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Abstract—Tool-based analytic techniques such as formal
verification may be used to justify the quality, correctnessand
dependability of software involved in digital control systems.
This paper reports on the development and application of a
tool-based methodology, the purpose of which is the formal
verification of freedom from intrinsic software faults related
to dynamic memory management. The paper introduces the
operational and research context in the power generation
industry, in which this work takes place. The theoretical
framework and the tool at the cornerstone of the methodology
are then presented. The paper also presents the practical
aspects of the research: software under analysis, experimental
results and lessons learned. The results are seen promising,
as the methodology scales accurately in identified conditions of
analysis, and has a number of perspectives which are currently
under study in ongoing work.
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I. I NTRODUCTION

Digital equipment is increasingly used in the design of
industrial control systems, particularly in the power genera-
tion industry. This technological evolution entails beneficial
effects: digital equipment is usually more reliable than
counterpart analog equipment, while providing the capability
to implement more complex functionalities. Monitoring,
fault detection and diagnosis are also facilitated, providing
basis for improving the overall safety in industrial plants.
On the other hand, detrimental effects may also be en-
countered, such as complexity increased, and technology-
specific issues raised. To address those, additional or specific
effort is needed in qualification of digital control systems
and licensing of industrial installations, particularly for the
purpose of safety and reliability assessments. In current
industrial practices, dependability assessment of software
using formal verification techniques is mainly carried out
on critical software, cf. examples in [1]. Besides, relyingon
recent technical advances, current work at EDF R&D aims
at extending these approaches to more complex and less
critical software, e.g. software important to availability. Such
software may be implemented in control systems which:
operate in a larger variety of environments, address more
demanding functional needs, make wider use of pre-existing

software, or have more configuration features. This situation
may cause more “complex” programming mechanisms to
be used in the implementation of software, which in return
will be more difficult to formally analyze: e.g. concurrency,
interrupts, dynamic memory management.

This paper reports on research in software formal verifi-
cation done during a project namedAVERILES1. Its purpose
was to develop advanced techniques and tools for analyzing
and verifying complex embedded software. Among the im-
portant properties to be verified is the freedom from intrinsic
faults (i.e., faults that can be identified independently of
functional specifications) in memory management:

• Memory leak: a memory leak occurs when a program
becomes unable to release memory it has allocated;

• Illegal dereference of pointers, e.g. when a program
tries to dereference a pointer which may be null, or to
access to an unauthorized memory area;

• Multiple consecutive releases of a given memory cell.
Semantics are indeed undefined in ANSIC.

Some of the theoretical developments achieved during the
project have been implemented in formal verification tools,
such asTOPICS [2], [3], or L2CA [4].

This paper reports on the development and application of
a tool-based methodology usingTOPICS and other tools
for formal verification of industrial software with dynamic
memory management. The paper presents both theoretical
and practical aspects of the research: the theoretical frame-
work on which is built theTOPICS tool, and the tool itself,
are explained respectively in sections II and III. A case study
is then described in section IV, from which the results and
lessons learned are synthesized in section VI.

II. FORMAL VERIFICATION FRAMEWORK

In this section, we present the verification framework we
have used to analyze the case study. The main idea lies in
a translation which takes in input programs with different

1AVERILES : Analysis and verification of software with dynamic
data structures(2006 – 2009). Partners involved: LSV (École Normale
Supérieure de Cachan), EDF R&D (Électricité de France), VERIMAG
(Grenoble University), LIAFA (Paris 7 University) and Alyotech France.
Project partially supported by the French National Research Agency (ANR).



variables and produces a model instance which belongs to
the classes of counter machines.

A. Counter Machines

Counter machines are finite automata extended with in-
teger variables which are manipulated by the transition
relation. In the field of verification, this model enjoys a
central position for both theoretical results and maturityof
tools likeFAST [5], TReX [6] or ASPIC [7]. Before to give
their formal definitions, we introduce some notations.

We recall thatPresburger arithmeticis the first order the-
ory of the structure〈N, +, =〉. The syntax of the formulae of
the Presburger arithmetic can be described by the following
grammar wheret described a term andφ a formula andx, y

belongs to a set of variables:

t ::= 0 | 1 | x | t + t

φ ::= t = t | ¬φ | φ ∧ φ | ∃y.φ

We denote then byPresb(k) the set of Presburger formulae
whose free variables are in{x1, . . . , xk}. Given a vector
v ∈ N

k and a formulaφ ∈ Presb(k), we write v |= φ if
the formula obtained by replacing eachxi by v(i) is true
and letJφK be the set{v ∈ N

k | v |= φ}. Finally Linear (k)
represents the set of linear functions fromNk to N

k.
Definition 1: A k-dim counter machine (shortly counter

machine)M is a tuple〈Q, E〉 where:

• k > 0 characterizes the number of counters manipu-
lated by the machine;

• Q is a finite set of control states;
• E ⊆ Q × Presb(k) × Linear (k) × Q is a finite set of

edges, each of which is labelled with a guard on the
counters expressed by a Presburger formula and with an
update of the counters values given by a linear function.

The semantics of a counter machineM is given by its
associated transition systemTS(M) = 〈Q×N

k,→〉 where
Q × N

k is the set of configurations and→ is the transition
relation defined as follows: for all(q, v), (q′, v′) ∈ Q ×N

k,
(q, v) → (q′, v′) iff there exists(q, φ, f, q′) ∈ E such that
v |= φ and v′ = f(v). We denote by→∗ the reflexive and
transitive closure of→ and given a setI ⊆ Q×N

k of initial
configurations,Reach(M, I) is the set{(q′, v′) ∈ Q × N

k |
∃(q, v) ∈ I s.t. (q, v) →∗ (q′, v′)} of configurations which
are reachable from configurations inI. Given a Presburger
formula φ0 ∈ Presb(k), we write (q, Jφ0K) to represent the
set of initial configurations built up of pairs(q, v) where
v |= φ0. We will say that a setI ⊆ Q × N

k is Presburger
definable if there exists|Q| Presburger formulasφ1, . . . , φ|Q|

such thatI =
⋃

i∈{1,...,|Q|}(q, JφqK).
A famous problem in verification of infinite-state systems

is the control state reachability problem (shortly reachability
problem) which can be written in our framework as follows:

Input: A counter machineM , a set of initial configurations
I and a control stateq;

Output: Is there a vectorv such that(q, v) ∈ Reach(M, I)?

From [8], we know that the reachability problem is un-
decidable even when restricted to counter machines of
dimension2. However, some methods have been proposed
in order to try to solve this problem, and succeed in some
cases. We shortly present here two methods which have been
implemented in two toolsFAST [5] andASPIC [7]. Given a
counter machineM and a Presburger definable set of initial
configurationsI these two methods compute approximations
of the setReach(M, I).

The first method originally presented in [9] computes
a sequence of Presburger definable sets of configurations
C1, C2, . . . which underapproximateReach(M, I), i.e. such
that for all i ∈ N, Ci ⊆ Reach(M, I). This algorithm
stops whenever it has computed a set of configurations
Ck = Reach(M, I). The advantage of this algorithm is that
it aims at computing exactly the setReach(M, I) but it may
also not terminate — for instance if the setReach(M, I) is
not a Presburger definable set. Nevertheless as shown in [10],
in many practical cases the Algorithm succeeds in computing
the reachability set. This algorithm has been implemented in
the toolFAST [5].

The second method introduced in [11] computes, using
abstract interpretation [12], a setC which overapproximates
Reach(M, I) (i.e. Reach(M, I) ⊆ C). In opposite to the
previous method, this algorithm always terminate but is also
less accurate. In fact, to decide the reachability of a control
state q from an initial configuration inI: if there is no
configuration containingq in the computed set, then we are
sure thatq is not reachable fromI in M . Otherwise ifq
appears inC then it is not possible to know whetherq is
reachable or whether it appears in the computed set because
of the overapproximation. The toolASPIC [7] implements
this second method.

B. From programs with lists to counter machines

In [13], the authors have proposed a model to represent the
behavior of sequential programs manipulating single-linked
lists. The main idea is to abstract the contents of the cells of
the linked lists and to represent the memory heap as a finite
graph in which each node has at most one successor. There is
furthermore a special node in this graph which characterizes
the NULL pointer. These graphs are defined as follows.

Definition 2: Given a finite setV of pointer variables, a
memory graph overV is a labelled graphG = (N, next, l)
such that:

• N is a finite set of nodes such thatN ∩ {NULL} = ∅;
• next : N → N∪{NULL} is a partial function assigning

to each node its successor;
• l : V → N ∪ {NULL} is a partial function assigning a

node to each pointer variable;
• for all nodesn ∈ N , there isv ∈ V and i ∈ N such

that n = nexti(l(v))
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Figure 1. A memory graph

Note that the last condition in Definition 2 ensures that all
the nodes in the memory graph can be reached from a node
labelled with a pointer variable, in other words we do not
allow memory leak in the considered graphs. Furthermore
the functionl is partial because some of the pointer variables
might refer to an undefined location in the memory. We
denote byGV the set of memory graphs overV . In order to
characterize the behaviors of programs working over single-
linked lists, we will consider models labelled with guards
and actions to be performed over such memory graphs.
Given a set of pointer variablesV , we first define the set of
pointer guardsg over V by the following grammar:

g ::= v == NULL | v == v′ | ¬g | g ∧ g

wherev, v′ ∈ V . We denote byGuard(V ) this set of pointer
guards. Given a memory graphG ∈ GV and a pointer
guard g, we write G |= g if the conditions expressed by
the guard are satisfied by the graph. We now define a set of
pointer actionsa over V as follows:

a ::= v := e | v.next := e | v := malloc | free(v)
e ::= NULL | v | v.next

wherev ∈ V . We denote byAction(V ) this set of pointer
actions. Given a pointer actiona, we define the function
JaK : GV 7→ GV ∪ {SegF, MemLeak} which describes the
effect ofa on a given memory graph. Note that the effect of
an action can be an error of typeSegF , i.e. a segmentation
fault, or MemLeak, i.e. a memory leak. In the sequel, we
will denoteG∗

V the setGV ∪{SegF, MemLeak}. A formal
definition of JaK can be found in [3], we only provide here
some informal explanations.

Figure 1 gives an example of a memory graphG over the
set of variables{v1, v2, v3, v4}. This memory graph satisfies
¬(v1 == v2), since the variablesv1 andv2 are associated to
two different nodes, and also for instance¬(v3 == NULL)
since the variablev3 is not associated to the special node
NULL. The following gives some examples of actions effects
on this graph. The actionv3 := v2 would lead toMemLeak;
indeed, after having moved the variablev3 to the node
pointed to byv2, the list reachable byv3 is subsequently
no longer reachable by any variable. This situation is called
a memory leak. Also, the actionv4 := v3.next moves the
variablev4 to the successor in the graph of the node labelled

by v3. Concerning the actionv4 := malloc its effect would
be to add to the graph a disconnected node labelled with the
variablev4 while the actionfree(v4) would simply delete
from the graph the labelv4. We can now define our model
to represent programs which manipulate single-linked lists.

Definition 3: A pointer machinePM over a (finite) set
of pointer variablesV is a tuple〈Q, E〉 where:

• Q is a finite set of control states;
• E ⊆ Q×Guard(V )×Action(V )×Q is a finite set of

edges, each of which being labelled with a guard and
an action overV .

The semantics of a pointer machinePM is given by its as-
sociated transition systemTS(PM) = 〈Q×G∗

V ,→〉 where
Q × G∗

V is the set of configurations and→ is the transition
relation defined as follows: for all(q, G), (q′, G′) ∈ Q×G∗

V ,
(q, G) → (q′, G′) iff there exists(q, g, q, q′) ∈ E such that
G |= g and JaK(G) = G′. As for counter machines above,
we will also use the notations→∗ andReach(PM, I) with
I ⊆ Q × G∗

V for pointer machines. The safety problem we
are interested in can then be defined as follows:

Input: A pointer machinePM and a set of initial configu-
rationsI;
Output: Do we have{(q, SegF ), (q, MemLeak) | q ∈
Q} ∩ Reach(PM, I) = ∅ ?

As mentioned in [13] this problem is undecidable, how-
ever in [14] and [4] a method has been proposed which
allows to use techniques developed for the analysis of
counter machines in order to verify pointer machines. This
method relies on a reduction from the safety problem for
pointer machines to the reachability problem for counter
machines. In fact, these works have proved that given a
pointer machinePM = (Q, E) and an initial configuration
c0 = (q0, G0) of M it is possible to build a counter machine
M ′ = (Q′, E′) equipped with two special statesqSegF and
qMemLeak in Q and an initial configurationc′0 = (q′0, v0)
of M ′ such that an execution of machinePM leaving from
c0 will lead to a segmentation fault [resp. a memory leak]
if and only if the control stateqSegF [resp. qMemLeak]
is reachable inM ′ from the initial configurationc′

0
. Note

that as discussed in [14] and [15] this construction can be
extended to some special infinite sets of configurations for
the pointer machine, obtaining then Presburger definable sets
of configurations for the counter machines. The verification
method we have used then follows two main steps:

1) Translation of the pointer machine into the corre-
sponding counter machine;

2) Reachability analysis of the counter machine.

We stress the fact that already the first step provides some
pieces of information concerning the safety problem for
pointer machines. In fact it can be the case that after having
built the corresponding counter machine, one of the special
control stateqSegF [resp.qMemLeak] is not connected to the



control stateq′0 of the initial configuration, then we are sure
that the pointer machine do not perform any segmentation
fault [resp. any memory leak].

III. T OOL

We give here a presentation of the toolTOPICS (Transla-
tion of Programs Into Counter Systems) [2] which is founded
on the framework introduced in section II, and implements
the translation from pointer machines to counter machines
in order to verify the behavior of programs manipulating
dynamically the memory heap.

A. Features ofTOPICS

TOPICS is a tool written inJAVA which takes in input a
program written into a syntactic subset of theC program-
ming language. The programs which can be analyzed by
TOPICS manipulate integers variables, bounded size arrays
of integers, single-linked lists and bounded size arrays of
linked lists. Function calls (excluding recursive calls) can
also be used. The use of recursion is forbidden in order to
ensure that, given a program and the name of a function
appearing in the program, a unique control flow graph can
be built. This graph can then be seen as a finite automaton,
each edge of which is labelled with a guard and an action
on the different variables (integers, arrays, lists) manipulated
by the program. Hence,TOPICS translates this control flow
graph into a counter machine, partly in using the translation
from pointer machines to counter machines. In order to deal
with finite arrays, each cell of an array is associated to a
variable2, and the translation can then be performed without
modifying the actions on integer variables.TOPICS seeks
for the four following categories of faults:

1) Memory Leak;
2) Segmentation Fault;
3) Out of bound errors which happen when the program

manipulates indexes of an array greater than the size
of the array;

4) Testing of undefined variable errors which happen
when there is an instruction of the program which tests
variables that have not been previously initialized.

For each of these categories of faults, identification can be
reduced to a reachability problem over a translation of the
program into counter machine. Descriptions of translated
counter machines are written byTOPICS into files using
the input syntax of the toolsFAST andASPIC which can
then be run to solve the reachability problems.

B. Syntax ofTOPICS

As said previously, the program syntax accepted by
TOPICS is a syntactic subset of theC programming lan-
guage. A complete description of the syntax can be found in
the User’s manual of the tool which is available on the web

2For arrays of integers [resp. of lists], integer [resp. pointer] variables
are used.

t ype de f s t r u c t L i s t {
s t r u c t L i s t ∗ne x t ;

} ∗ L i s t e ;
vo id main ( ) {

L i s t e y , z ;
y=NULL;
whi le ( any ) {

z= mal loc (s i z e o f( s t r u c t L i s t ) ) ;
z−>ne x t=y ;
y=z ;

}
}

Figure 2. A program written in the syntax ofTOPICS

page [2]. In reality, a feature which does not exist inC has
been added to the syntax ofTOPICS, in order for this tool
to handle non deterministic branching. The programs given
in input of TOPICS can actually make use of an additional
keywordany in conditional statements.

For instance, let us consider the program in Figure 2. In
this program, the functionmain builds an acyclic single-
linked list of a non-deterministically chosen size. In the
conditional statement of thewhile loop, the keywordany
is used to stipulate that this loop will eventually terminate
after a finite arbitrary number of iterations.

This is actually a nice feature of the tool because it allows
users to give directly in input theC programs they want to
verify, once having abstracted away parts which don’t strictly
follow the syntax ofTOPICS — non conformance to this
syntax is automatically identified by the underlying parser,
and notified to the user. Note that if we use the keyword
true (or 1) instead ofany in the example of Figure 2,
then the semantics associated to this program is different
because in this case the loop never terminates.

Apart from the keywordany, the syntax accepted by
TOPICS is exactly the one ofC programs (i.e. it is compat-
ible with any standardC compiler).

C. UsingTOPICS

In order to verify a program withTOPICS, the user gives
the source code as input to the tool and specifies which
function of the program he wishes to analyze. With these
dataTOPICS performs the translation into counter machines
and produces files forASPIC andFAST. As mentioned in
section II-B, at the translation stage the tool can already
prove the absence of faults in some cases. Alternatively, such
outputs also inform the user that some faults may exist.

Specifically, ifTOPICS returns a message saying that the
analyzed function is free of Segmentation Fault then there is
no need to analyze the produced counter machine to detect
such an error, on the other hand if it says that there may
be a Segmentation Fault, then the user has to perform a
reachability analysis of the counter machine using the files
produced byTOPICS. Note thatTOPICS produces one
input file for the toolFAST but as many files as there might
be errors for the toolASPIC. This is due to the syntax of
ASPIC, which does not allow users to describe complex sets



(as union of control states) to be tested for reachability. Some
experimental results on classical programs manipulating
single-linked lists can be found on the web page of the
tool [2]; the produced counter machines for these programs
are also provided.

IV. PRACTICAL ASPECTS

To support advanced features of digital technologies for
monitoring, fault detection and diagnosis of equipment and
systems (cf. section I), I&C architectures including digital
networks for inter- and intra-system data communication
are currently being proposed. This section presents practical
aspects of formal verification applied to software involved
in digital communication.

A. Software under analysis

The software under analysis is a preliminary (conse-
quently not supposed as error-free) version of a “network
spy” application which is embedded in a network monitoring
system for local industrial networks. The main functionality
of the network spy is to capture OSI frames exchanged
between non classified applications on local industrial net-
works. For the purpose of the experimentation reported
in this paper, focus has been placed on a multi-threaded
program making use of complex programming mechanisms
such as dynamic allocation of memory, circular buffers, syn-
chronization by events, socket communication, and shared
memory. The size of this software application is≈ 7000
lines of C code.

Specifically, the software architecture is composed of six
threads which are synchronized by events. The main pro-
cessings of the analyzer, as sketched above and at Figure 3,
are performed incrementally in four threads. Each of these
four threads contribute at one stage of putting application
messages together again, starting from network frames and
progressively filtering out inappropriate, incorrect or redun-
dant frames. Collected information at each stage is stored
in dynamically allocated variables or copied into circular
buffers. Typically, each circular buffer is shared betweentwo
threads, where one is writing and the other one is reading.

Figure 3 also illustrates the symmetry in software archi-
tecture, where each stage of the incremental processing is
realized by one thread using data from the previous stage
and eventually writing data for use at the subsequent stage.
Concerning management of memory, the symmetry still
holds where each thread allocates cells to store extracted data
locally and temporarily; once the processing is achieved,
filtered data is copied in global variables and buffers, and the
temporary cells are released. Dynamic memory management
is thus performed intra-thread (i.e. for a given dynamic
variable, allocation and release are both performed by the
same thread), whereas shared variables and circular buffers
are indeed statically allocated at initialization phase.

Figure 3. Overview of software architecture

Typical data structures involved in dynamic allocation are
of size several hundreds, and are formed of nested arrays
and C-structures — fields, each of which can have basic or
array types, where “basic” types can beint, char, char*,
etc. For instance in Thread 3, dynamic allocation and release
can occur both on basic fields, and on nested array fields,
at each index of an array.

B. Models

From original source code, models have been extracted
according to the syntax accepted byTOPICS (cf. sec-
tion III-B). This activity mainly involved removing system
calls that are not included inTOPICS syntax and other
processings not relevant to memory management, and re-
placing selected conditional statements by the keywordany
— typically for statements which depend on the software en-
vironment, e.g. actual contents of incoming network frames
as in Figure 4. The main requirement implemented when
extracting models is to keep themconservativelyrepre-
sentative of the original program, with respect to memory
management. That is to say, behaviors and features related to
memory management in the original program are preserved
in the corresponding model, e.g. reachability of memory
management primitives, control flow.

C. Experimental results

This section explains how our verification approach has
been firstly applied to a model of one of the threads, and
then to a second model as a double-check (resp. Threads 3
and 2 in Figure 3).

1) Thread 3: The implementation of Thread 3 has been
modeled according to the principles mentioned in sec-
tion IV-B, resulting in a compilableC file (≈ 500 lines).
Figure 4 shows typical models for the parts of code where
memory is allocated or released. As mentioned in sec-
tion IV-A, dynamic memory management in this program



/ / T y p i c a l model e x c e r p t : a l l o c a t i o n
i f ( any ) { /∗ c o n d i t i o n depend ing on a c t u a l da ta

r e c e i v e d in f rames∗ /
i f ( i n f o [ i nde x ] == NULL) {

tmp = mal loc (s i z e o f( s t r u c t c e l ) ) ; /∗ t y p e used
f o r mode l ing memory a l l o c a t i o n∗ /

i n f o [ i nde x ] = tmp ;
i f ( i n f o [ i nde x ] == NULL)
re turn SPYKO ; / / mode l ing o f memory ov e r f l ow

}
re turn SPYOK; /∗ s u c c e s s f u l e x t r a c t i o n o f

i n f o r m a t i o n ∗ /
}

/ / T y p i c a l model e x c e r p t : r e l e a s e
i f ( i n f o [ i nde x ] != NULL) {

tmp= i n f o [ i nde x ] ;
f r e e ( tmp ) ;

}
i n f o [ i nde x ] = NULL;

Figure 4. Typical model excerpts: allocation and release

Region NoSegF : = { ! s t a t e =SegF } ;
Region NoOOB: = { ! s t a t e =OOBound} ;
Region NoUndef : = { ! s t a t e =Undef } ;
Region Reach := p o s t∗( i n i t , t , 3 ) ;
i f ( s ubSe t ( Reach , NoMemLeak ) )

t he n p r i n t ( " There i s no Memory Leak . " ) ;
e l s e p r i n t ( " There i s a Memory Leak . " ) ;

e n d i f
i f ( s ubSe t ( Reach , NoSegF ) )

t he n p r i n t ( " There i s no Se gme n ta t i on F a u l t . " ) ;
[ . . . ]

Figure 5. Input toFAST for Thread 3 (excerpt)

involves sizable composite arrays and data structures. With
the original sizes, computations byTOPICS are overly time-
consuming. The chosen workaround is to define a smaller
size for these structures. Again, the justifying argument
is symmetry: considering that allocation and release of
memory follow the same program paths for any row in an
array, the presence or absence of a fault related to memory
management is independent of the absolute size of arrays.
This statement has been verified by checking that results of
analyses remain unchanged when array sizes vary.

Given the resulting model of Thread 3,TOPICS generates
a counter machine and outputs it in files, whenever there is
a category of faults for which the tool in non conclusive.
Output files with.fst extension can be given as input
to FAST and ASPIC tools. Figure 6 shows the resulting
information displayed byTOPICS on the terminal window.
TOPICS indicates it has proved the absence of memory
leak in Thread 3. For other categories of faults handled by
TOPICS, the verdict is not conclusive and.fst files are
accordingly generated (≈ 900 lines), allowing the user to
verify the property of freedom from such intrinsic faults,
with FAST or ASPIC.

We recall that given a.fst file, FAST can be used
to verify several reachability properties, provided that the
file defines a counter machine and several “regions” of
interest — each region associated to a fault category. Here,
the file Thread3.fst output by TOPICS contains the
counter machine translated from Thread 3 model and the

$ j a v a − j a r TOPICS . j a r modThread3 . c s rc T h re a d3
+ NO MEMORY LEAK
+ MAYBE A SEGMENTATION FAULT
+ MAYBE AN OUT OF BOUND ERROR
+ MAYBE AN UNDEF ERROR

$ t ime f a s t s rc T h re a d3 . f s t
nb a c c e l e r a t i o n s 17
" There i s a Se gme n ta t i on F a u l t . "
" There i s no Out o f Bound e r r o r . "
" There i s no Undef e r r o r . "
u s e r 2739m51 . 210 s

$ a s p i c s rc T h re a d3_Se gF_a s p i c . f s t
&& a s p i c srcThread3_OOBound_aspic . f s t
&& a s p i c s rc T h re a d3_Unde f_a s p i c . f s t

R e s u l t : Don ’ t know
R e s u l t : A l l t he bad l o c a t i o n s a re u n r e a c h a b l e

__bad_0− > > empty ( 2 6 )
R e s u l t : A l l t he bad l o c a t i o n s a re u n r e a c h a b l e

__bad_0− > > empty ( 2 6 )

Figure 6. TOPICS, FAST andASPIC results with Thread 3

lines shown in figure 5. The basic idea is to verify with
FAST if error states are included in reachable states; results
are shown in figure 6. On the other hand, the syntax of
input files to ASPIC requiresTOPICS to generate one
file per fault category. For instance, the following line is
inserted below the extracted counter machine in a.fst
file, for the purpose of memory leak verification:Region
bad:=state=MemL;. Figure 6 also shows the text output
of ASPIC verification with Thread 3 model; computation
time is here negligible.

The results obtained show the following.TOPICS proves
the absence of memory leak; the generated files consequently
don’t handle this category of fault. Concerning “Out of
bounds” and “Undef” errors,TOPICS is not conclusive, but
fault freedom is proved byFAST, and confirmed byASPIC.
Concerning segmentation faults,FAST indicates it has iden-
tified one instance, whereasASPIC is not conclusive. Typ-
ically, FAST is more accurate thanASPIC on this case
study, while the computation time ofFAST is considerably
longer than that ofASPIC. These observations are consistent
with the underlying formal techniques: computation of the
exact set of configurations reachable from a given set of
initial configurations [5], resp. accelerated linear relation
analysis [7]. It is also noticeable that no contradiction appear
between the results of the three tools.

Additionally, there is currently up to our knowledge no
commercial tool available, for which formal verification of
dynamic memory issues is claimed. Still, numerous tools are
able of identifying dynamic memory faults (e.g., tools cited
in section V). This case study was further analyzed with one
of these tools, for which “Leak”, “Null pointer dereference”
and “Free null pointer” belong to the list of software faults
susceptible to be identified. This analysis (computation time
≈ 1 minute) gives several verdicts to locate possible faults,
including 1 “Leak”, 1 “Free Null Pointer” and 4 “Null
Pointer Dereference”.

After code inspection at the associated line number,



the “Leak” verdict appears to be a false positive, con-
sequently not compromising the correctness ofTOPICS
results (cf. Figure 6): this verdict is indeed associated to
a normal allocation of a variable immediately after its
declaration, as shown within the short extract of code below.

i n t ∗ IndexAdd ;
IndexAdd= mal loc ( k∗ s i z e o f ( i n t ) ) ;

Faults related to as “Null pointer dereference” and “Free
null pointer” by the commercial tool used here are both
denoted as “Segmentation Faults” byTOPICS. Code in-
spections at the respective lines for the four “Null pointer
dereference” verdicts led us to identifyreal faults, due to
the factmalloc might return anull pointer (in case no
memory is available or some error prevented memory from
being allocated), while there is no defensive test against the
null value at these points of the program. Similarly, the
“Free null pointer” verdict is visibly linked to the fact one
of the functions of Thread 3 which allocates a buffer has
an error case where the returned buffer isnull, and a
aubsequent call tofree is not protected by a defensive test.
NB. It has been checked additionally that every identified
fault indeed exists in the original program.

These observations lead us to write a corrected version
of Thread 3 model, where the identified faults are re-
moved. With this model,TOPICS proves the absence of
segmentation fault: the output is similar to that of Figure 6,
with +NO SEGMENTATION FAULT instead of+MAYBE
A SEGMENTATION FAULT (achieving this result actually
took a couple of iterations between commercial and aca-
demic tools). Finally, this second version of Thread 3 model
was also analyzed with the same commercial tool. The
resulting verdicts still indicate some possible faults under the
category of ’segmentation fault’. These remaining verdicts
appeared to be false positives after code inspection, for
similar reason as earlier. Then we had got a confirmation
of TOPICS results that freedom from segmentation fault
had been reached.

2) Thread 2: The same methodology as explained above
for Thread 3 has been applied to Thread 2. Experimental
results with this model are shown in figures 7and 7. Analyz-
ing Thread 2 model,TOPICS proves the absence of out-of-
bounds access and, as expected, produces a counter machine
for third-party tools to check the three other types of
considered faults; NB. regions defined are similar to that of
Figure 5, withNoMemLeak:=!state=MemL; instead of
NoOOB:=!state=OOBound;. In each case, one instance
is found byFAST, while ASPIC is not conclusive.

Observations made for Thread 3 about accuracy, compu-
tation time and consistency between the results of different
tools still hold in the case of Thread 2. As earlier, this
case study was further analyzed with the same commercial
tool, which notably produces 4 “Leak”, 1 “Uninitialized
Variable”, 2 “Free Null Pointer” and 3 “Null Pointer Deref-
erence” verdicts. So far, the tool-based methodology applied

$ j a v a − j a r TOPICS . j a r modThread2 . c s rc T h re a d2
+ MAYBE A MEMORY LEAK
+ MAYBE A SEGMENTATION FAULT
+ NO OUT OF BOUND ERROR
+ MAYBE AN UNDEF ERROR

$ t ime f a s t s rc T h re a d2 . f s t
nb a c c e l e r a t i o n s 111
" There i s a Memory Leak . "
" There i s a Se gme n ta t i on F a u l t . "
" There i s an Undef e r r o r . "
u s e r 2527m18 . 230 s

$ a s p i c srcThread2_MemL_aspic . f s t
&& a s p i c s rc T h re a d2_Se gF_a s p i c . f s t
&& a s p i c s rc T h re a d2_Unde f_a s p i c . f s t

R e s u l t : Don ’ t know
R e s u l t : Don ’ t know
R e s u l t : Don ’ t know

Figure 7. TOPICS, FAST andASPIC results with Thread 2

to Thread 3 in the first part of section IV-C is also applicable
in the case of Thread 2: firstly perform formal analysis,
and then if needed, try and complement with external tools
(e.g. commercial) and code inspection to locate possibly
remaining faults, and finally iterate until demonstration
of freedom from intrinsic faults among the considered
categories. Further issues related to this methodology are
discussed in section IV-D.

D. Lessons learned

The tool-based methodology and experiments reported in
this paper show that memory safety can be formally proved
in local processings of industrial software (e.g. analysis
thread by thread). A version ofTOPICS has also been
developed in order to tackle concurrency more directly
(with synchronous products). However, the techniques im-
plemented for that matter are presently not efficient enough
to scale to this case study (the combinatorial calculations
can be handled on smaller case studies; experiments not
reported in this paper). Designing a tool to this purpose is
currently a theoretical and practical challenge. With thisin
mind, methods for modular thread analysis and interleaving
reduction belong to the approaches worth of investigation.

Experiments performed have also shown that separate
translation and analysis phases may lead to a situation
where generated models are large, with a consequently time-
consuming analysis with existing tools. Performance may
then be significantly improved by on-the-fly analyzes in
order to reduce the size of generated counter machines.

Finally, potential for improving the maturity of this
approach particularly resides in automation of the model
extraction phase briefly described in section IV-B, which
practically requires substantial effort on real-size software.

The learnings above are providing guidance and aims in
ongoing work, cf. section VI.

V. RELATED WORKS AND TOOLS

Many tools and techniques to check safety properties
on programs manipulating pointers have been developed



recently. In [16], the framework of predicate abstraction
is used to manipulate boolean formulae representing the
heap. In [17], the authors present a shape analysis method
based on separation logics formulae to analyze programs
manipulating singly-linked lists. Their method always ter-
minates but might yield false alarms due to the over-
approximation brought by the abstraction. Other methods
have been proposed which use already existing model-
checking techniques. For instance, in [18], the authors verify
safety properties on programs using abstract regular model-
checking and in [19] the authors propose to combine shape
analysis and arithmetic analysis.

As seen in section IV, software analysis tools such as [20]
can be useful to complement our tool-based formal verifi-
cation methodology. Most of the main available software
analysis tools — although practical and efficient in their
main targeted application cases (e.g. supporting developers
in improving code quality, robustness or security during the
development process) — may however infer false negatives,
i.e. actual faults that remain undetected within the categories
of faults identifiable by the tool. Besides, some of the
available commercial software analysis tools are designedto
exclude false negatives, but to our knowledge, the categories
of faults considered in this study are currently not in the
scope of such tools.

The Frama-C toolset [21] is considered as a promising
solution to go further on this methodology (see also sec-
tion VI). The CMBC tool [22] could also be investigated on
a case study, as a complementary approach.

VI. CONCLUSION

This paper reports on the development of a tool-based
methodology and its application to industrial software. As
an important conclusion, the considered approach has been
shown to be applicable accurately to local processings of
industrial software involved in control systems. Identified
limitations (cf. section IV-D) are to be addressed in on-
going work. To achieve this, theVERIDYC project [23]
will notably investigate modularization of formal analyzes,
and build onFrama-C [21] capabilities, such as analyzing
full C language, program slicing, and allowing the use of
independently developed plug-in analyzers.
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