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ABSTRACT
We give efficient quantum algorithms for the problems of
Hidden Translation and Hidden Subgroup in a large
class of non-abelian groups including solvable groups of con-
stant exponent and of constant length derived series. Our
algorithms are recursive. For the base case, we solve effi-
ciently Hidden Translation in Z

n
p , whenever p is a fixed

prime. For the induction step, we introduce the problem
Orbit Coset generalizing both Hidden Translation and
Hidden Subgroup, and prove a powerful self-reducibility
result: Orbit Coset in a finite group G is reducible to
Orbit Coset in G/N and subgroups of N , for any solvable
normal subgroup N of G.

1. INTRODUCTION
Quantum computing is an extremely active research area

(for introductions see e.g. [15, 1, 18, 16]), where a growing
trend is to cast quantum algorithms in a group theoretical
setting. In this setting, we are given a finite group G and,
besides the group operations, we also have at our disposal a
function f mappingG into a finite set. The function f can be
queried via an oracle. The time complexity of an algorithm

∗Research partially supported by the EU 5th framework pro-
grams QAIP IST-1999-11234, RESQ IST-2001-37559, and
RAND-APX IST-1999-14036, by CNRS/STIC 01N80/0502
and 01N80/0607 grants, by ACI Cryptologie CR/02 02
0040 grant of the French Research Ministry, and by OTKA
T030059, T030132, and NWO-OTKA N34040 grants. Part
of the work of the last three authors was done while visiting
MSRI, Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

is measured by the overall running time counting one query
as one computational step. We say that an algorithm is
efficient if its time complexity is polynomial in the logarithm
of the order of G. The most important unifying problem of
group theory for the purpose of quantum algorithms has
turned out to be Hidden Subgroup, which can be cast in
the following broad terms: Let H be a subgroup of G such
that f is constant on each left coset of H and distinct on
different left cosets. We say that f hides the subgroup H.
The task is to determine the hidden subgroup H.

While no classical algorithm can solve this problem with
polynomial query complexity even if G is abelian, the biggest
success of quantum computing until now is that it can be
solved by a quantum algorithm efficiently for abelian G. We
will refer to this quantum algorithm as the standard algo-
rithm for Hidden Subgroup. The main tool for this solu-
tion is Fourier sampling based on the (approximate) quan-
tum Fourier transform for abelian groups which can be effi-
ciently implemented quantumly [14]. Simon’s xor-mask find-
ing [21], Shor’s factorization and discrete logarithm finding
algorithms [20], and Kitaev’s algorithm [14] for the abelian
stabilizer problem are all special cases of this general solu-
tion.

Finding an efficient algorithm for Hidden Subgroup for
non-abelian groups G is considered to be one of the most
important challenges at present in quantum computing. Be-
sides its intrinsic mathematical interest, the importance of
this problem is enhanced by the fact that it contains as
a special case the graph isomorphism problem. Unfortu-
nately, non-abelian Hidden Subgroup seems to be much
more difficult than the abelian case, and although consid-
erable efforts were spent on it in the last few years, only a
small number of successes can be reported. They can be
divided into two categories. The standard abelian Fourier
sampling based algorithm has been extended to some non-
abelian groups in [19, 12, 11] using the quantum Fourier
transform over these (non-abelian) groups. Unfortunately,
efficient quantum Fourier transform implementations are
known only for a few non-abelian groups [5, 17, 19, 12]. In a
different approach, Hidden Subgroup was efficiently solved



in the context of specific non-abelian black-box groups [6,
23] by [13] without using the Fourier transform on the group.

In face of the apparent hardness of Hidden Subgroup in
non-abelian groups, a natural line of research is to address
subproblems of Hidden Subgroup which, in some groups,
capture the main difficulty of the original problem. In a
pioneering paper, Ettinger and Høyer [9], in the case of di-
hedral groups, implicitly considered another paradigmatic
group problem, Hidden Translation. Here we are given
two injective functions f0 and f1 from a finite group G to
some finite set such that, for some group element u, the
equality f1(xu) = f0(x) holds for every x. The task is
to find the translation u. In fact, whenever G is abelian,
Hidden Translation is an instance of Hidden Subgroup
in the semi-direct product G o Z2, where the hiding func-
tion is f(x, b) = fb(x). The group action in G o Z2 is de-
fined as (x1, b1) · (x2, b2) = (x1 + (−1)b1x2, b1 ⊕ b2), where
+ denotes the group operation in G and ⊕ denotes the
group operation in Z2. In G o Z2, f hides the subgroup
H = {(0, 0), (u, 1)}. Actually, there is an efficient quantum
reduction in the other direction also, and the two problems
are quantum polynomial time equivalent [9]. A nice con-
sequence of this equivalence is that instead of dealing with
Hidden Subgroup in the non-abelian group GoZ2, we can
address Hidden Translation in the abelian group G. Et-
tinger and Høyer [9] have shown that Hidden Translation
can be solved by a two-step procedure when G = ZN is
cyclic: polynomial number of Fourier samplings over the
abelian group ZN × Z2 followed by an exponential classical
stage without further queries.

Recently, Dam, Hallgren and Ip [8] have given efficient so-
lutions for three cases of the hidden shift problem what they
put in the framework of the more general hidden coset prob-
lem. This is also a generalization of Hidden Translation
to not necessarily injective functions. While this paper
shows how to solve Hidden Translation in some specific
groups for any (injective) functions, the hidden coset prob-
lem in general is of exponential query complexity, even in
Z

n
2 .
Our first result (Theorem 1) is an efficient quantum al-

gorithm for Hidden Translation in the case of elementary
abelian p-groups, that is groups Z

n
p , for any fixed prime num-

ber p. The quantum part of our algorithm is the same as
in Ettinger and Høyer’s [9] procedure: it consists of per-
forming Fourier sampling over the abelian group Z

n
p × Z2.

But while their classical post processing requires exponential
time, here we are able to recover classically the translation
in polynomial time from the sampling. It turns out that
Fourier sampling produces vectors y non-orthogonal to the
translation u, that is we obtain linear inequations for the un-
known u. This is different from the situation in the standard
algorithm for the abelian Hidden Subgroup, where only
vectors orthogonal to the hidden subgroup are generated.
We show that, after a polynomial number of samplings, the
system of linear inequations has a unique solution with high
probability, which we are able to determine in deterministic
polynomial time. An immediate consequence of Theorem 1
is that Hidden Subgroup is efficiently solvable by a quan-
tum algorithm in Z

n
p o Z2.

In Appendix A, we show how to extend the previous ap-
proach to solve Hidden Translation in the groups Z

n
pk

where pk is a fixed prime power, but we do not know how
to extend it to an arbitrary abelian group, even of con-

stant exponent. To solve Hidden Translation over other
groups (which include abelian groups of constant exponent),
we embark in a radically new direction whose basic idea is
self-reducibility. Since Hidden Translation is not well-
suited for this self-reducibility based approach, we define a
new paradigmatic group problem Orbit Coset which is a
quantum generalization of both Hidden Translation and
Hidden Subgroup. Orbit Coset involves quantum group
actions, that is groups acting on a finite set of mutually or-
thogonal quantum states. Given two such states |φ0〉 and
|φ1〉, the problem consists of finding their orbit coset, that
is the stabilizer subgroup of |φ1〉 and a group element that
maps |φ1〉 to |φ0〉.

With a slight modification, our algorithm of Theorem 1
also works for Orbit Coset in Z

n
p whenever many copies

of the input states are given. Moreover, we show that
Orbit Coset has the following self-reducibility property
in any finite group G: it is reducible to Orbit Coset in
G/N and subgroups of N , for any solvable subgroup N �G
(Theorem 3). This is the first time that such a general self-
reducibility result has been obtained for a problem incorpo-
rating Hidden Subgroup. The proof of the result involves
a new technique which is based upon constructing the uni-
form superposition of the orbit of a given quantum state
(Orbit Superposition). The importance of generating
some specific superpositions, for example uniform orbit su-
perposition, is in the center of the recent paper of Aharonov
and Ta-Shma [2]. We show how Orbit Superposition
is related to Orbit Coset (Theorem 2). The self-
reducibility of Orbit Coset combined with its solvabil-
ity for Z

n
p enables us to design an efficient quantum algo-

rithm for Orbit Coset in groups that we call smoothly
solvable groups (Theorem 4). These groups include solv-
able groups of constant exponent and constant length de-
rived series; in particular, unitriangular matrix groups of
constant dimension over finite fields of constant character-
istic. For the special case of Stabilizer (i.e. Orbit Coset
when |φ1〉 = |φ0〉), we obtain an efficient quantum algorithm
for an even larger class of solvable groups viz. for solvable
groups having a smoothly solvable commutator subgroup
(Theorem 5). As an immediate consequence, we get ef-
ficient quantum algorithms for Hidden Translation and
Hidden Subgroup for the same groups as Orbit Coset
and Stabilizer respectively.

2. PRELIMINARIES

2.1 Group theory and quantum computation
backgrounds

We say that a quantum algorithm solves a problem with
error ε if for every input it produces an output whose trace
distance (see e.g. [16] for the definition) from a correct one
is at most ε. We say that a problem P is reducible to a finite
set of problems {Qi : i ∈ I} with error expansion c > 0, if
whenever each problem Qi has a quantum polynomial time
algorithm with error ε, problem P has also one with error
cε. We say that a computational problem can be solved in
quantum polynomial time if there exists a quantum polyno-
mial time algorithm that outputs the required solution with
exponentially small error.

Our results concern groups represented in the general
framework of black-box groups [6, 23] with unique encod-
ing. In this model, the elements of a finite group G are



uniquely encoded by binary strings of length O(log|G|) and
the group operations are performed by an oracle (the black-
box). The groups are assumed to be input by generators.
In the case of an abelian group G, this implies also that we
have at our disposal an efficiently computable isomorphism
θ : Z

p
k1

1

× . . .× Z
p

km
m
→ G, where pki

i are prime powers [7].

We use the notation <X> for the subgroup generated by a
subset X of G. We denote by induction G(k+1) the commu-
tator (G(k))′ of G(k), where H ′ = <{h−1k−1hk : h, k ∈ H}>
for any subgroupH. WheneverG is solvable, the decomposi-
tion of G into its derived series G = G(0)

�G(1)
�. . .�G(m) =

{1G} can be computed by a classical randomized proce-
dure [3]. Using quantum procedures of [23][13, Theorem 10],
we can compute the cyclic decomposition of each abelian
factor group, and thereby expand the derived series to a
composition series, where factor groups are cyclic of prime
order. We introduce a shorthand notation for the specific
solvable groups for which most of our results will apply. We
say that an abelian group G is smoothly abelian if it can be
expressed as the direct product of a subgroup of constant
exponent and a subgroup of size logO(1)(|G|). A solvable
group G is smoothly solvable if its derived series is of con-
stant length and has smoothly abelian factor groups. For a
smoothly solvable group G, by combining the procedures of
[7, 23, 13], we can compute in quantum polynomial time a
smooth series G = G0 � G1 � . . . � Gm = {1G}, where m
is constant, each factor group Gi/Gi+1 is either elementary

abelian of constant exponent or abelian of size logO(1)(|G|).
When G is abelian, we identify with G the set bG of char-

acters of G via some fixed isomorphism y 7→ χy. The or-
thogonal of H ≤ G is defined as H⊥ = {y ∈ G : ∀h ∈
H,χy(h) = 1}. The quantum Fourier transform over G
is the unitary transformation defined for every x ∈ G by
QFTG|x〉 = 1√

|G|

P
y∈G χy(x)|y〉. For the sake of conve-

nience, we will use the exact abelian quantum Fourier trans-
form in our algorithm. The actual implementation [14] in-
troduces only exponentially small errors.

The following well known quantum Fourier sampling al-
gorithm will be used as a building block, where G is a finite
abelian group, S is a finite set and f : G → S is given
by a quantum oracle. This algorithm is actually the main
ingredient for solving Hidden Subgroup in abelian groups
when the function f hides a subgroup H ≤ G. In that case,
Fourier samplingf (G) generates the uniform distribution
over H⊥. In the algorithm, |0〉S stands for an arbitrary but
fixed element of S.

Fourier samplingf (G)
1. Create zero-state |0〉G|0〉S.
2. Create uniform superposition on first register.
3. Query function f .
4. Compute QFTG on first register.
5. Observe and then output the first register.

A function f : G → C
S is a quantum function if, for

every x ∈ G, the vector |f(x)〉 has unit norm, and, for every
x, y ∈ G, the vectors |f(x)〉 and |f(y)〉 are either the same
or orthogonal. We say that the quantum function f is given
by a quantum oracle if we have at our disposal a unitary
transformation Uf satisfying Uf |x〉G|0〉S = |x〉G|f(x)〉S, for
every x ∈ G.

2.2 The problems
Here we define the problems we are dealing with.

Let G be a finite group and let f0, f1 be two injective func-
tions from G to some finite set S. The couple of functions
(f0, f1) can equivalently be considered as a single function
f : G × Z2 → S, where by definition f(x, b) = fb(x). We
will use f for (f0, f1) when it is convenient in the coming
discussion. We call an element u ∈ G the translation of f if
for every x ∈ G, we have f1(xu) = f0(x).

Hidden Translation
Input: A finite group G and two injective func-
tions f0, f1 from G to some finite set S such that
f = (f0, f1) has a translation u ∈ G.
Output: u.

For a finite group G and a finite set Γ of mutually or-
thogonal quantum states, we consider group actions of G on
Γ. By definition, α : G × Γ → Γ is a group action if for
every x ∈ G the quantum function αx : |φ〉 7→ |α(x, |φ〉)〉
is a permutation over Γ, such that the map x 7→ αx is a
homomorphism from G to the permutation group on Γ. We
extend α linearly to superpositions over Γ. When the group
action α is fixed, we use the notation |x · φ〉 for the state
|α(x, |φ〉)〉. Having a group action α at our disposal means
having a quantum oracle realizing the unitary transforma-
tion |x〉|φ〉 7→ |x〉|x · φ〉. For any positive integer t, we denote
by αt the group action of G on Γt = {|φ〉⊗t : |φ〉 ∈ Γ} defined
by αt(x, |φ〉⊗t) = |x · φ〉⊗t. The group action αt is equiv-
alent to α from the algebraic point of view. Observe that
one can construct a quantum oracle for αt using t queries
to a quantum oracle for α. We need the notion of αt for
the following reason. Below, we define problems where the
input superpositions cannot, in general, be cloned. But in
many cases, we can start off the algorithm with several in-
dependent copies of the input superpositions. We want to
exploit this in order to get a reasonably accurate solution
to the problem. The notion of αt allows us to capture such
situations.

The stabilizer of a state |φ〉 ∈ Γ is the subgroup G|φ〉 =
{x ∈ G : |x · φ〉 = |φ〉}. Given |φ〉 ∈ Γ, the problem
Stabilizer consists of finding O(log|G|) generators for the
subgroup G|φ〉.

Proposition 1. Let G be a finite abelian group and let
α be a group action of G. When t = Ω(log(|G|) log(1/ε)),
then Stabilizer in G for the group action αt can be solved
in quantum time poly(log|G|) log(1/ε) with error ε.

Proof. Let |φ〉⊗t be the input of Stabilizer. Let f be
the quantum function on G defined by |f(x)〉 = |x · φ〉, for
every x ∈ G. Observe that f is an instance of the natural
extension of Hidden Subgroup to quantum functions and
it hides the stabilizer G|φ〉.

The algorithm for Stabilizer is simply the standard al-
gorithm for the abelian Hidden Subgroup with error ε. In
this algorithm, every query is of the form |x〉G|0〉S . We

simulate the ith query |x〉G|0〉S using the ith copy of |φ〉.
The second register of the query is swapped with |φ〉, and
then we let act x on it. We remark that the standard al-
gorithm for abelian Hidden Subgroup outputs O(log|G|)
generators for the hidden subgroup.

Note that in general, the input superposition |φ〉⊗t gets de-
stroyed by the above algorithm.

The orbit of a state |φ〉 ∈ Γ is the subset G(|φ〉) = {|x · φ〉 :
x ∈ G}. The orbit coset of two states |φ0〉 and |φ1〉 of Γ is the



set {u ∈ G : |u · φ1〉 = |φ0〉}. The orbit coset of |φ0〉 and |φ1〉
is either empty or a left coset uG|φ1〉 (or equivalently a right
coset G|φ0〉u), for some u ∈ G. If the latter case occurs, |φ0〉
and |φ1〉 have conjugated stabilizers: G|φ0〉 = uG|φ1〉u

−1.
Orbit Coset is a generalization of Stabilizer:

Orbit Coset
Input: A finite group G acting on a finite set Γ
of mutually orthogonal quantum states, and two
quantum states |φ0〉, |φ1〉 ∈ Γ.

Output:

8
>><
>>:

reject, if G(|φ0〉) ∩ G(|φ1〉) = ∅;
u ∈ G such that |u · φ1〉 = |φ0〉,
and O(log|G|) generators
for G|φ1〉, otherwise.

For a function f on G, the superposition of f on G is |f〉 =
1√
|G|

P
g∈G |g〉|f(g)〉, and for x ∈ G, the x-translate of f is

the function x · f : g 7→ f(gx). Let Γ(f) = {|x · f 〉 : x ∈ G}.
Then a group element x acts naturally on |f ′〉 ∈ Γ(f) by
mapping it to the superposition |x · f ′〉 of its x-translate. We
call this group action the translation action. The mapping
|x〉|f ′〉 7→ |x〉|x · f ′〉 is realized by right multiplying the first
register of |f ′〉 by x−1.

Proposition 2. Suppose G is a finite group and let
t = poly(log|G|). Then Hidden Translation (resp.
Hidden Subgroup) is reducible to Orbit Coset (resp.
Stabilizer) for the group action τ t, where τ denotes the
translation action. The error expansion is 1.

Proof. Let f be an instance of Hidden Subgroup.
Then the stabilizer of |f〉⊗t is the group hidden by f . Let
(f0, f1) be an instance of Hidden Translation. Then
the orbit coset of |f0〉⊗t and |f1〉⊗t is the translation of
(f0, f1).

Given |φ〉 ∈ Γ, the problem Orbit Superposition
consists of realizing the uniform superposition |G · φ〉 =

1√
|G(|φ〉)|

P
|φ′〉∈G(|φ〉) |φ′〉. Note that this superposition can

be also written as 1√
|G/G|φ〉|

P
x∈G/G|φ〉

|x · φ〉.

3. HIDDEN TRANSLATION OVER Zn

p

In this section, we show that Hidden Translation can
be solved in polynomial time by a quantum algorithm in the
special case when G = Z

n
p for any fixed prime number p > 2.

In this section we use the additive notation for the group
operation and x · y stands for the standard inner product
for x, y ∈ Z

n
p . Since Z

n
2 o Z2 is isomorphic to the abelian

group Z
n
2 ×Z2, one already has a quantum polynomial time

algorithm for Hidden Translation over Z
n
2 by reducing it

to Hidden Subgroup over Z
n+1
2 [9].

The quantum part of our algorithm consists of performing
Fourier sampling over the abelian group Z

n
p ×Z2. It turns

out that from the samples we will only use elements of the
form (y, 1). The important property of these elements y is
that they are not orthogonal to the hidden translation. Some
properties of the distribution of the samples are stated for
general abelian groups in the following lemma.

Lemma 1. Let f = (f0, f1), f : G×Z2 → S be an instance
of Hidden Translation in a finite abelian group G having
a translation u 6= 0. Then Fourier samplingf (G×Z2) out-
puts an element in G× {1} with probability 1/2. Moreover,

the probability of sampling the element (y, 1) depends only
on χy(u), and is 0 if y ∈ u⊥.

Proof. The state vector of Fourier samplingf (G×Z2)
before the final observation is

1

2|G|
X

x∈G

X

y∈G

X

c=0,1

χy(x)
`
1 + (−1)cχy(u)

´
|y〉|c〉|f0(x)〉.

The lemma now follows trivially.

When G = Z
n
p , the value χy(u) depends only on the inner

product y · u over Zp, and y ∈ u⊥ exactly when y · u = 0.
Therefore every (y, 1) generated satisfies y ·u 6= 0. Thus the
output distribution is different from the usual one obtained
for the abelian Hidden Subgroup where only vectors or-
thogonal to the hidden subgroup are generated. We over-
come the main obstacle, which is that we do not know the
actual value of the inner product y · u, by raising these in-
equations to the power p−1. They become a system of poly-
nomial equations since ap−1 = 1 for every non-zero a ∈ Zp.
In general, solving systems of polynomial equations over any
finite field is NP-complete. But using the other special fea-
ture of our distribution, which is that the probability of
sampling (y, 1) depends only on the inner product y · u, we
are able to show that after a polynomial number of sam-
plings, our system of equations has a unique solution with
constant probability, and the solution can be determined in
deterministic polynomial time.

To solve our system of polynomial equations, we linearize
it in the (p−1)st symmetric power of Z

n
p . We think of Z

n
p

as an n-dimensional vector space over Zp. For a fixed prime

number p and an integer k ≥ 0, let Z
(k)
p [x1, . . . , xn] be the

kth symmetric power of Z
n
p which will be thought of as the

vector space, over the finite field Zp, of homogeneous poly-
nomials of degree k in variables x1, . . . , xn. The monomials

of degree p − 1 form a basis of Z
(p−1)
p [x1, . . . , xn], whose

dimension is therefore
`

n+p−2
p−1

´
, which is polynomial in n.

Z
(1)
p [x1, . . . , xn] is isomorphic to Z

n
p as a vector space. For

two vectors Y1, Y2 ∈ Z
(p−1)
p [x1, . . . , xn], we denote their stan-

dard inner product over the monomial basis by Y1 · Y2.
For every y = (a1, . . . , an) ∈ Z

n
p , we define y(k) ∈

Z
(k)
p [x1, . . . , xn] as the polynomial (

Pn
j=1 ajxj)

k. Now ob-

serve that if u = (u1, . . . , un) is the hidden translation vec-

tor , then the vector u∗ ∈ Z
(k)
p [x1, . . . , xn] which for ev-

ery monomial xe1

1 · · ·xen
n has coordinate ue1

1 · · · uen
n satisfies

y(p−1) · u∗ = (y · u)p−1. Therefore each linear inequation
y · u 6= 0 over Z

n
p will be transformed into the linear equa-

tion y(p−1) · U = 1 over Z
(p−1)
p [x1, . . . , xn], where U is a

dim Z
(p−1)
p [x1, . . . , xn]-sized vector of unknowns.

We will see below that the vectors y(p−1) span the space

Z
(p−1)
p [x1, . . . , xn] when y ranges over Z

n
p . Moreover, in

what is the main part of our proof, we show in Lemma 3
that whenever the span of y(p−1) for the samples y is not

Z
(p−1)
p [x1, . . . , xn], our sampling process furnishes with con-

stant probability a vector z ∈ Z
n
p such that z(p−1) is linearly

independent from the y(p−1) for the previously sampled y.
This immediately implies that if our sample size is of the or-

der of the dimension of Z
(p−1)
p [x1, . . . , xn], the span of y(p−1)

for the samples y is Z
(p−1)
p [x1, . . . , xn] with high probabil-

ity. In that case, the linear equations y(p−1) · U = 1 have
exactly one solution which is u∗. From this unique solution



one can easily recover a vector v such that v = au for some
0 < a < p (note that v∗ = u∗). Now u can be found by
checking the p− 1 possibilities.

The following combinatorial lemma is at the basis of the
correctness of our procedure.

Lemma 2 (Line Lemma). Let y, z ∈ Z
n
p and 1 ≤ l ≤

p − 1. Define Ll
z,y = {(z + ay)(l) : 0 ≤ a ≤ l}. Then

y(l) ∈ Span(Lz,y).

Proof. Let M l
z,y = {z(k)y(l−k) : 0 ≤ k ≤ l}. Clearly,

Span(Ll
z,y) ⊆ Span(M l

z,y). We claim that the inverse in-

clusion is also true since the determinant of Ll
z,y in M l

z,y

is non-zero. Indeed, it is
“Ql

k=0

`
l
k

´”
V (0, 1, 2, . . . , l), where

V denotes the Vandermonde determinant. The lemma now
follows because M l

z,y contains y(l).

Proposition 3. For 1 ≤ k ≤ p − 1, Z
(k)
p [x1, . . . , xn] is

spanned by y(k) as y ranges over Z
n
p .

We are now ready to prove our main lemma.

Lemma 3. Let u ∈ Z
n
p , u 6= 0 and W be a subspace of

Z
(p−1)
p [x1, . . . , xn]. We set R = {y ∈ Z

n
p : y(p−1) ∈ W}.

For k = 0, . . . , p − 1, let Vk = {y ∈ Z
n
p : y · u = k} and

Rk = R ∩ Vk. If W 6= Z
(p−1)
p [x1, . . . , xn], then |Rk|/|Vk| ≤

(p− 1)/p for k = 1, . . . , p− 1.

Proof. Observe that Rk = {ky : y ∈ R1} for 0 < k <
p. Therefore the sets Rk, 0 < k < p have the same size.
Observe also that the sets Vk, 0 ≤ k < p have the same size,
and they partition Z

n
p . Hence the values |Rk|/|Vk| are the

same for 0 < k < p.

Since W 6= Z
(p−1)
p [x1, . . . , xn], Proposition 3 implies that

R 6= Z
n
p . We consider two cases. In the first case, V0 ⊆ R.

This implies that R1 is a proper subset of V1. Choose any
y ∈ V1 \R1. Then by Lemma 2, in every coset of <y> there
is an element outside of R. A coset of <y> contains exactly
one element from each Vk, k = 0, . . . , p − 1. Hence ∪k 6=0Vk

is partitioned into equal parts, each part of size p − 1, by
intersecting with the cosets of <y>. In each part, there
is an element outside of R. Therefore |∪k 6=0Rk|/|∪k 6=0Vk| ≤
(p−2)/(p−1). Hence, |Rk|/|Vk| ≤ (p−2)/(p−1) < (p−1)/p
for k = 1, ldots, p− 1, and the statement follows.

In the second case, V0 6⊆ R. Therefore, there is an ele-
ment y ∈ V0 \ R0. Then every Vk, k = 0, . . . , p − 1, is a
union of cosets of <y>. Lemma 2 implies that every coset
of <y> contains an element outside of R. This proves that
|Rk|/|Vk| ≤ (p − 1)/p for k = 0, . . . , p − 1. This completes
the proof of the lemma.

We now specify the algorithm Translation finding and
prove that, with high probability, it finds the hidden trans-
lation in quantum polynomial time.

Translation findingf (Zn
p )

0. If f0(0) = f1(0) then output 0.
1. N ← 13p

`
n+p−2

p−1

´
.

2. For i = 1, . . . , N do
(zi, bi)← Fourier samplingf (Zn

p × Z2).
3. {y1, . . . , yM} ← {zi : bi = 1}.
4. For i = 1, . . . ,M do Yi ← y

(p−1)
i .

5. Solve the system of linear equations
Y1 · U = 1, . . . , YM · U = 1.

6. If there are no solutions or more than one solution
then abort.

7. Let 1 ≤ j ≤ n be such that the coefficient of xp−1
j

is 1 in U .
8. Let v = (v1, . . . , vn) ∈ Z

n
p be such that vj = 1 and

vk is the coordinate of xkx
p−2
j in U for k 6= j.

9. Find 0 < a < p such that f0(0) = f1(av).

10. Output av.

Theorem 1. For every prime number p, every integer
n ≥ 1, and every function f : Z

n
p × Z2 → S having a

translation given via a quantum oracle, algorithm Trans-

lation Findingf (Zn
p ) aborts with probability less than 1/2,

and when it does not abort it outputs the translation of f .
The query complexity of the algorithm is O(p(n + p)p−1),

and its time complexity is (n+ p)O(p).

Proof. Because of Step 0 of the algorithm, we can sup-
pose w.l.o.g. that the translation u of f is non-zero.

If the algorithm does not abort, then U = u∗ is the unique
solution of the system in Step 5. When the coefficient of
xp−1

j is 1 in U , then uj 6= 0. Also, uk = ujvk for every k.
Thus, u = ujv and u is found in Step 9 for a = uj .

From Lemma 1, we see that the probability that the algo-
rithm Fourier samplingf (Zn

p ×Z2) outputs (y, 1) for some
y is 1/2. Therefore the expected value of M is N/2, and

M > N/3 with probability 1 − e−N/18 < 1/4 because of
Chernoff bound. If the system Y1, . . . , YM has full rank, then
it has a unique solution. By Lemmas 1 and 3, the expected
number of linear equations that guarantee that the system
has full rank is at most p

`
n+p−2

p−1

´
. Since N/3 > 4p

`
n+p−2

p−1

´
,

by Markov’s inequality, the solution U is unique with prob-
ability at least 3/4. Thus, the total probability of aborting
is less than 1/2.

Corollary 1. Let p be a fixed prime. Then the problem
of Hidden Translation over Z

n
p can be solved in quantum

polynomial time.

Proof. We perform two modifications in the algorithm
Translation finding. First, to get error ε, the integer N
is multiplied by O(log(1/ε)). Moreover, we assumed in the
algorithm that there is an oracle for f = (f0, f1), that is the
functions f0 and f1 can be quantumly selected. This is not
possible in general when f0 and f1 are given by two distinct
oracles. Therefore we replace the oracle access |x〉|b〉|0〉S 7→
|x〉|b〉|fb(x)〉S by

|x〉|b〉|0〉S|0〉S 7→ |x〉|b〉|fb(x)〉S|f1−b(−x)〉S.
With this type of oracle access the algorithm Translation

finding performs just as well.
Let us now show how to simulate this new oracle ac-

cess. From |x〉|b〉|0〉S |0〉S we compute |(−1)
bx〉|b〉|0〉S|0〉S,

and then we call f0 and get |(−1)
bx〉|b〉|f0((−1)

bx)〉S|0〉S. We



multiply the first register by (−1) and call f1 which gives
|(−1)

b+1x〉|b〉|f0((−1)
bx)〉S |f1((−1)

b+1x)〉S. Finally, we mul-

tiply the first register by (−1)
b+1, and swap the last two

registers when b = 1.

As there is a quantum reduction from Hidden Subgroup
over Z

n
p oZ2 to Hidden Translation over Z

n
p [9], we obtain

the following corollary.

Corollary 2. Let p be a fixed prime. Then the problem
of Hidden Subgroup over Z

n
p oZ2 can be solved in quantum

polynomial time.

The algorithm Translation finding can also be extended
to solve Orbit Coset in Z

n
p .

Corollary 3. Let p be a fixed prime. Let α be a
group action of Z

n
p . When t = Ω(p(n + p)p−1 log(1/ε)),

Orbit Coset in Z
n
p for αt can be solved in quantum time

(n + p)O(p) log(1/ε) with error ε.

Proof. Let the input of the Orbit Coset problem be
(|φ0〉⊗t, |φ1〉⊗t). We can suppose w.l.o.g. that the stabilizers
of |φ0〉 and |φ1〉 are trivial. Indeed the stabilizers can be
computed by Proposition 1. If they are different then the
algorithm obviously has to reject, otherwise we can work in

the factor group Z
n
p/G|φ0〉 = Z

n′

p , for some n′ ≤ n.
For b = 0, 1, let fb be the injective quantum function on

G defined by |fb(x)〉 = |x · φb〉, for every x ∈ G. If the orbit
coset of (|φ0〉, |φ1〉) is empty, then f0 and f1 have distinct
ranges. Otherwise the orbit coset of (|φ0〉, |φ1〉) is a singleton
{u}, and (f0, f1) have the translation u.

The algorithm for Orbit Coset on input (|φ0〉⊗t, |φ1〉⊗t)
is the algorithm Translation finding on input (f0, f1)
with a few modifications described below. The oracle ac-
cess to (f0, f1) is modified in the same way as Corollary 1.
We simulate the ith query |x〉|b〉|0〉S |0〉S using the ith copy
of |φ0〉|φ1〉. The two registers |0〉S |0〉S are swapped with
|φb〉|φ1−b〉, and then we let act x on |φb〉 and (−x) on |φ1−b〉.

The equality tests in steps 0 and 9 are replaced by the
swap test [4, 10] iterated O(log(1/ε)) times. Finally, N is
multiplied by O(log(1/ε)), and the algorithm rejects when-
ever the algorithm Translation finding aborts or there is
no solution in step 9.

4. ORBIT SUPERPOSITION
In this section, we show that Orbit Superposition is

reducible to Orbit Coset for solvable groups G. The
proof will be by induction along a composition series of
G. The induction step is based on the technique of Wa-
trous [23] to create a uniform superposition of elements of
G. One way of stating Watrous’s result is that it solves
Orbit Superposition for the case of the special action
when G acts on itself by left multiplication. More precisely,
the induction step uses the following lemma.

Lemma 4. Let K be a finite group and α be a group action
of K on Γ. Let L � K such that K/L is cyclic of prime
order r, and |φ〉 ∈ Γ. Let t be a positive integer. Given an
element z ∈ K −L, the number r and |φ〉|L · φ〉⊗t, realizing

|φ〉|K · φ〉⊗(t−1) is reducible to Orbit Coset in K for α
with error expansion O(t).

Proof. The analysis of the algorithm will distinguish be-
tween two cases: case one is when K|φ〉 6⊆ L, and case two

is when K|φ〉 ⊆ L. In the first case, for every x ∈ G,
|x · (L · φ)〉 = |K · φ〉, and in particular, |L · φ〉 = |K · φ〉.
In the second case, |K · φ〉 = 1√

r

Pr−1
i=0 |zi · (L · φ)〉.

We first compute the state
“

1√
r

Pr−1
i=0 |i〉|zi · (L · φ)〉

”⊗t

from |L · φ〉⊗t. We then disentangle the first registers from
the second using Watrous’s method. We apply the quantum
Fourier transform over Zr to the first registers. In the first
case we obtain the state (|0〉|K · φ〉)⊗t, and in the second
case we obtain the state ( 1√

r

Pr−1
j=0 |j〉|ψj〉)⊗t, where |ψj〉 =

1√
r

Pr−1
i=0 ω

ij
r |zi · (L · φ)〉, and ωr is a fixed primitive rth-root

of unity.
We now describe the rest of the algorithm by specifying

how it behaves on the terms in the expansion of the above
tensor power. Let |j0〉|ψj0 〉|j1〉|ψj1 〉 . . . |jt−1〉|ψjt−1

〉 be such
a term. If all the values j are 0 then the algorithm does
nothing. Observe that if this happens, we already have t
copies of the desired superposition |K · φ〉, independently of
which case we are in. Otherwise, let j′ be the first non-
zero j. Note that this can only happen in case two. We
swap |j0〉|ψj0 〉 and |j′〉|ψj′ 〉, and record the value j′ in an
ancilla register. For convenience of notation, we continue to
refer to the first two registers as |j0〉|ψj0 〉. Thus, we have
ensured that j0 6= 0. Using |ψj0 〉 our purpose will be to
cancel the phases of all the other states |ψji

〉, i 6= 0 for
which ji 6= 0. Observe that |l · ψj0 〉 = |ψj0 〉 for every l ∈ L
(and hence for every k ∈ K|φ〉), and |z · ψj0 〉 = ω−j0

r |ψj0 〉.
Therefore if we set f = j(j0)

−1 mod r for some j 6= 0,
then, for every i ∈ {0, . . . , r − 1}, l ∈ L, and k ∈ K|φ〉,

|(zilk)f · ψj0 〉 = ω−ij
r |ψj0 〉.

We now complete the reduction by computing the state
|φ〉|ψj0 〉|K · φ〉 from |φ〉|ψj0 〉|ψj〉, when j 6= 0. Note that
if j = 0, |ψj〉 is already equal to |K · φ〉. For every
state |zil · φ〉 appearing the expansion of |ψj〉, we find
the coset zilK|φ〉 using Orbit Coset in K for |zil · φ〉
and |φ〉. Let zilk be some representative of the coset
where k ∈ K|φ〉. We let (zilk)f act on |ψj0 〉 and re-
verse the previous Orbit Coset procedure. This realizes
the transformation |φ〉|ψj0 〉|zil · φ〉 7→ ω−ij

r |φ〉|ψj0 〉|zil · φ〉.
The effect on |φ〉|ψj0 〉|ψj〉 is |φ〉|ψj0 〉|K · φ〉. Since the
first pair of registers remains unchanged, the process can
be repeated for the other states, and therefore we get
|φ〉|j0〉|ψj0 〉|j1〉|K · φ〉 . . . |jt−1〉|K · φ〉, together with some
garbage in the ancilla register. The output of the algorithm

is thus |φ〉|K · φ〉⊗(t−1)|θ〉, where |θ〉 is a state vector on the
rest of the qubits.

The above analysis assumed that the procedure for the
Orbit Coset problem in K is error-free. If not, one can
see easily that the error expansion is O(t).

Theorem 2. Let G be a finite solvable group and let α be

a group action on Γ. Let |φ〉 ∈ Γ. Given |φ〉⊗(s+blog|G|c+1),
realizing |φ〉|G · φ〉⊗s is reducible to Orbit Coset in sub-
groups of G for α with error expansion O(s log|G|+log2|G|).

Proof. Let us recall that the group G can be given with
elements zi and primes ri, for i = 0, . . . ,m−1, such that
G has a composition series G = G0 � G1 � . . . � Gm =
{1G}, where Gi/Gi+1 is cyclic of order ri and is generated
by ziGi+1. Note that m ≤ blog|G|c. By induction, for i = m

down to i = 0, we will produce the state |φ〉|Gi · φ〉⊗(s+i).
For i = m, by the induction hypothesis we have at least

s +m+ 1 independent copies of states |φ〉 = |Gm · φ〉 since



m ≤ log|G|. Assume now that we have |φ〉|Gi · φ〉⊗(s+i).
By applying Lemma 4 with K = Gi−1, L = Gi, z =

zi−1 and r = ri−1, we get the state |φ〉|Gi−1 · φ〉⊗(s+i−1)

using Orbit Coset in Gi−1. When i = 0, we obtain
|φ〉|G · φ〉⊗s. The error expansion is O(m(s + m)) =
O(s log|G|+ log2|G|).

5. ORBIT COSET SELF-REDUCIBILITY
This section is based on the following theorem stating

the reducibility of Orbit Coset in G to Orbit Coset in
proper normal subgroups of G under some conditions. Given
a group action α of G on a finite set Γ of mutually orthogonal
quantum states, we define for every proper normal subgroup
N � G the group action αN of G/N on {|N · φ〉 : |φ〉 ∈
Γ} by αN (xN, |N · φ〉) = |x · (N · φ)〉, for every x ∈ G and
|φ〉 ∈ Γ. Note that this action is independent of the coset
representative chosen.

Theorem 3. Let G be a finite group and let N �G,N 6=
G be solvable such that G, N and G/N are black-box
groups with unique encoding. Let α be a group action of
G and let s ≥ 1 be an integer. When t = Ω(s + log|G|),
Orbit Coset (resp. Stabilizer) in G for αt is reducible
to Orbit Coset in subgroups of N for α and Orbit Coset
(resp. Stabilizer) in G/N for (αN )s with error expansion
O(s log|G|+ log2|G|).

Proof. We first prove the statement for the Stabilizer
reduction. The proof for the Orbit Coset reduction uses
the result for Stabilizer. This is indeed legitimate since
Stabilizer is the special case of Orbit Coset when the
two inputs are identical.

Let |φ〉⊗t be an instance of Stabilizer. Its stabilizer
H is the same as the stabilizer of |φ〉. First we compute
O(log|N |) generators for the intersection H0 = H ∩N using
Stabilizer in N for α in quantum polynomial time. Then
we use Orbit Coset in subgroups of N and Stabilizer in
G/N to construct a subgroup H1 ≤ G which in fact will turn
out to be H. The properties which will ensure that equality
are H0 ≤ H1 ≤ H and H1N/N = HN/N . Indeed, the first
property clearly implies that H1 ∩ N = H ∩ N , which to-
gether with the second one gives that H1 = H by standard
group-theoretic arguments.

To construct H1 we add to H0 generators in H of HN/N .
The construction proceeds in two steps. First, we find a
set V ⊆ G, |V | = O(log|G/N |) which, when its elements
are considered as coset representatives, is a generator set
for HN/N . Then, for every coset zN where z ∈ V , we find
a coset representative of zN in H. This step is achieved
via a reduction to Orbit Coset in N . The collection of
those representatives and H0 together generate the desired
subgroup H1.

The stabilizer of |N · φ〉 for αN in G/N is HN/N . There-
fore finding V is reducible to Stabilizer in G/N for (αN )s

on input |N · φ〉⊗s. By Theorem 2, creating this input is also
reducible to Orbit Coset in subgroups of N for α on input

|φ〉⊗s+blog|G|c+1 with error expansion O(s log|G| + log2|G|).
Note that the size of V is O(log|G/N |).

We describe now how to find, using Orbit Coset in N ,
for each z ∈ V , an element n ∈ N such that zn ∈ H. Fix
z ∈ V . We can construct |φ′〉 = |z−1 · φ〉 using a copy of
|φ〉. In the subgroup N , the states |φ′〉 and |φ〉 have the
orbit coset nH0. Thus the coset nH0 can be found using
Orbit Coset in N for α. The error expansion due to this

process is O(|V |) = O(log|G|). This completes the proof of
the theorem for Stabilizer.

We now turn to the proof of the Orbit Coset reduction.
Let (|φ0〉⊗t, |φ1〉⊗t) be the input of Orbit Coset. Their
orbit coset is identical to the orbit coset of (|φ0〉, |φ1〉), and it
is either empty or uG|φ1〉, for some u ∈ G. We compute H =
G|φ1〉 using the above construction. When the orbit coset

of the input is empty, the states |N · φ0〉⊗s and |N · φ1〉⊗s

have also empty orbit coset. Otherwise they have the orbit
coset u(HN/N).

By Theorem 2, the constructions of states |N · φ0〉⊗s

and |N · φ1〉⊗s are reducible to Orbit Coset in subgroups

of N for α on input (|φ0〉⊗s+blog|G|c+1, |φ1〉⊗s+blog|G|c+1)
with error expansion O(s log|G| + log2|G|). Then using
Orbit Coset in G/N for (αN )s in input |N · φ0〉⊗s and
|N · φ1〉⊗s, we reject if the inputs have empty orbit coset, or
we find the coset u(HN/N), that is an element v ∈ uHN .

Using Orbit Coset in N , we now describe how to find an
element n ∈ N such that vn ∈ uH. We construct the state
|φ′

0〉 = |v−1 · φ0〉 using one copy of |φ0〉. Let us denote H0 =
H∩N . In the subgroup N , the states |φ′

0〉 and |φ1〉 have the
orbit coset nH0, which can be found using Orbit Coset
in N for α. This completes the proof of the theorem for
Orbit Coset.

Theorem 4. Let G be a smoothly solvable group and let
α be a group action of G. When t = (logΩ(1)|G|) log(1/ε),
Orbit Coset can be solved in G for αt in quantum time
poly(log|G|) log(1/ε) with error ε.

Proof. As G is smoothly solvable, it has a smooth series
G = G0 �G1 � . . . Gm−1 �Gm = {1G}, where m is constant,
Gi/Gi+1 is either elementary abelian of constant exponent
or of size polylogarithmic in the order of G. Observe that
we have a cyclic prime power decomposition of each factor
group Gi/Gi+1, and for this representation, we have a black-
box oracle for the group action of Gi/Gi+1 on {|Gi+1 · φ〉 :
|φ〉 ∈ Γ}.

The proof is by induction on m. The case m = 0 is triv-
ial. For the induction, we can efficiently solve Orbit Coset
in the factor group G0/G1: if it is of polylogarithmic size
we just do an exhaustive search, otherwise we apply Corol-
lary 3. Therefore Theorem 3 reduces Orbit Coset in G to
Orbit Coset in subgroups of G1. Any subgroup K of G1

has a smooth series of length at most m−1, since the in-
tersection of a smooth series for G1 with K gives a smooth
series for K. The running time of the overall procedure is
(log|G|)O(m) log(1/ε).

Theorem 5. Let G be a finite solvable group having
a smoothly solvable commutator subgroup and let α be
a group action of G. When t = (logΩ(1)|G|) log(1/ε),
Stabilizer can be solved in G for αt in quantum time
poly(log(|G|) log(1/ε) with error ε.

Proof. By Theorem 3, Stabilizer in G is reducible to
Stabilizer in G/G′ and Orbit Coset in subgroups of G′.
The factor group G/G′ is abelian and subgroups of G′ are
smoothly solvable. Therefore, from Proposition 1 and The-
orem 4 the statement follows.

Corollary 4. The Hidden Translation problem can
be solved over smoothly solvable groups in quantum polyno-
mial time. The Hidden Subgroup problem can be solved
over solvable groups having a smoothly solvable commutator
subgroup in quantum polynomial time.
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APPENDIX
A. HIDDEN TRANSLATION OVER Z

n

pk

In this section, we describe a quantum algorithm to di-
rectly solve Hidden Translation for groups of the form
Z

n
pk , for every fixed prime power pk. This algorithm does

not use Orbit Coset. Rather, it can be viewed as a gener-
alization of the algorithm of Section 3.

We identify elements of Z
k
p with elements of Zpk by the

bijection (a0, . . . , ak−1) 7→
Pk−1

j=0 ajp
j . We denote by a ∈

Z
k
p the element that is mapped to a ∈ Zpk by the above

bijection. This notation can be extended to y ∈ Z
n
pk in

the following way. Let m = kn in the rest of this section.
Let y = (y1, . . . , yn) ∈ Z

n
pk . Then y denotes the vector

(y1, . . . , yn) ∈ Z
m
p , and yi,j denotes the jth coordinate of

yi ∈ Z
k
p.

Lemma 5. There is a polynomial C(x, y) ∈ Zp[x, y] of
degree at most 2p−2 such that for every a, b ∈ Zp, C(a, b) =
0 if a+ b < p and C(a, b) = 1 otherwise.

Proof. Let Li(z) =
Q

0≤j<p:j 6=i(z − j)/(i − j), Li(z) ∈
Zp[z] denote the Lagrange polynomial. We have that
Li(i) = 1 and Li(j) = 0 for j 6= i. Define C(x, y) =P

0≤i,j<p:i+j≥p Li(x)Lj(y).

For 0 ≤ a, b < p, C(a, b) represents the carry term of a + b
when integer addition is done in base p.

Lemma 6. For every integer T ≥ 1, there exist poly-
nomials Qi ∈ Zp[y1,0, . . . , y1,k−1, . . . , yT,0, . . . , yT,k−1], for
i = 0, . . . , k−1, of total degree at most (2p−2)l,such that

PT
t=1 ad mod pk = (Q0(a1, . . . , aT ), . . . , Qk−1(a1, . . . , aT ))

for every a1, . . . , aT ∈ Zpk .

In other words, the polynomials Ql express the digits of the

sum
“PT

d=1 ad mod pk
”

in base p.

Proof. The proof is accomplished by induction on k. For
k = 1 the statement is obvious: Q0 =

PT
t=1 yt,0. Now let



k > 1. For t = 2, . . . , T set Q0 =
PT

t=1 yt,0 and Ct =

C
“
(
Pt−1

j=1 yj,0), yt,0

”
. Then for every a1, . . . , aT ∈ Zpk , the

sum s =
PT

t=1 at mod pk satisfies

s0 = Q0(a1,0, . . . , an,0) mod p,

(s1, . . . , sk−1) =

 
TX

t=1

bat/pc+
TX

t=2

ct

!
mod pk−1,

where ct = Ct(a1,0, . . . , at,0). In other words, the 0th co-
ordinate of the sum s is a linear polynomial in at,0, and,
for 1 ≤ j ≤ k − 1, the jth coordinate is the (j−1)th co-
ordinate in the RHS term of the second equation. Observe
that each coordinate is a polynomial of degree at most 2p−2
in the at,j . Therefore we can conclude using the inductive
hypothesis.

Corollary 5. For every u ∈ Z
n
pk , there exist polynomi-

als Qi ∈ Zp[x1, . . . , xm] of total degree at most (2p− 2)i, for
i = 0, . . . , k − 1, such that y · u = (Q0(y), . . . , Qk−1(y)) for
every y ∈ Z

n
pk .

Proof. Follows from Lemma 6 by repeating ui times the
coordinate yi, and taking the sum of all the terms obtained
this way modulo pk.

For every positive integer D, let Z
D
p [x1, . . . , xm] be the

linear subspace of polynomials of Zp[x1, . . . , xm] whose to-
tal degree is at most D and partial degrees are at most p−1
in each variable. For every y ∈ Z

m
p , we denote by ly the

linear form over polynomials that satisfies ly(Q) = Q(y), for
every polynomial Q ∈ Z

D
p [x1, . . . , xm]. Using the standard

inner product of polynomials over the monomial basis, we
identify the dual of Z

D
p [x1, . . . , xm] with itself. In particular,

the linear form ly is identified with the polynomial Ly whose
coefficient in each monomial M ∈ Z

D
p [x1, . . . , xm] is M(y).

Then, the polynomial Ly satisfies Ly · Q = Q(y), for every
polynomial Q ∈ Z

D
p [x1, . . . , xm]. Together with Fermat’s

little theorem, the previous corollary implies a polynomial
characterization over Zp of vectors in Z

n
pk that are not or-

thogonal to a fixed vector u ∈ Z
n
pk .

Lemma 7. Let D = (p−1)((2p−2)k−1)
2p−3

. For every u ∈ Z
n
pk ,

there exists a polynomial Qu ∈ Z
D
p [x1, . . . , xm] such that for

every y ∈ Z
n
pk , y · u 6= 0 mod pk if and only if Ly ·Qu = 0

mod p.

Proof. Let Q =
Qk−1

j=0 (Qp−1
j −1), where the polynomials

Qj come from Corollary 5. This polynomial has the required
total degree. To ensure that partial degrees are less than
p−1, we substitute xp

i terms by xi until every partial degree
is at most p− 1. Let Qu be the final polynomial. Then Qu

and Q encode the same function over Z
m
p . Therefore, since

Ly · Qu = Qu(y) mod p, the polynomial Qu satisfies the
required conditions.

Proposition 4. Let D be a positive integer. Then
Z

D
p [x1, . . . , xm] is generated by {yD : y ∈ Z

m
p }

The following proposition is an extension of the well-known
Schwarz-Zippel lemma on the maximum number of roots
of a multivariate polynomial over a finite field, and can be
proved similarly. A discussion can be found in e.g. [22].

Proposition 5. Suppose F is a finite field of size q. Sup-
pose polynomial f ∈ F[x1, . . . , xm] has partial degree at most
l in each xi and total degree at most d. Let d = lk+r, where

0 ≤ r < l. Then f is non-zero on at least
“
1 − l

q

”k “
1 − r

q

”

fraction of the inputs from F
m.

Lemma 8. Let D be a positive integer. Let W be a proper
subspace of Z

D
p [x1, . . . , xm]. If y is uniformly generated in

Z
m
p , then Ly 6∈W with probability greater than 1/pdD/(p−1)e.

Proof. Let N = dim(W ). Let Q1, . . . , QN ∈ W be lin-
early independent polynomials. There exist R1, . . . , RN ∈
Z

D
p [x1, . . . , xm] such that the matrix (Qi ·Rj)1≤i,j≤N is the

identity matrix. Let y ∈ Z
m
p and QN+1 = Ly. Let RN+1 ∈

Z
D
p [x1, . . . , xm] be linearly independent from R1, . . . , RN .

RN+1 is a non-zero polynomial. The determinant of the
matrix (Qi · Rj)1≤i,j≤N+1 is QN+1 · RN+1 = RN+1(y).
RN+1(y) 6= 0 implies that the polynomials Q1, . . . , QN+1

are linearly independent, that is, Ly 6∈ W . By Proposi-
tion 4, there exists y ∈ Z

m
p such that Ly 6∈ W . Therefore

by Proposition 5, RN+1(y) 6= 0 with probability at least

1/pdD/(p−1)e, when y is uniformly distributed in Z
m
p . This

completes the proof.

We now state the following proposition which says that
for every fixed integer d ≥ 2, the (search version of)
Hidden Translation in Z

n
d reduces to the decision ver-

sion of Hidden Translation in Z
n
d . The decision version

of Hidden Translation is defined as follows: Given two in-
jective functions f0 and f1 on an abelian group G that have
either a translation or distinct ranges, one has to distinguish
between these two cases.

Proposition 6. For every fixed integer d ≥ 2, the
search version of Hidden Translation in Z

n
d reduces

in classical polynomial time to the decision version of
Hidden Translation in Z

n−1
d using d× n calls.

Theorem 6. For every fixed prime power pk and positive
integer n, the Hidden Translation over Z

n
pk can be solved

in quantum polynomial time.

Proof. Suppose f = (f0, f1) is the input to
Hidden Translation. We can assume w.l.o.g. that f0 6=
f1, i.e. that they do not have the zero vector as their
translation. By Proposition 6, it is enough to solve the
decision version of Hidden Translation over Z

n
pk . Let

N = Ω(pdD/(p−1)e × dim(ZD
p [x1, . . . , xm])), where D =

(p−1)((2p−2)k−1)
2p−3

. Since p and k are constant, N is a poly-
nomial in n. The algorithm to solve the decision version of
Hidden Translation over Z

n
pk consists of calling N times

the quantum subroutine Fourier samplingf (Zn
pk×Z2) The

sampled vectors are of the form (zi, bi). Let y1, . . . , yM be
the zi of the vectors for which bi = 1. The algorithm accepts
if and only if {Ly1

, . . . , LyM
} does not span Z

D
p [x1, . . . , xm].

If f0 and f1 have the translation u ∈ Z
n
pk , then the poly-

nomial Qu from Lemma 7 is orthogonal to the polynomials
Ly1

, . . . , LyM
. Therefore {Ly1

, . . . , LyM
} is never full rank

in Z
D
p [x1, . . . , xm]. On the other hand, if f0 and f1 have dis-

tinct ranges, the expected value of M is N/2, and the vectors
yi are uniformly generated in Z

n
pk . Therefore the vectors yi

are also uniformly generated in Z
m
p , and by Lemma 8, we

obtain that {Ly1
, . . . , LyM

} is full rank in Z
D
p [x1, . . . , xm]

with probability greater than 2/3.


