
Semantical Counting Circuits ∗

Fabrice Noilhan† Miklos Santha‡

Abstract

Counting functions can be defined syntactically or semantically depending on whether they count
the number of witnesses in a non-deterministic or in a deterministic computation on the input. In
the Turing machine based model, these two ways of defining counting were proven to be equivalent for
many important complexity classes. In the circuit based model, it was done for #P , but for low-level
complexity classes such as #AC0 and #NC1 only the syntactical definitions were considered. We give
appropriate semantical definitions for these two classes and prove them to be equivalent to the syntactical
ones. We also consider semantically defined probabilistic complexity classes corresponding to AC0 and
NC1 and prove that in the case of unbounded error, they are identical to their syntactical counterparts.

1 Introduction

Counting is one of the basic questions considered in complexity theory. It is a natural generalization of
non-determinism: computing the number of solutions for a problem is certainly not easier than just deciding
if there is a solution at all. Counting has been extensively investigated both in the machine based and in
the circuit based models of computation.

Historically, the first counting classes were defined in Turing machine based complexity theory. Let us call
a non-deterministic Turing machine an NP-machine if it works in polynomial time, and an NL-machine if it
works in logarithmic space. In the case of a non-deterministic machine, an accepting path in its computation
tree on a string x certifies that x is accepted. We will call such a path a witness for x. The very first, and
still the most famous, counting class called #P was introduced by Valiant [Val79] as the set of counting
functions that map a string x to the number of witnesses for x of some NP-machine. An analogous definition
was later made by Alvarez and Jenner [AJ93] for the class #L: it contains the set of counting functions that
map x to the number of witnesses for x of some NL-machine. These classes contain several natural complete
problems: for example computing the permanent of a matrix is complete in #P, whereas computing the
number of paths in a directed graph between two specified vertices is complete in #L.

The so-called gap classes were defined subsequently to include functions taking also negative values into
the above model. GapP was introduced by Fenner, Fortnow and Kurtz [FFK94] as the difference of two
functions in #P. The analogous definition for GapL was made independently by Vinay [Vin91], Toda [Tod91],
Damm [Dam91] and Valiant [Val92]. This later class has received considerable attention, mostly because it
characterizes the complexity of computing the determinant of a matrix [AO96, ST98, MV97].

Still in the Turing machine model, there is an alternative way of defining the classes #P and #L, based on
the computation of deterministic machines. In the following discussion let us consider deterministic Turing
machines acting on pairs of strings (x, y) where for some polynomial p(n), the length of y is p(|x|). In that
setting we will say that the string y is a witness for x when the machine accepts (x, y). We will call a
deterministic Turing machine a P-machine if it works in polynomial time, and an L-machine if it works in
logarithmic space and it has only one-way access to y. Then #P (respectively #L) can be defined as the
set of functions f for which there exists a P-machine (respectively L-machine) such that f(x) is the number
of witnesses for x. The equivalence between these definitions can be established if we interpret the above

∗This research was supported by the EC thematic network RAND-APX IST-1999-14036 and by the CNRS/STIC grants
No. 01N80/0502 and 01N80/0607. Part of the work of the second author was done while visiting MSRI, Berkeley.

†Université Paris-Sud, LRI, Bât. 490, 91405 Orsay, France. Fabrice.Noilhan@lri.fr
‡CNRS, UMR 8623, Université Paris-Sud, LRI, Bât. 490, 91405 Orsay, France. Miklos.Santha@lri.fr

1

deterministic Turing machines as a normal form, with simple witness structure, for the corresponding non-
deterministic machines, where the string y describes the sequence of choices made during the computation
on x. Nonetheless this latter way of looking at counting has at least two advantages over the previous one.

The first advantage is that this definition is more robust in the following sense. Two non-deterministic
machines, even if they compute the same relation R(x), might define different counting functions depending
on their syntactical properties. On the other hand, if the definition is based on deterministic machines, only
the relation they compute is playing a role. Indeed, two deterministic machines computing the same relation
R(x, y) will necessarily define the same counting function independently from the syntactical properties of
their computation. Therefore, from now on, we will refer to the non-deterministic machine based definition
of counting as syntactical, and to the deterministic machine based definition as semantical.

The second advantage of the semantical definition of counting is that probabilistic complexity classes
can be defined more naturally in that setting. For example PP(respectively PL) is just the set of languages
for which there exists a P-machine (respectively L-machine) such that a string x is in the language exactly
when there are more witnesses for x than non-witnesses. In the case of the syntactical definition, these
probabilistic classes are usually defined via probabilistic Turing machines.

The above duality in the definition of counting exists of course in other models where determinism and
non-determinism are meaningful concepts. This is the case of the circuit based model of computation. Still,
in this model syntactical counting has received considerably more attention than semantical counting. Before
we discuss the reason for that, let us make clear what do we mean here by these notions.

The syntactical notion of a witness for a string x in a circuit family was defined by Venkateswaran [Ven92]
as an accepting subtree of the corresponding circuit on x, which is a smallest sub-circuit certifying that the
circuit’s output is 1 on x. It is easy to show that the number of such witnesses is equal to the value of the
arithmetized version of the circuit on x. Let us stress again that this number, and therefore the counting
function defined by a circuit, depends heavily on the specific structure of the circuit and not only on the
function computed by it. For example if we consider circuit C1 which is just the variable x, and circuit C2

which consists of an OR gate whose both inputs are the same variable x, then clearly these two circuits
compute the same function. On the other hand, on input x = 1, the counting function defined by C1 will
take the value 1, whereas the counting function defined by the circuit C2 will take the value 2.

For the semantical notion of a witness we consider again families whose inputs are pairs of strings of
polynomially related lengths. As in the case of Turing machines, y is a witness for x if the corresponding
circuit outputs 1 on (x, y).

Venkateswaran was able to give a characterization of #P and #L in the circuit model based on the
syntactical definition of counting. His results rely on a circuit based characterization of NP and NL. He
has shown that #P is equal to the set of counting functions computed by uniform semi-unbounded circuits
of exponential size and of polynomial algebraic degree; and #L is equal to the set of counting functions
computed by uniform skew-symmetric circuits of polynomial size. Semantically #P can be characterized as
the set of counting functions computed by uniform polynomial size circuits.

In recent years several low level counting classes were defined in the circuit based model, all in the
syntactical setting. Caussinus et al.[CMTV98] have defined #NC1, and Agrawal et al. [AAD00] have defined
#AC0 as the set of functions counting the number of accepting subtrees in the respective circuit families. In
subsequent works, many important properties of these classes were established [ABL98, AAB+99]. Although
some attempts were made [Yam96], no satisfactory characterization of these classes was obtained in the
semantical setting. The main reason for that is that by simply adding “counting” bits to AC0 or NC1

circuits, we fall to the all too powerful counting class #P [SST95, VW96], and it is not at all clear what
type of restrictions should be made in order to obtain #AC0 and #NC1.

The main result of this paper is such a semantical characterization of these two counting classes. Indeed,
we will define semantically the classes #AC0

CO and #NC1
CO by putting some relatively simple restrictions

on the structure of AC0 and NC1 circuits, and by restricting the way they access counting variables. Our
main result is that this definition is equivalent to the syntactical definition; that is, we have

Theorem 1 #AC0 = #AC0
CO and #NC1 = #NC1

CO.

Put it another way, if standard AC0 and NC1 are seen as “non-deterministic” circuit families in the syntactical
definition of the corresponding counting classes, we are able to characterize their “deterministic” counterparts
which define the same counting classes semantically.

2

Semantically defined counting classes give rise naturally to the corresponding probabilistic classes in the
three usually considered cases: in the unbounded, in the bounded and in the one sided error model. Indeed,
we will define the probabilistic classes PAC0

CO, PNC1
CO, BPAC0

CO, BPNC1
CO, RAC0

CO and RNC1
CO. PAC0

and PNC1 were already defined syntactically via #AC0 and #NC1, and we will prove for this model that
our definitions coincide with previous ones:

Theorem 2 PAC0
CO = PAC0 and PNC1

CO = PNC1.

Other authors have previously studied bounded-error and one-sided error probabilistic circuits [Joh90].
The definitions that were used in that work are also semantical, but they differ from our definitions in that
they impose no restrictions on the way circuits access counting variables. Those classes seem more closely
related to BPP; it is not known if those circuits can be simulated in deterministic polynomial time. In
contrast, the classes we consider in Theorem 2 define small subclasses of P. Still, it remains an open question
if those classes coincide with ours, and we think that this question is worthy of further investigations.

The paper is organized as follows: Section 2 contains the definitions for semantical circuit based counting.
Section 3 exhibits the mutual simulations of syntactical and semantical counting for the circuit classes AC0

and NC1. Theorem 1 is a direct consequence of Theorems 4 and 5 proven here. Finally in section 4 we
discuss the gap and random classes which are derived from semantical counting circuits. Theorem 6 relating
gap classes and counting circuits will imply Theorem 2.

2 Definitions

In this chapter we define counting circuit families which will be used for the semantical definition of a
counting function. Counting circuits have two types of input variables: standard and counting ones. They
are in fact restricted Boolean circuits, where the restriction is put on the way the gates and the counting
variables can be used in the circuits. First we will define the usual Boolean circuit families and the way they
are used to define (syntactically) counting functions, and then we do the same for counting circuit families.
The names “circuit” versus “counting circuit” will be used systematically this way in the rest of the paper.

A bounded fan-in circuit with n input variables is a directed acyclic graph with vertices of in-degree
0 or 2. The vertices of in-degree 0 are called inputs, and they are labeled with an element of the set
{0, 1, x1, x̄1, . . . , xn, x̄n}. The vertices of in-degree 2 are labeled with a bounded AND or OR gate. There
is a distinguished vertex of outdegree 0, this is the output of the circuit. An unbounded fan-in circuit is
defined similarly with the only difference that non input vertices can have arbitrary in-degree, and they are
labeled with unbounded AND or OR gates. A circuit family is a sequence (Cn)∞n=1 of circuits where Cn has
n input variables. It is uniform if its extended connection language [Vol99] is computed in DLOGTIME. An
NC1 circuit family is a uniform, bounded fan-in circuit family of polynomial size and logarithmic depth. An
AC0 circuit family is a uniform, unbounded fan-in circuit family of polynomial size and constant depth. In
fact, in the case of AC0 circuits an equivalent condition of uniformity is to require that the direct connection
language be computable in DLOGTIME [Vol99, Theorem 4.31].

A circuit C is a tree circuit if all its vertices have out-degree 1. A proof tree in C on input x is a connected
subtree which contains its output, has one edge into each OR gate, has all the edges into the AND gates, and
which evaluates to 1 on x. The number of proof trees in C on x will be denoted by #PTC(x). A Boolean
tree circuit family (Cn)∞n=1 computes a function f : {0, 1}∗ → N if for every x, we have f(x) = #PTC|x|(x).
We denote by #AC0 (respectively by #NC1) the class of functions computed by a uniform AC0 (respectively
NC1) tree circuit family.

In order to introduce counting variables into counting circuits and to carry out the syntactical restrictions,
we will use a new type of gate, which we call a SELECT gate. This is actually a small circuit which is built
in some specific way from AND and OR gates. The SELECT gates which use a counting variable to choose
a branch of the circuit will actually replace OR gates which will be prohibited in their general form.

We now define formally the new gate. In the following we will denote single Boolean variables with a
subscript such as v0. Boolean vector variables will be denoted without a subscript, such as v. We will also
identify an integer 0 ≤ s ≤ 2k − 1 with its binary representation (s0, . . . , sk−1).

The bounded fan-in SELECT gate will have 3 arguments. It is defined by SELECT1(x0, x1, u∗) = xu∗ ,
and represented by OR(AND(x0, u∗),AND(x1, u∗)). For every k, the unbounded fan-in SELECTk gate has

3

2k +k arguments and is defined by SELECTk(x0, . . . , x2k−1, u0, . . . , uk−1) = xu. This gate is represented by
the circuit OR2k−1

i=0 (AND(xi, u = i)) where u = i stands for the circuit ANDk−1
j=0 (OR(AND(uj , ij),AND(uj , ij))).

The last gate can easily be extended tom+k arguments form < 2k as SELECTk(x0, . . . , xm−1, u0, . . . , uk−1) =
SELECTk(x0, . . . , xm, 0, . . . , 0, u0, . . . , uk−1). Clearly, SELECTk can be simulated by a circuit of depth O(k)
containing only SELECT1 gates.

We will define recursively unbounded fan-in counting circuits. There will be two types of input variables:
“standard” and “counting” ones.

Definition 1 (Counting circuit)

• If C is a Boolean tree circuit, then C is a counting circuit. All its variables are standard.

• If C0, . . . , C2k−1 are counting circuits and u0, . . . , uk−1 are input variables which are not appearing in
them, then SELECT(C0, . . . , C2k−1, u0, . . . , uk−1) is a counting circuit. The variables u0, . . . , uk−1 are
counting variables.

• If C0, . . . , Ck are counting circuits and they do not have any common counting variables, then AND(C0, . . . , Ck)
is a counting circuit.

Moreover, we require that no input variable can be counting and standard at the same time.

Bounded counting circuits are defined analogously, with k = 1 in all the construction steps.
The set of all standard (respectively counting) variables of a circuit C will be denoted SV(C) (respectively

CV(C). Let C be a counting circuit with n standard variables. The counting function #COC : {0, 1}n 7→ N
associated with C is defined as:

#COC(x) =
{
C(x) if CV(C) = ∅,
#{u | C(x, u) = 1} if CV(C) 6= ∅.

A sequence (Cn)∞n=1 of counting circuits is a counting family if there exists a polynomial p such that for
all n, Cn has n standard variables and at most p(n) counting variables. A family is uniform if its extended
connection language is computed in DLOGTIME. The counting function computed by a circuit family is
defined as #COC|x|(x). Finally, the semantical counting classes are defined as follows: #AC0

CO (respectively
#NC1

CO) is the set of functions computed by a uniform AC0 (NC1) family of counting circuits. Again, for the
uniformity of #AC0

CO we could have asked equivalently that the direct connection language be computable
in DLOGTIME.

Before addressing the power of counting circuits we would like first to point out that they can be extended
to contain counting variables and standard OR and negation gates without increasing their power. Since
this additional possibility will be helpful in our constructions, we will make here this statement precise.

An unbounded fan-in extended counting circuit is a counting circuit with the following additional con-
struction steps to the Definition 1.

• If u is a counting variable then u and u are extended counting circuits.

• If C0, . . . , Ck are extended counting circuits and they do not have any common counting variable then
OR(C0, . . . , Ck) is an extended counting circuit.

• If C is an extended counting circuit, C is an extended counting circuit.

We obtain the definition for the bounded fan-in case by taking again k = 1. We will denote by #AC0
ECO (re-

spectively #NC1
ECO) the set of functions computed by a uniform AC0 (respectively NC1) family of extended

counting circuits. The following theorem shows that extended counting circuits are no more powerful than
regular ones.

Theorem 3 #AC0
ECO = #AC0

CO and #NC1
ECO = #AC0

CO.

4

Proof: Let C be an extended counting circuit. We will show that there exists a counting circuit computing
#COC whose size and depth is of the same order of magnitude. First observe that if u is a counting variable
then u = SELECT(u, 0, 1) and u = SELECT(u, 1, 0). Then one can get rid of the OR gates by recursively
replacing OR(C0, . . . , C2k−1) with SELECT(C0, . . . , C2k−1, u0, . . . , uk−1) where {u0, . . . , uk−1} ∩ (CV(C0) ∪
. . .∪CV(C2k−1)) = ∅. Since C0, . . . , C2k−1 do not have any common counting variables, this does not change
the counting function computed by the counting circuit. Finally observe that negation gates in C can be
pushed down to the literals. For this, besides the standard de Morgan laws, one can use the following equality
whose verification is straightforward:

SELECT(C0, . . . , C2k−1, u0, . . . , uk−1) = SELECT(C0, . . . , C2k−1, u0, . . . , uk−1).

Since all these transformations may increase the size or the depth only by a constant factor, the statement
follows. ut

3 Circuits and counting circuits

3.1 Simulating circuits by counting circuits

We will use a step-by-step simulation. We will define a function φ which maps circuits into counting circuits
by structural recursion on the output gate G of the circuit. The definition will be done for the unbounded
case from which the bounded case can be obtained by replacing the parameter k with 1 in all the construction
steps, and unbounded gates by bounded ones.

Definition 2 (the φ function) If G is a literal, then φ(G) = G and the corresponding variable is stan-
dard. If G is an AND gate whose entries are the circuits C0, . . . , Ck, then let the circuits C ′

i be obtained
from φ(Ci) by renaming counting variables so that ∀i 6= j, CV(C ′

i)∩CV(C ′
j) = CV(C ′

i)∩SV(C ′
j) = ∅. Then

φ(C) = AND(C ′
0, . . . , C

′
k). If G is an OR gate whose entries are the circuits C0, . . . , C2k−1, then the cir-

cuits C ′
i are obtained from φ(Ci) by renaming counting variables so that ∀i 6= j, CV(C ′

i) ∩ CV(C ′
j) =

SV(C ′
i) ∩ SV(C ′

j) = ∅. Let V = CV(C ′
0) ∪ . . . ∪ CV(C ′

2k−1) and Vi = V − CV(C ′
i). Let C ′′

i be de-
fined as AND(C ′

i,Vi), and let u0, . . . , uk−1 be counting variables such that {u0, . . . , uk−1} ∩ V = ∅. Then
φ(C) = SELECT(C ′′

0 , . . . , C
′′
2k−1, u0, . . . , uk−1).

The next two lemmas will prove that the definition of φ is correct and that the functions computed by the
corresponding circuit families are equal.

Lemma 1 If (Cn) is a uniform AC0 (respectively NC1) family of circuits, then (φ(Cn)) is a uniform AC0

(resp. NC1) family of counting circuits.

Proof: Throughout the construction, we assured that the entry circuits of an AND gate do not have
common counting variables. Clearly, no input variable can be counting and standard at the same time.
Since there are a polynomial number of gates and for each gate, we introduced a polynomial number of
counting variables, the number of counting variables is bounded by a polynomial.

The uniformity of (φ(Cn)) in the unbounded case follows easily from the uniformity of (Cn) since we
can work with the uniformity condition requiring that the direct connection language be in DLOGTIME.
In the bounded case, let us suppose that we have an admissible encoding scheme for (Cn) such that the
extended connection language of (Cn) with respect to the encoding is in DLOGTIME. To create an admissible
encoding scheme for (φ(Cn)) with a similar property, we choose gate numbers for the counting variables so
that there exists a DLOGTIME computable bijection between them and the numbers of the OR gates in
(Cn). Whenever a new counting variable has to be introduced at a SELECT gate in (φ(Cn)) we will choose
the one which is in bijection with corresponding OR gate in (Cn). This ensures that no renaming of counting
variables is ever necessary. Let us suppose now that the entries of an OR gate are the circuits C0 and C1.
Then for i = 0, 1, in the circuit C ′′

i we will create a subcircuit structurally similar to C1−i for computing
the conjunction of the counting variables of C1−i. We substitute the constant 1 for the standard variables,

5

and recursively replace the OR gates by AND gates of fan-in three whose third entry is the corresponding
counting variable. The uniformity of (φ(Cn)) now follows from the uniformity of (Cn).

To finish the proof, we should consider the depth of the counting circuits. In the unbounded case, (φ(Cn))
is of constant depth since the SELECT gates which replace the OR gates of the original circuit are of constant
depth. In the bounded case, let k be such that there are at most nk variables in Cn. The depth of Cn is
O(log n). Let us define di = max{depth(φ(D))} where D is a subcircuit of Cn of depth i. Then we have

di+1 ≤ 2 + max(di, dk · log ne)

since the depth increases only when the output gate is an OR. Therefore, (φ(Cn)) is of logarithmic depth.
ut

Lemma 2 For every circuit C, #PTC(x) = #COφ(C)(x).

Proof: We will prove this by structural recursion on the output gate G of C. If G is a literal, then by
definition, circuits and counting circuits define the same counting function. If G is an AND gate then since
for i = 0, . . . , k the variables in CV(C ′

i) are distinct, #COφ(C)(x) =
∏

#COC′
i
(x), which is the same as∏

#COφ(Ci)(x) because C ′
i was obtained from φ(Ci) by renaming the variables. By the inductive hypothesis

and the definition of the proof tree model, this is equal to #PTC(x). If G is an OR gate then since the
counting variables u0, . . . , uk−1 are distinct from the counting variables of the subcircuits, #COφ(C)(x) =∑

#COC′′
i
(x). For every i, #COC′′

i
(x) = #COC′

i
(x) since the AND gate fixes all the counting variables

outside Vi. This is the same value as #COφ(Ci)(x) since C ′
i was obtained from φ(Ci) by renaming the

variables. The statement follows from the inductive hypothesis. ut
The two lemmas imply

Theorem 4 #AC0 ⊆ #AC0
CO and #NC1 ⊆ #NC1

CO.

3.2 Simulating counting circuits by circuits

We will use in the construction circuits computing fixed integers which are powers of 2. For l ≥ 0 the circuit
A2l computing the integer 2l is defined as follows. A1 is the constant 1 and A2 is OR(1, 1). For l ≥ 2, in the
unbounded case, A2l has a topmost unbounded AND gate with l subcircuits A2. In the bounded case, we
replace the unbounded AND gate by its standard bounded simulation consisting of a balanced binary tree
of bounded AND gates. Clearly, the depth of A2l in the bounded case is dlog le+ 1.

We now define a function ψ which maps counting circuits into circuits by structural recursion on the
output gate G of the counting circuit. Again, the definition will be done for the unbounded case, from which
the bounded case can be obtained by replacing the parameter k with 1.

Definition 3 (the ψ function) If G is a literal, then ψ(G) = G. If G is an AND gate whose en-
tries are C0, . . . , Ck, then ψ(C) = AND(ψ(C0), . . . , ψ(Ck)). If G is a SELECT gate whose entries are
C0, . . . , C2k−1, u0, . . . , uk−1 then set V = CV(C0) ∪ . . . ∪ CV(C2k−1) and Vi = V − CV(Ci). We let C ′

i =
AND(ψ(Ci), A2|Vi|) and ψ(C) = OR(C ′

0, . . . , C
′
2k−1).

Again, we proceed with two lemmas to prove the correctness of the simulation.

Lemma 3 If (Cn) is a uniform AC0 (respectively NC1) family of counting circuits, then (ψ(Cn)) is a uniform
AC0 (resp. NC1) family of circuits.

Proof: In the construction, we get rid of the SELECT gates and of the counting variables. We do not
modify the number of standard variables. The only step where we increase the size or the depth of the circuit
is when SELECT gates are replaced. Each replacement introduces at most a polynomial number of gates.
Therefore the size remains polynomial. The uniformity of (ψ(Cn)) follows from the uniformity of (Cn) using
the ideas of Lemma 1 and the fact that circuits A2l are uniform.

In the unbounded case, the depth remains constant since the circuits A2l have constant depth. In the
bounded case, we claim that every replacement of a SELECT gate increases the depth by a constant. This
follows from the fact that depth(A2|Vi|) ≤ depth(C1−i)+1 for i = 0, 1 since a bounded counting circuit with
m counting variables has depth at least dlog(m + 1)e. Therefore the whole circuit remains of logarithmic
depth. ut

6

Lemma 4 For every counting circuit C, #PTψ(C)(x) = #COC(x).

Proof: We will prove this by structural recursion on the output gate G of the counting circuit. In the
proof, we will use the notation of definition 3. If G is a literal, then by definition, C and ψ(C) define the
same counting function. If G is an AND gate then by definition #PTψ(C)(x) =

∏
#PTψ(Ci)(x). Since

for i = 0, . . . , k the subcircuits Ci do not share common counting variables, using the inductive hypothesis
this is equal to #COC(x). If G is a SELECT gate then #PTψ(C)(x) =

∑
2|Vi| · #PTψ(Ci)(x). Also,

#COC(x) =
∑

2|Vi| · #COCi
(x) since the value of variables in Vi do not influence the value of the circuit

Ci. The result follows from the inductive hypothesis. ut

Theorem 5 #AC0
CO ⊆ #AC0 and #NC1

CO ⊆ #NC1.

4 Gap and random classes via semantical counting

In this section, we will point out another similarity between semantical counting circuits and deterministic
Turing machine based counting: we will define probabilistic classes by counting the fraction of assignments
for the counting variables which make the circuit accept. We will prove that in the unbounded error case,
our definitions coincide with the syntactical definition via gap classes. In the bounded error and one sided
error models we could not determine if our definitions and the syntactical ones are identical.

4.1 Gap classes

As usual, for any counting class #C, we define the associated gap class GapC. A function f is in GapC iff
there are two functions f1 and f2 in #C such that f = f1 − f2. The following theorem will be useful for
discussing probabilistic complexity classes.

Theorem 6 Let f be a function in GapAC0 (respectively GapNC1) . Then there is an AC0 (resp. NC1)
uniform family of extended counting circuits (Cn) such that 2 · f(x) = #COC|x|(x)−#COC|x|

(x).

Proof: Let #C be one of the classes #AC0 or #NC1, and let f be a function in GapC. Then there exist
two functions in #C, f1 and f2 such that f = f1 − f2. Fix an entry x of length n. Let us take two uniform
#C families of counting circuits which compute f1 and f2, and let respectively D1 and D2 be the counting
circuits in these families which have n input variables.

Let V1 = CV(D1), V2 = CV(D2) and m =| V1 | + | V2 |. We will suppose without loss of generality that
V1∩V2 = ∅ (by renaming the variables if necessary). We define D′

1 = AND(D1,V2) and D′
2 = AND(D2,V1).

Let t be a counting variable such that t 6∈ V1∪V2 and define Cn = SELECT(D′
1, D

′
2, t). The counting circuit

family (Cn) is uniform and is in C since its depth and size are changed only up to a constant with respect
to the families computing f1 and f2.

We first claim that the counting function associated with Cn, on entry x, computes f1(x)+ (2m− f2(x)).
First, let us observe that #COD′

2
(x) = 2m −#COD′

2
(x). Therefore, since t does not appear in D′

1 and D′
2,

we have #COCn
(x) = #COD′

1
(x)+(2m−#COD′

2
(x)). By the definition of the AND gate, the claim follows.

The number of variables in Cn is m + 1. Therefore, #COCn
(x) − #COCn

(x) = 2 · #COCn
(x) − 2m+1.

By the previous claim, this is 2f(x). ut

4.2 Randomized classes via semantical counting

Another advantage of semantical counting circuits is that probabilistic complexity classes can easily be
defined in this model. The definition is analogous to the definition of probabilistic classes based on Turing
machines’ computation: for a given input, we will count the fraction of all settings for the counting variables
which make the circuit accept. We will define now the usual types of probabilistic counting classes in our
model and compare them to the existing definitions. For a counting circuit C we define PrCO(C(x)) by:

PrCO(C(x)) =
{
C(x) if CV(C) = ∅,
#{v | C(x, v) = 1}/2|CV(C)| if CV(C) 6= ∅.

7

Let now C be one of the classes AC0 or NC1. Then PCCO is the family of languages for which there
exists a uniform C family of counting circuits (Cn) such that x ∈ L iff PrCO(C|x|(x)) > 1/2. Similarly
BPCCO is the family of languages for which there exists a uniform C family of counting circuits (Cn) such
that x ∈ L iff PrCO(C|x|(x)) > 1/2 + ε for some constant ε > 0. Finally, RCCO is the family of languages for
which there exists a uniform C family of counting circuits (Cn) such that if x ∈ L then PrCO(C|x|(x)) ≥ 1/2
and if x 6∈ L then PrCO(C|x|(x)) = 0.

Let us recall that PC was defined [AAD00, CMTV98] as the family of languages L for which there exists a
function f in GapC such that x ∈ L iff f(x) > 0. Theorems 6 and 3 immediately imply that these definitions
coincide with ours, which is exactly the statement of Theorem 2.

Bounded error and one sided error circuit based probabilistic complexity classes were defined in the
literature for the classes in the AC and NC hierarchy [Weg87, Joh90, Coo85]. These are semantical definitions
in our terminology, but unlike in our case, no special restriction is put on the way counting variables are
introduced. To be more precise, let a probabilistic circuit family (Cn) be defined as a uniform family of
circuits where the circuits have standard and probabilistic input variables and the number of probabilistic
input variables is polynomially related to the number of input variables. For any input x, the probability
that such a family accepts x is the fraction of assignments for the probabilistic variables which make the
circuit C|x| accept x. Then the usual definition of BPC and RC is similar to that of BPCCO and RCCO

except that probabilistic circuit families and not counting circuit families are used in the definition.
Branching problems constitute another model for defining low level counting and probabilistic complexity

classes. This possibility was first explored by Caussinus et al. [CMTV98], and further studied by Agrawal
and al. [AAD00]. If we denote by #BR the family of counting functions computed by DLOGTIME-uniform
polynomial size and constant width counting branching programs, then their results can be summarized as
#AC0 ⊂ #BR ⊆ #NC1.

The robustness of our definitions of randomized classes is underlined by the fact that the bounded error
(respectively one-sided error) probabilistic class defined via constant depth and polynomial size branching
programs lies between the classes BPAC0

CO and BPNC1
CO (respectively RAC0

CO and RNC1
CO). This follows

from the inclusions #AC0
CO ⊆ #BR ⊆ #NC1

CO, and from the fact that counting branching programs are
also defined semantically.

As we mentioned already, it is known [SST95, VW96] that if PAC0 is defined via probabilistic and not
counting circuit families, then it is equal to PP. Therefore, it is natural to ask what happens in the other two
error models: is BPCCO = BPC and is RCCO = RC? If not, then we think that since branching programs
form a natural model for defining low level probabilistic complexity classes, the above result indicates that
counting circuits might constitute the basis of the “right” definition.

5 Acknowledgments

We would like to thank the anonymous referees for several remarks and corrections which greatly improved
the presentation of the paper.

References

[AAB+99] E. Allender, A. Ambainis, D.M. Barrington, S. Datta, and H. LêThanh. Bounded depth arith-
metic circuits: Counting and closure. In Proceedings of the 26th International Colloquium on
Automata, Languages and Programming, pages 149–158, 1999.

[AAD00] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. Journal of
Computer and System Sciences, 60(2):395–421, 2000.

[ABL98] A. Ambainis, D.M. Barrington, and H. LêThanh. On counting AC0 circuits with negated constants.
In Proceedings of the 23th ACM Symposium on Mathematical Foundations of Computer Science,
pages 409–417, 1998.

[AJ93] Alvarez and Jenner. A very hard log-space counting class. Theoretical Computer Science, 107:3–30,
1993.

8

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. RAIRO, 30:1–21,
1996.

[Bar89] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

[CMTV98] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation.
Journal of Computer and System Sciences, 57:200–212, 1998.

[Coo85] S.A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64:2–22, 1985.

[Dam91] C. Damm. DET = L#L. Informatik-Preprint, Fachbereich Informatik der Humboldt-Universität
zu Berlin 8, 1991.

[FFK94] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz. Gap-definable counting classes. Journal of Computer
and System Sciences, 48(1):116–148, 1994.

[Joh90] D.S. Johnson. A catalog of complexity classes. Handbook of Theoretical Computer Science, A:67–
161, 1990.

[MV97] M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Chicago
Journal of Theoretical Computer Science, December 1997.

[SST95] S. Saluja, K. V. Subrahmanyam, and M. N. Thakur. Descriptive complexity of #P functions.
Journal of Computer and System Sciences, 50(3):493–505, 1995.

[ST98] M. Santha and S. Tan. Verifying the determinant in parallel. Computational Complexity, 7:128–151,
1998.

[Tod91] S. Toda. Counting problems computationally equivalent to computing the determinant. Tech. Rep.
CSIM 91-07, 1991.

[Val79] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–
201, 1979.

[Val92] L.G. Valiant. Why is boolean complexity theory difficult? London Mathematical Society Lecture
Notes Series, 16(9), 1992.

[Ven92] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM Journal on
Computing, 21:665–670, 1992.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In
Proceedings of the 6th Annual IEEE Conference on Structure in Complexity Theory, pages 270–
284, 1991.

[Vol99] H. Vollmer. Introduction to Circuit Complexity. Springer Verlag, 1999.

[VW96] H. Vollmer and K.W. Wagner. Recursion theoretic characterizations of complexity classes of
counting functions. Theoretical Computer Science, 163(1–2):245–258, 1996.

[Weg87] I. Wegener. The complexity of boolean functions. Wiley - Teubner series in computer science, 1987.

[Yam96] T. Yamakami. Uniform AC0 counting circuits. Manuscript, 1996.

9

