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Abstract

In this paper we extend the algorithm for extraspecial groups in [12], and show that the
hidden subgroup problem in nil-2 groups, that is in groups of nilpotency class at most 2, can be
solved efficiently by a quantum procedure. The algorithm presented here has several additional
features. It contains a powerful classical reduction for the hidden subgroup problem in nilpotent
groups of constant nilpotency class to the specific case where the group is a p-group of exponent
p and the subgroup is either trivial or cyclic. This reduction might also be useful for dealing
with groups of higher nilpotency class. The quantum part of the algorithm uses well chosen
group actions based on some automorphisms of nil-2 groups. The right choice of the actions
requires the solution of a system of quadratic and linear equations. The existence of a solution is
guaranteed by the Chevalley-Warning theorem, and we prove that it can also be found efficiently.

1 Introduction

Efficient solutions to some cases of the hidden subgroup problem (HSP), a paradigmatic group
theoretical problem, constitute probably the most notable success of quantum computing. The
problem consists in finding a subgroup H in a finite group G hidden by some function which is
constant on each coset of H and is distinct in different cosets. The hiding function can be accessed
by an oracle, and in the overall complexity of an algorithm, a query counts as a single computational
step. To be efficient, an algorithm has to be polylogarithmic in the order of G. While classically
not even query efficient algorithms are known for the HSP, it can be solved efficiently in abelian
groups by a quantum algorithm. A detailed description of the so called standard algorithm can
be found for example in [19]. The main quantum tool of this algorithm is Fourier sampling, based
on the efficiently implementable Fourier transform in abelian groups. Factorization and discrete
logarithm [23] are special cases of this solution.

After the settling of the abelian case, substantial research was devoted to the HSP in some finite
non-abelian groups. Beside being the natural generalization of the abelian case, the interest of this
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problem is enhanced by the fact, that important algorithmic problems, such as graph isomorphism,
can be cast in this framework. The standard algorithm has been extended to some non-abelian
groups by Rötteler and Beth [21], Hallgren, Russell and Ta-Shma [8], Grigni, Schulman, Vazirani
and Vazirani [6] and Moore, Rockmore, Russell and Schulman [17]. For the Heisenberg group,
Bacon, Childs and van Dam [1] used the pretty good measurement to reduce the HSP to some
matrix sum problem that they could solve classically. Ivanyos, Magniez and Santha [11] and Friedl,
Ivanyos, Magniez, Santha and Sen [5] have efficiently reduced the HSP in some non-abelian groups
to HSP instances in abelian groups using classical and quantum group theoretical tools, but not
the non-abelian Fourier transform. This latter approach was used recently by Ivanyos, Sanselme
and Santha [12] for extraspecial groups.

The so far unknown complexity of two special cases of the HSP would be of particular interest.
The first one is the hidden subgroup problem in the symmetric group because it contains as special
instance the graph isomorphims problem. Recently Moore, Russell and Sniady [18] have shown that
no algorithm based one a particular approach can solve the graph isomorhism problem efficiently.
The other one is the hidden subgroup problem in the dihedral group because of its relation to
certain lattice problems investigated by Regev [20].

In this work we extend the class of groups where the HSP is efficiently solvable by a quantum
algorithm to nilpotent groups of nilpotency class at most 2 (shortly nil-2 groups). These are groups
whose lower (and upper) central series are of length at most 2. Equivalently, a group is nil-2 group
if the derived group is a subgroup of the center. Nilpotent groups form a rich subclass of solvable
groups, they contain for example all (finite) p-groups. Extraspecial groups are, in particular, in
nil-2 groups. Our main result is:

Theorem 1. Let G be a nil-2 group, and let us given an oracle f which hides the subgroup H of
G. Then there is an efficient quantum procedure which finds H.

The overall structure of the algorithm presented here is closely related to the algorithm in [12] for
extraspecial groups, but has also several additional features. The quantum part of the algorithm
is restricted to specific nil-2 groups, which are also p-groups and are of exponent p. It consists
essentially in the creation of a quantum hiding procedure (a natural quantum generalization of a
hiding function) for the subgroup HG′ of G. The procedure uses certain automorphisms of the
groups to define some appropriate group actions, and is analogous to what have been done in [12]
for extraspecial p-groups of exponent p.

While dealing with extraspecial p-groups of exponent p basically solves the HSP for all extraspe-
cial groups (the case of remaining groups, of exponent p2, easily reduces to groups of exponent p),
this is far from being true for nil-2 groups. Indeed, one of the main new features of the current
algorithm is a classical reduction of the HSP in nil-2 groups to the HSP in nil-2 p-groups of expo-
nent p, where moreover the hidden subgroup is either trivial or of cardinality p. In fact, our result
is much more general: we prove an analogous reduction in nil-k groups for any constant k. We
believe that this general reduction might be useful for designing efficient quantum algorithms for
the HSP in groups of higher nilpotency class.

Our second main novel feature concerns the quantum hiding procedure. While in extraspecial
groups it was reduced to the efficient solvability of a single quadratic and a single linear equation
modulo p, here we look for a nontrivial solution of a homogeneous system of d quadratic and d linear
equations, where d can be any integer. The reason for this is that while in extraspecial groups the
derived subgroup is one dimensional, in nil-2 groups we have no a priori bound on its dimension. If
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the number of variables is superior to the global degree of the system then the solvability itself is an
immediate consequence of the Chevalley-Warning theorem [3, 24]. In fact, we are in presence of a
typical example of Papdimitriou’s complexity class of total functions [16]: the number of solutions
is divisible by p and therefore there is always a nontrivial one. Our result is that if the number of
variables is sufficiently large, more precisely is of O(d3), then we can also find a nontrivial solution
in polynomial time.

The structure of the paper is the following. In Section 2 we shortly describe the extension of the
standard algorithm for quantum hiding procedures, and then we discuss some basic properties of
nilpotent groups, in particular nil-2 p-groups of exponent p. Section 3 contains the description of the
classical reduction of the HSP in groups of constant nilpotency class to instances where the group
is also p-group of exponent p, and the subgroup is either trivial or cyclic of order p (Theorem 2).
Section 4 gives the description of the quantum algorithm in nil-2 p-groups of exponent p: Theorem 3
briefly describes the reduction to the design of an efficient hiding procedure for HG′, and Theorem 4
proves the existence of such a procedure. Finally Section 5 gives the proof of Theorem 5, the efficient
solvability of the system of quadratic and linear equations. The proof of Theorem 1 follows from
Corollary 1 and Theorems 3 and 4.

Even if the hidden subgroup problem is hard for the symmetric group and also for general
solvable groups, it may happen that there is an efficient solution in nilpotent groups. The works
[1, 12] and this paper can be considered as the first steps in investigating the complexity of the
HSP in that group family.

2 Preliminaries

2.1 Extension of the standard algorithm for the abelian HSP

We will use standard notions of quantum computing for which one can consult for example [15]. For
a finite set X, we denote |X〉 := 1√

|X|

∑
x∈X |x〉. For a superposition |Ψ〉, we denote by supp(|Ψ〉)

the support of |Ψ〉, that is the set of basis elements with non-zero amplitude.
The standard algorithm for the abelian HSP repeats polynomially many times the Fourier

sampling involving the same hiding function, to obtain in each iteration a random element from
the subgroup orthogonal to the hidden subgroup. In fact, for the repeated Fourier samplings, the
existence of a common hiding function can be relaxed in several ways. Firstly, in different iterations
different hiding functions can be used, and secondly, classical hiding functions can be replaced by
quantum hiding functions. This was formalized in [12], and we recall here the precise definition.

A set of vectors {|Ψg〉 : g ∈ G} from some Hilbert space H is a hiding set for the subgroup H
of G if
• |Ψg〉 is a unit vector for every g ∈ G,
• if g and g′ are in the same left coset of H then |Ψg〉 = |Ψg′〉,
• if g and g′ are in different left cosets of H then |Ψg〉 and |Ψg′〉 are orthogonal.
A quantum procedure is hiding the subgroup H of G if for every g1, . . . , gN ∈ G, on input

|g1〉 . . . |gN 〉|0〉 it outputs |g1〉 . . . |gN 〉|Ψ1
g1
〉 . . . |ΨN

gN
〉, where {|Ψi

g〉 : g ∈ G} is a hiding set for H for
all 1 ≤ i ≤ N .

The following fact whose proof is immediate from Lemma 1 in [11] recasts the existence of the
standard algorithm for the abelian HSP in the context of hiding sets.
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Fact 1. Let G be a finite abelian group. If there exists an efficient quantum procedure which hides
the subgroup H of G then there is an efficient quantum algorithm for finding H.

2.2 Nilpotent groups

Let G be a finite group. For two elements g1 and g2 of G, we usually denote their product by g1g2.
If we conceive group multiplication from the right as a group action of G on itself, we will use the
notation g1 · g2 for g1g2. We write H ≤ G when H is a subgroup of G, and H < G when it is a
proper subgroup. Normal subgroups and proper normal subgroups will be denoted respectively by
H E G and H C G. For a subset X of G, let 〈X〉 be the subgroup generated by X. The normalizer
of X in G is NG(X) = {g ∈ G : gX = Xg}. For an integer n, we denote by Zn the group of
integers modulo n, and for a prime number p, we denote by Z∗

p the multiplicative group of integers
relatively prime with p.

The commutator [x, y] of elements x and y is x−1y−1xy. For two subgroups X and Y of G, let
[X, Y ] be 〈{[x, y] : x ∈ X, y ∈ Y }〉. The derived subgroup G′ of G is defined as [G, G], and its
center Z(G) as {z ∈ G : gz = zg for all g ∈ G}. The lower central series of G is the series of
subgroups G = A1DA2DA3 . . . , where Ai+1 = [Ai, G] for every i > 1. The upper central series of G
is the series of subgroups {1} = Z0 E Z1 E Z2 . . . , where Zi+1 = {x ∈ G : [x, g] ∈ Zi for all g ∈ G}
for every i > 0. Clearly A2 = G′ and Z1 = Z(G). The group G is nilpotent if there is a natural
number n such that An+1 = {1}. If n is the smallest integer such that An+1 = {1} then G is
nilpotent of class n. It is a well known fact that G is nilpotent of class n if and only if Zn = G in
the upper central series. Nilpotent groups of class 1 are simply the nontrivial abelian groups. A
nilpotent group of class at most n is called a nil-n group.

A detailed treatment of nilpotent groups can be found for example in Hall [7]. Let us just recall
here that nilpotent groups are solvable, and that every p-group is nilpotent, where a p-group is a
finite group whose order is a power of some prime number p.

2.3 Nil-2 p-groups of exponent p

It is clear from the definition of nilpotent groups that G is a nil-2 group exactly when G′ ≤ Z(G). It
is easy to see that this property implies that the commutator is a bilinear function in the following
sense: for every g1, g2, g3, g4 in G, we have [g1g2, g3g4] = [g1, g2][g1, g3][g2, g3][g2, g4].

The quantum part of our algorithm will deal only with special nilpotent groups of class 2, which
are also p-groups and are of exponent p. The structure of these special groups is well known, and
is expressed in the following simple fact.

Fact 2. Let G be a p-group of exponent p and of nilpotency class 2. Then there exist positive
integers m and d, group elements x1, . . . , xm ∈ G and z1, . . . , zd ∈ G′ such that:

(1) G/G′ ∼= Zm
p and G′ ∼= Zd

p,

(2) ∀g ∈ G, ∃!(e1, . . . , em, f1, . . . fd) ∈ Zm+d
p such that g = xe1

1 . . . xem
m zf1

1 . . . zfd
d ,

(3) G = 〈x1, . . . , xm〉 and G′ = 〈z1, . . . , zd〉.

We will say that a nil-2 p-group G of exponent p has parameters (m, d) if G/G′ ∼= Zm
p and

G′ ∼= Zd
p. In those groups we will indentify G′ and Zd

p. Thus, for two elements z and z′ of G′,
the product zz′ is just z ⊕ z′ where ⊕ denotes the coordinate-wise addition modulo p. If G is
a such a group then |G| = pm+d. The elements of G can be encoded by binary strings of length
O((m + d) log p), and an efficient algorithm on input G has to be polynomial in m, d and log p.
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For j = 1, . . . , p− 1, we consider on generators the maps xi to xj
i . It turns out that these maps

extend to automorphisms φj of G. We also define the map φ0 by letting φ0(g) = 1, for every g ∈ G.

Proposition 1. Let G be a p-group of exponent p and of nilpotency class 2. Then the mappings
φj have the following properties:

(1) ∀j ∈ Zp,∀z ∈ G′, φj(z) = zj2
,

(2) ∀g ∈ G,∃zg ∈ G′,∀j ∈ Zp, φj(g) = gjzj−j2

g .

Proof. The first statement is trivial when j = 0. Otherwise, observe that for every j ∈ Z∗
p, and

for every g ∈ G, there exists z ∈ G′ such that φj(g) = gjz since G/G′ is abelian. To prove
the first statement, let z = [g1, g2]. Then by this remark, there exist z1 and z2 in G′ such that
φj([g1, g2]) = [gj

1z1, g
j
2z2]. By repeated applications of the bilinearity of the commutator operator

this is easily seen to be ([g1, g2])j2
.

We now turn to the second statement. Let j0 be a fixed primitive element of Z∗
p.

Then φj0(g) = gj0s, for some s ∈ G′. Set zg = s(j0−j2
0)−1

, we have φj0(g) = gj0z
j0−j2

0
g . Let

k = gzg, then φj0(k) = gj0z
j0−j2

0
g z

j2
0

g = kj0 . Therefore, for all j ∈ Zp, we have φj(k) = kj and
φj(g) = φj(k)φj(z−1

g ) = gjzj
gz

−j2

g .

Clearly, for every g ∈ G, the element zg whose existence is stated in the second part of Propo-
sition 1 is unique. From now on, let zg denote this unique element.

3 Classical reductions in groups of constant nilpotency class

In order to present the reduction methods in a sufficiently general way, in this section we assume
that our groups are presented in terms of so-called refined polycyclic presentations (RPP) [9]. Such
a presentation of a finite solvable group G is based on a sequence G = G1 B . . .BGs+1 = {1}, where
for each 1 ≤ i ≤ s the subgroup Gi+1 is a normal subgroup of Gi and the factor group Gi/Gi+1

is cyclic of prime order ri. For each i ≤ s an element gi ∈ Gi \ Gi+1 is chosen. Then gri
i ∈ Gi+1.

Every element g of G can be uniquely represented as a product of the form ge1
1 · · · ges

s , called the
normal word for g, where 0 ≤ ei < ri.

In the abstract presentation the generators are g1, . . . , gs, and for each index 1 ≤ i ≤ s, the
following relations are included:
• gri

i = ui, where ui = g
ai,i+1

i+1 · · · gai,s
s is the normal word for gri ∈ Gi+1,

• g−1
i gjgi = wij for j > i, where wij = g

bi,j,i+1

i+1 · · · gbi,j,s
s is the normal word for g−1

i gjgi ∈ Gi+1.
Using a quantum implementation [11] of an algorithm of Beals and Babai [2], RPP for a solvable

black box group can be computed in polynomial time. We assume that elements of G are encoded by
normal words and there is a polynomial time algorithm in log |G|, the so called collection procedure,
which computes normal words representing products. This is the case for nilpotent groups of
constant class [10]. If there is an efficient collection procedure then RPP for subgroups and factor
groups can be obtained in polynomial time [9]. Also, the major notable subgroups including Sylow
subgroups, the center and the commutator can be computed efficiently. Furthermore, in p-groups
with RPP, normalizers of subgroups can be computed in polynomial time using the technique of
[4], combined with the subspace stabilizer algorithm of [14].

Our first theorem is a classical reduction for the HSP in groups of constant nilpotency class.
The proof is given by the subsequent three lemmas.
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Theorem 2. Let C be a class of groups of constant nilpotency class that is closed under taking
subgroups and factor groups. Then the hidden subgroup problem in members of C can be reduced
to the case where the group is a p-group of exponent p, and the the subgroup is either trivial or of
cardinality p.

Corollary 1. The hidden subgroup problem in nil-2 groups can be reduced to the case where the
group is a p-group of exponent p, and the the subgroup is either trivial or of cardinality p.

Lemma 1. Let C be a class of groups of constant nilpotency class that is closed under taking
subgroups and factor groups. Then the HSP in C can be reduced to the HSP of p-groups belonging
to C.

Proof. As a nilpotent group G is the direct product of its Sylow subgroups, any subgroup H of G
is the product of its intersections with the Sylow subgroups of G.

Lemma 2. Let C be a class of p-groups of constant nilpotency class that is closed under taking
subgroups and factor groups. Then the hidden subgroup problem in members of C can be reduced to
the case where the subgroup is either trivial or of cardinality p.

Proof. Assume that we have a procedure P which finds hidden subgroups in C under the promise
that the hidden subgroup is trivial or is of order p. Let G be a group in C and let f be a function
on G hiding the subgroup H of G. We describe an iterative procedure which uses P as a subroutine
and finds H in G. The basic idea is to compute a refined polycyclic sequence G = G1 B . . .BGs B1
for G and to proceed calling P on the subgroups in the sequence starting with Gs. When P finds
for the first time a nontrivial subgroup generated by h, then we would like to restart the process
in G/〈h〉, and at the end, collect all the generators. Since 〈h〉 is not necessarily a normal subgroup
of G we will actually restart the process instead in NG(〈h〉).

More formally, let us suppose that f hides H in G, and let H̃ be some subgroup of H. Then
f hides NG(H̃) ∩H in NG(H̃), and therefore it hides (NG(H̃) ∩H)/H̃ in NG(H̃)/H̃. We consider
the following algorithm:

Algorithm 1

success:= TRUE, H̃ = {1}.
WHILE success=TRUE DO

IF G 6= H̃ THEN compute NG(H̃)/H̃ = G1 B . . . B Gs B 1 a RPP, i := s,
WHILE i > 0 DO call P on Gi,

IF P returns 〈h〉 THEN H̃ := 〈H̃ ∪ {h}〉, i := 0
ELSE i := i− 1

IF i = 0 THEN success := FALSE
ELSE success:=FALSE

Algorithm 1 stops when the subgroup H̃ is such that (NG(H̃) ∩ H)/H̃ = {1}, that is when
NG(H̃)∩H = H̃. We claim that this implies H̃ = H. Indeed, suppose that H̃ is a proper subgroup
of H. Since in nilpotent groups a proper subgroup is also a proper subgroup of its normalizer, H̃
is also a proper subgroup of NH(H̃) = NG(H̃) ∩H.

Finally observe that the whole process makes O(log2
p |G|) calls to P.
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Lemma 3. Let C be a class of p-groups of constant nilpotency class that is closed under taking
subgroups and factor groups. Then the instances of the hidden subgroup problem in members of C,
when the subgroup is either trivial or of cardinality p, can be reduced to groups in C of exponent p.

Proof. If p is not larger than the class of G, the algorithm of [5] is applicable. Otherwise the
elements of order p or 1 form a subgroup G∗, see Chapter 12 of [7]. The hidden subgroup H is
also a subgroup of G∗ since |H| ≤ p. The function hiding H in G also hides it in G∗, therefore the
reduction will consist in determining G∗.

We design an algorithm that finds G∗ by induction on the length of RPP. If |G| = p then
G∗ = G. Otherwise, let G = G1 B G2 B . . . B Gs B {1} be a RPP with s ≥ 2. It is easy to construct
a presentation where Gs is a subgroup of the center of G, which we suppose from now on. For the
ease of notation we set M = G2 and N = Gs.

We first describe the inductive step in a simplified case, with the additional hypothesis (G/N)∗ =
G/N . Observe that the hypothesis is equivalent to saying that the map φ : x 7→ xp sends every
element of G into N . From this it is also clear that the hypothesis carries over to M , that is
(M/N)∗ = M/N . We further claim that either G∗ = G or G∗ is a subgroup of G of index p. In
fact this follows Theorem 12.4.4 of [7] which states that the map φ is constant on cosets of G∗ and
distinct on different cosets. From a polycyclic presentation of G it can be read off whether or not
G = G∗. If G∗ = G we are done. Otherwise we compute inductively M∗. If M∗ = M then G∗ = M .
If M∗ is a proper subgroup of M then M∗ has index p2 in G. Pick an arbitrary u ∈ M \M∗ and
y ∈ G \ M . By the assumptions, up = gju

s for some integer 0 < ju < p, and yp = g
jy
s for some

integer 0 ≤ jy < p. Recall that in the polycyclic presentation model, computing normal words for
up and yp – using fast exponentiation – amounts to computing ju and jy. Set x = ujyj−1

u . For this
x we have xp = yp, and therefore xy−1 ∈ G∗. Since xy−1 ∈ G∗ \M∗, we have G∗ = 〈M∗, xy−1〉.

In the general case first (G/N)∗ is computed inductively. If (G/N)∗ = G/N then one proceeds
as in the simplified case. Otherwise we set K = (G/N)∗N . We claim that G∗ = K∗. For this we
will show that. G∗ ⊆ K. To see this, let x be an element of G∗. Then x = yz where y ∈ G/N and
z ∈ N . We show that y is in (G/N)∗ which implies that x ∈ K. Indeed, yp = ypzp = (yz)p = 1,
where the first equality follows from |N | = p, the second from N ≤ Z(G) and the third from
x ∈ G∗. Finally observe that (K/N)∗ = K/N since K/N = (G/N)∗. Therefore one can determine
K∗ inductively as in the simplified case.

Let c(s) denote the number of recursive calls when the length of a presentation is s. In the
simplified case the number of calls is s−1. Therefore in the general case we have c(s) = c(s−1)+s−2,
whose solution is c(s) = O(s2).

4 The quantum algorithm

The quantum part of our algorithm, up to technicalities, follows the same lines as the algorithm
given in [12] for extraspecial groups, and the proofs in this section are analogous to the ones there.

Theorem 3. Let G be a nil-2 p-group of exponent p, and let us given an oracle f which hides
a subgroup H of G whose cardinality is either 1 or p. If we have an efficient quantum procedure
(using f) which hides HG′ in G then H can be found efficiently.

Proof. First observe that finding H is efficiently reducible to finding HG′. Indeed, HG′ is an
abelian subgroup of G since H is abelian. The restriction of the hiding function f to HG′ of G
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hides H. Therefore the standard algorithm for solving the HSP in abelian groups applied to HG′

with oracle f yields H.
Let us now suppose that G has parameters (m, d). We will show that finding HG′ can be

efficiently reduced to the hidden subgroup problem in an abelian group. Let us denote for every
element g = xe1

1 . . . xem
m zf1

1 . . . zfd
d of G, by g the element xe1

1 . . . xem
m . We define the group G whose

base set is {g : g ∈ G}. Observe that this set of elements does not form a subgroup in G. To make
G a group, its law is defined by g1 ∗ g2 = g1g2 for all g1 and g2 in G. It is easy to check that ∗ is
well defined, and is indeed a group multiplication. In fact, the group G is isomorphic to G/G′ and
therefore is isomorphic to Zm

p . For our purposes a nice way to think about G as a representation
of G/G′ with unique encoding. Observe also that HG′ ∩G is a subgroup of (G, ∗) because HG′/G′

is a subgroup of G/G′. Since HG′ = (HG′ ∩ G)G′, finding HG′ is efficiently reducible to finding
HG′ ∩G in G.

To finish the proof, let us remark that the procedure which hides HG′ in G hides also HG′ ∩G
in G. Since G is abelian, Fact 1 implies that we can find efficiently HG′ ∩G.

Theorem 4. Let G be a nil-2 p-group of exponent p, and let us given an oracle f which hides a
subgroup H of G. Then there is an efficient quantum procedure which hides HG′ in G.

Proof. The basic idea of the quantum procedure is the following. Suppose that we could create,
for some a ∈ G, the coset state |aHG′〉. Then the group action g → |aHG′ · g〉 is a hiding
procedure. Unfortunately, |aHG′〉 can only be created efficiently when p and d are constant. In
general, we can create efficiently |aHG′

u〉 for random a ∈ G and u ∈ G′, where by definition
|G′

u〉 = 1√
|G′|

∑
z∈Zd

p
ω−<u,z>|z〉. Then |aHG′

u · h〉 = |aHG′
u〉 for every h ∈ H, and |G′

u · z〉 =

ω<u,z>|G′
u〉. To cancel the disturbing phase we will use more sophisticated group action via the

group automorphisms φj on several copies of the states |aHG′
u〉.

Lemma 4. There is an efficient quantum procedure which creates 1√
pd

∑
u∈Zd

p
|u〉|aHG′

u〉 where a

is a random element from G.

Proof. We start with |0〉|0〉|0〉. Since we have access to the hiding function f , we can create the
superposition 1√

|G|

∑
g∈G|0〉|g〉|f(g)〉. Observing and discharging the third register we get |0〉|aH〉

for a random element a. Applying the Fourier transform over Zd
p to the first register gives |Zp〉|aH〉.

Multiplying the second register by the opposite of the first one results in 1√
pd

∑
z∈Zd

p
|−z〉|aHz〉. A

final Fourier transform in the first register creates the required superposition.

Our next lemma which is an immediate consequence of Proposition 1 claims that the states
|aHG′

u〉 are eigenvectors of the group action of multiplication from the right by φj(g), whenever
g is from HG′. Moreover, the corresponding eigenvalues are some powers of the root of the unity,
the exponent does not depend on a, and the dependence on u and j is relatively simple.

Lemma 5. We have

1. ∀z ∈ Zd
p,∀a ∈ G,∀u ∈ Zd

p,∀j ∈ Zp, |aHG′
u · φj(z)〉 = ω<u,z>j2 |aHG′

u〉,

2. ∀h ∈ H,∀a ∈ G,∀u ∈ Zd
p,∀j ∈ Zp, |aHG′

u · φj(h)〉 = ω<u,zh>(j−j2)|aHG′
u〉.
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The principal idea now is to take several copies of the states |aiHG′
ui
〉 and choose the ji so

that the product of the corresponding eigenvalues becomes the unity. Therefore the combined
actions φji(g), when g is from HG′, will not modify the combined state. It turns out that we can
achieve this with a sufficiently big enough number of copies. Let n = n(d) some function of d to
be determined later.

For a = (a1, . . . , an) ∈ Gn, u = (u1, . . . , un) ∈ (Zd
p)

n, j = (j1, . . . , jn) ∈ (Zp)n \ {0n} and g ∈ G,

we define the quantum state |Ψa,u,j
g 〉 in CGn

by |Ψa,u,j
g 〉 =

⊗n
i=1|aiHG′

ui
· φji(g)〉.

Our purpose is to find an efficient procedure to generate triples (a, u, j) such that for every
g in HG′, |Ψa,u,j

g 〉 =
⊗n

i=1|aiHG′
ui
〉. We call such triples appropriate. The reason to look for

appropriate triples is that they lead to hiding sets for HG′ in G as stated in the next lemma.

Lemma 6. If (a, u, j) is an appropriate triple then {|Ψa,u,j
g 〉 : g ∈ G} is hiding for HG′ in G.

Proof. To see this, first observe that HG′ is a normal subgroup of G. If g1 and g2 are in different
cosets of HG′ in G then let 1 ≤ i ≤ n such that ji 6= 0. The elements φji(g1) and φji(g2) are in
different cosets of HG′ in G since φji is an automorphism of G. Also, we have supp(|aHG′

u〉) =
supp(|aHG′〉), and therefore supp(|aHG′

u · φj1(g1)〉) and supp(|aHG′
u · φj2(g2)〉) are included in

different cosets and are disjoint. Thus the states |Ψa,u,j
g1 〉 and |Ψa,u,j

g2 〉 are orthogonal.
If g1 and g2 are in the same coset of HG′ then g1 = gg2 for some g ∈ HG′, and for all 1 ≤ i ≤ n,

we have φji(g1) = φji(g)φji(g2). Thus |Ψa,u,j
g1 〉 = |Ψa,u,j

gg2 〉 = |Ψa,u,j
g2 〉.

Let us now address the question of existence of appropriate triples and efficient ways to gen-
erate them. Let (a, u, j) be an arbitrary element of Gn × (Zd

p)
n × (Zp)n \ {0n}, and let g be

an element of HG′. Then g = hz for some h ∈ H and z ∈ Zd
p, and φji(g) = φji(h)φji(z) for

i = 1, . . . , n. By Lemma 5, we have |aiHG′
ui
·φji(z)〉 = ω<ui,z>j2

i |aiHG′
ui
〉, and |aiHG′

ui
·φji(h)〉 =

ω<ui,zh>(ji−j2
i )|aiHG′

ui
〉, and therefore |Ψa,u,j

g 〉 = ω
Pn

i=1<ui,zh>(ji−j2
i )+<ui,z>j2

i
⊗n

i=1|aiHG′
ui
〉.

For a given u, we consider the following system of quadratic equations, written in vectorial
form: {∑n

i=1 ui(ji − j2
i ) = 0d∑n

i=1 uij
2
i = 0d.

It should be clear that when this system has a nontrivial solution j (that is j 6= 0d) then (a, u, j) is
an appropriate triple, for every a. In fact, the Chevalley-Warning theorem [3, 24] implies that the
following equivalent system of vectorial equations has a nontrivial solution for every u, whenever
n > 3d. {∑n

i=1 uij
2
i = 0d∑n

i=1 uiji = 0d.
(1)

Moreover, if we take a substantially larger number of variables, we can find a solution in polynomial
time.

Theorem 5. If n = (d + 1)2(d + 2)/2 then we can find a nontrivial solution for the system (1) in
polynomial time.

The proof of Theorem 5 will be given in the next section. To finish the proof of Theorem 4
we describe the efficient hiding procedure. On input |g〉, it computes, for some a ∈ Gn, the
superposition 1

pd

⊗n
i=1

∑
ui∈Zp

|ui〉|aiHG′
ui
〉, which by Lemma 4 can be done efficiently, and then it
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measures the registers for the ui. Then, by Theorem 5 it finds efficiently a nontrivial solution j for
system (1). Such a triple (a, u, j) is appropriate, and therefore by Lemma 6 {|Ψa,u,j

g 〉 : g ∈ G} is
hiding for HG′ in G. Using the additional input |g〉, the procedure finally computes |Ψa,u,j

g 〉.

5 Solving the system of equations

This section is fully dedicated to the proof of Theorem 5. If p = 2 then the d quadratic and the d
linear equations coincide, and the (linear) system can easily be solved in polynomial time. Therefore,
from now on, we suppose that p > 2. Let us detail system (1), where we set ui = (u1,i, u2,i, . . . , ud,i).
We have the following system of d homogenous quadratic and d homogenous linear one equations
with n variables: {

∀` ∈ [|1, d|],
∑n

i=1 u`,ij
2
i = 0

∀` ∈ [|1, d|],
∑n

i=1 u`,iji = 0.
(2)

We start by considering only the quadratic part of the (2), that is for some integer n′:{
∀` ∈ [|1, d|],

∑n′

i=1 u`,ij
2
i = 0. (3)

Claim 1. If n′ = (d+1)(d+2)/2 then we can find a nontrivial solution for (3) in polynomial time.

Proof. For the ease of notation we are going to represent this system by the d × n′ matrix M =
(u`,i)1≤`≤d,1≤i≤n′ .

We will present a recursive algorithm whose complexity will be polynomial in d and in log p.
When d = 1, the unique quadratic equation is of the form u1,1j

2
1 +u1,2j

2
2 +u1,3j

2
3 = 0. According to

a special case of the main result in the thesis of van de Woestijne (Theorem A3 of [25]), a nontrivial
solution for this can be found in polynomial time in log p.

Let us suppose now that we have d equations in n′ = (d + 1)(d + 2)/2 variables. We can make
elementary operations on M (adding two lines and multiplying a line with a nonzero constant)
without changing the solutions of the system. Our purpose is to reduce it with such operations to
d − 1 equations in at least d(d + 1)/2 variables. If the system is of rank less than d, then we can
erase an equation and get an equivalent system with only d − 1 equations in the same number of
variables. Otherwise, we perform Gaussian elimination resulting in the matrix

M1 =



1 0 0 . . . 0 u
(1)
1,d+1 . . . u

(1)
1,n′

0 1 0 . . . 0 u
(1)
2,d+1 . . . u

(1)
2,n′

...
. . .

...
...

...
0 . . . 0 1 0 u

(1)
d−1,d+1 . . . u

(1)
d−1,n′

0 . . . 0 0 1 u
(1)
d,d+1 . . . u

(1)
d,n′


.

Since checking quadratic residuosity is simple, and for odd p, half of the elements of Z∗
p are

squares, we can easily compute a quadratic non-residue λ in probabilistic polynomial time. Then
every quadratic non-residue is the product of a square and λ. We will look at column d + 1 of M1.
If the column is everywhere 0 then jd+1 = 1 and ji = 0 for i 6= d + 1 is a nontrivial solution of the
whole system. Otherwise, without loss of generality, we can suppose that for some (k1, k2) 6= (0, 0)
the first k1 elements are squares, the following k2 elements are the product of λ and a square,
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and the last d − k1 − k2 elements are zero. Thus there exist v1, . . . , vk1+k2 different from 0, such
that u

(1)
i,d+1 = v2

i for 1 ≤ i ≤ k1, and u
(1)
i,d+1 = λv2

i for k1 + 1 ≤ i ≤ k1 + k2. Once we have a
quadratic non-residue, the square roots v1, . . . , vk1+k2 can be found in deterministic polynomial
time in log p by the Shanks–Tonelli algorithm [22]. We set the variables jk1+k2+1, . . . , jd to 0, and
eliminate columns k1 + k2 + 1, . . . , d from M1. Then for i = 1, . . . , k1 + k2, we divide the line i by
v2
i . Introducing the new variables j′i = jiv

−1
i for 1 ≤ i ≤ k1 + k2, the matrix of the system in the

n′ − d + k1 + k2 variables j′1, . . . , j
′
k1+k2

, jd+1, . . . jn′ is

M2 =



1 0 . . . 0 1 u
(2)
1,d+2 . . . u

(2)
1,n′

0
. . .

...
...

...

1
. . .

... 1 u
(2)
k1,d+2 . . . u

(2)
k1,n′

...
. . . 1 λ u

(2)
k1+1,d+2 . . . u

(2)
k1+1,n′

. . . 0
...

...
...

0 . . . 0 1 λ u
(2)
k1+k2,d+2 . . . u

(2)
k1+k2,n′

0 . . . 0 u
(2)
k1+k2+1,d+2 . . . u

(2)
k1+k2+1,n′

...
...

...
...

...
0 . . . 0 u

(2)
d,d+2 . . . u

(2)
d,n′



.

In M2 we subtract the first line from lines 2, . . . , k and line k1 + 1 from lines k1 + 2, . . . , k1 +
k2. Then we set the variables j′2, . . . , j

′
k1

to j′1, and variables j′k1+2, . . . , j
′
k1+k2

to j′k1+1. The
corresponding changes in the matrix are eliminating columns 2, . . . k1 and k1 + 2, . . . k1 + k2 and
putting in columns 1 and k1 + 1 everywhere 0 but respectively in line 1 and line k1 + 1. Finally, by
exchanging line 2 and line k1 + 1, we get the matrix

M3 =



1 0 1 u
(3)
1,d+2 . . . u

(3)
1,n′

0 1 λ u
(3)
2,d+2 . . . u

(3)
2,n′

0 0 0 u
(3)
3,d+2 . . . u

(3)
3,n′

...
...

...
...

...
0 0 0 u

(3)
d,d+2 . . . u

(3)
d,n′


in variables j′1, j

′
k1+1, jd+1, . . . , jn′ .

To finish the reduction, we will distinguish two cases, depending on the congruency class of p
modulo 4. When p ≡ 1, the element −1 is a square, and in polynomial time in log p we can find s
such that s2 = −1. We set j1 = sjd+1, eliminate column 1 from matrix M3, put 0 in line 1 column
d + 1, and exchange line 1 and line 2. When p ≡ 3 modulo 4, the element −1 is not a square, and
therefore we can choose λ = −1. We set j2 = jd+1, eliminate column 2, and put 0 in line 2 column
d + 1. In both cases we end up with a matrix of the form

M4 =


1 α u

(3)
1,d+2 . . . u

(3)
1,n′

0 0 u
(3)
2,d+2 . . . u

(3)
2,n′

...
...

...
...

0 0 u
(3)
d,d+2 . . . u

(3)
d,n′
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in the variables j′, jd+1, . . . , jn′ where α = λ and j′ = j′k1+1 when p ≡ 1, and α = 1 and j′ = j′1
otherwise. Without the first line it represents a system of d−1 equations in n′−(d+1) = d(d+1)/2
variables for which we can find a nontrivial solution by induction. Let jd+2, . . . , jn′ such a solution,
and set b =

∑n′

k=d+2 u
(3)
1,kjk. To give values to the remaining two variables we have to solve the

equation j′2 + αj2
d+1 + b = 0. It is easy to see that the equation is always solvable, and then by

Theorem A3 of [25] a solution can be found deterministically in polynomial time.
Gaussian elimination on M can be done in time O(d4). Finding a nontrivial solution for a

quadratic homogeneous equation in 3 variables takes time q1(log p), solving a quadratic equation in
two variables takes time q2(log p), and finding a square roots modulo p takes time q3(log p) where
q1, q2 and q3 are polynomials. Therefore the complexity of solving system (1) is O(d5+d2q3(log p)+
dq2(log p) + q1(log p)).

We now turn to the system (2). Let n′ = n/(d + 1), and for 0 ≤ k ≤ d, consider the the system
of d quadratic equations in n′ variables:{

∀` ∈ [|1, d|],
∑(k+1)n′

i=kn′+1 u`,ij
2
i = 0.

By Claim 1, each of these systems has a nontrivial solution that we can find in polynomial time.
For each k, let (jkn′+1, . . . , j(k+1)n′) such a solution of the kth quadratic system. Then the set

{(λ0j1, . . . , λ0jn′ , λ1jn′+1, . . . , λ1j2n′ , . . . , λdjdn′+1, . . . , λdj(d+1)n′) : (λ0, λ1, . . . , λd) ∈ Zd+1
p }

is a d + 1 dimensional subspace of of Zn
p whose elements are solutions of the d quadratic equations

in (2). Since in (2) there are d linear equations, we can find a a nontrivial (λ0, λ1, . . . , λd) ∈ Zd+1
p

such that (λ0j1, . . . , λ0jn′ , λ1jn′+1, . . . , λ1j2n′ , . . . , λdjdn′+1, . . . , λdj(d+1)n′) is a (nontrivial) solution
of the linear part of (2), and therefore of the whole system.
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