Weak Time Petri Nets strike back!
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Abstract. We consider the model of Time Petri Nets where time is assstia
with transitions. Two semantics for time elapsing can besm®red: the strong
one, for which all transitions are urgent, and the weak omewhich time can
elapse arbitrarily. It is well known that many verificatioroplems such as the
marking reachability are undecidable with the strong seitsnin this paper,
we focus on Time Petri Nets with weak semantics equipped thitbe differ-
ent memory policies for the firing of transitions. We provattthe reachability
problem is decidable for the most common memory policy (me&diate) and
becomes undecidable otherwise. Moreover, we study thevekxpressiveness
of these memory policies and obtain partial results.

1 Introduction

For verification purposeg.g.in the development of embedded platforms, there is an
obvious need for considering time features and the studyntéd models has thus
become increasingly important. For distributed systerifierdnt timed extensions of
Petri nets have been proposed which allow the combinati@mafnbounded discrete
structure with dense-time variables.

There are several ways to express urgency in timed systentis@ussed in [17].
In timed extensions of Petri nets, two types of semanticeansidered for time elaps-
ing. In theweaksemantics, all time delays are allowed whereas instrengone, all
transitions are urgentg. time delays cannot disable transitions. While for modett wi
finite discrete structure (such as timed extensions of bedEtri nets or timed au-
tomata [3]), standard verification problems are decidatmdbdth semantics, for mod-
els with infinite discrete structure, the choice of the setinarhas a deep influence on
decidability issues. In this work, we consider the modeliofi§ Petri Nets [14] (TPN)
where clocks are associated with transitions, and whiclomsnsonly considered un-
der a strong semantics. In this model, all the standard eatifin problems are known
to be undecidable [10]. On the other hand, in the model of diae Petri nets [5],
where clocks are associated with tokens and which is eqdipjta a weak semantics,
many verification problems are decidable (coverabilityfeedness...). Indeed, this
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semantics entails for this model monotonicity properti¢sciv allow the application
of well-quasi-ordering techniques, see [8, 2, 1]. Note haw¢hat the reachability of a
discrete marking is undecidable, as proven in [18]. A natyuastion, which had sur-
prisingly no answer until now, as mentioned in a recent suorethe topic [7], is thus
to study TPN under a weak semantics of time elapsing.

The time-elapsing policy states which delays are allowed gconfiguration. The
memory policy is concerned with the resets of clocks, anditiutly specifies, when
firing a transition, which timing informations are presetvéhe original model of Mer-
lin [14] is equipped with arnintermediatesemantics which considers the intermediary
marking bewteen consumption and production. Two others angpolicies have been
considered in [4] (th@tomicand thepersistent atomicin which the firings of transi-
tions are performed atomically. While these policies cathibeight as cosmetic for the
model of TPN, the results we obtain show this is not the case.

We are interested in the impact of the weak semantics on TRNnguishing be-
tween the different memory policies. We first study the dability issues, and prove
that for TPN with weak intermediate semantics, a discretekimg is reachable if and
only if it is reachable in the underlying untimed Petri net & corollary, the problem
of the marking reachability (and also coverability, bouthdess) is decidable for this
model. More surprisingly, we also prove that when changiegrhemory policy this
result does not hold anymore and the verification problent®tne undecidable. In
this work, we only consider untimed verification problemsd are plan to study timed
versions in future work. We then compare w.r.t. weak timeéntiiarity (weak stands
here for silent transitions) the expressive power of weal Tébking at the different
memory policies. We first prove that the persistent atomiges#ics is strictly more ex-
pressive that the atomic semantics. Then, concerning atand intermediate memory
policies, we provide a TPN which shows that the atomic seitsig not included in
the intermediate one.

Related worksAs mentioned above, there are, up to our knowledge, only fesxy
works considering TPN under a weak semantics. In [7] theaathave proven that the
weak intermediate semantics and the strong intermediatargics are uncomparable.
In another line of work, [9] considers TPN under a semantibgvis a kind of com-
promise between the standard strong and weak semanticg.pfbeide translations
between this model and timed state machines.

Due to lack of space omitted proofs can be found in [16].

2 Definitions

Let X be a finite alphabeg.* is the set of finite words oveX. We noteX; = Y U {7}
wherer ¢ X represents internal actiorewill represent the empty word. The s&isQ,
Q>0, R andR > are respectively the sets of natural, rational, non-negaditional, real
and non-negative real numbersvAluationv over a finite sefX is a mapping irRZ,.
Forv € RY andd € Rx, v+d denotes the valuation defined byt d) (z) = v(z)+d.
We note0 the valuation which assigns to every= X the value0.

As commonly in use for Time Petri Nets, we will associatearadil intervals with
transitions. Note that we could handle intervals with baigiven as real numbers if



we abstract the problem of comparison of real numbers. Weidenthe sef (Q>¢) of
non-empty intervalga, b) with non-negative rational boundsb € Q. We consider
both open and closed bounds, and also allow a right opentmfiound as if2, +oo.

2.1 Petri Nets

Definition 1 (Labeled Petri Net (PN)).A Labeled Petri Net over the alphah¥t is a
tuple (P, T, X.,*(.),(.)*, My, A) where:

— P is afinite set ofplaces

— T is afinite set oftransitionswith PN T = (),

- *(.) € (N")T' is thebackwardncidence mapping,
- ()* € (N")T is theforwardincidence mapping,
— My € N¥ is theinitial marking,

— A:T — X, is thelabeling function

As commonly in use in the literature, the vectgt) (resp.(t)*) in N¥ is noted
*t (resp.t®). The semantics of a PN = (P, T, X,,*(.),(.)*, Mo, A) is given by its
associated labeled transition systgN] = (NP, My, ¥, =) where=C NF x ¥ x
N” is the transition relation defined by == M’ iff 3t € T s.t. A(t) = a A M >
*t NM' = M — *t + t*. For convenience we will sometimes also write, fog T,
M == M'if M > *tandM’ = M — °t + t*. We also writeM = M’ if there
existsa € X, such thatM == M’. The relation="* represents the reflexive and
transitive closure of>-. We denote byreach (/) the set of reachable markings defined
by {M € N” | My =* M}.

Itis well known that for PN the reachability problem whichnsists in determining
whether a given marking/ belongs toReach () is decidable; it has in fact been
proved independently in [13] and [12].

We introduce a last notation concerning Labeled Petri N&iteen a PNA/, a mark-

A
ing M of N and a multi-sefA = (¢4, ..., t,) of transitions of\/, we write M = M’

if and only if the multi-setA can be fired from\/, meaning that there exists an ordering
of transitions inA, represented as a permutationf {1, ..., n}, such that the sequence

. t, t, to(n . .
of firings M =8 My =3 M. .. =204 A1 exists in[A].

2.2 Timed Transition Systems

Timed transition systems describe systems which combgueete and continuous evo-
lutions. They are used to define the behavior of timed systamh as Time Petri
Nets [14] or Timed Automata [3].

Definition 2 (Timed Transition System (TTS)). A timed transition systerover the
alphabetY; is a transition systen$ = (Q, g0, >, —), Where the transition relation
—C Q x (¥, URsq) x Q consists of discrete transitions = ¢’ (with a € %)
representing an instantaneous action, and continuoussitams g 4, q (withd €
R>() representing the passagedftinits of time.



Moreover, we require the following standard propertiesios :
— TIME-DETERMINISM : if ¢ 4, ¢’ andgq 4, q" with d € R>o, then¢’ = ¢”,
— 0-DELAY : ¢ 2 g,
— ADDITIVITY :if g 4, ¢’ andq’ 4, ¢" with d, d’ € R>g, theng a4d q",
— CONTINUITY :if ¢ 4, ¢', then for everyd’ andd” in R>¢ such thatd = d’' + d”,
there existg” such that 4, q"’ a q.

With these properties, @n of S can be defined as a finite sequence of moves

do , ao d ;) a1 an . . .
g — ¢y — q1 — ¢4 — g2 ... — gn+1 Where discrete and continuous transitions
alternate. To such a run corresponds the timed woed (a;, 7;)o<i<n Over X, where
N = Z;:o d; is the time at whichz; happens. We then denote bintimedw) the
projection of the wordipa; . . . a,, Over the alphabe¥ and byDuration(w) the duration
7. Note that in the wordUntimedw) the symbol- does not appear. We will sometimes
apply, without possible ambiguities, these notations tesrwriting Untimedp) and
Duration(p). We might also describe the run writing directly — ¢, 1.

2.3 Time Petri Nets

Syntax. Introduced in [14], Time Petri Nets associate a time intewith each transi-
tion of a Petri net.

Definition 3 (Labeled Time Petri Net (TPN)). A Labeled Time Petri Net over the
alphabety, is atuple(P, T, X,, *(.), (.)*, Mo, A, I) where:

- (P, T,%,,°(), ()", My, A)isaPN,
— I:T — Z(Q>() associates with each transitionfaing interval

In the sequel, we associate with an interval its left bourdlitaright bound. More
generally, given a transitionof a TPN, we will denote byft(¢) (resp.lft(t)) the left
bound ofi(t) (resp. the right bound df(t)), standing for earliest firing time (resp. latest
firing time). We have hencg(t) = (eft(t), lft(t)).

Semantics.A configurationof a TPN is a paif M, v), whereM is amarkingover P,
i.e. a mapping inN?, with M (p) the number of tokens in plage A transitiont is
enabledn a markingM if M > *t. We denote b¥n(M ) the set of enabled transitions
in M. The second component of the péiv/,v) is a valuation oveEn(M), i.e. a
mapping inREY ™). Intuitively, for each enabled transitiarin M, v/(t) represents the
amount of time that has elapsed sirtde enabled. An enabled transitioican be fired
if v(t) belongs to the intervdl(t). The marking obtained after this firing is as usual the
new markingM’ = M — *t + t*. Moreover, some valuations are reset and we say that
the corresponding transitions are newly enabled.

Different semantics can be chosen in order to realize theeseds. This choice de-
pends of what is called theemory policy For M € N¥ andt,¢ € T such that
t € En(M) we define in different matters a predicdtenabled(t’, M, t) with s €
{I, A, PA} which is true ift’ is newly enabledby the firing of transitiort from mark-
ing M, and false otherwise. This predicate indicates whetherarel to reset the clock
of ¢/ after firing the transition at the marking\/.



I: Theintermediate semantiosonsiders that the firing of a transition is performed
in two steps: consuming the tokens 9t and then producing the tokens ih.
Intuitively, it resets the clocks afand of the transitions that could not be fired in
parallel witht from the marking)/. Formally, the predicatgenabled(t’, M, t) is
defined by:

Tenabled(t', M,t) = (' € EN(M —*t+t*) A (' ¢ EN(M —*t) Vit =1t"))

A: The atomic semanticgonsiders that the firing of a transition is obtained by an
atomic step. It resets the clocksiofnd of the transitions which are not enabled
at M. The corresponding predicatenabled, (¢, M, t) is defined by:

Tenabled (', M,t) = (t' € En(M —*t +t*) A(t' ¢ En(M) VvVt =1))

PA: Thepersistent atomic semantibshaves as the atomic semantics except that it does
not reset the clock of.

Tenablegha(t', M, t) = (' € En(M —*t +t°) At' ¢ En(M))

Finally, as recalled in the introduction, there are two waf/etting the time elapse
in TPN. The first way, known as the&trong semanticds defined in such a matter that
time elapsing cannot disable a transition. Hence, whengpenbound of a firing inter-
val is reached then the transition must be fired or disabtedohtrast to that theveak
semanticgloes not make any restriction on the elapsing of time. Inwioisk, we focus
on the weak semantics of TPN.

Definition 4 (Weak semantics of a TPN)Lets € {I, A, PA}. The wealks-semantics
ofa TPNN = (P, T,X.,*(.),(.)*, Mo, A, I) is a timed transition systefi\V], =
(Q, qo, ¥y, —s) WhereQ = N x Rgz)(M), qo = (Mo, 0) and— consists of discrete
and continuous moves:

— the discrete transition relation is defingd € X by:

A(t) = a, and,
t € En(M)AM'= M —*t+1t*, and,
v(t) € I(t), and,
vt' € En(M'),
1 /
V() = {0 if Tenabled(t', M, t)

(M,v) &g (M',V)iff 3t € T s.t.

v(t') otherwise

— the continuous transition relation is defingd € R by:
(M,v) is (M,V)iffv =v+d

We also write a discrete transitidii/, v) L (M', V") to characterize the transi-

tion ¢t € T which allows the firing(M, v/) ﬂis (M’,v"). We extend this notation to

wordsé € (T'URxq)*, which correspond to sequences of transitions and delays an



lead to a unique (if it exists) rup. We may write this rurp : (M, v) ﬁs (M',v") and
useUntimed#) (resp.Duration(d)) to denote the wortUntimedp) (resp. to represent
the delayDuration(p)). Finally, fors € {I, A, PA}, we write (M,v) —, (M',v)

if there existsa € X, U Rsq such that(M,v) %, (M’,v'). The relation—* de-
notes the reflexive and transitive closure-ef. For a TPNA with an initial marking
M, we define the following reachability sets according to thasidered semantics:
Reach(N)s = {(M,v) | (My,0) —* (M,v)}.

Example 1.We illustrate the impact of the three memory policies in weakantics.

Consider the net depicted on Figure 1, and the execution

P t2,¢,00,1] (M, 0) 5, (M,1) %, (M,v) whereM (p) = 1. With the

intermediate semantics, both clocks are reset as in the in-

termediate marking, the plageis empty. With the atomic

semantics, the clock associated withis not reset and the

clock associated withl is reset because it corresponds to

Fig.1.The TPNN1. the fired transition. Finally, with the persistent atomie se
mantics no clock is reset.

tlv a, [05 +OO[

3 Decidability

3.1 Considered problems and known results

AssumeN = (P, T, X,,*(.),(.)*, My, A, I) is a TPN. In this section, we will consider

the following problems fos € {I, A, PA}:

(1) Themarking reachability problemgiven M < N, does there exist € RE”SM)
such tha{M, v) € Reach(N)s ? B

(2) Themarking coverability problemgiven M € N¥, does there exist/’ € N* and
ve RET)(MI) such thatV’ > M and(M’,v) € Reach(N), ?

(3) The boundedness problemdoes there exist € N such that for all(M,v) €
Reach(N), and forallp € P, M(p) <b?

It is well known that the "untimed” versions of these probkeare decidable in the
case of Petri nets. In fact, as mentioned before the markiaghability problem is de-
cidable for Petri nets [12, 13] and the two other problemstzarolved using the Karp
and Miller tree whose construction is given in [11].

From [10], we know that these problems are all undecidabkndonsidering TPN
with strong semantics no matter whether the semanticsasnmgdiate, atomic or per-
sistent atomic. In fact a TPN with strong semantics can steuh Minsky machine.
A Minsky machine manipulates two integer variabtgsandc, and is composed of a
finite number of instructions, each of these instructioriadpeither an incrementation
(¢ : ¢ := ¢; + 1) or a decrementation with a test to zerp:(if ¢; = 0 gotoq’ else
¢i := ¢; — 1; gotoq”), wherei € {1,2} andgq, ¢/, ¢” are some labels preceding each
instruction. There is also a special la@elfrom which the machine cannot do anything.



In [15], Minsky proved that the halting problem, which castsiin determining if the
instruction labeled witly is reachable, is undecidable.

Itis easy to encode an incrementation using a TPN (or even) aviAtk a transition
consuming a token in a place characterizing the currentrabstiate and producing a
token in the next control state and in a place representmgittremented counter.

When encoding the decrementation with the test to ¢
zero, the strong semantics plays a crucial role. This en-
coding is represented on Figure 2. If there is a token in q"
the placec;, there is no way for the TPN to produce a
token in the placg’ because time cannot elapse since ¢
the transition labeled with the intervil, 0] is firable. ,
The example of the Figure 2 shows that the strong time (1,1] q
semantics allows to encode priorities (between transi-
tions in conflict) and thus to encode inhibitor arcs. Thikig. 2. Encoding decremen-
construction obviously fails with the weak semantics. tation with strong semantics.

3.2 The peculiar case of TPN with weak intermediate semantic

We prove here that the undecidability results we had befotbe case of TPN with
strong semantics do not hold anymore when considering tlad iméermediate seman-
tics. Before proving this we introduce some notations. FBPAIN = (P, T, X, *(.),
()%, Mo, A, I), we denote by\V'V the untimed PN obtained by removing froki the
component . Furthermore given a set of configuratiafisC N” x RZ, of A/, we de-
note byUnt i me(C) the projection of” over the seN”. Fors € {I, A, PA}, we have
by definition of the different semantics thant i me(Reach(N)s) € Reach(NY)
and as shown by the example given in Figure 2 this inclusiastrist in the case of
the strong semantics. When considering Wesak intermediate semantics, we prove
that from any sequence of transitiodsfirable in [A/Y], we can effectively compute a
reordering ofA, and associated timestamps, leading to a correct r{uVéf.

Theorem 5. For all TPN .V, Unt i me(Reach(N);) = Reach(NY).

According to the previous remark, we only have to prove Raach(NY) C
Unt i me(Reach(N);). Therefore, we first state the following property expregsirat
if we reduce the intervals associated with transitions tbstricts the set of reachable
configurations:

Lemma 6. Let ', N be two TPN identical except on their last component assiogjat
intervals to transitions, say respectivdland!’. If we havel’ (t) C I(t) foranyt € T,
thenReach(N’); C Reach(N);.

In the sequel, we will consider TPN in which intervals areuset to singletons. That is
we havel (t) = [eft(t), Ift(t)] with eft(t) = ift(t) for all transitionst € T'. The proof
of the result in this particular case thus entails the réauhe general case. Before to
proceed we introduce additional definitions for TPN.



Given a TPNA/, a markingM of A/ and A a multiset of transitions of\/, we

A\t
define the se€Candidat¢ M, A) = {t € A | M LM =>}. We will then say that a
configuration(M, v) is compatiblewith a multisetA iff:

A
M = andvt € Candidaté M, A), v(t) < Ift(t).

We now prove the following proposition, which intuitivelyases how to turn a
sequence of transitions in the untimed Petri net into a timextution of the TPN.

Proposition 7. Let N be a TPN with singleton intervals arid/, v/) be a configuration
of N' compatible with some multiset of transitions Then, for any transition &
Candidaté M, A) such thatd(¢t) = Ift(¢t) — v(¢) is minimal (among the transitions of
CandidatéM, A)), we have:

(i) (M,v) 2 (M, +6(1)) L (M, 1),

(i) (M’,v") is compatible withA” = A\ ¢,

Proof. Lett € Candidaté M, A) be such that for alt’ € Candidaté¢M, A), we have
Ift(t) —v(t) = o(t) < 6(t') = Uft(t') — v(t)).

(i) First the time elpasing transitiof\/, v) MI (M,v +4(t)) is possible as we

consider the weak semantics. Second, the discrete t@méi, v + 5(t)) -,
(M’,v') is also possible as(t) + 6(t) = Ift(¢) by definition ofé(t), and since
the intervals associated with transitions are all singisto

(i¢) To prove compatibility, first note tha/’ |:> because € CandidatéM, A).
Second, let’ € CandidatéM’, A"). We distinguish two cases according to the
value of the predicatéenabled (¢, M, t'):

— If Tenabled (¢, M, t') is true, then we have’ (t') = 0 and the result follows.

— Otherwise, the definition ofenabled (¢, M, t') implies thatM > *t + *¢'.
As a consequence, we have LX Thenag’ e CandidatéM’, A\ t) we
get thatt’ € Candidat¢)M, A). Due to the minimality ob(¢) among the set
Candidaté M, A), we obtain/(t') = v(t') + 6(t) < v(t') +0(¢') = Ift(t)
as desired.

This concludes the proof. a

The inclusiorReach(NV) C Unt i ne(Reach(N);) in the case of TPN with sin-
gleton intervals easily follows from this result. Indeednsider some reachable mark-
ing M in Reach(N'Y). There exists a sequence of transitions that lead® tbrom
My, we represent it through some multisét As initially all clock valuations are null
in [NV, the configuratiori My, 0) is thus compatible withA. An induction on the size
of A, together with Proposition 7, thus gives the result. Notg froposition 7 de-
scribes an effective procedure to compute a timed execofi@];: simply consider
the transitions that are candidates, and choose one withatitiest deadline.

Using the decidability results in the case of PN, we obtaénftilowing corollary:

Corollary 8. The marking reachability, marking coverability and bouddess prob-
lems are decidable in the case of TPN with weak intermedetastics.



3.3 Undecidability for weak atomic and weak persistent atorit semantics

We consider now the case of the weak atomic and weak persigtanic semantics. As
for the strong semantics, but with a more involved consibactve will show that it is
possible to encode the behavior of a Minsky machine into a WiRiNweak (persistent)
atomic semantics from which we will deduce the undecidghibsults. The TPN we
build contains a place for each countgwith i € {1,2} and a place for each labgbf
the considered Minsky machine. Furthermore, when exegthimnet, we will preserve
the invariant that there is a single place correspondindabel g which is marked.

1

Fig. 3. Encoding decrementation with weak atomic or persistemh&tgemantics.

Encoding an incrementation can be done as in the strong sesarfigure 3 shows
how to encode the instructiog { if ¢; = 0 gotoq’ elsec; := ¢; — 1; gotog”) using a

TPN with weak atomic or persistent atomic semantics. We nquan the idea of this
encoding. We consider the two following cases for the netvshia Figure 3:

1. Assume that the only place which contains a token is theeglavhich means we
are in the case where the value@fis equal to0 (no token in place:;). The net
then can only fire the sequence of transitiohst2, t3 and thent4 and finally it
reaches a configuration where the only marked plagé is

2. Assume now that there is a token in placand that there is at least one token in
placec;. We are in the case where the valuecpis different of0. We have the
following sequence of transitions:

— only the transitiort1 is firable, so the net fires it;

— afterwards the transitiot2 and the transition3 are firable. In fact, since we
are considering weak semantics the deadling @&an be ignored thus making
time passage in order to fit2. Note that if the net chooses to fit8, it will
reach a deadlock state where no more transitions can be fiteduwhaving
put a token in the placg or ¢”, therefore we assume that the transiti@ris
first fired;

— after having waiting one time unit and firing, the only transition which can
be fired ist5. In fact since we are considering atomic (or persistent apm
semantics, firing2 does not make3 newly enabled, whereas the weak inter-
mediate semantics would have reset the clock associat8d $m the net fires



t5 consuming the token ip2, p3 and two tokens ir; (at least one was present
from the initial configuration and the first firing ¢2 added another one);

— finally the net ends in a configuration with one tokengihand the place;
contains one token less than in the initial configuration.

The above construction allows to reduce the halting proldtamMinsky machine
to the marking coverability problem for weak (persistentynaic semantics. From this
we can also deduce the undecidability for the marking reaitityaand boundedness
problems. Hence:

Theorem 9. The marking reachability, marking coverability and bouddess prob-
lems are undecidable for TPN with weak atomic or weak pensisitomic semantics.

In comparison with what occurs in the case of the strong séosanhis result is
surprising, and it reveals the important role played by tleeory policy when consid-
ering the weak semantics. Recall that as we have seen gaitlethe strong semantics,
these problems are undecidable no matter which memoryyslichosen.

Finally, in the above construction, we can replace the etgdseenp2 and 2
by a read arc. Consequently, the considered problems arauatiecidable for weak
intermediate TPN with read arcs, unlike what happens foedirarc Petri nets [6].

4 Expressiveness

4.1 Preliminaries

LetS = (Q, g0, Xr, —) be a TTS. We define the relatier C Q x (X UR>q) x Q by:

—ford € Rxg, ¢ SN ¢ iff there is a runp in S such thatp = ¢ = ¢ and
Untimed(w) = e and Duration(w) = d,

—fora € X, ¢ <% ¢ iff there is a runp in S such thatp = ¢ > ¢ and
Untimed(w) = a and Duration(w) = 0.

This allows us to define the following notion:

Definition 10 (Weak Timed Bisimulation). Let S; = (Q1, ¢}, X7, —1) and Sy =
(Q2,q3, X, —2) be two TTS and- be a binary relation over); x Q. ~ is a weak
timed bisimulation betwee$y andS; if and only if:

— q(l) ~ qg, and,
—fora e Y UR>q, ifq1 .L,l q; and ifg; ~ g2 then there existg), € Q- such that
G2 —3 ¢} andq) ~ ¢; conversely ifg, ——5 ¢, and ifg; ~ g2 then there exists
a
¢} € Q1 suchthaly; — ¢} andgj ~ gb.

Two TTSS; andS, areweak timed bisimilaif there exists a weak timed bisimu-
lation betweers; and.S,. We then writeS; ~ S5.

10



Definition 11 (Expressiveness w.r.t. Weak Timed Bisimilatly). The clas< of TTS
is less expressive thaH w.r.t. weak timed bisimilarity if for all TTS € C there is a
TTSS’ € €’ such thatS ~ S’. We writeC C C’. If moreover there is &’ € C’ such
that there is naS € C with S ~ S, then( is strictly less expressive thai. We then
writeC C C'.

Fors € {I, A, PA}, we will denote byZ PN, the class of TTS induced by TPN
with s-semantics.

4.2 Atomic versus Persistent Atomic semantics

In [4], the authors prove that for TPN with strong semantils, persistent atomic se-
mantics is more expressive than the atomic semantics. Wee irere that this result

still holds in the case of the weak semantics. Intuitivelyjtas shown on Figure 4,

from a TPN with atomic semantics, we build another TPN in Whi@ duplicate each

transition. During an execution of this last TPN, at most ofihe transitions obtained
after duplication is enabled, and when it is fired it cannoebabled again at the next
step whereas the other one can. This trick allows us to steti& atomic semantics
with the persistent atomic one.

———————————— N
!

A(t)

Fig. 4. From atomic to persistent atomic semantics.

Proposition 12. For all TPN N, we can build a TPNV’ such thafAV] 4 = [N']pa-

Proof. Let ' = (P, T, X,,°*(.),(.)*, My, A, I) be a TPN ovel,. Figure 4 represents
the construction of the TPW”. Formally, its set of placeB” is equal toP U {p;, p? |
t € T} and its set of transitiong” contains two copies' and¢? of each transition
t € T. These copies are connected in the same way as the transitidn A/, plus
additional edges to the places and p?, as depicted on Figure 4. Finally the initial
marking of N is M such that for allp € P, M{(p) = My(p) and for allt € T,
Mi(p}) = 1 andM(p}) = 0.

We now consider the relationC (N” x RZ ) x (N x RZ,) between the config-
urations off '] 4 and the ones dfiN’] p4 defined by(M,v) ~ (M’, V') iff:

— forallp € P, M(p) = M'(p) and for allt € T, M'(p}) + M'(p?) = 1,
— forallt € T, foralli € {1,2}if t € En(M) andt’ € En(M’) thenv(t) = v/ (t%).

It is then easy to verify that the relatienis a weak timed bisimulation. a
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We will now prove that the inclusion we obtain in the abovepmsition is strict. But
before, we address a technical point which we will use toydetame sequences of
transitions in weak TPN.

Lemma 13. Lets € {I, A, PA} and consider a TPNV such thatb is the smallest
positive upper bound of the intervals 4f. Let p be a run in[N]; of the formp :

(M,v) 220, (M,v+59) 4, -+ I, such that there exists a valte> 0 verifying:

(1) Vied{l,...,n}, t; e EN(M) = v(t;) <,
(i) n+o<?
b
Then the sequenge : (M, v) ~2., (M, /) ‘2, .. ‘= is firable in [\,

We now consider the TP, represented on Figure 5. Equipped

with persistent atomic semantics, it accepts the set ofdime | q, [0, 1]

words composed of lettersoccurring before timé. We will

prove that this timed language cannot be accepted by any TPN

equipped with the weak atomic semantics. Fig. 5. The TPNAS.

Proposition 14. There exists no TPN (even unbounded) sftN] 4 =~ [N2]pa-

Proof. Assume there exists a TPN such thaf A4 ~ [N2]pa. Denote byN the
number of transitions ol by b the smallest positive upper bound of the intervals of
N, and consider a timed word = (a,m1)(a,72) . .. (a,n;) such tha¥i, 1 — g <n <
Niv1 < 1,andk > N + 1.

This timed wordw is recognized byf\:] 4 and there exists thus a run p¥/] 4
alongw. We denote it byy and decompose it as follows :

0o di 61ty 0] di 6, t. 6] de Ok th
PI—mATATTATTATTA T TOATTATTATTA T T AT ATA

To obtain this decomposition we proceed as follows. We dehgt! thei-th tran-
sition labelled bya. Then for each positiot, we isolate the last delay step occuring
before the transitioty, (it exists sincey; > n;_1) and denote it byl;. Then we gather
all the internal transitions occuring between this del@psind the transitiot{,, and
denote this sequence Igy. The transitions betweeti~! and the delay step consti-
tute the sequend®_,. In particular, the following properties hold for any pasit ; :
A(th) = a, Untimed#;) = Untimed#,) = ¢, d; > 0, Duration(¢;) = 0, andt’, occurs
at timen,.

We claim there exists an indéxc {1, ..., k} such that each transitiarappearing
in 6; t!, has already been fired sinég i.e.t also appearsith t. 0} --- 0,1 t:=1 0] _,.
By contradiction, if it is not the case, then we can find, faztemdexi € {1,...,k}, a
transition, denoted;, that never appears before. The choicé ekrifyingk > N + 1
then implies that there exist two positions# j such thatt; = ¢;, thus yielding a
contradiction. We can now fix an indéwerifying the above described property.

We now show that Lemma 13 can be applied to the papt aésociated with the
sequencel; 0; t'. More precisely,(M,v) is the configuration reached after firing
0o ---ti=1 0._,, the delays is equal tod;, the sequench - - - t,, corresponds to; t,
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andn is defined agn; — d;) — (1 — g). In the atomic semantics, when a transition is
fired, its clock is reset if it is still enabled. This propeglows, together with timing
constraints on the word, to verify hypothesesi) and (i) of the Lemma 13. Indeed,
since each transition if; ¢ has been reset alorfg ¢! 0] ---6,_,, it has been reset
since timer);. Since the global time associated wi{th/, v) is equal ton; — d;, these
valuations are bounded by above by the vdlye-d;) — 71 < (5, —d;) — (1— %) =n.
Second, we havg+6§ = n; — (1— %) < £, as desired (this follows from the inequalities
1-— % < <1).

Finally, Lemma 13 thus allows to delay éfthe firing of the sequenc t. In
particular, this will produce a letter at timen; + % > 1. The TTS[N] 4 thus accepts

a timed word not recognized BW>] » 4, providing a contradiction. O

Using the results of Propositions 12 and 14, we deduce that:

Theorem 15. 7PN 4, C TPN pa.

4.3 About Atomic and Intermediate policies in weak and stromg semantics

In this subsection, we discuss the comparison of the intéiateeand atomic policies.
As we will see, the situation is more complex than in the presicomparison.

On the inclusion o PN} into 7PN 4. For thestrong semanticsa construction has
been proposed in [4] to transform any TPN with intermediatiécy into an equivalent
(w.r.t. weak timed bisimilarity) TPN with atomic semantiésfirst attempt was thus to
adapt this construction for the weak semantics. But stuglthis construction, we no-
ticed that it is erroneous (even for the strong semantice)pi#sent below an example
exhibiting the error.

t', ¢, [0,1]

Ns
t'*,7,10,0]

D t', e [0,1]

t,a,[0,1]

Fig. 6. A counter example to the construction of [4].

Example 2.Consider the neN3; depicted on the left of Figure 6. The application of
the construction proposed in [4] leads to the Agtdepicted on the right of Figure 6.
According to [4], we should have, under tegong semantics the relation[\s]; ~
[N3].a. However, it is easy to verify that in the TT[BV;].4 the letterc can be read
after 2 times units (with the timed woi(@, 1)(a, 1)(7, 1)(7, 1)(c, 2)) whereas it is not
possible in[A3];, thus proving that the construction proposed in [4] is eemrs.
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This example leaves open the question of the inclusich®f\; into 7PN 4 for
the strong semantics, and then for this semantics bothdimeia are left open. For weak
semantics, this inclusion is also open, but we show belotthigaconverse inclusion is
false.

Non inclusion of7 PN 4 into 7PN ;. We exhibit a TPN with atomic semantics which
cannot be expressed in an equivalent way by any TPN withriredrate semantics (with
weak elapsing of time). This is formally stated in the Prapos below. We consider
the TPNA/; represented on Figure 1. Interpreted in weak atomic sensattie firing of
the a-labelled transition does not newly enable transition llzideby c. This transition
thus shares a token with transitiarwhile preserving a time reference to the origin of
global time, what is impossible in intermediate semantics.

Proposition 16. There exists no TPW/ (even unbounded) such thgV/]; = [N1] 4.

Proof. We only present a sketch of the proof (details can be foundién[16]). We
proceed by contradiction and assume there exists such aATPahd denote bw its
number of transitions, angthe smallest positive upper bound of its intervals. As in the
proof of Proposition 14, we first exhibit a particular exeontp of [N];:

Lemma 17. Let(n;)1<i<x be a set of timestamps such thatfordny ¢ < k, 1 — % <
n; < mi+1 < landk > N + 1. There exists a rup in [N] of the following form:
=3 o di 07ty 07 0 di 0ty 0 On  dn  On o O

P[] T[T [ T[T [ T[]
such that for any position, A(t}) = a, the transitiont! occurs at timen;, d; > 0,
Untimedd;) = Untimed¢}) = Untimed#!') = ¢, Duration(¢}) = Duration(6) = 0,
and there exists a transitiot},, labelled byc, newly enabled by the last transition of
t! 07 and (immediately) firable from the configuration reacheeedy’.

To conclude we use a reasonning very similar to the one datheiproof of Propo-
sition 14. In fact, applying Lemma 13, it is possible to deuxyyg time units the firing
of a subsequeneg 0. t: 9 and since’ is newly enabled by the last transition#f6,

we thus obtain a run ifi]; with a c action following ana action occuring after time
1, which is impossible ifA\1] 4, thus yielding a contradiction. O

5 Conclusion

We have studied in this paper the model of Time Petri Nets uadeeak semantics of
time elapsing, allowing any delay transition. We have firstven that for the interme-
diate memory policy, the set of reachable markings coirecwigh the reachability set
of the underlying untimed Petri net. As a consequence, marification problems are
decidable for weak intermediate TPN. On the other hand, we peoven that the two
other memory policies, namely atomic and persistent atpafimwv to simulate Minsky
machines and thus are undecidable. Finally, we have stedipkssiveness and have
proven thati) the atomic semantics is strictly less expressive than tregtent atomic
one andii) the atomic semantics is not included in the intermediate one
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In further work, we plan to investigate properties conaegnéxecutions of weak
intermediate TPN; such as time-optimal reachability, ok Idiodel checking. Indeed,
while discrete markings are the same, the executions derefit from those accepted
by the underlying Petri net. Concerning expressivenesspngecture that intermediate
and atomic semantics are uncomparable in general, and ¢tbaded weak TPN are
strictly less expressive than timed automata (withoutriiawds).
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and the anonymous reviewers for their insightful comments.
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