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Abstract. We consider the randomized decision tree complexity of the
recursive 3-majority function. For evaluating height h formulae, we prove
a lower bound for the δ-two-sided-error randomized decision tree com-
plexity of (1 − 2δ)(5/2)h, improving the lower bound of (1 − 2δ)(7/3)h

given by Jayram, Kumar, and Sivakumar (STOC ’03). Second, we im-
prove the upper bound by giving a new zero-error randomized decision
tree algorithm that has complexity at most (1.007) · 2.64946h. The pre-
vious best known algorithm achieved complexity (1.004) · 2.65622h. The
new lower bound follows from a better analysis of the base case of the
recursion of Jayram et al. The new algorithm uses a novel “interleaving”
of two recursive algorithms.

1 Introduction

Decision trees form a simple model for computing boolean functions by succes-
sively reading the input bits until the value of the function can be determined.
In this model, the only cost is the number of input bits queried. Formally, a
deterministic decision tree algorithm A on n variables is a binary tree in which
each internal node is labeled with an input variable xi, and the leaves of the tree
are labeled by either 0 or 1. Each internal node has two outgoing edges, labeled
either by 0 or 1. For every input x = x1 . . . xn, there is a unique path in the tree
leading from the root to a leaf: if an internal node is labeled by xi, we follow
either the 0 or the 1 outgoing edge according to the value of xi. The value of the
algorithm A on input x, denoted by A(x), is the label of the leaf on this unique
path. The algorithm A computes a boolean function f : {0, 1}n → {0, 1} if for
every input x, we have A(x) = f(x).
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We define the cost C(A, x) of a deterministic decision tree algorithm A on
input x as the number of input bits queried by A on x. Let Pf be the set of
all deterministic decision tree algorithms which compute f . The deterministic
complexity of f is D(f) = minA∈Pf

maxx∈{0,1}n C(A, x). Since every function can
be evaluated after reading all the input variables, D(f) ≤ n. In an extension of
the deterministic model, we can also permit randomization in the computation.

A randomized decision tree algorithm A on n variables is a distribution over
all deterministic decision tree algorithms on n variables. Given an input x, the
algorithm first samples a deterministic tree B ∈R A, then evaluates B(x). The
error probability of A in computing f is given by maxx∈{0,1}n PrB∈RA[B(x) 6=
f(x)]. The cost of a randomized algorithm A on input x, denoted also by C(A, x),
is the expected number of input bits queried by A on x. Let Pδ

f be the set of
randomized decision tree algorithms computing f with error at most δ. The
two-sided bounded error randomized complexity of f with error δ ∈ [0, 1/2) is
Rδ(f) = minA∈Pδ

f
maxx∈{0,1}n C(A, x).

We write R(f) for R0(f). By definition, for all 0 ≤ δ < 1/2, it holds that
Rδ(f) ≤ R(f) ≤ D(f), and it is also known [1, 2, 12] that D(f) ≤ R(f)2, and
that for all constant δ ∈ (0, 1/2), D(f) ∈ O(Rδ(f)3) [7].

Considerable attention in the literature has been given to the randomized
complexity of functions computable by read-once formulae, which are boolean
formulae in which every input variable appears only once. For a large class of
well balanced formulae with NAND gates the exact randomized complexity is
known. In particular, let NANDh denote the complete binary tree of height h
with NAND gates, where the inputs are at the n = 2h leaves. Snir [11] has shown
that R(NANDh) ∈ O(nc) where c = log2

(
1+
√

33
4

)
≈ 0.753. A matching Ω(nc)

lower bound was obtained by Saks and Wigderson [9], and extended to Monte-
Carlo algorithms by Santha [10]. Since D(NANDh) = 2h = n this implies that
R(NANDh) ∈ Θ(D(NANDh)c). Saks and Wigderson conjectured that for every
boolean function f and constant δ ∈ [0, 1/2), Rδ(f) ∈ Ω(D(f)c).

After further progress due to Heiman, Newman, and Wigderson [3] and
Heiman and Wigderson [4], one would have hoped that the simple model of
decision tree algorithms might shed more light on the power of randomness.
But surprisingly, we know the exact randomized complexity of very few boolean
functions. In particular, the randomized complexity of the recursive 3-majority
function (3-MAJh) is still open. This function, proposed by Boppana, was one
of the earliest examples where randomized algorithms were found to be more
powerful than deterministic decision trees [9]. It is a read-once formula on 3h

variables given by the complete ternary tree of height h whose internal vertices
are majority gates. It is easy to check that D(3-MAJh) = 3h, but there is a
naive randomized recursive algorithm for 3-MAJh that performs better: pick two
random children of the root and recursively evaluate them, then evaluate the
third child iff the value is not yet determined. This has zero-error randomized
complexity (8/3)h. However, it was already observed by Saks and Wigderson [9]
that one can do even better than this naive algorithm. As for lower bounds, that
reading 2h variables is necessary for zero-error algorithms is easy to show. In



spite of some similarities with the NANDh function, no progress was reported on
the randomized complexity of 3-MAJ for 17 years. In 2003, Jayram, Kumar, and
Sivakumar [5] proposed an explicit randomized algorithm that achieves com-
plexity (1.004) · 2.65622h, and beats the naive recursion. (Note, however, that
the recurrence they derive in [5, Appendix B] is incorrect.) They also prove a
(1− 2δ)(7/3)h lower bound for the δ-error randomized decision tree complexity
of 3-MAJh. In doing so, they introduce a powerful combinatorial technique for
proving decision tree lower bounds.

In this paper, we considerably improve the lower bound obtained in [5], by
proving that Rδ(3-MAJh) ≥ (1−2δ)(5/2)h. We also improve the upper bound by
giving a new zero-error randomized decision tree algorithm that has complexity
at most (1.007)2.64946h.

Theorem 1. For all δ ∈ [0, 1/2], we have (1 − 2δ)(5/2)h ≤ Rδ(3-MAJh) ≤
(1.007)2.64946h.

In contrast to the randomized case, the bounded-error quantum query complexity
of 3-MAJh is known more precisely; it is in Θ(2h) [8].

New lower bound. For the lower bound they give, Jayram et al. consider
a complexity measure related to the distributional complexity of 3-MAJh with
respect to a specific hard distribution (cf. Sect. 2.3). The focus of the proof is a
relationship between the complexity of evaluating formulae of height h to that
of evaluating formulae of height h − 1. They derive a sophisticated recurrence
relation between these two quantities, that finally implies that Rδ(3-MAJh) ≥
(1− 2δ)(2 + q)h, where (1− 2δ)qh is a lower bound on the probability pδ

h that a
randomized algorithm with error at most δ queries a special variable, called the
“absolute minority”, on inputs drawn from the hard distribution. They observe
that any randomized decision tree with error at most δ must query at least one
variable with probability 1− 2δ. This variable has probability 3−h of being the
absolute minority, so q ≥ 1/3, and the above lower bound follows.

We obtain the new lower bound by proving that pδ
h ≥ (1 − 2δ)2−h, i.e.,

q ≥ 1/2, which immediately implies the improved lower bound for Rδ(3-MAJh).
We examine the relationship between pδ

h and pδ
h−1, by encoding a height h − 1

instance into a height h instance, and using an algorithm for the latter. Analyz-
ing our encoding requires understanding the behavior of all decision trees on 3
variables, and this can be done by exhaustively considering all such trees.

One can ask whether this is the best possible recurrence, and it may be
possible to improve it by, say, encoding height h − 2 instances into height h
instances. Unfortunately we are unable to prove a claim analogous to Claim 3
in the case of such a recurrence, as the number of possible decision trees for 9
variables is too large to check exhaustively by hand. We nevertheless conjecture
that such a claim exists for a two-level encoding scheme. More details will be
provided in the journal version.

New algorithm. The naive algorithm and the algorithm of Jayram et al. are
examples of depth-k recursive algorithms for 3-MAJh, for k = 1, 2, respectively. A
depth-k recursive algorithm is a collection of subroutines, where each subroutine
evaluates a node (possibly using information about other previously evaluated



nodes), satisfying the following constraint: when a subroutine evaluates a node v,
it is only allowed to call other subroutines to evaluate children of v at depth at
most k, but is not allowed to call subroutines or otherwise evaluate children
that are deeper than k. (Our notion of depth-1 is identical to the terminology
“directional” that appears in the literature. In particular, the naive recursive
algorithm is a directional algorithm.)

We present is an improved depth-two recursive algorithm. To evaluate the
root of the majority formula, we recursively evaluate one grandchild from each
of two distinct children of the root. The grandchildren “give an opinion” about
the values of their parents. The opinion guides the remaining computation in
a natural manner: if the opinion indicates that the children are likely to agree,
we evaluate the two children in sequence to confirm the opinion, otherwise we
evaluate the third child. If at any point the opinion of the nodes evaluated so
far changes, we modify our future computations accordingly. A key innovation is
the use of an algorithm optimized to compute the value of a partially evaluated
formula. In our analysis, we recognize when incorrect opinions are formed, and
take advantage of the fact that this happens with smaller probability.

We do not believe that the algorithm we present here is optimal. Indeed,
we conjecture that even better algorithms exist that follow the same high level
intuition applied for depth-k recursion for k > 2. However, it seems new insights
are required to analyze the performance of deeper recursions, as the formulas
describing their complexity become unmanageable for k > 2.

Organization. We prepare the background for our main results Sect. 2. In
Sect. 3 we prove the new lower bound for 3-MAJ. The new algorithm for the
problem is described and analyzed in Sect. 4.

2 Preliminaries

We write u ∈R D to state that u is sampled from the distribution D. If X is
a finite set, we identify X with the uniform distribution over X, and so, for
instance, u ∈R X denotes a uniform element of X.

2.1 Distributional Complexity

A variant of the randomized complexity we use is distributional complexity. Let
Dn be the set of distributions over {0, 1}n. The cost C(A,D) of a randomized
decision tree algorithm A on n variables with respect to a distribution D ∈ Dn

is the expected number of bits queried by A when x is sampled from D and
over the random coins of A. The distributional complexity of a function f on
n variables for δ two-sided error is ∆δ(f) = maxD∈Dn

minA∈Pδ
f

C(A,D). The
following observation is a well established route to proving lower bounds on
worst case complexity.

Proposition 2. Rδ(f) ≥ ∆δ(f).



2.2 The 3-MAJh Function and the Hard Distribution

Let MAJ(x) denote the boolean majority function of its input bits. The ternary
majority function 3-MAJh is defined recursively on n = 3h variables, for every
h ≥ 0. We omit the height h when it is obvious from context. For h = 0 it is the
identity function. For h > 0, let x be an input of length x and let x(1), x(2), x(3)

be the first, second, and third n/3 variables of x. Then

3-MAJ(x) = MAJ(3-MAJ(x(1)), 3-MAJ(x(2)), 3-MAJ(x(3))).

In other terms, 3-MAJh is defined by the read-once formula on the complete
ternary tree Th of height h in which every internal node is a majority gate and
the leaves are the input variables. For every node v in Th different from the root,
let P (v) denote the parent of v. We say that v and w are siblings if P (v) = P (w).
For any node v in Th, let Z(v) denote the set of variables associated with the
leaves in the subtree rooted at v. We say that a node v is at depth d in Th if the
distance between v and the root is d. The root is therefore at depth 0, and the
leaves are at depth h.

We now define recursively, for every h ≥ 0, the set Hh of hard inputs of height
h. The hard inputs consist of instances for which at each node v in the ternary
tree, one child of v has value different from the value of v. For b ∈ {0, 1}, let
Hb

h = {x ∈ Hh : 3-MAJh(x) = b}. The hard distribution on inputs of height h is
defined to be the uniform distribution over Hh.

For an x ∈ Hh, the minority path M(x) is the path, starting at the root,
obtained by following the child whose value disagrees with its parent. For 0 ≤
d ≤ h, the node of M(x) at depth d is called the depth d minority node, and
is denoted by M(x)d. We call the leaf M(x)h of the minority path the absolute
minority of x, and denote it by m(x).

2.3 The Jayram-Kumar-Sivakumar Lower Bound

For a deterministic decision tree algorithm B computing 3-MAJh, let LB(x)
denote the set of variables queried by B on input x. Recall that Pδ

3-MAJh
is

the set of all randomized decision tree algorithms that compute 3-MAJh with
two-sided error at most δ. Jayram et al. define the function Iδ(h, d), for d ≤ h:

Iδ(h, d) = min
A∈Pδ

3-MAJh

Ex∈RHh,B∈RA[|Z(M(x)d) ∩ LB(x)|].

In words, it is the minimum over algorithms computing 3-MAJh, of the ex-
pected number of queries below the dth level minority node, over inputs from
the hard distribution. Note that Iδ(h, 0) = minA∈Pδ

3-MAJh

C(A,Hh), and therefore

by Proposition 2, Rδ(3-MAJh) ≥ Iδ(h, 0).
We define pδ

h = Iδ(h, h), which is the minimal probability that a δ-error
algorithm A queries the absolute minority of a random hard x of height h.

Jayram et al. prove a recursive lower bound for Iδ(h, d) using information
theoretic arguments. A more elementary proof can be found in Ref. [6].



Theorem 3 (Jayram, Kumar, Sivakumar [5]). For all 0 ≤ d < h:

Iδ(h, d) ≥ Iδ(h, d+ 1) + 2Iδ(h− 1, d).

A simple computation using their recursion gives Iδ(h, 0) ≥
∑h

i=0

(
h
i

)
2h−ipδ

i .
Putting this together with the fact that Rδ(3-MAJh) ≥ Iδ(h, 0), we get the
following corollary:

Corollary 4. Let q, a > 0 such that pδ
i ≥ a · qi for all i ∈ {0, 1, 2, . . . , h}. Then

Rδ(3-MAJh) ≥ a(2 + q)h.

As mentioned in Sect. 1, Jayram et al. obtain the (1 − 2δ)(7/3)h lower bound
from this corollary by observing that pδ

h ≥ (1− 2δ)(1/3)h.

3 Improved Lower Bound

Theorem 5. For every error δ > 0 and height h ≥ 0, we have pδ
h ≥ (1−2δ)2−h.

Proof. We prove this theorem by induction. Clearly, pδ
0 ≥ 1− 2δ. It then suffices

to show that 2pδ
h ≥ pδ

h−1 for h ≥ 1. We do so by reduction as follows: let A be
a randomized algorithm that achieves the minimal probability pδ

h for height h
formulae. We construct a randomized algorithm A′ for height h − 1 formulae
such that the probability that A′ errs is at most δ, and A′ queries the absolute
minority with probability at most 2pδ

h. Since pδ
h−1 is the minimum probability

of querying the absolute minority over all randomized algorithms on inputs of
height h− 1 with error at most δ, this implies that 2pδ

h ≥ pδ
h−1.

We now specify the reduction. For the sake of simplicity, we omit the error
δ in the notation. We use the following definition:

Definition 6 (One level encoding scheme). A one level encoding scheme is
a bijection ψ : Hh−1×{1, 2, 3}3

h−1 → Hh, such that for all (y, r) in the domain,
3-MAJh−1(y) = 3-MAJh(ψ(y, r)).

Let c : {0, 1}×{1, 2, 3} → H1 satisfying b = MAJ(c(b, s)) for all inputs (b, s).
Define the one level encoding scheme ψ induced by c as follows: ψ(y, r) = x ∈ Hh

such that for all 1 ≤ i ≤ 3h−1, (x3i−2, x3i−1, x3i) = c(yi, ri).

To define A′, we use the one level encoding scheme ψ induced by the following
function: c(y, 1) = y01, c(y, 2) = 1y0, and c(y, 3) = 01y.

On input y, algorithm A′ picks a uniformly random string r ∈ {1, 2, 3}3h−1
,

and runs A on x = ψ(y,r). Observe that A′ has error at most δ as 3-MAJh−1(y) =
3-MAJh(ψ(y, r)) for all r, and A has error at most δ. We claim now:

2 Pr
A, x∈RHh

[A(x) queries xm(x)] ≥ Pr
A′, (y,r)∈RH′

h

[A′(y, r) queries ym(y)] (1)

where H′
h is the uniform distribution over Hh−1 × {1, 2, 3}3

h−1
.

We prove this inequality by taking an appropriate partition of the proba-
bilistic space of hard inputs Hh, and prove Eq. 1 separately, on each set in the



partition. For h = 1, the two classes of the partition are H0
1 and H1

1 . For h > 1,
the partition consists of the equivalence classes of the relation ∼ defined by
x ∼ x′ if xi = x′i for all i such P (i) 6= P (m(x)) in the tree T .

Because ψ is a bijection, observe that this also induces a partition of (y, r),
where (y, r) ∼ (y′, r′) iff ψ(y, r) ∼ ψ(y′, r′). Also observe that every equivalence
class contains three elements. Let S be an equivalence class of ∼. Then Eq. 1
follows from the following stronger statement: for every S, and for all B in the
support of A, it holds that

2 Pr
x∈RHh

[B(x) queries xm(x) | x ∈ S]

≥ Pr
(y,r)∈RH′

h

[B′(y, r) queries ym(y) | ψ(y, r) ∈ S] ,
(2)

where B′ is the algorithm that computes x = ψ(y, r) and then evaluates B(x).
The same proof applies to all sets S, but to simplify the notation, we consider

a set S that satisfies the following: for x ∈ S, we have m(x) ∈ {1, 2, 3} and that
xm(x) = 1. Observe that for each j > 3, the jth bits of all three elements in
S coincide. Therefore, the restriction of B to the variables (x1, x2, x3), when
looking only at the three inputs in S, is a well-defined decision tree on three
variables. We call this restriction B1, and formally it is defined as follows: for
each query xj made by B for j > 3, B1 simply uses the value of xj that is
shared by all x ∈ S and that we hard-wire into B1; for each query xj made by
B where j ∈ {1, 2, 3}, B1 actually queries xj . Note that the restriction B1 does
not necessarily compute 3-MAJ1(x1x2x3), for two reasons. Firstly, B1 is derived
from B, which may err on particular inputs. But even if B(x) correctly computes
3-MAJh(x), it might happen that B never queries any of x1, x2, x3, or it might
query one and never query a second one, etc.

For any x ∈ S, recall that we write (y, r) = ψ−1(x). It holds for our choice of
S that m(y) = 1 because we assumed m(x) ∈ {1, 2, 3} and also y1 = ym(y) = 0
because we assumed xm(x) = 1.

Observe that, for inputs x ∈ S, B queries xm(x) iff B1 queries the minority
among x1, x2, x3. Also, B′(y, r) queries ym(y) iff B1(ψ(0, r1)) queries xr1 (cf. def-
inition of c used by A′). Furthermore, the distribution of x1x2x3 when x ∈R S is
uniform over H0

1. Similarly, the distribution of r1 over uniform (y, r) conditioned
on ψ(y, r) ∈ S is identical to that of (0, r1) = ψ−1(x1x2x3) for x1x2x3 ∈R H0

1.
Thus Eq. 2 is equivalent to:

2 Pr
x∈RH0

1

[B1(x) queries xm(x)]

≥ Pr
x∈RH0

1

[B1(x) queries xr1 where (0, r1) = ψ−1(x)] .
(3)

Observe that Eq. 3 holds trivially if B1 makes no queries, since then both
sides equal 0. Therefore it is enough to consider only the case where B1 makes
at least one query. For any decision tree algorithm Q on three bits, which makes
at least one query, we define the number ρQ as:

ρQ =
Prx∈RH0

1
[Q(x) queries xm(x)]

Prx∈RH0
1
[Q(x) queries xr1 where (0, r1) = ψ−1(x)]

.



Note that the denominator is at least 1/3, since Q queries xr1 when x is such
that r1 is the index of the first query. We prove that ρQ is always at least 1/2,
by describing a decision tree algorithm Q′ which minimizes ρQ. The algorithm
Q′ is defined as follows: first query x1, if x1 = 0, stop, else if x1 = 1, query x2

and stop.

Claim. The algorithm Q′ gives ρQ′ = 1/2, and this is the minimal possible ρQ

among all deterministic decision tree algorithms making at least one query.

To prove the claim we first evaluate ρQ′ . The numerator equals 1/3 since the
minority is queried only when x = 100, while the denominator equals 2/3 since
xr1 is queried when x is 001 or 100.

Let now be Q any algorithm which makes at least one query, we prove that
ρQ ≥ 1/2. Without loss of generality, we may suppose that the first query is x1.
We distinguish two cases.

If Q makes a second query when the first query is evaluated to 0 then the
numerator is at least 2/3 since for the second query there is also an x for which
m(x) is the index of this query. But the denominator is at most 1, and therefore
in that case ρQ ≥ 2/3. If Q does not make a second query when the first query
is evaluated to 0 then the denominator is at most 2/3 since for x = 010, we have
r1 = 3, but x3 is not queried. Since the numerator is at least 1/3, we have in
that case ρQ ≥ 1/2.

To handle a general S, we replace {1, 2, 3} with m(x) and its two siblings.
For S such that x ∈ S satisfies xm(x) = 0, the optimal algorithm Q′ is the same
as the one described above, except that each 0 is changed to 1 and vice versa.

Therefore Eq. 3 holds for every B1, which implies the theorem. ut

Combining Corollary 4 and Theorem 5, we obtain the following.

Corollary 7. Rδ(3-MAJh) ≥ (1− 2δ)(5/2)h.

4 Improved Depth-Two Algorithm

In this section, we present a new zero-error algorithm for computing 3-MAJh.
For the key ideas behind it, we refer the reader to Sect. 1.

As before, we identify the formula 3-MAJh with a complete ternary tree of
height h. In the description of the algorithm we adopt the following convention.
Once the algorithm has determined the value b of the subformula rooted at a
node v of the formula 3-MAJh, we also use v to denote this bit value b.

The algorithm is a combination of two depth-2 recursive algorithms. The first
one, Evaluate, takes a node v of height h(v), and evaluates the subformula
rooted at v. The interesting case, when h(v) > 1, is depicted in Fig. 1. The first
step, permuting the input, means applying a random permutation to the children
y1, y2, y3 of v and independent random permutations to each of the three sets of
grandchildren.

The second algorithm, Complete, is depicted in Fig. 2. It takes two argu-
ments v, y1, and completes the evaluation of the subformula 3-MAJh rooted at



x1 = x2
E(x1), E(x2)

E(y3)

C(y1, x1) C(y2, x2) Output y1

Output y3

Output y3

Output y2

Output y3

Output MAJ(y1, y2, y3)

C(yb, xb)

C(y3-b, x3-b)

Set b ! {1, 2} 
such that y3 = yb

E(y3)

E(y3)

C(y2, x2)

y1 = x2 y1 = y2

y1 ! x2

y1 ! y2

y1 = y3

y1 ! y3

x1 ! x2

y3 = yb

y3 ! yb

Permute input

x1 x2

y2y1 y3

x2

y2y1 y3

v v

Fig. 1. Pictorial representation of algorithm Evaluate on a subformula of
height h(v) ≥ 2 rooted at v. It is abbreviated by the letter ‘E’ when called recursively
on descendants of v. The letter ‘C’ abbreviates the second algorithm Complete.

node v, where h(v) ≥ 1, and y1 is a child of v whose value has already been
evaluated. The first step, permuting the input, means applying a random per-
mutation to the children y2, y3 of v and independent random permutations to
each of the two sets of grandchildren of y2, y3. Note that this is similar in form
to the depth 2 algorithm of [5].

To evaluate an input of height h, we invoke Evaluate(r), where r is the root.
The correctness of the two algorithms follows by inspection—they determine the
values of as many children of the node v as is required to compute the value of v.

For the complexity analysis, we study the expected number of queries they
make for a worst-case input of fixed height h. (A priori , we do not know if
such an input is a hard input as defined in Section 2.2.) Let T (h) be the worst-
case complexity of Evaluate(v) for v of height h. For Complete(v, y1), we
distinguish between two cases. Let y1 be the child of node v that has already
been evaluated. The complexity given that y1 is the minority child of v is denoted
by Sm, and the complexity given that it is a majority child is denoted by SM.

The heart of our analysis is the following set of recurrences that relate T, SM

and Sm to each other.

Lemma 8. It holds that Sm(1) = 2, SM(1) = 3
2 , T (0) = 1, and T (1) = 8

3 .
For all h ≥ 1, it holds that

SM(h) ≤ Sm(h) and SM(h) ≤ T (h) . (4)



Output y3

E(x2) C(y2, x2)

E(y3)

C(y2, x2) Output y2

Output y3E(y3)

Output y1
y1 = x2 y1 = y2

y1 ! y2y1 ! x2

y3 = y1

y3 ! y1

Permute input

x1 x2

y2y1 y3

x2

y2y1 y3

v v

Fig. 2. Pictorial representation of algorithm Complete on a subformula of height h ≥
1 rooted at v one child y1 of which has already been evaluated. It is abbreviated by the
letter ‘C’ when called recursively on descendants of v. Calls to Evaluate are denoted
‘E’.

Finally, for all h ≥ 2, it holds that

Sm(h) = T (h− 2) + T (h− 1) +
2
3
SM(h− 1) +

1
3
Sm(h− 1) , (5)

SM(h) = T (h− 2) +
2
3
T (h− 1) +

1
3
SM(h− 1) +

1
3
Sm(h− 1) , and (6)

T (h) = 2T (h− 2) +
23
27
T (h− 1) +

26
27
SM(h− 1) +

18
27
Sm(h− 1) . (7)

Proof. We prove these relations by induction. The bounds for h ∈ {0, 1} follow
immediately by inspection of the algorithms. To prove the statement for h ≥
2, we assume the recurrences hold for all l < h. Observe that it suffices to
prove Equations (5), (6), (7) for height h, since the values of the coefficients
immediately imply that Inequalities (4) holds for h as well.

Equation (5). Since Complete(v, y1) always starts by computing the value
of a grandchild x2 of v, we get the first term T (h − 2) in Eq. (5). It remains
to show that the worst-case complexity of the remaining queries is T (h − 1) +
(2/3)SM(h− 1) + (1/3)Sm(h− 1).

Since y1 is the minority child of v, we have that y1 6= y2 = y3. The complexity
of the remaining steps is summarized in the next table in the case that the
three children of node y2 are not all equal. In each line of the table, the worst
case complexity is computed given the event in the first cell of the line. The
second cell in the line is the probability of the event in the first cell over the
random permutation of the children of y2. This gives a contribution of T (h −
1) + (2/3)SM(h− 1) + (1/3)Sm(h− 1).

Sm(h) (we have y1 6= y2 = y3)
event probability complexity
y2 = x2 2/3 T (h− 1) + SM(h− 1)
y2 6= x2 1/3 T (h− 1) + Sm(h− 1)



This table corresponds to the worst case, as the only other case is when all
children of y2 are equal, in which the cost is T (h − 1) + SM(h − 1). Applying
Inequality (4) for h − 1, this is a smaller contribution than the case where the
children are not all equal.

Therefore the worst case complexity for Sm is given by Eq. (5). We follow
the same convention and appeal to this kind of argument also while deriving the
other two recurrence relations.

Equation (6). Since Complete(v, y1) always starts by computing the value
of a grandchild x2 of v, we get the first term T (h− 2) in Eq. (6). There are then
two possible patterns, depending on whether the three children y1, y2, y3 of v
are all equal. If y1 = y2 = y3, we have in the case that all children of y2 are not
equal that:

SM(h) if y1 = y2 = y3
event probability complexity
y2 = x2 2/3 SM(h− 1)
y2 6= x2 1/3 T (h− 1)

As in the above analysis of Eq. (5), applying Inequalities (4) for height h − 1
implies that the complexity in the case when all children of y2 are equal can only
be smaller, therefore the above table describes the worst-case complexity for the
case when y1 = y2 = y3.

If y1, y2, y3 are not all equal, we have two events y1 = y2 6= y3 or y1 = y3 6= y2
of equal probability as y1 is a majority child of v. This leads to the following
tables for the case where the children of y2 are not all equal

SM(h) given y1 = y2 6= y3
event prob. complexity
y2 = x2 2/3 SM(h− 1)
y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

SM(h) given y1 = y3 6= y2
event prob. complexity
y2 = x2 2/3 T (h− 1)
y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

As before, one can apply Inequalities (4) for height h − 1 to see that the worst
case occurs when the children of y2 are not all equal.

From the above tables, we deduce that the worst-case complexity occurs on
inputs where y1, y2, y3 are not all equal. This is because one can apply Inequali-
ties (4) for height h− 1 to see that, line by line, the complexities in the table for
the case y1 = y2 = y3 are upper bounded by the corresponding entries in each of
the latter two tables. To conclude Eq. (6), recall that the two events y1 = y2 6= y3
and y1 = y3 6= y2 occur with probability 1/2 each:

SM(h) = T (h− 2) +
1
2

[
2
3
SM(h− 1) +

1
3

(T (h− 1) + Sm(h− 1))
]

+
1
2

[
2
3
T (h− 1) +

1
3

(T (h− 1) + Sm(h− 1))
]
.

Equation (7). Since Evaluate(v) starts with two calls to itself to com-
pute x1, x2, we get the first term 2T (h − 2) on the right hand side. The full
analysis of Eq. (7) is similar to those of Eq. (5) and Eq. (6); we defer it to the
journal article. ut



Theorem 9. T (h), SM(h), and Sm(h) are all in O(αh), where α ≤ 2.64946.

Proof. We make an ansatz T (h) ≤ aαh, SM(h) ≤ b αh, and Sm(h) ≤ c αh, and
find constants a, b, c, α for which we may prove these inequalities by induction.

The base cases tell us that 2 ≤ cα, 3
2 ≤ bα, 1 ≤ a, and8

3 ≤ aα.
Assuming we have constants that satisfy these conditions, and that the in-

equalities hold for all appropriate l < h, for some h ≥ 2, we derive sufficient
conditions for the inductive step to go through.

By the induction hypothesis, Lemma 8, and our ansatz, it suffices to show

a+ 3a+2b+c
3 α ≤ c α2 a+ 2a+b+c

3 α ≤ b α2 2a+ 23a+26b+18c
27 α ≤ aα2 (8)

The choice α = 2.64946, a = 1.007, b = 0.55958 a, and c = 0.75582 a satisfies
the base case as well as all the Inequalities (8), so the induction holds. ut
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[8] Reichardt, B.W., Špalek, R.: Span-program-based quantum algorithm for evalu-
ating formulas. In: Proc. 40th STOC. pp. 103–112. ACM, New York, NY, USA
(2008)

[9] Saks, M., Wigderson, A.: Probabilistic boolean decision trees and the complexity
of evaluating game trees. In: Proc. FOCS ’86. pp. 29–38 (1986)

[10] Santha, M.: On the Monte Carlo boolean decision tree complexity of read-once
formulae. Random Structures and Algorithms 6(1), 75–87 (1995)

[11] Snir, M.: Lower bounds for probabilistic linear decision trees. Combinatorica 9,
385–392 (1990)

[12] Tardos, G.: Query complexity or why is it difficult to separate NPA ∩ coNPA

from PA by a random oracle. Combinatorica 9, 385–392 (1990)


