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SEARCH VIA QUANTUM WALK∗
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Abstract. We propose a new method for designing quantum search algorithms for finding a
“marked” element in the state space of a classical Markov chain. The algorithm is based on a quantum
walk à la Szegedy [Quantum speed-up of Markov chain based algorithms, in Proceedings of the 45th
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, 2004, pp. 32–
41] that is defined in terms of the Markov chain. The main new idea is to apply quantum phase
estimation to the quantum walk in order to implement an approximate reflection operator. This
operator is then used in an amplitude amplification scheme. As a result we considerably expand the
scope of the previous approaches of Ambainis [Quantum walk algorithm for Element Distinctness,
in Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, 2004, pp. 22–31] and Szegedy (2004). Our algorithm combines the benefits of these
approaches in terms of being able to find marked elements, incurring the smaller cost of the two, and
being applicable to a larger class of Markov chains. In addition, it is conceptually simple and avoids
some technical difficulties in the previous analyses of several algorithms based on quantum walk.
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1. Introduction.

1.1. Background. At an abstract level, many search problems may be cast as
the problem of finding a “marked” element from a set X with n elements. LetM ⊆ X
be the set of the so-called marked elements. One approach to finding an element ofM ,
if it is not empty, is to repeatedly sample from X uniformly until a marked element
is picked. A more cost-effective approach reuses resources expended in generating the
first sample (time, random bits, black-box queries, etc.) by simulating the steps of a
Markov chain with state space X to generate the next sample. This approach often
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the Programme on Quantum Information, Computation, and Complexity, January–April 2006. This
research was partially supported by the European Commission IST projects QAP 015848 and QCS
25596, and by the French ANR projects AlgoQP and QRAC 08-EMER-012.

http://www.siam.org/journals/sicomp/40-1/74585.html
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takes advantage of some structure present in the ground set X and the Markov chain
and leads to a more efficient algorithm. In this article, we study quantum analogues
of this randomized scheme.

There are several ways of defining quantum analogues of Markov chains, includ-
ing both discrete and continuous time versions (see, for example, [29] for a detailed
introduction). We restrict our attention to discrete time analogues.

Discrete time quantum walks emerged gradually in the field of quantum algo-
rithms. On the line they are related to the quantum cellular automaton model of
Meyer [25]. Watrous [32] introduced quantum walks on regular graphs and used
them to show that randomized logarithmic space is included in quantum logarith-
mic space. Afterwards notions related to quantum walks, such as mixing time and
deviation from the starting state, were studied for restricted graphs by several re-
searchers [26, 5, 2, 27], suggesting the possibility of speed-up of classical algorithms
based on random walk.

Shenvi, Kempe, and Whaley [28] pointed out the algorithmic potential of quan-
tum walks by designing a walk-based algorithm to emulate Grover Search [16]. The
first algorithm using quantum walks that goes beyond the capability of Grover Search
is due to Ambainis [4] for Element Distinctness. In his seminal paper he resolved
the quantum query complexity of the problem, settling a difficult question that had
been open for several years [12, 1]. Finally Szegedy [29] developed a theory of quan-
tum walk–based algorithms. He designed a quantum search algorithm based on any
symmetric, ergodic Markov chain that detects the presence of a marked element. He
defined a notion of quantum hitting time that is quadratically smaller than the clas-
sical average hitting time. Since then, in the framework of Ambainis or Szegedy,
many new algorithms with substantially better complexity emerged in a variety of
contexts [6, 24, 13, 22, 15].

This work develops a new schema for quantum search algorithms, based on any
ergodic Markov chain. We adapt the quantum analogue of classical Markov chains
due to Szegedy to possibly nonsymmetric Markov chains, but we use it more in the
style of the Ambainis algorithm. Departing from the two algorithms, however, we
use quantum walks only indirectly. In conjunction with the well-known phase esti-
mation algorithm [19, 20, 14], the quantum walk helps us implement an approximate
reflection operator. This operator may then be used within amplitude amplification
algorithms [16, 10, 17] for search. As a result, our work generalizes previous ones by
extending the class of possible Markov chains and improving the complexity in terms
of its relation with the eigenvalue or singular value gap of the related Markov chain.
In addition, our approach is conceptually simple, avoids several technical difficulties
in the analysis of the earlier approaches, and leads to improvements in various aspects
of the algorithms.

1.2. Two subtly different search algorithms. We identify a Markov chain
over state space X with its transition matrix P = (pxy)x,y∈X , where pxy is the prob-
ability of transition from x to y. A chain is irreducible if every state is reachable from
every other state, and an irreducible chain is ergodic if it is also aperiodic (equiva-
lently, its reachability graph is nonbipartite). The eigenvalues of a Markov chain are
at most 1 in magnitude. By the Perron–Frobenius theorem, an irreducible chain has
a unique stationary distribution π = (πx), that is, a unique left eigenvector π with
eigenvalue 1 and positive coordinates summing up to 1. If the chain is ergodic, the
eigenvalue 1 is the only eigenvalue of P with magnitude 1. We denote by δ = δ(P )
the eigenvalue gap of P , that is, 1− λ, where λ = λ(P ) = maxν∈Λ |ν|, where Λ is the
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set of eigenvalues of P different from 1. The time-reversed Markov chain P ∗ = (p∗xy)
of P is defined by the equations πxpxy = πyp

∗
yx. The chain P is said to be reversible if

P ∗ = P . The Markov chain P is symmetric if P = PT, where PT denotes the matrix
transpose of P . The stationary distribution of any symmetric chain is the uniform
distribution.

The optimal quantum algorithm for Element Distinctness discovered by Ambai-
nis [4] recasts the problem in terms of a search for a marked state in a Johnson graph
defined by the problem instance. The algorithm may be viewed as a quantum ana-
logue of the following search process, where P is a Markov chain defined on state
space X .

Search Algorithm 1
1. Initialize x to a state sampled from a probability distribution s overX .
2. Repeat for t2 steps

(a) If the state y reached in the previous step is marked, then stop
and output y.

(b) Else, simulate t1 steps of the Markov chain P starting with the
current state y.

3. If the algorithm has not terminated, stop, and output “no marked
element exists.”

The parameters t1 and t2 in the algorithm are determined by the properties of the
Markov chain and the marked subsetM . The idea behind this algorithm is illustrated
by considering an ergodic Markov chain P . When t1 is large enough, the state y in
step 2(a) above is distributed (approximately) according to the stationary distribu-
tion of P . Then the outer loop represents sampling from the stationary distribution
until a marked element is found. When t2 is chosen to be inversely proportional to
the probability that a state is marked according to the stationary distribution, the
algorithm succeeds with high probability.

The analysis of the Ambainis quantum algorithm depends heavily on the form of
marked states and was presented for subsets M arising out of k-Collision, a general-
ization of Element Distinctness, with the assumption of a unique collision. Inspired
by this algorithm, Szegedy [29] designed a quantum search algorithm with uniform
initial distribution, based on any symmetric, ergodic Markov chain. The Szegedy al-
gorithm may be viewed as a quantum analogue of a subtly different, but more natural,
classical process.

Search Algorithm 2
1. Initialize x to a state sampled from a probability distribution s overX .
2. Repeat for t steps

(a) If the state y reached in the previous step is marked, then stop
and output y.

(b) Else, simulate one step of the Markov chain P from the current
state y.

3. If the algorithm has not terminated, stop, and output “no marked
element exists.”

The parameter t is also determined by the Markov chain P , and the set M of
marked states. This algorithm is a greedy version of the first algorithm: a check is
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performed after every step of the Markov chain to determine if a marked state has
been reached, irrespective of whether the Markov chain has mixed.

Let us formally derive the complexity of the two algorithms to clarify their differ-
ences. Assume that the search algorithms maintain a data structure d that associates
some data d(x) with every state x ∈ X . From d(x), we would like to determine if
x ∈M . When operating with d, we distinguish three types of cost.

• Setup cost S: The cost of sampling x ∈ X according to the initial distribu-
tion s and of constructing the data structure d(x) for the state x.

• Update cost U: The cost of simulating a transition from x to y for a state x ∈
X according to the Markov chain P and of updating d(x) to d(y).

• Checking cost C: The cost of checking if x ∈M using d(x).
These costs may be thought of as vectors listing all the measures of complexity of
interest, such as query and time complexity. We may now state generic bounds on
the efficiency of the two search algorithms in terms of our cost parameters. Note
that throughout this paper, we say that an event happens with high probability if it
happens with probability at least some universal constant. All the search algorithms
(classical and quantum) we discuss have one-sided error. The algorithms may fail
with some probability to report any marked element even when they exist. This
error probability may be driven down to the desired level in the standard manner by
sequential repetition of the algorithms.

Proposition 1. Let δ > 0 be the eigenvalue gap of an ergodic, symmetric

Markov chain P on a state space X of size n, and let |M|
|X| ≥ ε > 0 whenever M ⊂ X

is nonempty. For the uniform initial distribution s, the following hold:
1. Search Algorithm 1 determines if a marked element exists and finds one

such element with high probability if t1 ∈ O(1δ ) and t2 ∈ O(1ε ) are chosen to
be suitably large. The cost incurred is of order S + 1

ε

(
1
δU+C

)
.

2. Search Algorithm 2 determines if a marked element exists and finds one
such element with high probability if t ∈ O( 1

δε ) is chosen to be suitably large.
The cost incurred is of order S + 1

δε (U + C) .
Proof. The stopping time of Search Algorithm 2 is the average hitting time of

the set M for the Markov chain P . We may therefore take t to be a constant factor
more than this hitting time. As mentioned before, this time is bounded above by the
stopping time for the first algorithm. Therefore part 2 of the proposition follows from
part 1.

In the first algorithm, we may take t2 to be proportional to the average hitting
time of the setM for the Markov chain P t1 . The quantity λ(P ) is bounded by 1−δ by
hypothesis. The analogous quantity λ(P t1) is therefore bounded by (1− δ)t1 ≤ e−δt1 .
Taking t1 = 1/δ, we get a spectral gap δ̃ of at least 1/2 for P t1 . We may now bound
the average hitting time of M for P t1 by, for example, equation (15) in [29] and
Lemma 1 in [11] (also stated as Lemma 10 in [29]). This bound evaluates to 1

εδ̃
≤ 2

ε .
The expression for the cost of the algorithm now follows.

For special classes of graphs, for example, the two-dimensional toroidal grid, the
hitting time may be significantly smaller than the generic bound t = O(1/δε) given
in part 2 (see [3, page 11, Chapter 5]).

1.3. Quantum analogues. As in the classical case, the quantum search al-
gorithms look for a marked element in a finite set X , where a data structure d is
maintained during the algorithm. Let Xd be the set of items along with their associ-
ated data, that is, Xd = {(x, d(x)) : x ∈ X}. For convenience we suppose that 0̄ ∈ X
and that d(0̄) = 0̄.
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The quantum walks due to Ambainis and Szegedy, as in our work, may be thought
of as walks on edges of the original Markov chain, rather than its vertices. Thus, the
associated state space is a linear subspace of the vector space H = CX×X , or Hd =
CXd×Xd when we also include the data structure. For the sake of elegance in the
mathematical analyses, our data structure keeps the data for both vertices of an
edge, whereas in previous works the data was kept only for one of them.

There is a natural isomorphism |ψ〉 �→ |ψ〉d between H and Hd, where on basis
states |x〉d = |x, d(x)〉. This isomorphism maps a unitary operation U on H into Ud
on Hd defined by Ud|ψ〉d = (U |ψ〉)d. Our walks are discussed in the space Hd when,
for implementation and cost considerations, it is important to properly deal with the
data structure. However, for convenience, we analyze the mathematical properties
of the walks without the data structure, in the space H. This is justified by the
isomorphism between Hd and H.

The initial state of the algorithm is explicitly related to the stationary distribution
π of P . At each step, the right end-point of an edge (x, y) is “mixed” over the neighbors
of x, and then the left end-point is mixed over the neighbors of the new right end-
point. We again distinguish three types of cost generalizing those of the classical
search. They are of the same order as the corresponding costs in the algorithms of
Ambainis and Szegedy. Some operations of the algorithms not entering into these
costs are not taken into account. This is justified by the fact that in all quantum
search algorithms the overall complexity is of the order of the accounted part, which
is expressed in terms of the costs below.
(Quantum) Setup cost S: The cost of constructing the state

∑
x

√
πx|x〉d|0̄〉d from

|0̄〉d|0̄〉d.
(Quantum) Update cost U: The cost of realizing any of the unitary transforma-

tions
|x〉d|0̄〉d �→ |x〉d

∑
y

√
pxy|y〉d,

|0̄〉d|y〉d �→ ∑
x

√
p∗yx|x〉d|y〉d

and their inverses, where P ∗ = (p∗xy) is the time-reversed Markov chain de-
fined in section 1.2.

(Quantum) Checking cost C: The cost of realizing the following conditional phase
flip

|x〉d|y〉d �→
{ −|x〉d|y〉d if x ∈M,

|x〉d|y〉d otherwise.

The quantum search algorithms due to Ambainis and Szegedy give a quadratic
speed-up in the times t1, t2, and t, with respect to the classical algorithms. Let us
recall that for integers 0 < r < m and 0 < l < r the vertices of the Johnson graph
with parametersm, r, l are the subsets of size r of a universe of size m, and there is an
edge between two vertices if the size of their intersection is l. The eigenvalue gap δ of
the symmetric walk on the Johnson graph with l = r−1 and r < m/2 is in Θ(1/r). If
the set of marked vertices consists of vertices that contain a fixed subset of constant
size k ≤ r, then their fraction ε is in Ω( r

k

mk ).
Theorem 1 (Ambainis [4]). Let P be the random walk on the Johnson graph

on r-subsets of a universe of size m, where r = o(m), and with intersection size r−1.
Let M be either empty or the class of all r-subsets that contain a fixed subset of
constant size k ≤ r. Then there is a quantum algorithm that with high probability
determines if M is empty or finds the k-subset, with cost of order S+ 1√

ε
( 1√

δ
U+C).

Theorem 2 (Szegedy [29]). Let δ > 0 be the eigenvalue gap of an ergodic,
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symmetric Markov chain P , and let |M|
|X| ≥ ε > 0 whenever M is nonempty. There

exists a quantum algorithm that determines, with high probability, if M is nonempty
with cost of order S+ 1√

δε
(U+ C).

If the checking cost C is substantially greater than that of performing one step of
the walk, an algorithm with the cost structure of the Ambainis algorithm would be
more efficient. Moreover, the algorithm would find a marked element if one exists.
These advantages are illustrated by the algorithm for Triangle Finding [24]. This
algorithm uses two quantum walks à la Ambainis recursively; the Szegedy framework
seems to give a less efficient algorithm. Nonetheless, the Szegedy approach has other
advantages—it applies to a wider class of Markov chains and for arbitrary sets of
marked states. Moreover, the quantity 1/

√
δε in Theorem 2 may be replaced by the

square root of the classical hitting time [29]. These features make it more suitable for
applications such as the near-optimal algorithm for Group Commutativity [22], which
has no equivalent when using the Ambainis approach.

1.4. Contribution, relation with prior work, and organization. We pre-
sent an algorithm that is a quantum analogue of Search Algorithm 1 and works for
any ergodic Markov chain. It is most easily described for reversible Markov chains.

Theorem 3. Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov
chain P , and let ε > 0 be a lower bound on the probability that an element chosen
from the stationary distribution of P is marked whenever M is nonempty. Then there
is a quantum algorithm that with high probability determines if M is empty or finds
an element of M , with cost of order S+ 1√

ε
( 1√

δ
U+ C).

This algorithm considerably expands the scope of the approaches embodied in
Theorems 1 and 2 above. It combines the benefits of the two approaches in terms
of being able to find marked elements, incurring the smaller cost of the two, and
being applicable to a larger class of Markov chains. In addition, it is conceptually
simple, avoids several technical difficulties in the analysis of the earlier approaches,
and leads to improvements in various aspects of algorithms for Element Distinctness,
Matrix Product Verification, Triangle Finding, and Group Commutativity. Namely,
we give a single-shot method for any algorithm à la Ambainis in the presence of
multiple solutions, without the need for a reduction to special cases such as that of
a unique solution. This applies to Element Distinctness and Triangle Finding. For
Element Distinctness, Matrix Product Verification, and Group Commutativity, where
an algorithm à la Szegedy detects only the existence of a solution, we find one with
the same time and query complexity. Finally, we improve the query complexity of the
best previously known algorithm for Triangle Finding by a polylog(n) factor.

In section 2, we describe a quantum analogue of a Markov chain based on the
work of Szegedy [29] who defined such a quantum process W (P,Q) for a classical
bipartite walk (P,Q). By letting Q = P , he related the spectrum of the quantum
walk W (P ) to that of P for symmetric Markov chains. Using an absorbing version
of P as in Search Algorithm 2, he designed a quantum analogue of this classical
scheme. Even when P is not symmetric, letting Q = P ∗, the time-reversed Markov
chain corresponding to P , leads to a natural connection between P and W (P ). If P
is reversible, then the eigenvalues of W (P ) are closely related to those of P , as in the
symmetric case. For an arbitrary, possibly nonreversible, ergodic Markov chain, this
connection relates the eigenvalues of W (P ) to the singular values of a “discriminant”
matrix D(P ) associated with P .

In section 3, we use the quantum walk W (P ) associated with the unperturbed
walk P in a completely different way, more in the style of the Ambainis approach.
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Ambainis directly uses a power of W (P ) to replace the “diffusion” operator in the
Grover Search algorithm. The beauty of this step, and the difficulty of proving its
correctness, lies in the fact that even if no power of W (P ) closely approximates the
diffusion operator, some powers have sufficient properties to mimic its essential fea-
tures (see Lemma 3 in [4]). While this lemma is sufficient to prove Theorem 1, it
alone is not powerful enough to imply Theorem 3. The spectral gap of classical
Markov chains and that of some special cases of quantum walks (such as the quan-
tum walk on Johnson graphs proposed by Ambainis) may be amplified by sequential
repetition. Nevertheless, this method and its obvious variants break down when we
consider the walk W (P ) for arbitrary chains P and arbitrary sets of marked ele-
ments. Instead, we introduce a novel way to approximate the diffusion operator. Our
approach is both conceptually simpler and more general. We observe that W (P )
amplifies the spectral gap of a reversible Markov chain quadratically. We translate
this to an efficient approximation to the Grover diffusion operator (Theorem 6), us-
ing the well-known phase estimation algorithm. We then begin an exposition of our
algorithm by considering reversible Markov chains. To explain the basic idea of our
approach, we first prove our main result with an additional logarithmic factor (The-
orem 7).

In section 4, using a technique developed by Høyer, Mosca, and de Wolf [17], we
show how to eliminate the logarithmic factor in the previous theorem, thus proving
Theorem 3.

In section 5, we extend the algorithm to a possibly nonreversible Markov chain
whose discriminant has nonzero singular value gap (Theorem 8). The complexity of
the algorithm in the general case is similar to the one for reversible Markov chains.
The sole difference is that the singular value gap of the discriminant matrix D(P )
takes the place of the spectral gap of P . While the eigenvalues of Markov chains are
well studied, we are not aware of a similar theory for singular values of this matrix.
Nonetheless, such a general result may prove useful for future applications.

1.5. Subsequent work. Since our work first appeared, much progress has been
made on a question we had left unresolved. For any symmetric Markov chain,
Szegedy [29] gave a procedure that detects the existence of marked elements in time
of the order of the square root of the classical hitting time. This result does not
carry over to the potentially harder problem of finding a marked element. The lat-
ter (finding) problem has received particular attention in the case of the

√
N ×√

N
grid. The classical hitting time for this graph is in O(N logN) for any (nonzero)
number of marked elements. Algorithms due to Ambainis, Kempe, and Rivosh [6]
and Szegedy [29] find a unique marked state in time O(

√
N logN), a

√
logN factor

larger than the detection time. In a recent paper, Tulsi [30] finally shows how we may
find a unique marked element in time O(

√
N logN).

Magniez, Nayak, Richter, and Santha [23] define new, Monte Carlo–type classical
and quantum hitting times that are potentially smaller than the existing notion of
(Las Vegas–type) hitting times. They also present new quantum algorithms for the
detection and finding problems whose complexities are related to the Monte Carlo
quantum hitting time. The detection algorithm is based on phase estimation, and the
finding algorithm combines a similar phase estimation–based procedure with an idea
introduced by Tulsi. Extending Tulsi’s result for the two-dimensional grid, they show
that for any state-transitive Markov chain with a unique marked state, the quan-
tum hitting time is of the same order for both the detection and finding problems.
Krovi, Magniez, Ozols, and Roland [21] significantly improve this result by presenting
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a quantum algorithm for finding multiple marked elements in any reversible Markov
chain. Taking a new, simpler, and more general approach, they introduce a notion of
interpolation between any reversible chain and a perturbed version of this chain, in
which the marked states are absorbing. The quantum analogue of the interpolated
walk not only detects but also finds marked states with a quadratic speed-up over the
classical hitting time.

2. Quantum analogue of a classical Markov chain. Let P = (pxy) be the
transition matrix of any irreducible Markov chain on a finite space X with |X | = n.
We define a quantum analogue of P , based on and extending the notion of quantum
Markov chains due to Szegedy [29]. The latter was inspired by an earlier notion of
quantum walk due to Ambainis [4]. We also point out that a similar process on regular
graphs was studied by Watrous [32]. Recall that P ∗ denotes the time-reversed Markov
chain of P .

For a state |ψ〉 ∈ H, let Πψ = |ψ〉〈ψ| denote the orthogonal projector onto Span(|ψ〉),
and let ref(ψ) = 2Πψ − Id denote the reflection through the line generated by |ψ〉,
where Id is the identity operator on H. For a subspace K of H spanned by a set
of mutually orthogonal states {|ψi〉 : i ∈ I}, let ΠK =

∑
i∈I Πψi be the orthogonal

projector onto K, and let ref(K) = 2ΠK − Id be the reflection through K.
Let A = Span(|x〉|px〉 : x ∈ X) and B = Span(|p∗y〉|y〉 : y ∈ X) be vector subspaces

of H = CX×X , where

|px〉 =
∑
y∈X

√
pxy |y〉 and |p∗y〉 =

∑
x∈X

√
p∗yx |x〉.

Definition 1 (quantum walk). The unitary operation W (P ) defined on H by
W (P ) = ref(B) · ref(A) is called the quantum walk based on the classical chain P .

This quantum walk extends to a walk W (P )d on the space H augmented with
data structures, as explained in section 1.3. Recall that U is the quantum update cost
as defined in the same section.

Proposition 2. The quantum walk with data, W (P )d, can be implemented at
cost 4U.

Proof. Recall that W (P )d = ref(B)d · ref(A)d. The reflection ref(A)d is im-
plemented by mapping states |x〉d|px〉d to |x〉d|0̄〉d, applying ref(|0̄〉d) on the second
register, and inverting the first transformation. While the first and last steps each
have cost U, we charge unit cost only for the second step since it does not depend
on the data structure (|0̄〉d = |0̄, 0̄〉 by definition). Therefore the implementation of
ref(A)d is of cost 2U. The reflection ref(B)d may be implemented similarly.

The eigenspectrum of the transition matrix P plays an important role in the anal-
ysis of a classical Markov chain. Similarly, the behavior of the quantum processW (P )
may be inferred from its spectral decomposition. We consider the discriminant ma-
trix D(P ) = (

√
pxyp∗yx). Since

√
pxyp∗yx =

√
πxpxy/

√
πy, the discriminant matrix is

equal to

D(P ) = diag(π)1/2 · P · diag(π)−1/2,

where diag(π) is the invertible diagonal matrix with the coordinates of the distribu-
tion π in its diagonal. Since the singular values of D(P ) all lie in the range [0, 1],
we may express them as cos θ for some angles θ ∈ [0, π2 ]. (Note that this is a second
type of use of the Greek letter “π” in this article, and it denotes the usual mathe-
matical constant. A third type of use occurs later in the article. The meaning of the
letter can be inferred from the context in which it is used.) For later reference, we
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rewrite Theorem 1 due to Szegedy [29], which relates the singular value decomposi-
tion of D(P ) to the spectral decomposition of W (P ). This theorem is a variant of a
result due to Jordan [18] (see also [8, section VII.1, page 201]) and may be derived
from it.

Theorem 4 (Szegedy [29]). Let P be an irreducible Markov chain, and let
cos θ1, . . . , cos θl be an enumeration of those singular values (possibly repeated) of
D(P ) that lie in the open interval (0, 1). Then

1. on A + B those eigenvalues of W (P ) that have nonzero imaginary part are
exactly e±2iθ1 , . . . , e±2iθl, with the same multiplicity;

2. on A∩B the operator W (P ) acts as the identity Id; the linear subspace A∩B is
spanned by the left (and right) singular vectors of D(P ) with singular value 1;

3. on A∩B⊥ and A⊥∩B the operator W (P ) acts as −Id; the linear subspace A∩
B⊥ (respectively, A⊥ ∩ B) is spanned by the set of left (respectively, right)
singular vectors of D(P ) with singular value 0;

4. W (P ) has no other eigenvalues on A + B; on A⊥ ∩ B⊥ the operator W (P )
acts as Id.

We define Δ(P ), the phase gap, of W (P ) as 2θ, where θ is the smallest angle in
(0, π2 ) such that cos θ is a singular value of D(P ). This definition is motivated by the
previous theorem: in the complex plane, the angular distance of 1 from any other
eigenvalue is at least Δ(P ).

3. From quantum walk to search.

3.1. Outline of search algorithm. We now describe a search algorithm that
may be viewed as a quantum analogue of Search Algorithm 1 of section 1.2. Con-
sider the following quantum state in the Hilbert space H:

|π〉 =
∑
x∈X

√
πx |x〉|px〉 =

∑
y∈X

√
πy |p∗y〉|y〉.

(Note that its use as a label for the quantum state above is the third type of use of
the letter “π” in this article.) This state serves as the initial state for our algorithm
and corresponds to starting in the stationary distribution π in the classical search
algorithms. Taking into account the data structure, preparing |π〉d from |0̄〉d|0̄〉d
has cost S + U as it requires one setup operation to prepare

∑
x∈X

√
πx |x〉d|0̄〉d,

followed by one update operation to map this state to |π〉d. Assume that M 
= ∅. Let
M = CM×X denote the subspace with marked items in the first register. We would
like to transform the initial state |π〉 to the target state |μ〉, which is the (normalized)
projection of |π〉 onto the “marked subspace” M:

|μ〉 = ΠM|π〉
‖ΠM|π〉‖ =

1√
pM

∑
x∈M

√
πx |x〉|px〉,

where pM = ‖ΠM|π〉‖2 =
∑
x∈M πx is the probability of a set M of marked states

under the stationary distribution π. Roughly speaking, we effect this transformation
by implementing a rotation à la Grover [16] in the two-dimensional real subspace S =
Span(|π〉, |μ〉) generated by the states.

Ideally, we would like to effect the rotation ref(π)d · ref(μ⊥)d in Sd, where |μ⊥〉
is the state in S orthogonal to |μ〉 which makes an acute angle with |π〉. The angle ϕ
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between |π〉 and |μ⊥〉 is given by sinϕ = 〈μ|π〉 =
√
pM . The product of the two

reflections above is a rotation by an angle of 2ϕ within the space S. Therefore,
after O(1/ϕ) = O(1/

√
pM ) iterations of this rotation starting with the state |π〉, we

would have approximated the target state |μ〉.
Restricted to the subspace S, the operators ref(μ⊥) and −ref(M) are identical.

Therefore, if we ensure that the state of the algorithm remains close to the subspace S
throughout, we would be able to implement ref(μ⊥)d. This involves checking at cost
C whether an item in the first register is marked.

The reflection ref(π)d is computationally harder to perform. The straightforward
strategy would be to rotate |π〉d to the state |0̄〉d|0̄〉d, use ref(|0̄〉d|0̄〉d), and then undo
the first rotation. However, rotating |π〉d to |0̄〉d|0̄〉d is exactly the inverse operation of
the preparation of the initial state |π〉d from |0̄〉d|0̄〉d, and therefore requires the same
cost S+ U. This may be much more expensive than the update cost 4U incurred by
the walk W (P )d. To use W (P )d instead, our idea is to apply phase estimation to it
and exploit this procedure to approximate the required diffusion operator on Ad+Bd
which contains the subspace Sd.

The above approach is valid only when the probability pM is known in advance.
This assumption may be removed using standard techniques, without increasing the
asymptotic complexity of the algorithms [9]. Indeed, if only a lower bound ε >
0 on pM is known for nonempty M , then the above argument can be modified in
order to determine if M is empty or to find an element of M . We first sample
from the stationary distribution a few times to accommodate the case that pM >
1/4. If no marked element is found, we proceed as if pM ≤ 1/4. Following [9,
Lemma 2], we iterate the rotation ref(π)d · ref(μ⊥)d a total of T times on the initial
state, where T is chosen uniformly at random in [0, 1/

√
ε ]. If M is not empty, a

marked element is found with probability at least 1/4, and otherwise no marked
element is found. We refer to this version of the Grover algorithm as the randomized
Grover algorithm.

3.2. Diffusion operator from quantum walk. To explain our approach, in
the rest of this section, and in the next one, we assume that the classical Markov
chain P is ergodic and reversible. For a reversible chain the corresponding discrim-
inant D(P ) is symmetric. Symmetry implies that the singular values of D(P ) equal
the absolute values of its eigenvalues. Since D(P ) = diag(π)1/2 · P · diag(π)−1/2

is similar to the matrix P , their spectra are the same. Therefore, we study only
the spectrum of P . The Perron–Frobenius theorem and the ergodicity of P im-
ply that the eigenvalue 1 has multiplicity 1 and is the only eigenvalue of P with
absolute value 1. The corresponding eigenvector of D(P ) is (

√
πx ), and every sin-

gular (or eigen) vector of D(P ) orthogonal to this has singular value strictly less
than 1. Transferring this property to the quantum walk W (P ) via Theorem 4,
|π〉 is the unique eigenvector of the unitary operator W (P ) in A + B with eigen-
value 1, and the remaining eigenvalues in A + B are bounded away from 1. We
use this observation to identify the component of any state |ψ〉 ∈ S perpendicular
to |π〉.

The main idea in our implementation of the above approach is to use phase
estimation [19, 20, 14].

Theorem 5 (phase estimation; Cleve, Ekert, Macchiavello, and Mosca [14]). For
every pair of integers m, s ≥ 1, and a unitary operator U of dimension 2m×2m, there
exists a quantum circuit C(U) that acts on m + s qubits and satisfies the following
properties:
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1. The circuit C(U) uses 2s Hadamard gates, O(s2) controlled phase rotations,
and makes 2s+1 calls to the controlled unitary operator c-U .

2. For any eigenvector |ψ〉 of U with eigenvalue 1, i.e., if U |ψ〉 = |ψ〉, then
C(U)|ψ〉|0s〉 = |ψ〉|0s〉.

3. If U |ψ〉 = e2iθ|ψ〉, where θ ∈ (0, π), then C(U)|ψ〉|0s〉 = |ψ〉|ω〉, where |ω〉 is
an s-qubit state such that |〈0s|ω〉| = sin(2sθ)/(2s sin θ).

Moreover the family of circuits C parametrized by m and s is uniform.
This circuit is called phase estimation because measuring the state |ω〉 in the

computational basis yields an approximation to θ/π. In our case we only need to
discriminate between the eigenvalue 1 and the remaining eigenvalues. In the following
theorem we show how phase estimation is used to design a quantum circuitR(P ) which
implements an operation that is close to the reflection ref(π).

Theorem 6. Let P be an ergodic Markov chain on a state space of size n ≥ 2,
such that the phase gap of the quantum walk W (P ) based on P is Δ(P ). Then for
any integer k there exists a quantum circuit R(P ) that acts on 2�log2 n�+ ks qubits,
where s ∈ log2(

1
Δ(P )) + O(1), and satisfies the following properties:

1. The circuit R(P ) uses 2ks Hadamard gates, O(ks2) controlled phase rotations,
and makes at most k 2s+1 calls to the controlled quantum walk c-W (P ) and
its inverse c-W (P )†.

2. If |π〉 is the unique 1-eigenvector of W (P ) as defined above, then R(P )|π〉|0ks〉
= |π〉|0ks〉.

3. If |ψ〉 lies in the subspace of A+B orthogonal to |π〉, then ‖(R(P )+Id)|ψ〉|0ks〉‖
≤ 21−k.

Moreover the family of circuits R(P ) parametrized by n and k is uniform.
Proof. We describe the circuit R(P ). Letm = n2 and s =

⌈
log2(

2π
Δ(P ) )

⌉
. We start

by applying the phase estimation circuit C(U) to the quantum walk W (P ), a unitary
operator of dimension m×m. To increase the accuracy of the phase estimation, we
repeat the circuit k times, creating k identical copies of the s-qubit state |ω〉 holding
estimates of the phase. Observe that only the number of ancillary qubits increases
from s to ks in this process. Since C(U) leaves the eigenvectors of W (P ) in the first
register unchanged, we do not need additional copies of the state |ψ〉.

The above operations approximately resolve any state |ψ〉 in A + B along the
eigenvectors ofW (P ) by labeling them with estimates of the corresponding eigenvalue
phases. We now flip the phase (i.e., multiply it by−1) of all computational basis states
with a nonzero estimate of the phase in any of the k copies. Our intention is to flip
the phase of all eigenvectors other than |π〉. Finally, we reverse the phase estimation.
All these operations together constitute R(P ).

The state |π〉|0ks〉 stays unchanged under the action of R(P ). When |ψ〉 is or-
thogonal to |π〉 it is a linear combination of eigenvectors of W (P ) whose eigenvalues
are of the form e±2iθ, where Δ(P )/2 ≤ θ < π/2. By definition of s, the state |ω〉
holding the estimate for any phase θ 
= 0 then satisfies |〈0s|ω〉| ≤ 1/2. With k rep-
etitions of the phase estimation, we can therefore decompose |ψ〉|0ks〉 into a sum
|ψ0〉+ |ψ1〉, such that the phase estimate is zero in each of the k copies of |ω〉 on the
state |ψ0〉 and is nonzero in at least one copy on the state |ψ1〉, and ‖ψ0‖ ≤ 2−k.
Then R(P )|ψ〉|0ks〉 = |ψ0〉 − |ψ1〉, and (R(P ) + Id)|ψ〉|0ks〉 = 2|ψ0〉, whose norm is at
most 21−k.

3.3. The search algorithm for reversible Markov chains. Let us consider
the following quantum procedure.
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Quantum Search(P, ε)
1. Repeat 5 times:

(a) Sample a state x from the stationary distribution π of P .
(b) If x ∈M , output x and stop.

2. Choose T uniformly at random in [0, 1/
√
ε ], let k ∈ log2(T ) + O(1),

and let s be as given by Theorem 6.
3. Prepare the initial state |π〉d|0Tks〉.
4. Repeat T times:

(a) For any basis vector |x〉d|y〉d|z〉 of Hd and the ancillary (Tks)-
qubit space, flip the phase if x ∈M :

|x〉d|y〉d|z〉 �→
{ −|x〉d|y〉d|z〉 if x ∈M,

|x〉d|y〉d|z〉 otherwise.

(b) Apply circuit R(P )d of Theorem 6 with k as above, using a fresh
set of ancilla qubits |0ks〉 in each iteration.

5. Observe the first register.
6. Output x if x ∈M ; otherwise output “no marked element exists.”

Theorem 7. Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov
chain P , and let ε > 0 be a lower bound on the probability that an element chosen
from the stationary distribution of P is marked whenever M is nonempty. Then, with
high probability, the procedure Quantum Search(P, ε) determines if M is empty or
else finds an element of M with cost of order S+ 1√

ε

[(
1√
δ
log 1√

ε

)
U+ C

]
.

Proof. For convenience, we reason in the Hilbert space H, without the data struc-
tures, and also omit the ancilla qubits used by the circuit R(P ). Between applications
of R(P ) the ancilla qubits remain in a state close to |0Tks〉.

First observe that if M is empty, then no marked element is found by Quantum
Search(P, ε). We assume now that M is nonempty. When pM > 1/4, we detect a
marked element in step 1 with probability at least 1− (3/4)5 > 3/4. In analyzing the
correctness of the remaining steps, we may therefore assume that pM ≤ 1/4. Let S be
the two-dimensional subspace S = Span(|π〉, |μ〉). Recall that the randomized Grover
algorithm consists in T iterations of ref(π) · ref(μ⊥), where T is chosen uniformly at
random from [0, 1/

√
ε ]. Since ε ≤ pM ≤ 1/4, with constant probability the random-

ized Grover algorithm rotates the vector |π〉 in the space S into a state whose inner
product with |μ〉 is a constant. Using a hybrid argument as in [7, 31], we prove that
the algorithm Quantum Search(P, ε) simulates, with an arbitrarily small constant
probability of error, the randomized Grover algorithm, and therefore finds a marked
element with high probability whenever such an element exists.

For i ≥ 0, we define |φi〉 as the result of i Grover iterations applied to |π〉, and
|ψi〉 as the result of i iterations of step (4) in Quantum Search(P, ε) applied to |π〉.
We show by induction on i that ‖|ψi〉 − |φi〉‖ ≤ i21−k. Indeed, we can write |ψi〉 as
|φi〉+(|ψi〉−|φi〉). The actions of ref(μ⊥) and −ref(M) are identical on |φi〉 since the
state is in S. Set |τ〉 = |φi+1〉 − R(P ) · ref(M)|φi〉. Since ref(M)|φi〉 is in S, and S
is a subspace of A+B, conclusion 3 of Theorem 6 can be applied, which implies that
‖τ‖ ≤ 21−k. Using ‖|ψi+1〉 − |φi+1〉‖ ≤ ‖|τ〉‖ + ‖|ψi〉 − |φi〉‖, the statement follows.
For k ∈ log2(T ) + c, where c is a constant, this implies that ‖|ψT 〉 − |φT 〉‖ ≤ 21−c,
which can be made arbitrarily small by choosing c sufficiently large.

Let us now turn to the cost of the procedure. Since measuring |π〉 gives us a
sample from the stationary distribution π, the cost of step 1 is of the order of S.
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Preparing |π〉d costs S + U, and in each iteration the single phase flip costs C. In
the circuit R(P )d, the controlled quantum walk and its inverse can be implemented
with four update operations, each of cost U. Indeed, the implementation of W (P ),
described in the proof of Proposition 2, works also for the controlled quantum walk
if we replace ref(|0̄〉d) by the controlled operator c-ref(|0̄〉d). Since the controlled
reflection is also of unit cost, this change does not alter the cost of the implementation.

In the circuit R(P )d, the number of controlled quantum walks and its inverse is in
O((1/Δ(P )) log(1/

√
ε)). We claim that Δ(P ) = Ω(

√
δ). Let λ0, . . . , λn−1 be the

eigenvalues of P , possibly with repetitions, such that 1 = λ0 > |λ1| ≥ · · · ≥ |λn−1|.
Since the discriminant D(P ) is similar to P , their spectra are the same, and therefore
the singular values of D(P ) are |λ0| , |λ1| , . . . , |λn−1|. By definition, Δ(P ) = 2θ1,
where cos θ1 = |λ1|. The following straightforward (in)equalities relate Δ(P ) to δ(P ):

Δ(P ) ≥ ∣∣1− e2iθ1
∣∣ = 2

√
1− |λ1|2 ≥ 2

√
δ. This finishes the cost analysis.

Let us observe that the origin of the quadratic speed-up due to quantum walks
may be traced to the quadratic relationship between the phase gap Δ(P ) of the quan-
tum walk W (P ) and the eigenvalue gap δ of the classical Markov chain P , observed
at the end of the above proof.

4. Search with approximate reflection operators. In this section, we de-
scribe how our approximate reflection operator may be incorporated into a search
algorithm without incurring additional cost for reducing its error. The basic idea is
to adapt the recursive amplitude amplification (RAA) algorithm due to Høyer, Mosca,
and de Wolf [17] to our setting. To describe it, we use the notation from section 3.1,
where we discussed how the Grover algorithm works to rotate a starting state |π〉 into
a target state |μ〉, where 〈μ|π〉 = sinϕ =

√
pM . We define procedures Ai recursively

for i ≥ 0. Let the procedure A0 be the identity map Id, and for i > 0, let

Ai = Ai−1 · ref(π) · A†
i−1 · ref(μ⊥) · Ai−1.

We define the states |πi〉 as Ai|π〉. Then |πi〉 forms an angle 3iϕ with |μ⊥〉, and
therefore the state |πt〉 is close to |μ〉 when t = log3

1
ϕ + O(1). The final recursive

algorithm is thus At.
We may estimate the cost Cost(t) of this search algorithm in terms of the cost c of

implementing the two original reflections, ref(π) and ref(μ⊥). We have Cost(0) = 0,
and for i ≥ 1, Cost(i) = 3 · Cost(i− 1) + c, and therefore the cost of At is O(c/

√
ε).

The RAA algorithm is more suitable for situations where we have imperfect pro-
cedures that implement the basic reflections ref(π), ref(μ⊥). Høyer et al. [17] demon-
strated this when there is an ideal (error-free) procedure for ref(π), and a procedure
for ref(μ⊥) that has ideal behavior only with high probability. Here, we adapt their
approach to the case where it is the first reflection ref(π) which may only be ap-
proximated. (It is probably possible to deal with the case where both reflections are
imperfect, but for the sake of simplicity, we deal only with the case when the imple-
mentation of ref(μ⊥) is ideal since this is sufficient for our purpose.) In the context
of quantum walk–based searches an imperfection appears in the form given by The-
orem 6. The basic idea is to create an analogue of the recursive algorithms Ai when
ref(π) is replaced by increasingly fine approximations based on Theorem 6.

We now state this precisely in full generality for potential further applications.
Assume that for any β > 0, we have a quantum circuit R(β) acting on H⊗K, where
K is an extra register of s(β) qubits. For a given integer t and a precision parameter
γ, the quantum circuit consists of t induction steps and acts on H ⊗ [⊗t

i=1 Ki
]
,



SEARCH VIA QUANTUM WALK 155

where Ki is an extra register used at step i. Let si = s(βi) be the size of register Ki.
Let S =

∑t
i=1 si. We use |π〉d|0S〉 as the initial state of the algorithm.

The quantum circuit follows exactly the RAA algorithm explained above. We
essentially replace ref(π) at step i by an approximation R(βi), acting on H⊗Ki, and
Id on the rest. Here is now one explicit step of the induction, where the basis case
Approximate RAA(0, γ) is simply the identity map.

Approximate RAA(i, γ)
1. Apply Approximate RAA(i− 1, γ).
2. For any basis vector (|x〉d|y〉d) ⊗ |z〉, where |x〉|y〉 ∈ H, flip the phase

if x ∈M .
3. Undo Approximate RAA(i− 1, γ).
4. If any of the registers Kj , with j < i, are not in state |0sj 〉, respectively,

then flip the phase of the state. Otherwise, apply R(βi) on H ⊗ Ki,
where βi =

18
4π3 γ/i

2.
5. Apply Approximate RAA(i− 1, γ).

We now prove that this algorithm can be used to find a marked element when pM
is known. We will later show how to modify the algorithm when only a lower bound
on pM is known.

Lemma 1. Assume that for any β > 0, we have a quantum circuit R(β) acting
on H⊗K, where K is an extra register of s qubits (s = s(β) may depend on β), with
the following properties:

1. The circuit R(β) has cost c1 log
1
β .

2. R(β)|π〉|0s〉 = |π〉|0s〉.
3. ‖(R(β) + Id)|ψ〉|0s〉‖ ≤ β when |ψ〉 is orthogonal to |π〉.

Further, assume that we are able to apply −ref(M) with cost c2, and let t be the
smallest nonnegative integer such that 3t sin−1 √pM ∈ [π/4, 3π/4]. Then, for every
real γ > 0, Approximate RAA(t, γ) maps |π〉|0S〉 to a state that has projection of
length at least ( 1√

2
−γ) in M⊗[⊗t

i=1 Ki
]
and incurs a cost of order 3t ·(c1 log 1

γ+c2).

Proof. For simplicity, we omit the data structure in our error analysis, but take
it into account in bounding the complexity of the algorithm. Let si = s(βi) be the
size of register Ki. Let S =

∑t
i=1 si. Recall that we use |φ0〉 = |π〉|0S〉 as the initial

state. We also denote by |φi〉 the output state of Approximate RAA(i, γ) on input
|φ0〉. Note that the component of |φi〉 on Kj is |0sj 〉 for all j > i. Define the reflection
operator Ri as the product of the recursive steps 3–5 of Approximate RAA(i, γ).

In order to understand the behavior of Ri, let us examine the action of R(βi)
in step 4. At the beginning of that step, the algorithm state still has component
|0sj 〉 on Kj for all j ≥ i. Therefore the conditioning, and the fact that R(βi) is an
approximation to ref(π), directly gives that Ri behaves on the current state as an
approximation to ref(φi−1). To be more precise, let Ei = Ri − ref(φi−1) be the error
made in our implementation of ref(φi−1). We state the following fact without proof
since it directly derives from the hypothesis on R(βi).

Fact 1. Ei satisfies the following properties:
1. Ei|φi−1〉 = 0.

2. ‖Ei|ψ〉|0Si〉‖ ≤ βi for all |ψ〉 ∈ H ⊗ [⊗i−1
j=1 Kj

]
such that |ψ〉|0Si〉 ⊥ |φi−1〉,

where Si =
∑t
j=i sj.

To analyze this algorithm, we keep track of the projection of |φi〉 on the marked
subspace. The marked subspace corresponds to M⊗ [⊗j Kj

]
; it consists of states in

which the first register of the H-part is marked. We denote this space by M̃. Define
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the normalized projections of |φi〉 on the marked subspace M̃ and on its orthogonal
complement as

|μi〉 = ΠM̃|φi〉
‖ΠM̃|φi〉‖ ,

|μ⊥
i 〉 =

(Id−ΠM̃)|φi〉
‖(Id−ΠM̃)|φi〉‖ .

We thus have

(1) |φi〉 = sinϕi |μi〉+ cosϕi |μ⊥
i 〉,

where sin2 ϕi = ‖ΠM̃|φi〉‖2 is the probability of finding a marked item by measuring
the first register according to {ΠM̃, Id−ΠM̃}. For later use, let us also define |φ⊥i 〉 as
the state in the two-dimensional subspace spanned by |μi〉 and |μ⊥

i 〉 that is orthogonal
to |φi〉:

|φ⊥i 〉 = cosϕi |μi〉 − sinϕi |μ⊥
i 〉.

For the initial state |φ0〉, we have sin2 ϕ0 = pM . If all the errors βi were zero,
Approximate RAA would implement the RAA algorithm in the subspace spanned
by |μi〉 = |μ0〉 and |μ⊥

i 〉 = |μ⊥
0 〉, with the angles ϕi+1 = 3ϕi, that is, ϕi = 3iϕ0.

Therefore by recursively iterating our procedure for a total number of t steps, we
would end up with a state whose inner product with |μ0〉 is at least 1√

2
.

Analysis of the errors. We show that Approximate RAA still works when
the errors βi are sufficiently small. In that case, the two-dimensional subspace
Span(|μi〉, |μ⊥

i 〉) may drift away from the initial subspace Span(|μ0〉, |μ⊥
0 〉), and the

angles ϕi may be different from the ideal value ϕ̄i = 3iϕ0. We derive bounds on the
error ei,

(2) ei = |sinϕi − sin ϕ̄i| ,
the difference between the amplitude sinϕi of the marked part of the state |φi〉 and
the ideal amplitude sin ϕ̄i.

We assume without loss of generality that 0 < γ < 1√
2
since the case γ ≥ 1√

2
is

vacuous. We prove that after t steps et ≤ γ. This will conclude the error analysis
since 1√

2
≤ sin ϕ̄t ≤ 1.

We have

|φi+1〉 = Ri+1 · ref(M̃⊥) |φi〉
= ref(φi) · ref(M̃⊥) |φi〉+ Ei+1 · ref(M̃⊥) |φi〉
= sin 3ϕi |μi〉+ cos 3ϕi |μ⊥

i 〉+ |ωi+1〉,(3)

where we used the fact that ref(φi) · ref(M̃⊥) implements a perfect amplitude ampli-
fication step, and we introduced an error state |ωi〉, defined as

|ωi+1〉 = Ei+1 · ref(M̃⊥) |φi〉
= Ei+1 · ref(M̃⊥)

(
sinϕi |μi〉+ cosϕi |μ⊥

i 〉
)

= Ei+1

(− sinϕi |μi〉+ cosϕi |μ⊥
i 〉
)

= Ei+1

(
cos 2ϕi |φi〉 − sin 2ϕi |φ⊥i 〉

)
= − sin 2ϕi Ei+1 |φ⊥i 〉,
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where we used Fact 1, property 1. Moreover, |φ⊥i 〉 ⊥ |φi〉, so ‖ωi+1‖ ≤ βi+1 |sin 2ϕi|
by Fact 1, property 1. Finally, comparing (1) and (3), we get

| sinϕi+1 − sin 3ϕi| ≤ βi+1 |sin 2ϕi| .

We may now bound the error defined in (2) as

ei+1 ≤ | sinϕi+1 − sin 3ϕi|+ | sin 3ϕi − sin ϕ̄i+1|
≤ βi+1 |sin 2ϕi|+ | sin 3ϕi − sin 3ϕ̄i|
≤ βi+1(sin 2ϕ̄i + | sin 2ϕi − sin 2ϕ̄i|)

+ | sin 3ϕi − sin 3ϕ̄i|
≤ βi+1(sin 2ϕ̄i + 2ei) + 3ei

≤ 2βi+1(ϕ̄i + ei) + 3ei,(4)

where we have used the triangle inequality and the trigonometric inequalities

| sin 2A− sin 2B| ≤ 2| sinA− sinB|,
| sin 3A− sin 3B| ≤ 3| sinA− sinB|,

sinA ≤ A

that hold for any angles A,B ∈ [0, π/4].
We define a quantity ẽi, intended to be an upper bound on ei (it would be if

ẽi ≤ ϕ̄i). Let

ẽ0 = 0,

ẽi+1 = 4βi+1ϕ̄i + 3ẽi.

We show that ẽi ≤ γ for every i ≤ t. Indeed, let us define ui as

ẽi = γ ϕ̄i ui.

We therefore have the following recursion for ui:

u0 = 0,

ui+1 = ui +
4

3γ
βi+1 (∀i ≥ 0),

so that

ui =
4

3γ

i∑
j=1

βj .

Recall that we have chosen βi = 18
4π3 γ/i

2, so that {βi} define a convergent series
and the nondecreasing sequence (ui) tends to 1/π when i → ∞. We therefore have
ẽi ≤ γϕ̄i/π ≤ γ since 0 ≤ ϕ̄t ≤ π for i ≤ t.

Since 0 < γ ≤ 1, we have ẽi ≤ ϕ̄i, and we can show by induction that ei ≤ ẽi for
all i ≤ t. This finishes the error analysis.
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Complexity. We now evaluate the complexity of our algorithm. We know from
the hypotheses of the theorem that applying R(βi) costs c1 log

1
βi
, while applying

ref(M̃⊥) = −ref(M) ⊗ Id⊗
j Kj

costs c2. Moreover, by definition of Approximate

RAA, applying Approximate RAA(i, γ) requires three calls to Approximate
RAA(i − 1, γ), one call to R(βi), and one call to ref(M). Hence, if we denote by
Cost(i) the cost of applying Approximate RAA(i, γ), we have

Cost(0) = 0,

Cost(i) = 3Cost(i− 1) + c1 log
1

βi
+ c2.

Since we have fixed βi =
18
4π2 γ/i

2, we find that Cost(i) equals

c1

i∑
j=1

3i−j
(
2 log j + log

1

γ
+O(1)

)
+ c2

i∑
j=1

3i−j

= 3i

⎡
⎣(c1 log 1

γ
+ c2 +O(1)

) i∑
j=1

1

3j
+ 2c1

i∑
j=1

log j

3j

⎤
⎦ ,

where both sums converge as i→ ∞. After t steps we have Cost(t) ∈ O
(
3t ·(c1 log 1

γ +

c2)
)
.
If the cost refers to time complexity, then there is an additional term pertaining

to the reflection Ri. This arises from the check to see if the ancilla are in state |0S〉.
This does not change the asymptotic complexity of the algorithm.

Note that Lemma 1 requires knowledge of pM to infer the necessary number of
iterations t. When only a lower bound ε on pM is known, we can use the algorithm
Tolerant RAA(t, γ), which only adds a constant factor overhead with respect to
Approximate RAA(t, γ).

Tolerant RAA(tmax, γ)
1. Sample a state x from the stationary distribution π of P .
2. If x ∈M , output x, and stop.
3. Prepare the initial state |π〉d|0S〉 and set i = 0.
4. Increment i. Apply Approximate RAA(i, γ).
5. Measure the first register according to ΠM.

If successful, observe and output the first register, and stop.
6. If i < tmax, go back to step 4; otherwise output “no marked element.”

Lemma 2. Assume that for any β > 0, we have a quantum circuit R(β) acting
on H⊗K, where K is an extra register of s qubits (s = s(β) may depend on β), with
the following properties:

1. The circuit R(β) has cost c1 log
1
β .

2. R(β)|π〉|0s〉 = |π〉|0s〉.
3. ‖(R(β) + Id)|ψ〉|0s〉‖ ≤ β when |ψ〉 is orthogonal to |π〉.

Further, assume that we are able to apply −ref(M) with cost c2, and let tmax be
the smallest nonnegative integer such that 3tmax sin−1 √ε ∈ [π/4, 3π/4], where pM ≥
ε > 0 whenever pM > 0. Then, for every real γ such that 0 < γ ≤ 1

40 , Tolerant
RAA(tmax, γ) always outputs “no marked element” if M is empty; otherwise it ends
with a marked element with probability at least 1/12− 3γ and incurs a cost of order
3tmax · (c1 log 1

γ + c2).
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Proof. First, ifM is empty, then clearly the algorithm always outputs “no marked
element.” We now assume that M is nonempty and pM ≥ ε. If pM ≥ 1/2, the first
two steps of the algorithm succeed with probability at least 1/2. So in the analysis of
the remaining steps, we additionally assume that pM < 1/2.

We will use the notation of Lemma 1, together with the following ones. For i ≥ 1,
define |ψi〉 as the state after step 4, sin2 θi = ‖ΠM̃|ψi〉‖2 the probability to project |ψi〉
onto the marked subspace M, and the normalized projections |νi〉 = ΠM̃|ψi〉/ sin θi
and |ν⊥i 〉 = ΠM̃⊥ |ψi〉/ cos θi, where M̃⊥ is the orthogonal complement of M̃. Initially,
we set |ν⊥0 〉 = |φ0〉 = |π〉|0S〉.

Let us denote by Ai the unitary operator corresponding to circuit Approxi-
mate RAA(i, γ), and let t be the smallest positive integer such that 3t sin−1 √pM ∈
[π/4, 3π/4]. By Lemma 1, Applying At on |φ0〉 = |π〉|0S〉 prepares a state |φt〉 that
has projection at least 1/

√
2− γ on M.

Since we do not know t, we will apply Ai for all possible values i ∈ [1, tmax]. To
avoid having to prepare a fresh copy of |φ0〉 for each attempt, which would incur an
additional cost, for i > 1 we apply Ai on the state |ν⊥i−1〉 left over from the previous
attempt, which produces the state |ψi〉 = Ai|ν⊥i−1〉 instead of |φi〉 = Ai|φ0〉.

Analysis of the errors. Let δi = ‖|ψi〉 − |φi〉‖ = ‖|ν⊥i−1〉 − |φ0〉‖ denote the
error at step i. By construction, we have δ1 = 0 and, for i ≥ 1,

(5) δi+1 = ‖|ν⊥i 〉 − |φ0〉‖ ≤ ‖|ν⊥i 〉 − |μ⊥
i 〉‖+

i−1∑
k=0

‖|μ⊥
k+1〉 − |μ⊥

k 〉‖+ ‖|μ⊥
0 〉 − |φ0〉‖.

Let us evaluate the first term. By definition we have

|ψi〉 = sin θi|νi〉+ cos θi|ν⊥i 〉,(6)

|φi〉 = sinϕi|μi〉+ cosϕi|μ⊥
i 〉.

Since ‖|ψi〉 − |φi〉‖ = δi we also have

|ψi〉 = sinϕi|μi〉+ cosϕi|μ⊥
i 〉+ |ξi〉,(7)

where ‖ξi‖ ≤ δi. Projecting (6) and (7) onto M̃⊥, we obtain

cos θi|ν⊥i 〉 = cosϕi|μ⊥
i 〉+ΠM̃⊥ |ξi〉,

which implies that | cos θi − cosϕi| ≤ δi and in turn

‖|ν⊥i 〉 − |μ⊥
i 〉‖ ≤ 2δi

cosϕi
≤ 3δi

for any i < t. For the last inequality, we have used the fact that ϕ̄i <
π
4 , and therefore

cosϕi ≥ cos ϕ̄i − ei ≥
√
2
2 − γ ≥ 2

3 , since γ ≤ 1
40 .

Let us now evaluate the second term in (5). Recall that

|φk+1〉 = sinϕk+1 |μk+1〉+ cosϕk+1 |μ⊥
k+1〉

= sin 3ϕk |μk〉+ cos 3ϕk |μ⊥
k 〉+ |ωk+1〉,

where ‖ωk+1‖ ≤ βk+1 sin 2ϕ̄k ≤ 4βk+1ϕ̄k, by the calculations leading to (4), and
the bound ek ≤ ẽk ≤ ϕ̄k. Projecting this equation onto M̃⊥, we obtain | cos 3ϕk −
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cosϕk+1| ≤ ‖ωk+1‖ and in turn

‖|μ⊥
k+1〉 − |μ⊥

k 〉‖ ≤ 2‖ωk+1‖
cosϕk+1

≤ 12βk+1ϕ̄k = 12βk+13
kϕ0

for any k < t− 1, where we have used the fact that cosϕk+1 ≥ 2
3 .

For the last term of (5), since 〈μ⊥
0 |φ0〉 = cosϕ0, we have

‖|μ⊥
0 〉 − |φ0〉‖ =

√
2− 2 cosϕ0 = 2 sin(ϕ0/2) ≤ ϕ0.

Putting everything back together, we have

δi+1 ≤ 3δi + 12ϕ0

i−1∑
k=0

3kβk+1 + ϕ0,

which, from δ1 = 0, implies

δt ≤ ϕ0

t−2∑
k=0

3k + 12ϕ0

t−2∑
k=0

⎛
⎝t−k−2∑

j=0

3j

⎞
⎠ 3kβk+1

≤ 1

2
3t−1ϕ0 + 12ϕ0

t−2∑
k=0

(
1

2
3t−k−1

)
3kβk+1

≤ 1

2
3t−1ϕ0 + 2 · 3tϕ0

t−2∑
k=0

βk+1

≤ π

8
+

9γ

8
.

Since the projection of |φt〉 onto M̃ has length at least 1√
2
− γ, the projection of

|ψt〉 onto M̃ has length at least 1√
2
− γ − δt ≥ 1√

12
− 3γ, which means that the next

measurement projects this state onto M̃ with probability at least 1
12 − 3γ.

Complexity. As for the complexity analysis, note that we apply Ai for all i ∈
[1, tmax]. From Lemma 1, the cost of Ai is of order Cost(i) ∈ O(3i · (c1 log 1

γ + c2)),

and therefore the cost of Tolerant RAA(tmax, γ) is dominated by

tmax∑
i=1

Cost(i) ∈ O(3tmax · (c1 log 1
γ + c2)),(8)

since this defines a geometric sum.
We now have all the elements to prove Theorem 3 (stated in section 1.4).
Proof of Theorem 3. The algorithm consists in Tolerant RAA(tmax,

1
72 ) from

Lemma 2, using for the approximate reflections R(β) the quantum phase estimation
circuit R(P ) from Theorem 6.

First, no marked element is found if M is empty. Assume for now that M is
nonempty. We will prove that the assumptions of Lemma 2 are satisfied. Therefore
the probability of finding an element for Tolerant RAA(tmax,

1
72 ) is at least 1/24.

Setting k =
⌈
log2(

1
β ) + 1

⌉
in Theorem 6, R(P ) simulates a reflection with an error

upper bounded by 21−k ≤ β. Implementing R(P )d then requires k 2s+1 calls to the
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controlled quantum walk c-W (P )d or its inverse, where s ∈ log2(
1√
δ
) + O(1). Since

implementing c-W (P )d or its inverse has a cost 4U, the cost of implementing the circuit
R(P )d for a given error β is c1 log

1
β , with c1 of order 1√

δ
U. Furthermore, preparing

the initial state |π〉d has a cost S+U, and implementing −ref(M)d has a cost c2 = C.
Finally, since tmax ∈ log3

1√
ε
+O(1), the total cost of Tolerant RAA(tmax,

1
72 ) is of

order S+ 1√
ε
( 1√

δ
U+ C).

5. Nonreversible Markov chains. In this section, we discuss the performance
of the search algorithm presented earlier for any ergodic, but possibly nonreversible,
Markov chain P . For the analysis of the quantum walk W (P ) we directly examine
the singular value decomposition of the discriminant matrix D(P ) = diag(π)1/2 · P ·
diag(π)−1/2. This matrix has the same eigenvalues as P , but the singular values
of D(P ) may be different from the eigenvalues of P . The singular values of D(P )
lie in the interval [0, 1]. The vector v = (

√
πx ) is both a left and a right eigenvector

of D(P ) with eigenvalue 1. Therefore, Span(v) and Span(v)⊥ are invariant subspaces
of D(P ), and we may choose v to be a left and right singular vector. If every singular
vector orthogonal to v has a singular value strictly smaller than 1, that is, D(P )
has a nonzero singular value gap, then Theorem 3 and its proof stay valid when the
eigenvalue gap of P is replaced by the singular value gap of D(P ).

The discriminant of an irreducible walk does not necessarily have nonzero singular
value gap, even if it is ergodic. Ergodicity implies a nonzero eigenvalue gap for P ,
but there are examples of ergodic Markov chains whose discriminants have 0 singular
value gap. In the next proposition we show that if every state in the Markov chain
has a transition to itself with nonzero probability, then its discriminant has nonzero
singular value gap (the proof is given in the appendix). There is a standard and simple
modification to any Markov chain P such that the resulting chain has this property:
with some probability α ∈ (0, 1), stay at the current state, and with probability 1−α,
make a transition according to P .

Proposition 3. Let P = (pxy) be an irreducible Markov chain on a finite state
space X, such that pxx > 0 for every x ∈ X. Then the discriminant matrix D(P ) has
exactly one singular value equal to 1.

Finally, we state the theorem on the performance of the quantum search algo-
rithm presented in section 4 when the underlying Markov chain is not necessarily
reversible.

Theorem 8. Let P = (pxy) be an irreducible Markov chain on a finite state
space X, such that D(P ) has exactly one singular value equal to 1. Let δ > 0 be the
singular value gap of D(P ), and let ε > 0 be a lower bound on the probability that
an element chosen from the stationary distribution of P is marked whenever M is
nonempty. Then there is a quantum algorithm that with high probability determines
if M is empty or finds an element of M , with cost of order S+ 1√

ε
( 1√

δ
U+ C).

Appendix. We first state and prove that all the singular values of D(P ) lie in
[0, 1].

Lemma 3. Let P = (pxy)x,y∈X be an irreducible Markov chain with stationary
distribution π = (πx)x∈X . Then the singular values of the matrix D(P ) given by

D(P ) = diag(π)1/2 · P · diag(π)−1/2

all lie in the interval [0, 1].



162 F. MAGNIEZ, A. NAYAK, J. ROLAND, AND M. SANTHA

Proof. Singular values are by convention taken to be nonnegative real. To verify
that ‖D(P )‖, the largest singular value of D(P ), is at most 1, consider the inner
product u†D(P )v for some unit vectors u, v. The maximum absolute value that this
inner product achieves is the norm of D(P ). By the Cauchy–Schwarz inequality, the
inner product may be bounded as∣∣u†D(P )v

∣∣
=

∣∣∣∣∣
∑
xy

ūxvy

√
πx
πy

pxy

∣∣∣∣∣
≤
(∑

xy

|ux|2 pxy
)1/2(∑

xy

|vy|2 πx
πy

pxy

)1/2

(9)

≤ 1,

since
∑

x πxpxy = πy.
Proof of Proposition 3. From Lemma 3, we know that the singular values of D(P )

all lie in [0, 1]. Further v = (
√
πx ) is a left (and right) singular vector with singular

value 1. We show below that for any left and right singular vectors u,w ∈ C
X ,

if u†D(P )w = 1, then u = w = v (modulo an overall phase). This establishes the
uniqueness of the singular value 1 and a nonzero singular value gap in D(P ).

Suppose u†D(P )w = 1. This implies that the Cauchy–Schwarz inequality in (9)
in the proof of Lemma 3 is tight. Then, necessarily, the two unit vectors u′, w′ ∈ CX×X

given by u′ = (ux
√
pxy)x,y∈X and w′ = (wy

√
πxpxy/πy)x,y∈X are parallel. Ignoring

an overall phase, we may assume that they are in fact equal. This means that for
every pair x, y ∈ X such that pxy > 0, ux = wy

√
πx/πy. In particular, since pxx > 0,

ux = wx for every x, and so ux = uy
√
πx/πy for every neighbor y of x in the graph

underlying the Markov chain P .
Furthermore, for any path x1, x2, . . . , xk in the graph, chaining together the equa-

tions

uxi+1 = uxi

√
πxi+1

πxi

for i = 1, . . . , k − 1, we get that

uxi = ux1

√
πxi

πx1

for every i. Since the chain P is irreducible, i.e., the underlying graph is strongly
connected, there is a path from x1 to y for every y ∈ X . Thus,

uy = ux1

√
πy
πx1

for every y. Since the vector u is a unit vector, this implies that u = w = (
√
πx)x∈X =

v (up to an unimportant global phase).
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