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Abstract

In this paper we show that the hidden subgroup problem in nil-2 groups, that is in groups of
nilpotency class at most 2, can be solved efficiently by a quantum procedure. The algorithm is
an extension of our earlier method for extraspecial groups in [13], but it has several additional
features. It contains a powerful classical reduction for the hidden subgroup problem in nilpotent
groups of constant nilpotency class to the specific case where the group is a p-group of exponent
p and the subgroup is either trivial or cyclic. This reduction might also be useful for dealing
with groups of higher nilpotency class. The quantum part of the algorithm uses well chosen
group actions based on some automorphisms of nil-2 groups. The right choice of the actions
requires the solution of a system of quadratic and linear equations. The existence of a solution is
guaranteed by the Chevalley-Warning theorem, and we prove that it can also be found efficiently.
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1 Introduction

Efficient solutions to some cases of the hidden subgroup problem (HSP), a paradigmatic group
theoretical problem, constitute probably the most notable successes of quantum computing. The
problem consists in finding a subgroup H in a finite group G hidden by some function which
is constant on each coset of H and is distinct on different cosets. The hiding function can be
accessed by an oracle, and in the overall complexity of an algorithm, a query counts as a single
computational step. To be efficient, an algorithm has to be polylogarithmic in the order of G.
While classically even no algorithms of polynomial query complexity are possible for the HSP, it
can be solved efficiently in abelian groups by a quantum algorithm. A detailed description of the
so called standard algorithm can be found for example in [19]. The main quantum tool of this
algorithm is Fourier sampling, based on the efficiently implementable Fourier transform in abelian
groups. Factorization and discrete logarithm [28] are special cases of this solution.

After the settling of the abelian case, substantial research was devoted to the HSP in some finite
non-abelian groups. Beside being the natural generalization of the abelian case, the interest of this
problem is enhanced by the fact that important algorithmic problems, such as graph isomorphism,
can be cast in this framework. The standard algorithm has been extended to some non-abelian
groups by Rötteler and Beth [25], Hallgren, Russell and Ta-Shma [9], Grigni, Schulman, Vazirani
and Vazirani [7] and Moore, Rockmore, Russell and Schulman [21]. For the Heisenberg group,
Bacon, Childs and van Dam [1] used the pretty good measurement to reduce the HSP to some
matrix sum problem that they could solve classically. Ivanyos, Magniez and Santha [12] and Friedl,
Ivanyos, Magniez, Santha and Sen [5] have efficiently reduced the HSP in some non-abelian groups
to HSP instances in abelian groups using classical and quantum group theoretical tools, but not
the non-abelian Fourier transform. This latter approach was used recently by Ivanyos, Sanselme
and Santha [13] for extraspecial groups.

The so far unknown complexity of two special cases of the HSP would be of particular interest.
The first one is the hidden subgroup problem in the symmetric group because it contains as special
instance the graph isomorphism problem. Recently, Moore, Russell and Sniady [22] have shown that
no algorithm based one a particular approach can solve the graph isomorphism problem efficiently.
The other one is the hidden subgroup problem in the dihedral group because of its relation to
certain lattice problems investigated by Regev [26].

In this work we extend the family of groups where the HSP is efficiently solvable by a quantum
algorithm to nilpotent groups of nilpotency class at most 2 (nil-2 groups, in short). These are groups
whose lower (and upper) central series are of length at most 2. Equivalently, a group is nil-2 group
if the derived subgroup is contained in the center. Nilpotent groups form a rich subclass of solvable
groups, they contain for example all (finite) p-groups. Extraspecial groups are, in particular, in
nil-2 groups. Our main result is:

Theorem 1. Let G be a nil-2 group, and let f be an oracle that hides the subgroup H of G. Then
there is an efficient quantum procedure which finds H.

The overall structure of the algorithm presented here is closely related to the algorithm in [13] for
extraspecial groups, but has also several additional features. The quantum part of the algorithm
is restricted to specific nil-2 groups, which are also p-groups and are of exponent p. It consists
essentially in the creation of a quantum hiding procedure (a natural quantum generalization of a
hiding function) for the subgroup HG′ of G, where G′ stands for the derived (a.k.a. commutator)
subgroup of G. The procedure uses certain automorphisms of the groups to define some appropriate
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group actions, and is analogous to what has been done in [13] for extraspecial p-groups of exponent
p.

While dealing with extraspecial p-groups of exponent p basically solves the HSP for all extraspe-
cial groups (the case of remaining groups, of exponent p2, easily reduces to groups of exponent p),
this is far from being true for nil-2 groups. Indeed, one of the main new features of the current
algorithm is a classical reduction of the HSP in nil-2 groups to the HSP in p-groups of exponent p
and nilpotency class at most 2, where moreover the hidden subgroup is either trivial or of cardi-
nality p. In fact, our result is much more general: we prove an analogous reduction in nil-k groups
for any constant k. We believe that this general reduction might be useful for designing efficient
quantum algorithms for the HSP in groups of higher nilpotency class.

Our second main novel feature concerns the quantum hiding procedure for HG′. While in
extraspecial groups it was reduced to the efficient solvability of a single quadratic and a single
linear equation modulo p, here we look for a nontrivial solution of a homogeneous system of d
quadratic and d linear equations, where d can be any integer. The reason for this is that while in
extraspecial groups the derived subgroup is one dimensional, in nil-2 groups we have no a priori
bound on its dimension. If the number of variables exceeds the global degree of the system then
the solvability itself is an immediate consequence of the Chevalley-Warning theorem [3, 29]: the
number of solutions is divisible by p and therefore there is always a nontrivial one. (See [20]
for the complexity theory aspects of search problems where existence of solution is granted by
mathematical theorems.) Our result is that if the number of variables is sufficiently large, more
precisely is of Ω(d3), then we can also find a nontrivial solution in polynomial time.

The structure of the paper is the following. In Section 2 we briefly describe the extension of the
standard algorithm for quantum hiding procedures, and then we discuss some basic properties of
nilpotent groups, in particular p-groups of exponent p and of nilpotency class at most 2. Section 3
contains the description of the classical reduction of the HSP in groups of constant nilpotency class
to instances where the group is also p-group of exponent p, and the subgroup is either trivial or
cyclic of order p. Section 4 gives the description of the quantum algorithm in p-groups of exponent
p and of nilpotency class at most 2: we briefly describe the reduction of finding H to the design
of an efficient hiding procedure for HG′, and prove the existence of such a procedure. Finally
Section 5 gives the proof of the efficient solvability of the system of quadratic and linear equations
occurring in the design of the hiding procedure.

Even if the hidden subgroup problem is hard for the symmetric group and also for general
solvable groups, it may happen that there is an efficient solution in nilpotent groups. The works
[1, 13] and this paper can be considered as the first steps in investigating the complexity of the
HSP for this family of groups.

2 Preliminaries

2.1 Extension of the standard algorithm for the abelian HSP

We will use standard notions of quantum computing for which one can consult for example [23].
For a finite set X, we denote by |X〉 the uniform superposition 1√

|X|

∑
x∈X |x〉 over X. For a

superposition |Ψ〉, we denote by supp(|Ψ〉) the support of |Ψ〉, that is the set of basis elements that
occur in |Ψ〉 with non-zero amplitude.

The standard algorithm for the abelian HSP repeats polynomially many times Fourier sampling
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involving the same hiding function, to obtain in each iteration a random element from the subgroup
orthogonal to the hidden subgroup. In fact, for repeated Fourier samplings, the existence of a
common hiding function can be relaxed in several ways. Firstly, in different iterations different
hiding functions can be used, and secondly, classical hiding functions can be replaced by quantum
hiding functions. This was formalized in [13], and we recall here the precise definition.

A set of vectors {|Ψg〉 : g ∈ G} from some Hilbert space H is a hiding set for the subgroup H
of G if

• |Ψg〉 is a unit vector for every g ∈ G,

• if g and g′ are in the same left coset of H then |Ψg〉 = |Ψg′〉,

• if g and g′ are in different left cosets of H then |Ψg〉 and |Ψg′〉 are orthogonal.

A quantum procedure is hiding the subgroup H of G if for every g1, . . . , gN ∈ G, on input
|g1〉 . . . |gN 〉|0〉 it outputs |g1〉 . . . |gN 〉|Ψ1

g1〉 . . . |Ψ
N
gN
〉, where {|Ψi

g〉 : g ∈ G} is a hiding set for H
for all 1 ≤ i ≤ N .

The following fact whose proof is immediate from Lemma 1 in [12] recasts the existence of the
standard algorithm for the abelian HSP in the context of hiding sets.

Fact 1. Let G be a finite abelian group. If there exists an efficient quantum procedure which hides
the subgroup H of G then there is an efficient quantum algorithm for finding H.

2.2 Nilpotent groups

Let G be a finite group. For two elements g1 and g2 of G, we usually denote their product by g1g2.
If we conceive group multiplication from the right as a group action of G on itself, we will use the
notation g1 · g2 for g1g2. We write H ≤ G if H is a subgroup of G, and H < G if it is a proper
subgroup. Normal subgroups and proper normal subgroups will be denoted respectively by H EG
and H CG. For a subset X of G, let 〈X〉 be the subgroup generated by X. The normalizer of X
in G is NG(X) = {g ∈ G : gX = Xg}. For an integer n, we denote by Zn the group of integers
modulo n, and for a prime number p, we denote by Z∗p the multiplicative group of integers relatively
prime with p.

The commutator [x, y] of elements x and y is x−1y−1xy. For two subgroups X and Y of G,
let [X,Y ] be 〈{[x, y] : x ∈ X, y ∈ Y }〉. The commutator subgroup or derived subgroup G′ of
G is defined as [G,G], and its center Z(G) as {z ∈ G : gz = zg for all g ∈ G}. The lower
central series of G is the series of subgroups G = A1 DA2 DA3 . . . , where Ai+1 = [Ai, G] for every
i ≥ 1. The upper central series of G is the series of subgroups {1} = Z0 E Z1 E Z2 . . . , where
Zi+1 = {x ∈ G : [x, g] ∈ Zi for all g ∈ G} for every i ≥ 0. Clearly A2 = G′ and Z1 = Z(G). The
group G is nilpotent if there is a natural number n such that An+1 = {1}. If n is the smallest integer
such that An+1 = {1} then G is nilpotent of nilpotency class n. It is a well known fact that G is
nilpotent of nilpotency class n if and only if Zn = G in the upper central series. Nilpotent groups
of nilpotency class 1 are simply the nontrivial abelian groups. A nilpotent group of nilpotency class
at most n is called a nil-n group.

A detailed treatment of nilpotent groups can be found for example in Hall [8]. Let us just recall
here that nilpotent groups are solvable, and that every p-group is nilpotent, where a p-group is a
finite group whose order is a power of some prime number p.
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2.3 Nil-2 p-groups of exponent p

It is clear from the definition of nilpotent groups that G is a nil-2 group if G′ ≤ Z(G). It is easy to
see that this property implies that the commutator is a bilinear function in the following sense.

Fact 2. Let G be a nil-2 group. Then for every g1, g2, g3, g4 in G,

[g1g2, g3g4] = [g1, g3][g1, g4][g2, g3][g2, g4].

The quantum part of our algorithm will deal only with special nilpotent groups of nilpotency
class 2, which are also p-groups and are of exponent p. The structure of these special groups is well
known, and is expressed in the following simple fact.

Fact 3. Let G be a p-group of exponent p and of nilpotency class at most 2. Then there exist
integers m > 0 and d ≥ 0, group elements x1, . . . , xm ∈ G and z1, . . . , zd ∈ G′ such that

1. G/G′ ∼= Zmp and G′ ∼= Zdp,

2. for every g ∈ G there exists a unique (e1, . . . , em, f1, . . . fd) ∈ Zm+d
p such that

g = xe11 . . . xemm zf11 . . . zfdd ,

3. G = 〈x1, . . . , xm〉 and G′ = 〈z1, . . . , zd〉.

We will say that a p-group G of exponent p and of nilpotency class at most 2 has parameters
(m, d) if G/G′ ∼= Zmp and G′ ∼= Zdp. In those groups we will identify G′ and Zdp. Thus, for two elements
z and z′ of G′, the product zz′ is just z ⊕ z′ where ⊕ denotes the coordinate-wise addition modulo
p. If G is a such a group then |G| = pm+d. The elements of G can be encoded by binary strings of
length O((m + d) log p), and therefore, an efficient algorithm on input G has to be polynomial in
m, d and log p.

For j = 0, 1, . . . , p− 1, we consider maps

φj : xe11 · · ·x
em
m zf11 · · · z

fm
m 7→ xje11 · · ·x

jem
m zj

2f1
1 · · · zj2fmm . (1)

Proposition 1. Let G be a p group of nilpotency class and most 2 and of exponent p. Then the
maps φj defined in (1) for j = 0, . . . , p− 1 are group endomorphisms of G. Actually, φ1, . . . , φp−1

are automorphisms of G.

Proof. Assume that G has parameters (m, d). For i, k ∈ {1, . . . ,m} and ` ∈ {1, . . . , d} define
elements γ`ik such that

[xi, xj ] =
d∏
`=1

z
γ`ij
` .

(We use the notation
∏

for products in the commutative group G′.) Fact 2 implies that

[xekk , x
e′i
i ] =

d∏
`=1

z
γ`kieke

′
i

` ,
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whence

xe11 · · ·x
em
m zf11 · · · z

fm
m · x

e′1
1 · · ·x

e′m
m z

f ′1
1 · · · z

f ′m
m

= x
e1+e′1
1 · · ·xem+e′m

m

d∏
`=1

z

f`+f
′
`+

m∑
i=1

m∑
k=i+1

γ`kieke
′
i

`

and

xje11 · · ·x
jem
m zj

2f1
1 · · · zj2fmm · x

je′1
1 · · ·x

je′m
m z

j2f ′1
1 · · · zj2f ′mm

= x
j(e1+e′1)
1 · · ·xj(em+e′m)

m

d∏
`=1

z

j2

0B@f`+f ′`+
m∑
i=1

m∑
k=i+1

γ`kieke
′
i

1CA
` ,

therefore φj(gg′) = φj(g)φj(g′), where g = xe11 · · ·xemm zf11 · · · z
fm
m g′ = x

e′1
1 · · ·x

e′m
m z

f ′1
1 · · · z

f ′m
m . This

shows that the maps φj are endomorphisms of G. If j 6= 0 then the kernel of φj consists obviously
of the identity element only and therefore φj is an automorphism.

We will exploit the following properties of the automorphisms φj .

Proposition 2. Let G be a p-group of exponent p and of nilpotency class at most 2. Then the
mappings φj have the following properties:

1. ∀j ∈ Zp, ∀z ∈ G′, φj(z) = zj
2
,

2. ∀g ∈ G,∃zg ∈ G′, ∀j ∈ Zp, φj(g) = gjzj−j
2

g .

Proof. The first statement is obvious from the definition of φj . To see the second statement, let
g be an element of G and let j0 be a fixed primitive element of Z∗p. From the definition of φj
one can see that φj0(g) = gj0s for some s ∈ G′. Put zg = s(j0−j

2
0)−1

. We have φj0(g) = gj0z
j0−j20
g .

Let k = gzg, then φj0(k) = gj0z
j0−j20
g z

j20
g = kj0 . Therefore, for all j ∈ Zp, we have φj(k) = kj and

φj(g) = φj(k)φj(z−1
g ) = gjzjgz

−j2
g .

Clearly, for every g ∈ G, the element zg whose existence is stated in the second part of Propo-
sition 2, is unique. From now on, let zg denote this unique element.

One of the remarkable properties of the automorphisms φj is that they preserve subgroups
modulo the derived subgroup G′: Let H be a subgroup of G. Then φj(HG′) = HG′ for every
j = 1, . . . , p − 1. Indeed, by the first statement of Proposition 2, φj(G′) = G′, and the second
statement implies that φj preserves cyclic, and therefore all, subgroups modulo G′.

3 Classical reductions in groups of constant nilpotency class

In order to present the reduction methods in a sufficiently general way, in this section we assume
that our groups are presented in terms of so-called refined polycyclic presentations [10]. Such a
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presentation of a finite solvable group G is based on a sequence G = G1 B . . .BGs+1 = {1}, where
for each 1 ≤ i ≤ s the subgroup Gi+1 is a normal subgroup of Gi and the factor group Gi/Gi+1

is cyclic of prime order ri. For each i ≤ s an element gi ∈ Gi \ Gi+1 is chosen. Then grii ∈ Gi+1.
Every element g of G can be uniquely represented as a product of the form ge11 · · · gess , called the
normal word for g, where 0 ≤ ei < ri.

In the abstract presentation the generators are g1, . . . , gs, and for each index 1 ≤ i ≤ s, the
following relations are included:

• grii = ui, where ui = g
ai,i+1

i+1 · · · gai,ss is the normal word for gri ∈ Gi+1,

• g−1
i gjgi = wij for every j > i, where wij = g

bi,j,i+1

i+1 · · · gbi,j,ss is the normal word for g−1
i gjgi ∈

Gi+1.

We assume that elements of G are encoded by normal words and there is a polynomial time
algorithm in log |G|, the so called collection procedure, which computes normal words representing
products.

Efficiency of most algorithms for computing with polycyclic presentations depends on existence
of an efficient collection procedure. Although there are several methods which work well in practice
and even some method whose complexity is polynomial (in log |G|, that is in

∑s
i=1 log ri) in special

cases (see [16, 17, 6]), it is an open question whether there exists a polynomial time collection
procedure in general finite polycyclic groups. In nilpotent groups of constant nilpotency class, the
complexity of the collection method proposed by Leedham-Green and Soicher [17] is polynomial
(in log |G|, i.e., in

∑
log ri) for polycyclic presentations of restricted form, where the series G =

G1 B . . .BGs+1 = {1} satisfies [G,Gj ] ≤ Gj+1. For a more general method with careful complexity
analysis which works for arbitrary polycyclic presentations which works in polynomial time in
groups of constant nilpotency class we refer the reader to Höfling’s work [11]. (Actually, in a
general finite solvable group the complexity of Höfling’s method is (log |G|)O(t), where t is the so
called derived length of G, which, for a nilpotent group, is logarithmic in the nilpotency class.)

Having a polynomial time collection procedure at hand for a family of nilpotent groups, refined
polycyclic presentations for subgroups and factor groups can be obtained in polynomial time [10].
There are also polynomial time methods for computing the Sylow subgroups, as well as the center
and the commutator. Furthermore, in p-groups with refined polycyclic presentation, normalizers
of subgroups can be computed in polynomial time using the technique of [4], combined with the
subspace stabilizer algorithm of [18].

Finally we remark that, using a quantum implementation [12] of an algorithm of Beals and
Babai [2], a refined polycyclic presentation for a solvable black box group can be computed in
polynomial time. Therefore our choice of the model for computing with nilpotent groups is not
really restrictive.

Our first theorem is a classical reduction for the HSP in groups of constant nilpotency class.
The proof is given by the subsequent three lemmas.

Theorem 2. Let C be a family of groups of nilpotency class bounded by a constant. Assume that C
is closed under taking subgroups and factor groups. Then the hidden subgroup problem in members
of C can be reduced to the case where the group is a p-group of exponent p, and the the subgroup is
either trivial or of cardinality p.

Corollary 1. The hidden subgroup problem in nil-2 groups can be reduced to the case where the
group is a p-group of exponent p, and the the subgroup is either trivial or of cardinality p.
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Lemma 1. Let C be a family of groups of nilpotency class bounded by a constant. Assume that C
is closed under taking subgroups and factor groups. Then the HSP in C can be reduced to the HSP
of p-groups belonging to C.

Proof. As a nilpotent group G is the direct product of its Sylow subgroups, any subgroup H of G
is the product of its intersections with the Sylow subgroups of G.

Lemma 2. Let C be a family of p-groups of nilpotency class bounded by a constant. Assume that C
is closed under taking subgroups and factor groups. Then the hidden subgroup problem in members
of C can be reduced to the case where the subgroup is either trivial or of cardinality p.

Proof. Assume that we have a procedure P which finds hidden subgroups in C under the promise
that the hidden subgroup is trivial or is of order p. Let G be a group in C and let f be a function
on G hiding the subgroup H of G. We describe an iterative procedure which uses P as a subroutine
and finds H in G. The basic idea is to compute a refined polycyclic sequence G = G1 B . . .BGsB1
for G and to proceed calling P on the subgroups in the sequence starting with Gs. When P finds
for the first time a nontrivial subgroup generated by h, then we would like to restart the process
in G/〈h〉, and at the end, collect all the generators. Since 〈h〉 is not necessarily a normal subgroup
of G we will actually restart the process instead in NG(〈h〉).

More formally, let us suppose that f hides H in G, and let H̃ be some subgroup of H. Then f
hides NG(H̃) ∩ H in NG(H̃), and therefore it hides (NG(H̃) ∩ H)/H̃ in NG(H̃)/H̃. We consider
the following algorithm:

Algorithm 1

success:= TRUE, H̃ = {1}.
while success=TRUE do

if G 6= H̃ then
compute NG(H̃)/H̃ = G1 B . . .BGs B 1 a refined polycyclic representation
i := s
while i > 0 do

call P on Gi
if P returns 〈h〉 then
H̃ := 〈H̃ ∪ {h}〉, i = 0

else
i := i− 1
if i = 0 then

success := FALSE
end if

end if
end while

else
success:=FALSE

end if
end while
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Algorithm 1 stops when the subgroup H̃ is such that (NG(H̃) ∩ H)/H̃ = {1}, that is when
NG(H̃)∩H = H̃. We claim that this implies H̃ = H. Indeed, suppose that H̃ is a proper subgroup
of H. Since in nilpotent groups a proper subgroup is also a proper subgroup of its normalizer
(Corollary 10.3.1 in [8]), H̃ is also a proper subgroup of NH(H̃) = NG(H̃) ∩H.

Finally observe that the whole process makes O(log2
p |G|) calls to P.

Lemma 3. Let C be a family of p-groups of nilpotency class bounded by a constant. Assume that
C is closed under taking subgroups and factor groups. Then the instances of the hidden subgroup
problem in members of C, when the subgroup is either trivial or of cardinality p, can be reduced to
groups in C of exponent p.

Proof. If G/G′ has exponent larger than p then H is obviously contained in the proper subgroup
G0 = {x ∈ G|xp ∈ G′}. G0 can be efficiently computed by observing that g1, . . . , gt is an irredundant
system of generators for G then G0 is generated by G′ and gp

α1−1

1 , . . . , gp
αt−1

t , where pαi is the
order of giG′ in the factor group G/G′ (i = 1, . . . , t). (By Theorems 10.4.1 and 10.4.3 of [8], an
irredundant system of generators for G does not contain elements from G′ and hence αi > 0.)
Therefore we can replace G by the subgroup G0. We can repeat this procedure until the exponent
of G/G′ becomes p. Theorem 5.2.5 of [24] states that taking commutators of elements of Ai by
elements of G induces a homomorphism of G/G′ ⊗ Ai/Ai+1 for every integer 1 ≤ i ≤ c, where
G = A1 BA2 BA3 . . .BAcBAc+1 = {1} is the lower central series of G and c the nilpotency class of
G. (The notation ⊗ is used for the tensor product of Z-modules, i.e., Abelian groups.) Induction
based on this theorem proves that if the G/G′ is of exponent p then so are all the factors Ai/Ai+1,
and therefore the exponent of G is at most pc. (Indeed, for every g ∈ G we see by induction on i
that gp

i ∈ Ai+1, whence gp
c

= 1.)
Now if p is not larger than the nilpotency class c of G then G has exponent at most the constant

cc and the algorithm of [5] is applicable. Otherwise the elements of order p or 1 form a subgroup
G∗, see Chapter 12 of [8]. The hidden subgroup H is also a subgroup of G∗ since |H| ≤ p. The
function hiding H in G also hides it in G∗, therefore the reduction will consist in determining G∗.

We design an algorithm that finds G∗ by induction on the length of refined polycyclic presenta-
tions. If |G| = p then G∗ = G. Otherwise, let G = G1 BG2 B . . .BGs B {1} be a refined polycyclic
presentation with s ≥ 2. It is easy to construct a presentation where Gs is a subgroup of the center
of G, which we suppose from now on. For the ease of notation we set M = G2 and N = Gs.

We first describe the inductive step in a simplified case, with the additional hypothesis (G/N)∗ =
G/N . Observe that the hypothesis is equivalent to saying that the map φ : x 7→ xp sends every
element of G into N . From this it is also clear that the hypothesis carries over to M , that is
(M/N)∗ = M/N . We further claim that either G∗ = G or G∗ is a subgroup of G of index p. In
fact this follows Theorem 12.4.4 of [8] which states that the map φ is constant on cosets of G∗

and distinct on different cosets. From a polycyclic presentation of G it can be read off whether
or not G = G∗. If G∗ = G we are done. Otherwise we compute inductively M∗. If M∗ = M
then G∗ = M . If M∗ is a proper subgroup of M then M∗ has index p2 in G. (To see this,
observe that M∗ = M ∩ G∗, whence |M/M∗| = |M/(G∗/M)| = |MG∗/G∗| by the isomorphism
theorem, therefore |M/M∗| = |MG∗/G∗| ≤ |G/G∗| = p.) Pick an arbitrary u ∈ M \ M∗ and
y ∈ G \M . By the assumptions, up = gjus for some integer 0 < ju < p, and yp = g

jy
s for some

integer 0 ≤ jy < p. Recall that in the polycyclic presentation model, computing normal words for
up and yp – using fast exponentiation – amounts to computing ju and jy. Set x = ujyj

−1
u . For this x
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we have xp = yp, and therefore xy−1 ∈ G∗, again by Theorem 12.4.4 of [8]. Since xy−1 ∈ G∗ \M∗,
we have G∗ = 〈M∗, xy−1〉.

In the general case first (G/N)∗ is computed inductively. If (G/N)∗ = G/N then one proceeds
as in the simplified case. Otherwise we set K = (G/N)∗N . We claim that G∗ = K∗. For this we
will show that G∗ ⊆ K. To see this, let x be an element of G∗. Then x = yz where y ∈ G/N and
z ∈ N . We show that y is in (G/N)∗ which implies that x ∈ K. Indeed, yp = ypzp = (yz)p = 1,
where the first equality follows from |N | = p, the second from N ≤ Z(G) and the third from
x ∈ G∗. Finally observe that (K/N)∗ = K/N since K/N = (G/N)∗. Therefore one can determine
K∗ inductively as in the simplified case.

Let c(s) denote the number of recursive calls when the length of a presentation is s. In the
simplified case the number of calls is s−1. Therefore in the general case we have c(s) = c(s−1)+s−2,
whose solution is c(s) = O(s2).

4 The quantum algorithm

The quantum part of our algorithm, up to technicalities, follows the same lines as the algorithm
given in [13] for extraspecial groups.

Theorem 3. Let G be a p-group of exponent p and of nilpotency class 2, and let f be an oracle f
which hides a subgroup H of G whose cardinality is either 1 or p. If we have an efficient quantum
procedure (using f) which hides HG′ in G then H can be found efficiently.

Proof. First observe that finding H is efficiently reducible to finding HG′. Indeed, HG′ is an
abelian subgroup of G since H is abelian. The restriction of the hiding function f to HG′ of G
hides H. Therefore the standard algorithm for solving the HSP in abelian groups applied to HG′

with oracle f yields H.
Let us now suppose that G has parameters (m, d). We will show that finding HG′ can be

efficiently reduced to the hidden subgroup problem in an abelian group. Let us denote for every
element g = xe11 . . . xemm zf11 . . . zfdd of G, by g the element xe11 . . . xemm . We define the group G whose
base set is {g : g ∈ G}. Observe that this set of elements does not form a subgroup in G. To make
G a group, its law is defined by g1 ∗ g2 = g1g2 for all g1 and g2 in G. It is easy to check that ∗ is
well defined, and is indeed a group multiplication. In fact, the group G is isomorphic to G/G′ and
therefore is isomorphic to Zmp . For our purposes a nice way to think about G as a representation
of G/G′ with unique encoding. Observe also that HG′ ∩G is a subgroup of (G, ∗) because HG′/G′

is a subgroup of G/G′. Since HG′ = (HG′ ∩ G)G′, finding HG′ is efficiently reducible to finding
HG′ ∩G in G.

To finish the proof, let us remark that the procedure which hides HG′ in G hides also HG′ ∩G
in G. Since G is abelian, Fact 1 implies that we can find efficiently HG′ ∩G.

Now we turn to the construction of the hiding procedure for HG′. The basic idea is the
following. Suppose that we could create, for some a ∈ G, the coset state |aHG′〉. Then the group
action g → |aHG′ · g〉 is a hiding procedure for the subgroup HG′. (In general, for a ∈ G and
K ≤ G the map g → |aKg〉 is a hiding procedure for right cosets of K. In our case the subgroup
HG′ is normal therefore the left and right cosets are the same.) Unfortunately, we are able to
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create states of the form |aHG′〉 efficiently when p and d are constant. In general, we can create
efficiently |aHG′u〉 for random a ∈ G and an independent random u ∈ G′, where by definition

|G′u〉 =
1√
|G′|

∑
z∈Zdp

ω−<u,z>|z〉. (2)

Then |aHG′u · h〉 = |aHG′u〉 for every h ∈ H, and |G′u · z〉 = ω<u,z>|G′u〉. To cancel the disturbing
phase ω<u,z> we will use more sophisticated group action via the group automorphisms φj on
several copies of the states |aHG′u〉. We remark that, over extraspecial groups, this idea has
an interpretation in terms of Fourier sampling in noncommutative groups and Clebsch-Gordan
transforms (decomposition of tensor products of irreducible representations), see [15]. We formulate
our result as follows.

Theorem 4. Let G be a p-group of exponent p and of nilpotency class 2, and let f be an oracle f
which hides a subgroup H of G. Then there is an efficient quantum procedure which hides HG′ in
G.

Proof. The proof is segmented into several statements. The first lemma states that we can indeed
create the states |aHG′u〉 efficiently, where G′u is defined as in (2).

Lemma 4. There is an efficient quantum procedure which creates 1√
pd

∑
u∈Zdp |u〉|aHG

′
u〉 where a

is a random element from G.

Proof. We start with |0〉|0〉|0〉. Since we have access to the hiding function f , we can create the
superposition 1√

|G|

∑
g∈G|0〉|g〉|f(g)〉. Observing and discharging the third register we get |0〉|aH〉

for a random element a. Applying the Fourier transform over Zdp to the first register gives |Zp〉|aH〉.
Multiplying the second register by the opposite of the first one results in 1√

pd

∑
z∈Zdp |−z〉|aHz〉. A

final Fourier transform in the first register creates the required superposition.

Our next lemma which is an immediate consequence of Proposition 2 claims that the states
|aHG′u〉 are eigenvectors of the group action of multiplication from the right by φj(g), whenever
g is from HG′. Moreover, the corresponding eigenvalues are some powers of the root of the unity,
the exponent does not depend on a, and the dependence on u and j is relatively simple.

Lemma 5. We have

1. ∀z ∈ Zdp,∀a ∈ G,∀u ∈ Zdp, ∀j ∈ Zp, |aHG′u · φj(z)〉 = ω<u,z>j
2 |aHG′u〉,

2. ∀h ∈ H,∀a ∈ G,∀u ∈ Zdp,∀j ∈ Zp, |aHG′u · φj(h)〉 = ω<u,zh>(j−j2)|aHG′u〉.

The principal idea now is to take several copies of the states |aiHG′ui〉 and choose the ji so
that the product of the corresponding eigenvalues becomes the unity. Therefore the combined
actions φji(g), when g is from HG′, will not modify the combined state. It turns out that we can
achieve this with a sufficiently big enough number of copies. Let n = n(d) some function of d to
be determined later.
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For a = (a1, . . . , an) ∈ Gn, u = (u1, . . . , un) ∈ (Zdp)n, j = (j1, . . . , jn) ∈ (Zp)n \ {0n} and g ∈ G,

we define the quantum state |Ψa,u,j
g 〉 in CGn by

|Ψa,u,j
g 〉 =

n⊗
i=1

|aiHG′ui · φji(g)〉.

Our purpose is to find an efficient procedure to generate triples (a, u, j) such that for every
g in HG′, |Ψa,u,j

g 〉 =
⊗n

i=1|aiHG′ui〉. We call such triples appropriate. The reason to look for
appropriate triples is that they lead to hiding sets for HG′ in G as stated in the next lemma.

Lemma 6. If (a, u, j) is an appropriate triple then {|Ψa,u,j
g 〉 : g ∈ G} is hiding for HG′ in G.

Proof. To see this, first observe that HG′ is a normal subgroup of G. If g1 and g2 are in different
cosets of HG′ in G then let 1 ≤ i ≤ n such that ji 6= 0. The elements φji(g1) and φji(g2) are in
different cosets of HG′ in G since φji is an automorphism of G. Also, we have supp(|aHG′u〉) =
supp(|aHG′〉), and therefore supp(|aHG′u · φji(g1)〉) and supp(|aHG′u · φji(g2)〉) are included in
different cosets and are disjoint. Thus the states |Ψa,u,j

g1 〉 and |Ψa,u,j
g2 〉 are orthogonal.

If g1 and g2 are in the same coset of HG′ then g1 = gg2 for some g ∈ HG′, and for all 1 ≤ i ≤ n,
we have φji(g1) = φji(g)φji(g2). Thus |Ψa,u,j

g1 〉 = |Ψa,u,j
gg2 〉 = |Ψa,u,j

g2 〉.

Let us now address the question of existence of appropriate triples and efficient ways to gen-
erate them. Let (a, u, j) be an arbitrary element of Gn × (Zdp)n × (Zp)n \ {0n}, and let g be
an element of HG′. Then g = hz for some h ∈ H and z ∈ Zdp, and φji(g) = φji(h)φji(z) for
i = 1, . . . , n. By Lemma 5, we have |aiHG′ui ·φji(z)〉 = ω<ui,z>j

2
i |aiHG′ui〉, and |aiHG′ui ·φji(h)〉 =

ω<ui,zh>(ji−j2i )|aiHG′ui〉, and therefore

|Ψa,u,j
g 〉 = ω

Pn
i=1<ui,zh>(ji−j2i )+<ui,z>j2i

n⊗
i=1

|aiHG′ui〉.

For a given u, we consider the following system of quadratic equations, written in vectorial form:{∑n
i=1 ui(ji − j2i ) = 0d∑n
i=1 uij

2
i = 0d.

It should be clear that when this system has a nontrivial solution j (that is j 6= 0d) then (a, u, j) is
an appropriate triple, for every a. In fact, the Chevalley-Warning theorem [3, 29] implies that the
following equivalent system of vectorial equations has a nontrivial solution for every u, whenever
n > 3d. {∑n

i=1 uij
2
i = 0d∑n

i=1 uiji = 0d.
(3)

Moreover, if we take a substantially larger number of variables, we can find a solution in polynomial
time.

Theorem 5. If n = (d+ 1)2(d+ 2)/2 then we can find a nontrivial solution for the system (3) in
polynomial time.
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The proof of Theorem 5 will be given in the next section. To finish the proof of Theorem 4
we describe the efficient hiding procedure. On input |g〉, it computes, for some a ∈ Gn, the
superposition

1
pdn/2

n⊗
i=1

∑
ui∈Zdp

|ui〉|aiHG′ui〉,

which by Lemma 4 can be done efficiently, and then it measures the registers for the ui. Then,
by Theorem 5 it finds efficiently a nontrivial solution j for system (3). Such a triple (a, u, j) is
appropriate, and therefore by Lemma 6 {|Ψa,u,j

g 〉 : g ∈ G} is hiding for HG′ in G. Using the
additional input |g〉, the procedure finally computes |Ψa,u,j

g 〉.

5 Solving the system of equations

This section is fully dedicated to the proof of Theorem 5. If p = 2 then the d quadratic and
the d linear equations coincide, and the (linear) system can easily be solved in polynomial time.
Therefore, from now on, we suppose that p > 2. Let us examine in detail the system (3), where
we set ui = (u1,i, u2,i, . . . , ud,i). We have the following system of d homogeneous quadratic and d
homogeneous linear one equations with n variables:{

∀` ∈ [|1, d|],
∑n

i=1 u`,ij
2
i = 0

∀` ∈ [|1, d|],
∑n

i=1 u`,iji = 0
(4)

We start by considering only the quadratic part of the (4), that is{
∀` ∈ [|1, d|],

∑n′

i=1 u`,ij
2
i = 0 (5)

for some integer n′.

Claim 1. If n′ = (d+1)(d+2)/2 then we can find a nontrivial solution for (5) in polynomial time.

Proof. For the ease of notation we are going to represent this system by the d× n′ matrix

M =

u1,1 . . . u1,n′

...
...

ud,1 . . . ud,n′

 .

We will present a recursive algorithm whose complexity will be polynomial in d and in log p. When
d = 1, the unique quadratic equation is of the form u1,1j

2
1 + u1,2j

2
2 + u1,3j

2
3 = 0. According to a

special case of the main result in the thesis of van de Woestijne (Theorem A3 of [30]), a nontrivial
solution for this can be found in polynomial time in log p.

Let us suppose now that we have d equations in n′ = (d+ 1)(d+ 2)/2 variables. We can make
elementary operations on M (adding two rows and multiplying a row with a nonzero constant)
without changing the solutions of the system. Our purpose is to reduce it with such operations to
d − 1 equations in at least d(d + 1)/2 variables. If the system is of rank less than d, then we can
erase an equation and get an equivalent system with only d − 1 equations in the same number of
variables. Otherwise, we perform Gaussian elimination resulting in the matrix
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M1 =



1 0 0 . . . 0 u
(1)
1,d+1 . . . u

(1)
1,n′

0 1 0 . . . 0 u
(1)
2,d+1 . . . u

(1)
2,n′

...
. . .

...
...

...
0 . . . 0 1 0 u

(1)
d−1,d+1 . . . u

(1)
d−1,n′

0 . . . 0 0 1 u
(1)
d,d+1 . . . u

(1)
d,n′


.

Since checking quadratic residuosity is simple, and for odd p, half of the elements of Z∗p are
squares, we can easily compute a quadratic non-residue λ in probabilistic polynomial time. Then
every quadratic non-residue is the product of a square and λ. We will look at column d+ 1 of M1.
If the column is everywhere 0 then jd+1 = 1 and ji = 0 for i 6= d+ 1 is a nontrivial solution of the
whole system. Otherwise, without loss of generality, we can suppose that for some (k1, k2) 6= (0, 0)
the first k1 elements of column d+1 are squares, the following k2 elements are the product of λ and
a square, and the last d− k1 − k2 elements are zero. Thus there exist v1, . . . , vk1+k2 different from
0, such that u(1)

i,d+1 = v2
i for 1 ≤ i ≤ k1, and u

(1)
i,d+1 = λv2

i for k1 + 1 ≤ i ≤ k1 + k2. Once we have
a quadratic non-residue, the square roots v1, . . . , vk1+k2 can be found in deterministic polynomial
time in log p by the Shanks-Tonelli algorithm [27]. We set the variables jk1+k2+1, . . . , jd to 0, and
eliminate columns k1 + k2 + 1, . . . , d from M1. Then for i = 1, . . . , k1 + k2, we divide the row i by
v2
i . Introducing the new variables j′i = jiv

−1
i for 1 ≤ i ≤ k1 + k2, the matrix of the system in the

n′ − d+ k1 + k2 variables j′1, . . . , j
′
k1+k2

, jd+1, . . . jn′ is

M2 =



1 0 . . . 0 1 u
(2)
1,d+2 . . . u

(2)
1,n′

0
. . .

...
...

...

1
. . .

... 1 u
(2)
k1,d+2 . . . u

(2)
k1,n′

...
. . . 1 λ u

(2)
k1+1,d+2 . . . u

(2)
k1+1,n′

. . . 0
...

...
...

0 . . . 0 1 λ u
(2)
k1+k2,d+2 . . . u

(2)
k1+k2,n′

0 . . . 0 u
(2)
k1+k2+1,d+2 . . . u

(2)
k1+k2+1,n′

...
...

...
...

...
0 . . . 0 u

(2)
d,d+2 . . . u

(2)
d,n′



.

In M2 we subtract the first row from rows 2, . . . , k1 and row k1 + 1 from rows k1 + 2, . . . , k1 +
k2. Then we set the variables j′2, . . . , j

′
k1

to j′1, and variables j′k1+2, . . . , j
′
k1+k2

to j′k1+1. The
corresponding changes in the matrix are eliminating columns 2, . . . k1 and k1 + 2, . . . k1 + k2 and
putting in columns 1 and k1 + 1 everywhere 0 but respectively in row 1 and row k1 + 1. Finally, by
exchanging row 2 and row k1 + 1, we get the matrix

M3 =



1 0 1 u
(3)
1,d+2 . . . u

(3)
1,n′

0 1 λ u
(3)
2,d+2 . . . u

(3)
2,n′

0 0 0 u
(3)
3,d+2 . . . u

(3)
3,n′

...
...

...
...

...
0 0 0 u

(3)
d,d+2 . . . u

(3)
d,n′


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in variables j′1, j
′
k1+1, jd+1, . . . , jn′ .

To finish the reduction, we will distinguish two cases, depending on the congruency class of p
modulo 4. When p ≡ 1, the element −1 is a square, and in polynomial time in log p we can find s
such that s2 = −1. We set j′1 = sjd+1, eliminate column 1 from matrix M3, put 0 in row 1 column
d+ 1, and exchange row 1 and row 2. When p ≡ 3 modulo 4, the element −1 is not a square, and
therefore we can choose λ = −1. We set jk1+1 = jd+1, eliminate column 2 from matrix M3, and
put 0 in row 2 column d+ 1.

In both cases we end up with a matrix of the form

M4 =


1 α u

(3)
1,d+2 . . . u

(3)
1,n′

0 0 u
(3)
2,d+2 . . . u

(3)
2,n′

...
...

...
...

0 0 u
(3)
d,d+2 . . . u

(3)
d,n′


in the variables j′, jd+1, . . . , jn′ where α = λ and j′ = j′k1+1 when p ≡ 1 modulo 4, and α = 1 and
j′ = j′1 otherwise. Without the first row it represents a system of d− 1 equations in n′ − (d+ 1) =
d(d+1)/2 variables for which we can find a nontrivial solution by induction. Let jd+2, . . . , jn′ such a
solution, and set b =

∑n′

k=d+2 u
(3)
1,kjk. To give values to the remaining two variables we have to solve

the equation j′2 + αj2d+1 + b = 0. As α 6= 0, the expression −αj2d+1 − b takes p+1
2 different values

for jd+1 ∈ Zp. At least one of these values must be a square since there are most p−1
2 non-squares

in Zp. Therefore the equation j′2 + αj2d+1 + b = 0 is always solvable, and by Theorem A3 of [30] a
solution can be found deterministically in polynomial time.

Gaussian elimination on M can be done in time O(d4). Finding a nontrivial solution for a
quadratic homogeneous equation in 3 variables takes time q1(log p), solving a quadratic equation in
two variables takes time q2(log p), and finding a square roots modulo p takes time q3(log p) where
q1, q2 and q3 are polynomials. Therefore the complexity of solving system (3) is O(d5 +d2q3(log p)+
dq2(log p) + q1(log p)).

We now turn to the system (4). Let n′ = n/(d+ 1), and for 0 ≤ k ≤ d, consider the the system
of d quadratic equations in n′ variables:{

∀` ∈ [|1, d|],
∑(k+1)n′

i=kn′+1 u`,ij
2
i = 0.

By Claim 1, each of these systems has a nontrivial solution that we can find in polynomial time.
For each k, let (jkn′+1, . . . , j(k+1)n′) such a solution of the kth quadratic system. Then the set

{(λ0j1, . . . , λ0jn′ , λ1jn′+1, . . . , λ1j2n′ , . . . , λdjdn′+1, . . . , λdj(d+1)n′) : (λ0, λ1, . . . , λd) ∈ Zd+1
p }

is a d + 1 dimensional subspace of Znp whose elements are solutions of the d quadratic equations
in (4). Since in (4) there are d linear equations, we can find a nontrivial (λ0, λ1, . . . , λd) ∈ Zd+1

p

such that (λ0j1, . . . , λ0jn′ , λ1jn′+1, . . . , λ1j2n′ , . . . , λdjdn′+1, . . . , λdj(d+1)n′) is a (nontrivial) solution
of the linear part of (4), and therefore of the whole system.

Observe that the only probabilistic part of the algorithm is the generation of a quadratic non-
residue modulo p.
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