Checker
http://www.cs.cmu.edu/~modelcheck/cbmc.
[3] A. Sangnier, “Vérification de systemes avec compteurs et)
pointeurs,” Thése de doctorat (PhD thesis), Laboratoire Sp [23] VERIDYC project
cification et Vérification, ENS Cachan, France, 2008. http://www-verimag.imag.fr/VERIDYC.html.

