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Abstract

Let f be an integer valued function on a finite setV . We call an undirected graphG(V, E) a neigh-
borhood structurefor f . The problem of finding a local minimum forf can be phrased as: for a fixed
neighborhood structureG(V, E) find a vertexx ∈ V such thatf(x) is not bigger than any value thatf
takes on some neighbor ofx. The complexity of the algorithm is measured by the number ofquestions
of the form “what is the value off on x?” We show that the deterministic, randomized and quantum
query complexities of the problem are polynomially related. This generalizes earlier results of Aldous
[4] and Aaronson [1] and solves the main open problem in [1].

1 Introduction

It follows from the theory of NP-hardness that many optimization problems, such as MAX-2SAT, are diffi-
cult. In the MAX-2SAT problem one looks for a truth assignment which maximizes the number of satisfied
clauses. In the black box version of the problem we assume that f : {0, 1}k → Z is an arbitrary function,
unknown to us, and we want to find a global optimum forf . It is easy to see that to optimizef classically
requires to makeΩ(n) questions to the black box wheren = 2k. Using Grover’s surprisingly efficient
database search algorithm [15], Dürr and Høyer have shown [13] that the quantum version of the same ora-
cle problem has query complexity onlyO(

√
n). This bound is tight [5, 8, 9, 29], and although much better

than the deterministic or randomized complexities, it is still exponential.
A way of relaxing the minimum/maximum finding problem is to look for a solution which is optimal only

in some neighborhood structure. For example, in the (weighted) 2SAT-FLIP problem we wish to find a truth
assignmentx ∈ {0, 1}k such that the sum of the weights of the clauses it satisfies is not less than the same
for any other truth assignment of Hamming distance one fromx. The number of assignments is exponential
(in k), but given any assignment, one can find out in polynomial time if it is locally optimal or not, and in
the negative case produce a neighboring solution with a better value. Studying these new problems has lead
Johnson, Papadimitriou and Yannakakis[18] to introduce the class PLS (Polynomial Local Search). Several
important problems, such as 2SAT-FLIP are known to be complete in this class. Even though PLS is not
harder thanNP ∩ coNP, it is still conjectured to be computationally intractable, at least classically.

What about the black box version of the local optimization problem, whenf is a black box function
and we pay only for the queries? Llewellyn, Tovey and Trick [21] and Llewellyn and Tovey [20] treat the
deterministic case quite exhaustively. Aldous [4] has shown that for any graph of sizen and of maximum
degree∆, the randomized query complexity isO((n∆)1/2). Aaronson [1] has established an analogous
O(n1/3∆1/6) quantum upper bound.

Two classes of specific neigborhood structures have been studied extensively: thek-dimensional hyper-
cube wheren = 2k, and thed-dimensional grid graph, wheren = kd for some fixedd ≥ 2. For the case of
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the hypercube, Llewellyn, Tovey and Trick have shown [21] that to find a local optimum takes deterministi-
cally Θ(2k/k1/2), that is only slightly less thann queries. The randomized and the quantum cases are much
harder to analyze. In the randomized case, Aldous [4] provedthat any algorithm must useΩ(2k/2−o(k))
queries. Aaronson [1] has improved the lower bound toΩ(2k/2/k2), and finally Zhang [30] has closed the
gap by showing a matchingΩ(2k/2k1/2) bound to Aldous’ result. In the quantum case the exact complexity
is Θ(2k/3k1/6), where the lower bound is due again to Zhang [30].

The query complexity of the grid graphs is known exactly except in small dimensions. Indeed, the lower
bound results of Zhang [30] match the respective upper bounds of Aldous and Aaronson, implying that the
randomized complexity isΘ(kd/2) whend ≥ 4, and the quantum complexity isΘ(kd/3) whend ≥ 6. The
randomized lower bound ofΩ(k3/2/(log k)1/2) of Zhang ford = 3 is tight up to a logarithmic factor, as well
as his quantum lower bound ofΩ(k5/3/(log k)1/3) for d = 5. Ford = 4, the best quantum lower bound of
Ω(k6/5), also due to Zhang, leaves a polynomial gap to theO(n4/3) upper bound. The best quantum upper
bound ofO(k1/2 log log k), for d = 2, was obtained by Verhoeven [28]. Recently, Sun and Yao [27] gave
almost optimal lower bounds for the very small dimensional cases. More precisely, in the cased = 2, they
have shown a randomized lower boundΩ(k1−δ), and a quantum lower boundΩ(k1/2−δ), for any constant
δ > 0. Their result for the quantum complexity, whend = 3, is Ω(k1−δ), again for any constantδ > 0.

A central question, explicitly raised by Aaronson in [1], has remained unanswered until now: are the
deterministic, randomized and quantum query complexitiespolynomially related for arbitrary neighborhood
structures? In this article we give an affirmative answer to this question.

The class PLS is a subset of TFNP, the family of total functionproblems from NP, introduced by Meg-
gido and Papadimitriou [22]. Informally, TFNP consists of those NP search problems for which a solution
is guaranteed to exist. Since factorization is a prominent member of TFNP, one can consider this class as a
potential source of problems which might admit efficient quantum algorithms. Other important subclasses
of TFNP are PPP (Polynomial Pigeonhole Principle), and PPAD, the directed version of PPA (Polynomial
Parity Argument). The elements of PPP are problems which by their combinatorial nature obey the pi-
geonhole principle and therefore have a solution. The natural complete problem in PPP is PIGEONHOLE
CIRCUIT, where, given the description of a boolean circuit with n input andn output bits, one looks for
either a pre-image of0n or a collision, that is two distinct input strings yielding the same output. The el-
ements of PPAD are search problems, where the existence of a solution is guaranteed by the fact that in a
directed graph where all vertices have in-degree and out-degree at most 1, if there is a source then there is
another vertex whose in-degree and out-degree adds up to exactly 1. A complete problem in PPAD is for
example the 2-dimensional Sperner’s problem 2D-SPERNER [11].

In the black box setting, polynomial relationships betweenthe deterministic and quantum complexities
of some complete problems have been obtained, in each of the classes PPP, PPAD and PLS. In particular,
the collision lower bound of Aaronson and Shi [2] implies that for the black box analog of PIGEONHOLE
CIRCUIT, and the quantum lower bound of Friedl et al. [14] forthe query complexity of 2D-SPERNER.
The underlying graph of 2SAT-FLIP is the hypercube, thus thequantum query lower bounds of Aaronson [1]
and Zhang [30] imply a polynomial relationship for the querycomplexities of this problem. Our result can
be interpreted as proving an analogous result for every problem in PLS. As a consequence, if an efficient
quantum algorithm is ever to be found for a problem in PLS, it must exploit its specific structure.

2 Results

For a positive integern we denote{1, . . . , n} by [n]. An oracle problemis a relationR ⊆ S × T whereT
is a finite set andS ⊆ Σ[n] for some finite setΣ. The input is a functionf ∈ S, hidden by an oracle, such
thatf(x), wherex ∈ [n], can be accessed via a query parameterized byx. The output is somet ∈ T such
that (f, t) ∈ R. A special case is thefunctional oracle problemwhen the relation is given by a function
A : S → T , the (unique) output is thenA(f). We say thatA is total if S = Σ[n].

In the query model of computation each query adds one to the complexity of an algorithm, but all other
computations are free. The state of the computation is represented by three registers, the query register
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x ∈ [n], the answer registera ∈ Σ, and the work registerz. The computation takes place in the vector space
spanned by all basis states|x〉|a〉|z〉. In thequantum query modelintroduced by Beals, Buhrman, Cleve,
Mosca and de Wolf [8] the state of the computation is a complexcombination of all basis states which has
unit length in the norml2. In the randomized model it is a non-negative real combination of unit length in
the norml1, and in the deterministic model it is always one of the basis states.

The query operationOf maps the basis state|x〉|a〉|z〉 into the state|x〉|(a + f(x)) mod |Σ|〉|z〉,
where we identifyΣ with residue classesmod |Σ|. Non-query operations do not depend onf . A k-
query algorithmis a sequence of(k + 1) operations(U0, U1, . . . , Uk) whereUi is unitary in the quan-
tum and stochastic in the randomized model, and it is a permutation in the deterministic case. Initially
the state of the computation is set to some fixed value|0〉|0〉|0〉, and then the sequence of operations
U0, Of , U1, Of , . . . , Uk−1, Of , Uk is applied. A quantum or randomized algorithmǫ-computesR for some
fixed constantǫ < 1/2 if the observation of the appropriate last bits of the work register yields somet ∈ T
such that(f, t) ∈ R with probability at least1 − ǫ. ThenQǫ(R) (resp.Rǫ(R)) is the smallestk for which
there exists ak-query quantum (resp. randomized) algorithm whichǫ-computesR. In the case of determin-
istic algorithms exact computation is required, and the deterministic query complexityD(R) is defined then
analogously. We haveD(R) ≥ Rǫ(R) ≥ Qǫ(R).

Beals et al. [8] have shown that in the case of total functional oracle problems the deterministic and
quantum complexities are polynomially related, and the gapis at most a degree 6 polynomial. No such rela-
tion is known for relations or for partial functional problems, in fact for several partial functional problems
exponential quantum speedups are known [12, 24].

Throughout the paperG(V,E) will be an undirected graph with vertex setV and edge setE, and we
assume thatV = [n]. In this paper we are concerned with the following oracle problem:

Local Search forG (in notation,LSG):
Oracle Input:A function f : V → Z.
Output: An x ∈ V such that for everyy ∈ V with {x, y} ∈ E we havef(x) ≤ f(y).

We have chosenZ as the range of the input functions only for presentational convenience, it could be
restricted to[n] without loss of generality. Also note that graphG is known to us, and we treat it as a
parameter. The problem as specified is a relation. However, an important special case is functional local
search, when only inputs with a guaranteed unique local (andtherefore global) minimum are considered.
We call such inputsunimodal, they will play an important role in our considerations.

Our main result is analogous to the statement of Beals et al. [8] for local search: the quantum and
deterministic query complexities are polynomially related.

Theorem 1 (Main Theorem). For every graphG, we haveD(LSG) ∈ O(Qǫ(LSG)19).

We will prove our main theorem by showing that both the classical and the quantum query complexities
of a graphG are polynomially related to three parameters: its maximum degree, the logarithm of its size
and its separation number. In section 3 we present a deterministic algorithm forLSG whose complexity is
polynomial in these parameters (Theorem 2). The degree lower bound for the quantum complexity which
follows trivially by a reduction from Grover’s search (Fact 1), and the log-size lower bound (Theorem 3)
are presented in section 4. The crucial lower bound involving the separation number (Theorem 4) is the
subject of section 5, where we also prove our main theorem.

3 Local Search and Graph Parameters

Let G(V,E) be a graph with vertex setV and edge setE. If G′(V ′, E′) is a subgraph ofG then we write
G′ ≤ G. We denote the subgraph ofG spanned by a vertex setV ′ ⊆ V with G(V ′). The degree of a vertex
in G is degG x. We denote the maximum degree ofG with ∆(G) or simply∆ if G is clear from the context.
The vertex boundary of a setH ⊆ V in G is

∂GH = {x ∈ V \ H | (∃y ∈ H) {x, y} ∈ E}.
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If H = {x} then we denote∂GH by ∂Gx. We define now our most important graph parameter.

Definition 1 (Separation number). Theseparation numberof a graphG(V,E) is

s(G) = max
H⊆V

min
S⊆H,

|H|/4≤|S|≤3|H|/4

|∂G(H)S| (1)

The separation number is one of the many graph parameters that measure expansion and connectivity of
a graph, and it is the same as the treewidth within a constant factor.

We now give a deterministic algorithm which is a refinement ofthe divide and conquer procedure of
Llewellyn, Tovey and Trick [21] which iteratively splits the graph into pieces by querying a separator set.
The refinement consists of the specific choice of the separator set which makes explicit the connection
between the complexity of the problem and the parameters we are interested in. For the sake of completeness
we prove here the correctness of the algorithm and analyze its complexity in the three parameters. For every
H ⊆ V let H∗ be the subset ofH which minimizes|∂G(H)S| whenS is a subset ofH of size between
|H|/4 and3|H|/4.

Algorithm 1 Deterministic algorithm forLSG

H := V , S := ∅, u := any vertex ofG.
while output not founddo

Query{u} ∪ ∂G(H)H
∗ to find the vertexm which minimizesf in this set, query∂G(H)m

if f(m) ≤ f(v) for all v ∈ ∂G(H)m then
output := m

else
S := S ∪ ∂G(H)H

∗, let w be the vertex which minimizesf in ∂G(H)m
u := w
Let H be the connected component ofH \ ∂G(H)H

∗ which containsu
end if

end while

Theorem 2. Algorithm 1 correctly solvesLSG and has query complexityO(log n(∆(G) + s(G))).

Proof. By induction one sees that at the beginning of each iteration,

∂Gv ⊆ S ∪ ∂G(H)v for all v ∈ H, (2)

f(u) ≤ f(s) for all s ∈ S. (3)

The algorithm always terminates since in each iteration|H| decreases, and ifH = {u} then it outputsu.
When the outputm is produced then by definitionf(m) ≤ f(v) for all v ∈ ∂Hm. Also f(m) ≤ f(u),
andf(m) ≤ f(v) for all v ∈ S by (3). Thereforem is a local minimum off in G by (2). The number of
iterations isO(log n) since|H| always decreases by a factor of at least 4/3, and inside each loop the number
of queries is at most∆(G) + s(G) + 1.

4 Log-size lower bound

The maximum degree and thelog n lower bounds are obtained by reduction: the first one, very simple, from
Grover’s search, the second one, more sophisticated, from ordered search.

Fact 1 (Aaronson [1]). LetG(V,E) be connected with maximum degree∆. ThenQǫ(LSG) ∈ Ω(
√

∆).
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In the ordered search reduction we will use unimodal functions, like Aaronson [1], which arise from
paths rooted at a fixed node ofG. We define now the generic construction of functions generated by paths.
A directed pathP in G is a sequence of vertices(p0, p1, . . . , pl) (with possible repetitions) such that for
every0 ≤ i ≤ l − 1 nodepi is connected to nodepi+1 in G. In this article we do not consider undirected
paths. LetG be a connected graph, and let us denote bydistG(x, y) the length of the shortest path inG
between verticesx andy.

Definition 2 (Path function). Thepath functionfP : V → Z is defined by

fP (x) =

{

−j if pj = x and pk 6= x for k > j
distG(p0, x), if ∀j, pj 6= x.

Observe that path functions are always unimodal, and that they have their minimum in the last vertex of
the path.

Reductions between black box problems are regularly used toprove quantum lower bound. In these
reductions usually a single query to the oracle of the reduced problem simulates a query of the problem to
which the reduction is made. However, in more sophisticatedcases, several queries can be permitted for the
simulation. We make this precise in the following definitionand lemma.

Definition 3. A functional oracle problemA : S1 → T with S1 ⊆ Σ
[n]
1 is k-query reducibleto a functional

oracle problemB : S2 → T with S2 ⊆ Σ
[m]
2 if the following two conditions are satisfied:

∃α : S1 → S2 such that∀f ∈ S1, A(f) = B(α(f));

∃γ1, . . . , γk : [m] → [n] and γ : [m] × Σk
1 → Σ2 such that

∀f ∈ S1, x ∈ [m], (α(f))(x) = γ(x, f(γ1(x)), . . . , f(γk(x)))

Lemma 1. If A is k-query reducible toB thenQǫ(B) ≥ Qǫ(A)/2k.

Proof. Let B be a query algorithm which solvesB with c queries. We show that there exists a query
algorithmA which solvesA with 2kc queries. The algorithmA simulatesB, and in its non-query steps it is
identical to it. For simulating the query stepsA will use2k additional registers. WhenB makes a query step
involving the basis state|x〉 thenA computesγ1(x), . . . , γk(x) in the firstk additional registers, queries the
oraclek-times to getf(γ1(x)), . . . , f(γk(x)) in the nextk registers, computesα(f)(x) in the oracle answer
register, and finally erases the contents of the additional registers.

In fact, Lemma 1 remains also valid with weaker conditions onthe reduction. For example, one could
authorize that the queries toα(f) are computed by a quantum query algorithm which can makek queries
to f . The reduction of Buhrman and de Wolf [10] of the parity problem to ordered search indeed uses this
more general notion. However, for our purposes the more restricted reduction is sufficient.

Theorem 3. LetG(V,E) be a connected graph onn vertices. ThenQǫ(LSG) ∈ Ω(log n).

Proof. Let S1 = {fy : y ∈ [n]}, wherefy : [n] → {0, 1} is defined by

fy(x) =

{

0 if x ≤ y
1 otherwise.

The ordered search problem is defined byA(fy) = y, and Høyer, Neerbek and Shi [16] have shown
that Q(A) = Ω(log n). We will show thatA is 2-query reducible toLSG, and then the result follows
from Lemma 1. LetV = [n], and consider any depth first search traversal ofG. Let dfn be the depth-
first numbering of the vertices (that is the vertices are numbered in preorder). To simplify the description,
without loss of generality we will suppose thatdfn(x) = x for every vertexx. This means for example that
vertex 1 is the root of the depth first search traversal. Letdesc(x) be the number of descendants ofx in the
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search. By definition we assume thatx is an ancestor and descendant of itself. It is well known [3] that for
every vertexy, vertexx is an ancestor ofy if and only if

x ≤ y < x + desc(x). (4)

For y ∈ [n], let Py be the path from vertex 1 to vertexy in the above dfs tree ofG. By the definition of the
path function,

fPy(x) =

{

−distG(1, x) if x is on the path from 1 toy
distG(1, x) otherwise.

The unique local minimum offPy is in the vertexy, thereforeLSG(fPy) = y, and for the purpose of the
reduction we can setS2 = {fPy : y ∈ [n]} andα(fy) = fPy . To determine the answer of the oracleα(fy)
on queryx, using the oraclefy, it has to be decided ifx is an ancestor ofy. By (4) this happens exactly
whenfy(x) = 0 andfy(x + desc(x)) = 1. Thus if we setγ1(x) = x, γ2(x) = x + desc(x) and

γ(x, b1, b2) =

{

−distG(1, x) if b1 = 0 and b2 = 1
distG(1, x) otherwise,

thenfPy(x) = γ(x, fy(γ1(x)), fy(γ2(x))), and the reduction is completed.

5 Quantum Query Complexity and Graph Expansion

The purpose of this section is to prove the following lower bound.

Theorem 4. Let G = (V,E) be a connected graph onn vertices with maximum degree∆ and separation
numbers. ThenQǫ(LSG) ∈ Ω((s/∆)1/8(log n)−1).

Proof. The statement is a direct consequence of Theorems 6 and 7 below.

Beside the reduction method, lower bound proofs in the quantum query model fall into two main cate-
gories: they are obtained either by the degree argument (thepolynomial method) of Beals at al. [8] or by
the quantum adversary method of Ambainis [5]. Aaronson [1] uses the latter, and our paper closely follows
his proof scheme. Like in [1], all our sample functions will be path functions generated by paths rooted at
a fixed node ofG (Aaronson calls these paths snakes). Since we need to present an argument that works
for general graphs we invented some useful lemmas about the structure of expander graphs. Another place
where we improve on [1] is that we almost entirely eliminate the problem with self intersecting paths. To
do so we use a more general version of the quantum adversary method explained in the next section.

5.1 Quantum Adversary Method

The quantum adversary method of Ambainis [5] has several known extensions. These include the spec-
tral method of Barnum, Saks and Szegedy [7], the weighted adversary method of Ambainis [6], the strong
weighted adversary method of Zhang [31], and the Kolmogorovcomplexity method of Laplante and Mag-
niez [19]. All these methods were proven to be equivalent byŠpalek and Szegedy [26]. Recently, an even
more powerful method using negative weights has been proposed by Høyer, Lee anďSpalek [17].

The spectral method, that expresses the bound in terms of ratios of eigenvalues of matrices, was derived
from the characterization of quantum query complexity as a semidefinite feasibility problem [7]. Though
the spectral method has been stated only for Boolean function, its generalization to the non-Boolean case is
quite straightforward, as pointed out in [25] and [26]. We will need the more general form of the method,
that we state here. For an entry-wise non-negative symmetric matrixM , let us denote its largest eigenvalue
by λ(M).
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Theorem 5 (Spectral Method). LetA : S → T be a functional oracle problem whereS ⊆ Σ[n]. LetΓ be
an arbitrary S × S nonnegative symmetric matrix that satisfiesΓ[f, g] = 0 wheneverA(f) = A(g). For
x ∈ [n] let Γx be the matrix:

Γx[f, g] =

{

0 if f(x) = g(x)
Γ[f, g] if f(x) 6= g(x).

Then:

Qǫ(A) ∈ Ω

(

λ(Γ)

max1≤x≤n λ(Γx)

)

.

5.2 Path Arrangement

Let G(V,E) be a connected graph. For a directed pathP = (p0, p1, . . . , pl) we set

start(P )
def
= p0; end(P )

def
= pl; length(P )

def
= l.

We callp0 the starting point ofP andpl the end point. All paths other than the empty path have a starting
and an end point (which may coincide). For a pathP we denote byP⊖ the path that we obtain by deleting
both the starting and end points fromP . Formally,P⊖ = (p1, . . . , pl−1). Note that ifP is just an edge
(p0, p1) thenP⊖ = ǫ, the empty path. For pathsP = (p0, . . . , pl) andQ = (q0, . . . , ql′) with q0 = pl their
join is PQ = (p0, . . . , pl, q1 . . . , ql′). A path issimpleif no vertex occurs more than once in it.

We often view a pathP as a multi-set. For a pathP andx ∈ V let mult(x, P )=|{j | pj = x}|, that is
the number of timesP goes throughx, and letmult(P ) = maxx∈V mult(x, P ).

j

N

N

i

j

Ni

N

(a) (b)

Figure 1: Figure (a) shows a set of three inter-cluster pathsbetweenNi andNj . Figure (b) shows treesTi

andTj. With thicker lines it also shows the edges of an intra-cluster path withinTi and another one within
Tj .

Definition 4 (Path arrangement and Inter/Intra-cluster path). A path arrangementfor G with parameter
m is a set of connected, disjoint subsetsN1, . . . ,Nm ⊆ V with some fixed spanning treesTi of G(Ni)
together with a set of directed paths{Ei(j, k)}1≤i,j 6=k≤m (1 ≤ i, j 6= k ≤ m means1 ≤ i, j, k ≤ m with
the additional condition thatj 6= k) such that

1. Ei(j, k) ∩ Nj = {start(Ei(j, k))} for 1 ≤ i, j 6= k ≤ m;

2. Ei(j, k) ∩ Nk = {end(Ei(j, k))} for 1 ≤ i, j 6= k ≤ m;

3. Ei(j, k)⊖ ∩ Ei′(j, k)⊖ = ∅ for 1 ≤ i 6= i′, j 6= k ≤ m;
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4. Ei(j, k) is simple for1 ≤ i, j 6= k ≤ m.

In the path arrangement the setsNi are called theclustersfor 1 ≤ i ≤ m. The pathsEi(j, k) are called
inter-cluster pathsandi is theenumerator numberof Ei(j, k). For x, y ∈ Ni, the intra-cluster pathRi(x, y)
is defined as the shortest path fromx to y in Ti.

Definition 5 (Path arrangement parameter). Thepath arrangement parameterm(G) of G is the maximal
m such that there is path arrangement forG with parameterm.

To bring an example to the above definitions consider the two dimensional
√

n by
√

n grid, G2,n with
vertex setV = I × J (we suppose thatn is a square number,I andJ are paths of length

√
n). Two vertices

in V are connected if either theirI coordinates are the same and theirJ coordinates are connected or theirJ
coordinates are the same and theirI coordinates are connected. We create a path arrangement. The clusters
will be the sets{i} × J for all i ∈ I. Clearly, every cluster induces a connected graph inG2,n. For two
clusters,{i} × J and{i′} × J , definePi,i′ as the unique shortest path connectingi andi′ in I, and consider
the collection of paths

Ej(i, i
′) = Pi,i′ × {j},

wherej runs through all elements ofJ . These paths will serve as inter-cluster paths in between the two
clusters. It is easy to check that all conditions of Definition 4 are satisfied and thereforem(G2,n) ≥ √

n.
From Fact 2 below it follows thatm(G2,n) ≤ 2

√
n+ 1, and therefore we conclude thatm(G2,n) ∈ Θ(

√
n).

Another example is the complete graph,Kn on the vertex setV with |V | = n. Here the individual
nodes can be defined as the clusters and the inter-cluster paths in between any two nodesv,w ∈ V are
Ei(v,w) = (v,w), the same for all1 ≤ i ≤ n. The disjointness property for these paths holds, since
(v,w)⊖ = ∅. We conclude thatm(Kn) = n.

Fact 2. m(G) ≤
√

n∆ + 1 for all graphsG.

Proof. Let a be the size of the smallest cluster:a = min1≤j≤m|Nj | with a = |Nj0|. We show that
a∆ ≥ m − 1. Indeed, notice thata∆ is an upper bound on the size of the edge-boundary ofNj0 . Now,
either there is another cluster,Nj1 , to which there is no direct edge fromNj0 , and so them disjoint inter
cluster paths fromNj0 to Nj1 requirem outgoing edges fromNj0, or Nj0 has a direct edge to each other
cluster, which requires at leastm − 1 outgoing edges. Also, triviallya(m − 1) ≤ am ≤ n (this is the only
place where we use thatNj0 is the smallest). In summary,m − 1 ≤ a∆ andm − 1 ≤ n/a. We get now
m − 1 ≤

√
n∆ by multiplying the above two inequalities, and taking the square root of both sides.

5.3 Separation Number versus Path Arrangement Parameter

We will show that the path arrangement parameter,m(G) is in Ω(
√

s/∆). We start with some easy lemmas.

Definition 6. A graphG(V,E) is a (n1, n2, λ)-expanderif for every subsetH ⊆ V (G) such thatn1 <
|H| ≤ n2, we have that|∂GH| ≥ λ|H|.

Lemma 2. Every connected graphG on n vertices which is an(n/4, 3n/4, λ)-expander has an induced
subgraphG′ with at leastn/2 vertices which is a(0, n/2, λ)-expander.

Proof. ForX ⊆ V we denote the subgraph ofG induced onX by G(X). Assume that the statement of the
lemma is false. Then with everyX ⊆ V such that|X| ≥ n/2 we can associate a non-emptỹX ⊆ X with
the property that|X̃| ≤ n/2 and|∂G(X)X̃| < λ|X̃|.

DefineX0 = V andXi = Xi−1 \ X̃i−1 for i ≥ 1. Since|Xi| is strictly smaller than|Xi−1| there has to
be an indexk such that|Xk| ≥ n/2 but |Xk+1| < n/2. We define

Y =

{

V \ Xk+1 if |V \ Xk+1| ≤ 3n/4,
V \ Xk otherwise.
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~
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Figure 2: Figure (a) shows that ifG is not an expander with respact to sets smaller than|V |/4, we can
iteratively split off the bad-behaving sets. In the figure the black region represents the vertex-boundary of
the union. The figure helps to understand Equation (5), whichin words says that the union of bad-behaving
sets is also bad-behaving. Figure(b) helps to understand the choice forY . We could have selected any index
j such that the size ofY = X̃0

.∪ . . .
.∪ X̃j is between|V |/4 and3|V |/4.

Since|X̃k| ≤ n/2, in both cases it holds thatn/4 < |Y | ≤ 3n/4. Therefore|∂GY | ≥ λ|Y |. By another
argument we show that the boundary ofY is small, thus getting a contradiction. Suppose thatY = V \Xk,
the other case is similar. Notice that

Y = X̃0
.∪ X̃1

.∪ · · · .∪ X̃k−1,

where
.∪ denotes the disjoint union. Therefore

∂GY = (∂GY ) ∩ Xk ⊆
k−1
⋃

i=0

((∂G(Xi)X̃i) ∩ Xk) ⊆
k−1
⋃

i=0

∂G(Xi)X̃i. (5)

By our assumption the last set has size less thanλ|X̃0|+· · ·+λ|X̃k−1| = λ|Y |, which is a contradiction.

Lemma 3. For every connected graphG(V,E) and for every1 ≤ k ≤ |V | we can find at least⌊|V |/k⌋
vertex disjoint connected subgraphs ofG, each with at leastk/∆ vertices.

Proof. SetN0 = ∅. Let l be the smallest integer such that(l + 1)k > |V |, observe thatl = ⌊|V |/k⌋. It is
enough to findN ⊆ V such thatG(N) andG(V \ N) are connected andk/∆ ≤ |N | ≤ k. Indeed, then by
induction we can pickNi for i = 1, . . . , l such thatNi is connected, has size betweenk/∆ andk, and is a
subset ofV \ ∪i−1

j=1Nj.
We now prove the existence of the aboveN . If k = n then we just setN = V . Otherwise letT0 be a

spanning tree ofG with root r0. Let r1 be the child ofr0 which roots the subtreeT1 of T0 with the greatest
number of nodes among all children ofr0. Similarly, letr2 be the child ofr1 which roots the subtreeT2 of
T1 with the greatest number of nodes among all children ofr1, etc, until we getTs, a tree with|Ts| ≤ k.
The size ofTs−1 is strictly greater thank, therefore the size ofTs is at least(|V (Ts−1)| − 1)/∆ ≥ k/∆.
ThusV (Ts) is a good choice forN .

Lemma 4. LetG(V,E) be a(0, |V |/2, λ)-expander, and letN1,N2 ⊆ V be disjoint subsets, both of size at
leastk. Then there are at leastm = λk pathsE1, . . . , Em such that

1. Ei ∩ N1 = {start(Ei)} for 1 ≤ i ≤ m;

2. Ei ∩ N2 = {end(Ei)} for 1 ≤ i ≤ m;

9



3. E⊖
i ∩ E⊖

i′ = ∅ for 1 ≤ i 6= i′ ≤ m;

4. Ei is simple for1 ≤ i ≤ m.

Proof. If there is an edge(v,w) with v ∈ N1, w ∈ N2 then we can setEi = (v,w) for 1 ≤ i ≤ m.
Otherwise contractN1 into a single noden1 andN2 into a single noden2. Assume that there are no paths
in G that satisfy 1-4. Then there are no paths satisfying 1-3 either. It follows that in the contracted graph,
G′, one cannot findm vertex-disjoint paths that connectn1 andn2. This, in turn, by Menger’s theorem [23]
implies that there is a vertex cutC ⊆ V of size smaller thanm which separatesn1 andn2. Let C ′

1 be the
component ofG′ that containsn1 andC ′

2 be the component ofG′ that containsn2, and let the expanded
version of these components beC1 andC2. Without loss of generality we can assume thatk ≤ |C1| ≤ n/2,
which leads to a contradiction, since∂GC1 ⊆ C, |C| < m = λk.

Theorem 6. Let G be a connected graph with maximum degree∆, separator numbers and path arrange-
ment parameterm. Then we havem ≥ max{⌊

√

s/2∆⌋, 1}.

Proof. If s < 2∆ then the statement of the theorem is trivially true. Otherwise, letH be the subset ofV
for which the right hand side of (1) is maximized. Thens = s(G(H)), which implies thatG(H) is an
(|H|/4, 3|H|/4, s/|H|)-expander. By Lemma 2 there is anH ′ ⊆ H such that|H ′| ≥ |H|/2 andG(H ′) is
an(0, |H|/2, s/|H|)-expander. We shall construct the required path arrangement insideG(H ′). The graph
G(H ′) is connected since all of its components have to be(0, |H|/2, s/|H|)-expanders, and this is possible
only if G(H ′) has a single component. In order to use Lemma 3, we setk = |H ′|

√

2∆/s. Observe thatk ≤
|H ′| sinces ≥ 2∆. Also, k ≥ 1 since the size of the vertex boundary of a any subset ofH ′ of size|H ′|/2
is at leasts. By Lemma 3 we find clustersN1, . . . ,N⌊

√
s/2∆⌋

such that|Ni| ≥ |H ′|/
√

s∆/2 andG(Ni)

is connected for1 ≤ i ≤ ⌊
√

s/2∆⌋. Here we used that∆(G(H ′)) ≤ ∆. To finish the proof now all we
need is to construct the set of intra-cluster paths. ObservethatG(H ′) is also an(0, |H ′|/2, s/|H|)-expander
since |H ′| ≤ |H|. Therefore by Lemma 4 betweenNi andNj we can find(|H ′|/

√

s∆/2) × (s/|H|)
external paths. Since|H ′| ≥ |H|/2, the previous expression is at least

√

s/2∆. We have thus constructed a
path arrangement with parameter⌊

√

s/2∆⌋, and therefore, according to Definition 5 the path arrangement
parameter ofG is at least⌊

√

s/2∆⌋.

5.4 The Adversary Matrix

Let G(V,E) be a connected graph, we want to define our adversary matrix for LSG. We fix a path arrange-
ment with parameterm = m(G) for which we use the notations of Definition 4. We seta =

√
m/10

for the rest of the section. To everyr = r0 . . . r2a ∈ [m]2a+1 with r0 = 1, we define a directed path
P (r) = P (r, 0)P (r, 1) . . . P (r, 2a − 1) which will be the join of2a paths. Even indices will name clus-
ters, odd indices will name enumerator numbers of intra-cluster paths. We fix an arbitrary starting node
xstart ∈ N1, and for0 ≤ i ≤ 2a − 1 we define:

P (r, i) =







R1(xstart, start(P (r, 1))) if i = 0
Eri

(ri−1, ri+1) if i is odd
Rri

(end(P (r, i − 1))), start(P (r, i + 1))) if i is even and2 ≤ i ≤ 2a − 2.

For r andr′ let div(r, r′) be the firsti such thatri 6= r′i. We set

Γ′[r, r′] =

{

mdiv(r,r′) if div(r, r′) is odd andr2a 6= r′2a

0 otherwise.

Observe that the rows (and columns) ofΓ′ are indexed by sequences and not functions onV as required.
This is just a formal matter. With every sequencer we associate the pathP (r) and with every such path
we associate the path functionfP (r) as in Section 4. As an index,r really corresponds to the function
fP (r). We have chosen a weight function with the property that if wepick a pair of paths with probability
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that is proportional to the weight of the pair, then the uncertainty about where the members of this pair
will separate from each other is the largest. This uncertainty is maximized when the probability that the
separation happens at an (odd) index between1s and2a − 1 is uniformly 1/a. The exponential increase of
the weight function indiv(r, r′) ensures exactly this.

The matrixΓ′ is not yet the adversary matrix we need, we have to zero out some rows and columns that
correspond to “bad sequences.” Let us recall thatmult(x, P (r)) is the number of times the pathP (r) goes
through the vertexx. A sequencer is repetitiveif there are indices0 ≤ i 6= j ≤ 2a such thatri = rj , it
is criss-crossingif there is anx ∈ V such thatmult(x, P (r)) > 100 log |V |. Finally r is bad if it is either
repetitive or criss-crossing otherwise it isgood. We define our adversary matrix as:

Γ[r, r′] =

{

Γ′[r, r′] if both r andr′ are good
0 otherwise.

Theorem 7. For every connected graphG onn vertices, and with path arrangement parameterm, we have
Qǫ(LSG) ∈ Ω(m1/4/ log n).

Proof. The statement is an immediate consequence of the spectral method (Theorem 5), and Lemmas 5 and
6 below.

5.4.1 Eigenvalue Lower Bound

Recall thatΓ is the adversary matrix,m is the path arrangement parameter ofG, anda =
√

m/10.

Lemma 5. λ(Γ) ∈ Ω(am2a+1).

Proof. The matrixΓ hasm2a rows. In order to lower boundλ(Γ) we simply use the entry-sum estimate,
that isλ(Γ) ≥ ∑

r,r′ Γ[r, r′]/m2a. First we estimate the entry-sum ofΓ′. Since all rows and columns ofΓ′

have the same sum, we will sum up the elements in an arbitrary row indexed withr. In that row, we group
the columns together according todiv(r, r′), and get

∑

r′

Γ′[r, r′] =
a−1
∑

l=0

∑

r′:div(r,r′)=2l+1

Γ1[r, r
′].

For the group of columns indexed withr′ such thatdiv(r, r′) = 2j + 1, the corresponding entries of our
row sum up tom2j+1(m − 1)m2a−2j−2(m − 1). Therefore we obtain

∑

r′:div(r,r′)=2l+1

Γ′[r, r′] = (1 + o(1))m2a+1. (6)

Sincediv(r, r′) can havea different values, this implies the estimation
∑

r′

Γ′[r, r′] = (1 + o(1))am2a+1. (7)

We now upper bound the number of bad rows and columns. The number of non-repetitive sequencesr
is (m − 1) . . . (m − 2a) ≥ (m − 2a)2a. With our choice ofa =

√
m/10, this is approximatelye−1/25m2a

which is greater than0.9m2a.
Pick now randomly a non-repetitiver. We claim that for a fixedx, the probability thatmult(x, P (r)) ≥

100 log n + 1 is upper bounded by
(

a

100 log n

)

1

m(m − 1) . . . (m − 100 log n)
. (8)

To see that, fix the even indices anyhow and condition on this fixing. There can be only at most one
even index, say2q, such thatx ∈ P (r, 2q). There has to be100 log n odd indices2i + 1, for which
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x ∈ P (r, 2i + 1)⊖ since inter-cluster paths are simple. However, once the even indices are fixed, we get
an independence between paths belonging to different odd indices, except that because of the non-repetitive
nature ofr their enumerator number should be different. (Note that forevery1 ≤ j 6= k ≤ m, where
x 6∈ Nj ∪ Nk there is at most onei such thatx ∈ Ei(j, k) by property 3 of Definition 4.) From this the
above formula follows.

The expression in (8) is easily upper-bounded byo(1/n). Applying the union bound over allx ∈ V , we
get that for a random non-repetitiver the probability thatmult(P (r)) ≥ 100 log n + 1 is o(1). We got that
that the number of good rows (and columns) is at least0.9m2a(1 − o(1)). Since all rows and columns of
Γ have the same sum, we conclude that taking out0.1m2a(1 + o(1)) rows and0.1m2a(1 + o(1)) columns
decreases the entry sum ofΓ by at most a factor of0.2 + o(1). Thus

λ(Γ) ∈ Ω(am2a+1).

5.4.2 Eigenvalue Upper Bound

Recalling from Theorem 5 the definition ofΓx, we have forx ∈ V,

Γx[r, r
′] =

{

Γ[r, r′] if fP (r)(x) 6= fP (r′)(x)

0 otherwise.

As always,m is the path arrangement parameter ofG, anda =
√

m/10.

Lemma 6. λ(Γx) ∈ O(
√

am2a+1 log n) for all x ∈ V .

Proof. In order to give an upper bound onλ(Γx), we decomposeΓx asΓx =
∑100 log n

j=0 Γ
(j)
x where

Γ(j)
x [r, r′] =

{

Γx[r, r′] if min{mult(x, P (r)),mult(x, P (r′))} = j
0 otherwise.

Such a decomposition is possible since the entries corresponding to criss-crossing sequences are zero inΓ,
and therefore inΓx.

We will use two known properties of theλ function. Firstly, it is sub-additive, that isλ(M1 + M2) ≤
λ(M1) + λ(M2). Secondly, according to a generalization of Mathias’ lemmadue toŠpalek and Szegedy
(Lemma 2 in [26]), for any matrixM with non-negative coefficients,

λ(M) ≤ max
p,q:M [p,q] 6=0

√

(

∑

s

M [p, s]
)(

∑

s

M [s, q]
)

. (9)

Because of sub-additivity, it is sufficient to show thatλ(Γ
(j)
x ) ∈ O(

√
am2a+1) for 0 ≤ j ≤ 100 log n.

Fix j ≤ 100 log n. Using (9) we get

λ(Γ(j)
x ) ≤ max

r,r′:min{mult(x,P (r)),mult(x,P (r′))}=j

√

(

∑

r′′

Γ
(j)
x [r, r′′]

)(

∑

r′′

Γ
(j)
x [r′′, r′]

)

. (10)

Fix good sequencesr andr′ such thatmult(x, P (r)) = j andmult(x, P (r′)) ≥ j. We can bound
∑

r′′ Γ
(j)
x [r′′, r′] in (10) from above by

∑

r′′ Γ1[r
′′, r′] which isO(am2a+1) from (7). We claim that

∑

r′′

Γ(j)
x [r, r′′] ∈ O(m2a+1). (11)

The statement of the lemma follows then immediately using (10).
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We now turn to the proof of (11). For0 ≤ i ≤ 2a, we define the pathsB(r, i) =
P (r, 0)P (r, 1) . . . P (r, i − 1) (B(r, i) = ∅, wheni = 0) andT (r, i) = P (r, i)P (r, i + 1) . . . P (r, 2a).
Observe thatP (r) is B(r, i)T (r, i) for every i. We setu = max{i | x ∈ P (r, i)}, whenj > 0, and
u = −1 whenj = 0. For each0 ≤ l ≤ a − 1, we define

Sl =
∑

r′′:div(r,r′′)=2l+1

Γ(j)
x [r, r′′].

Depending onl we estimateSl. Let r′′ be a random sequence (selected from good) with the conditionthat
div(r, r′′) = 2l + 1. Observe thatB(r, 2l + 1) andB(r′′, 2l + 1) may differ only on the elements ofNr2l

.

Also, Γ(j)
x [r, r′′] = 0 whenmult(x, P (r′′)) < j.

x

P(r)

P(r’’)

x

P(r)

P(r’’)

(a) (b)

Figure 3: Figure (a) shows the situation when2l < u. Figure (b) shows the situation when2l > u. In both
cases we win because the probability thatP (r′′) goes throughx is small.

1. If 2l < u andx 6∈ Nr2l
thenmult(x,B(r′′, 2l + 1)) = mult(x,B(r, 2l + 1)) < mult(x, P (r)).

Thereforer′′ contributes toSl only whenx ∈ T (r′′, 2l + 1). Sincex belongs to an inter-cluster path
with probability at most1/m, the union bound implies that this happens with probabilityat most
2a/m. Using (6) we conclude thatSl ≤ 2a

m m2a+1.

2. If 2l > u andx 6∈ Nr2l
then the only way thatfP (r)(x) 6= fP (r′′)(x) is whenx ∈ T (r′′, 2l + 1).

Therefore as above we conclude thatSl ≤ 2a
m m2a+1.

3. If 2l = u or x ∈ Nr2l
then we have only the trivialm2a+1 upper bound onSl.

Becauser is good there is only at most onel such thatx ∈ Nr2l
. In summary, we can estimate the

row-sum associated withr as

∑

0≤l≤a−1

Sl ≤ a
2a

m
m2a+1 + 2m2a+1 ∈ O(m2a+1),

because by our choicea ∈ Θ(
√

m).

5.5 Putting things together

Proof of Theorem 1:
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Proof. From Theorem 2 we know thatD(LSG) ∈ O(log n(∆ + s)). We claim that

log n(∆ + s) ∈ O((max{
√

∆, log n, (s/∆)1/8/ log n})19).

Indeed, we have (trivially):

s log n = (
√

∆)2(log n)9((s/∆)1/8/ log n)8,

where the right hand side is clearly inO((max{
√

∆, log n, (s/∆)1/8/ log n})19). Since∆ log n is obviously
in O((max{

√
∆, log n, (s/∆)1/8/ log n})19), the claim follows.

Let us suppose first thatG is connected. In that caseQǫ(LSG) is simultaneously inΩ(
√

∆),Ω(log n)
andΩ((s/∆)1/8/ log n) by Fact 1 and Theorems 3 and 4, and the statement follows.

Otherwise setG0 = G and letG1, . . . , Gk be the connected components ofG for somek. Setdi =
D(LSGi

) andqi = Qǫ(LSGi
) for 0 ≤ i ≤ k. Let t be the index of the component for whichqt = q0. Then

d0 ≤ dt anddt ∈ O(q19
t ) sinceGt is connected.

We conjecture that one can significantly improve on the exponent 19 in Theorem 1.
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