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Abstract

Let f be an integer valued function on a finite &t We call an undirected graghi(V, E') aneigh-
borhood structurdor f. The problem of finding a local minimum fgt can be phrased as: for a fixed
neighborhood structur@(V, E) find a vertexc € V such thatf(x) is not bigger than any value th#t
takes on some neighbor of The complexity of the algorithm is measured by the numbeyuafstions
of the form “what is the value of on x?” We show that the deterministic, randomized and quantum
query complexities of the problem are polynomially relaté@this generalizes earlier results of Aldous
[4] and Aaronson [1] and solves the main open problem in [1].

1 Introduction

It follows from the theory of NP-hardness that many optirtiaproblems, such as MAX-2SAT, are diffi-
cult. In the MAX-2SAT problem one looks for a truth assignmetich maximizes the number of satisfied
clauses. In the black box version of the problem we assumefthg0, 1}* — Z is an arbitrary function,
unknown to us, and we want to find a global optimum forlt is easy to see that to optimizéeclassically
requires to make2(n) questions to the black box where = 2. Using Grover’s surprisingly efficient
database search algorithm [15], Durr and Hgyer have sha@jrttiat the quantum version of the same ora-
cle problem has query complexity ony(,/n). This bound is tight [5, 8, 9, 29], and although much better
than the deterministic or randomized complexities, itil estponential.

A way of relaxing the minimum/maximum finding problem is tokdfor a solution which is optimal only
in some neighborhood structure. For example, in the (we@)2SAT-FLIP problem we wish to find a truth
assignment: € {0, 1}* such that the sum of the weights of the clauses it satisfiestiess than the same
for any other truth assignment of Hamming distance one frofhe number of assignments is exponential
(in k), but given any assignment, one can find out in polynomiaétihit is locally optimal or not, and in
the negative case produce a neighboring solution with abeddue. Studying these new problems has lead
Johnson, Papadimitriou and Yannakakis[18] to introdueecthss PLS (Polynomial Local Search). Several
important problems, such as 2SAT-FLIP are known to be commpiethis class. Even though PLS is not
harder thartNP N coNP, it is still conjectured to be computationally intractghd least classically.

What about the black box version of the local optimizationkpem, whenf is a black box function
and we pay only for the queries? Llewellyn, Tovey and Trick][@nd Llewellyn and Tovey [20] treat the
deterministic case quite exhaustively. Aldous [4] has ghtvat for any graph of size and of maximum
degreeA, the randomized query complexity @((nA)'/2). Aaronson [1] has established an analogous
O(n'/3 A1/6) quantum upper bound.

Two classes of specific neigborhood structures have bediedtaxtensively: thé-dimensional hyper-
cube where: = 2*, and thed-dimensional grid graph, where= k% for some fixed! > 2. For the case of
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the hypercube, Llewellyn, Tovey and Trick have shown [2&} tio find a local optimum takes deterministi-
cally ©(2%/k1/2), that is only slightly less than queries. The randomized and the quantum cases are much
harder to analyze. In the randomized case, Aldous [4] prakatiany algorithm must us@(2k/2-o(k))
queries. Aaronson [1] has improved the lower boun€(8*/2 /k?), and finally Zhang [30] has closed the
gap by showing a matchir@(2*/2k'/2) bound to Aldous’ result. In the quantum case the exact caxitple

is ©(2+/3k1/6), where the lower bound is due again to Zhang [30].

The query complexity of the grid graphs is known exactly gd@e small dimensions. Indeed, the lower
bound results of Zhang [30] match the respective upper ohdldous and Aaronson, implying that the
randomized complexity i®(k%?) whend > 4, and the quantum complexity &(k%/?) whend > 6. The
randomized lower bound &t(k%/2/(log k)'/?) of Zhang ford = 3 is tight up to a logarithmic factor, as well
as his quantum lower bound 6f(k>/3 /(log k)'/?) for d = 5. Ford = 4, the best quantum lower bound of
Q(k%/%), also due to Zhang, leaves a polynomial gap to@e*/) upper bound. The best quantum upper
bound of O (k'/?loglog k), for d = 2, was obtained by Verhoeven [28]. Recently, Sun and Yao [aVg
almost optimal lower bounds for the very small dimensiorzses. More precisely, in the cage= 2, they
have shown a randomized lower bougk'~?), and a quantum lower bourfel(k/2-?), for any constant
§ > 0. Their result for the quantum complexity, whén= 3, is Q(k'~?), again for any constart > 0.

A central question, explicitly raised by Aaronson in [1]sh@mained unanswered until now: are the
deterministic, randomized and quantum query complexiagnomially related for arbitrary neighborhood
structures? In this article we give an affirmative answehte question.

The class PLS is a subset of TFNP, the family of total funcfiorblems from NP, introduced by Meg-
gido and Papadimitriou [22]. Informally, TFNP consists lobse NP search problems for which a solution
is guaranteed to exist. Since factorization is a prominesrniver of TFNP, one can consider this class as a
potential source of problems which might admit efficient mpuan algorithms. Other important subclasses
of TENP are PPP (Polynomial Pigeonhole Principle), and PRA®directed version of PPA (Polynomial
Parity Argument). The elements of PPP are problems whicthbiy tombinatorial nature obey the pi-
geonhole principle and therefore have a solution. The ahtamplete problem in PPP is PIGEONHOLE
CIRCUIT, where, given the description of a boolean circtithw: input andn output bits, one looks for
either a pre-image di” or a collision, that is two distinct input strings yieldiniget same output. The el-
ements of PPAD are search problems, where the existenceafifition is guaranteed by the fact that in a
directed graph where all vertices have in-degree and ayredeat most 1, if there is a source then there is
another vertex whose in-degree and out-degree adds up ¢tyeka A complete problem in PPAD is for
example the 2-dimensional Sperner’s problem 2D-SPERNHER [1

In the black box setting, polynomial relationships betw#endeterministic and quantum complexities
of some complete problems have been obtained, in each ofabses PPP, PPAD and PLS. In particular,
the collision lower bound of Aaronson and Shi [2] impliesttfa the black box analog of PIGEONHOLE
CIRCUIT, and the quantum lower bound of Friedl et al. [14] foe query complexity of 2D-SPERNER.
The underlying graph of 2SAT-FLIP is the hypercube, thusjilentum query lower bounds of Aaronson [1]
and Zhang [30] imply a polynomial relationship for the quegmplexities of this problem. Our result can
be interpreted as proving an analogous result for everylgmoln PLS. As a consequence, if an efficient
guantum algorithm is ever to be found for a problem in PLS,lshexploit its specific structure.

2 Results

For a positive integen we denote{1,...,n} by [n]. An oracle problems a relationR C S x T whereT'
is a finite set and’ C X[ for some finite seE. The input is a functiory € S, hidden by an oracle, such
that f(x), wherez € [n], can be accessed via a query parameterized. Byhe output is some € T such
that (f,¢) € R. A special case is thlnctional oracle problenwhen the relation is given by a function
A: S — T, the (unique) output is theA(f). We say thatd is total if S = X",

In the query model of computation each query adds one to timplexity of an algorithm, but all other
computations are free. The state of the computation is septed by three registers, the query register



x € [n], the answer register € 3., and the work register. The computation takes place in the vector space
spanned by all basis states|a)|z). In the quantum query modehtroduced by Beals, Buhrman, Cleve,
Mosca and de Wolf [8] the state of the computation is a compterbination of all basis states which has
unit length in the norni,. In the randomized model it is a non-negative real comtnadif unit length in
the normly, and in the deterministic model it is always one of the basites.

The query operatiorO; maps the basis state)|a)|z) into the state|x)|(a + f(z)) mod |X])|2),
where we identify> with residue classesiod |[¥|. Non-query operations do not depend fn A k-
query algorithmis a sequence ofk + 1) operations(Uyp, Uy, ..., U;) whereU; is unitary in the quan-
tum and stochastic in the randomized model, and it is a petioatin the deterministic case. Initially
the state of the computation is set to some fixed valy&)|0), and then the sequence of operations
Uo,Oy,U1,0y,...,Ux—1,0y4,Uy is applied. A quantum or randomized algoritkrsomputesR for some
fixed constant < 1/2 if the observation of the appropriate last bits of the woiister yields some € T'
such that(f,¢) € R with probability at least — €. ThenQ.(R) (resp.R.(R)) is the smallesk for which
there exists &-query quantum (resp. randomized) algorithm whiddomputesk. In the case of determin-
istic algorithms exact computation is required, and themeinistic query complexityD(R) is defined then
analogously. We hav®(R) > R.(R) > Q(R).

Beals et al. [8] have shown that in the case of total functienacle problems the deterministic and
guantum complexities are polynomially related, and theigap most a degree 6 polynomial. No such rela-
tion is known for relations or for partial functional probis, in fact for several partial functional problems
exponential quantum speedups are known [12, 24].

Throughout the pape®(V, E') will be an undirected graph with vertex sétand edge seE, and we
assume that” = [n]. In this paper we are concerned with the following oraclebfgm:

Local Search for GG (in notation,L.S¢):
Oracle Input: A function f : V' — Z.
Output: An = € V such that for every € V with {z,y} € E we havef(z) < f(y).

We have chosefi as the range of the input functions only for presentatioalenience, it could be
restricted to[n| without loss of generality. Also note that graghis known to us, and we treat it as a
parameter. The problem as specified is a relation. Howeweimportant special case is functional local
search, when only inputs with a guaranteed unique local (ae:fore global) minimum are considered.
We call such inputsinimodal they will play an important role in our considerations.

Our main result is analogous to the statement of Beals eBhfof local search: the quantum and
deterministic query complexities are polynomially rethte

Theorem 1 (Main Theorem). For every graphG, we haveD(LSg) € O(Q:(LSg)*).

We will prove our main theorem by showing that both the clzsand the quantum query complexities
of a graphG are polynomially related to three parameters: its maximegree, the logarithm of its size
and its separation humber. In section 3 we present a detistimialgorithm forL.S; whose complexity is
polynomial in these parameterShieorem 2. The degree lower bound for the quantum complexity which
follows trivially by a reduction from Grover's searckdct 1), and the log-size lower boundlieorem 3
are presented in section 4. The crucial lower bound invglthre separation humbeftieorem 4) is the
subject of section 5, where we also prove our main theorem.

3 Local Search and Graph Parameters

Let G(V, E) be a graph with vertex sé&f and edge sek. If G'(V', E’) is a subgraph of then we write
G’ < G. We denote the subgraph @fspanned by a vertex set C V with G(V’). The degree of a vertex
in G is deg x. We denote the maximum degree®@fvith A(G) or simply A if G is clear from the context.
The vertex boundary ofaséf C Vin G is

OcH={xeV\H| (3ye H) {z,y} € E}.

3



If H = {x} then we denot&; H by dsx. We define now our most important graph parameter.

Definition 1 (Separation number). Theseparation numbeaf a graphG(V, E) is

5(G) = max min Oc(m)S| 1)
|H|/4<|S|<3|H|/4

The separation number is one of the many graph parameteéméiagure expansion and connectivity of
a graph, and it is the same as the treewidth within a conshatdrf

We now give a deterministic algorithm which is a refinementhef divide and conquer procedure of
Llewellyn, Tovey and Trick [21] which iteratively splits ¢hgraph into pieces by querying a separator set.
The refinement consists of the specific choice of the sepasatowhich makes explicit the connection
between the complexity of the problem and the parameterseiaterested in. For the sake of completeness
we prove here the correctness of the algorithm and analypeitplexity in the three parameters. For every
H C V let H* be the subset off which minimizes|0q(m)S| when S is a subset off of size between
|H|/4 and3|H|/4.

Algorithm 1 Deterministic algorithm fol.S¢
H:=V,S:=0,u:=any vertex ofG.
while output not founddo
Query{u} U dg sy H™ to find the vertexn which minimizesf in this set, queryg mym
if f(m) < f(v) forall v € Og(mym then
output :=m

else
S =8 UdgyH", letw be the vertex which minimizeg in O rrym
u=w
Let H be the connected componentidf\ O¢ ) H™* which contains.
end if
end while

Theorem 2. Algorithm 1 correctly solved.S and has query complexity (log n(A(G) + s(G))).

Proof. By induction one sees that at the beginning of each iteration
dgv € SUdgmv for all v e H, 2

flu) < f(s)for all se€S. (3)

The algorithm always terminates since in each iteratidhdecreases, and ##f = {u} then it outputsu.
When the outpuin is produced then by definitiofi(m) < f(v) for all v € dgm. Also f(m) < f(u),
and f(m) < f(v) forall v € S by (3). Thereforen is a local minimum off in G by (2). The number of
iterations isO(log n) since| H| always decreases by a factor of at least 4/3, and inside eaptihe number
of queries is at mosA (G) + s(G) + 1. O

4 Log-size lower bound

The maximum degree and th& n lower bounds are obtained by reduction: the first one, vempkd, from
Grover’s search, the second one, more sophisticated, frderexr search.

Fact 1 (Aaronson [1]). LetG(V, E) be connected with maximum degise ThenQ. (LS¢) € Q(VA).



In the ordered search reduction we will use unimodal fumstidike Aaronson [1], which arise from
paths rooted at a fixed node 6f We define now the generic construction of functions geedray paths.
A directed pathP in G is a sequence of verticégy, p1,...,p;) (with possible repetitions) such that for
every0 < i <[ — 1 nodep; is connected to nodg;,; in G. In this article we do not consider undirected
paths. LetG be a connected graph, and let us denotelisy; (x, y) the length of the shortest path @&
between vertices andy.

Definition 2 (Path function). Thepath functionfp : V' — Z is defined by

fp(z) = —J if pj =xandpy #xfor k> j
P | distg(po,x), if V7, pj # .

Observe that path functions are always unimodal, and tiegthiave their minimum in the last vertex of
the path.

Reductions between black box problems are regularly usguoee quantum lower bound. In these
reductions usually a single query to the oracle of the redipceblem simulates a query of the problem to
which the reduction is made. However, in more sophisticatesis, several queries can be permitted for the
simulation. We make this precise in the following definitemmd lemma.

Definition 3. A functional oracle problermd : S; — T with .S; C 2[1”] is k-query reducibldo a functional
oracle problemB : Sy — T with Sy C Egm] if the following two conditions are satisfied:

Ja: S1 — Sy such thatvf € S;, A(f) = B(a(f));
Iy, ..y s [m] — [n] and v : [m] x ¥¥ — ¥, such that
Vi€ Sy, weml (alf)(x) =y, f(r(2),. .., )

Lemma 1. If Ais k-query reducible taB thenQ.(B) > Q.(A)/2k.

Proof. Let 5 be a query algorithm which solveB with ¢ queries. We show that there exists a query
algorithm A4 which solvesA with 2kc queries. The algorithmil simulates3, and in its non-query steps it is
identical to it. For simulating the query stedswill use 2k additional registers. Wheli makes a query step
involving the basis statler) then. A computesy; (x), ..., v (x) in the firstk additional registers, queries the
oraclek-times to getf (y1(x)), ..., f(7k(x)) in the nextk registers, computes(f)(z) in the oracle answer
register, and finally erases the contents of the additicwbters. O

In fact, Lemma 1 remains also valid with weaker conditionghmnreduction. For example, one could
authorize that the queries tg /) are computed by a quantum query algorithm which can niaffeeries
to f. The reduction of Buhrman and de Wolf [10] of the parity peohlto ordered search indeed uses this
more general notion. However, for our purposes the morectst reduction is sufficient.

Theorem 3. LetG(V, E) be a connected graph anvertices. Ther).(LS¢) € Q(logn).
Proof. LetS; = {f, : y € [n]}, wheref, : [n] — {0,1} is defined by

_JOo ifx<y
Julw) = { 1 otherwise

The ordered search problem is definedAff,) = y, and Hayer, Neerbek and Shi [16] have shown
that Q(A) = Q(logn). We will show thatA is 2-query reducible td.S¢, and then the result follows
from Lemma 1. LetV’ = [n], and consider any depth first search traversalzofLet dfn be the depth-
first numbering of the vertices (that is the vertices are reneth in preorder). To simplify the description,
without loss of generality we will suppose th#fin(z) = « for every vertexc. This means for example that
vertex 1 is the root of the depth first search traversal.dest(z) be the number of descendantszoh the



search. By definition we assume thaits an ancestor and descendant of itself. It is well knownHaj for
every vertexy, vertexx is an ancestor aj if and only if

x <y < x+ desc(z). 4)

Fory € [n], let P, be the path from vertex 1 to vertgxin the above dfs tree af. By the definition of the
path function,

| —distg(1,z) if xis on the path from 1 ta
fr, (%) = { diste(1,2)  otherwise

The unique local minimum of p, is in the vertexy, thereforeL.S¢(fp,) = v, and for the purpose of the
reduction we can sef; = {fp, : y € [n]} anda(f,) = fp,. To determine the answer of the oraelgf,)
on queryz, using the oraclef,, it has to be decided if is an ancestor of. By (4) this happens exactly
when f, () = 0 and f, (x + desc(x)) = 1. Thus if we sety; (z) = x, y2(z) = x + desc(x) and

. —diStG'(l,.%') if by =0andb; =1
V(@ by be) = { dist(1,2)  otherwise,

thenfp, (z) = (=, fy(71(z)), fy(12(x))), and the reduction is completed.

5 Quantum Query Complexity and Graph Expansion

The purpose of this section is to prove the following loweutd.

Theorem 4. LetG = (V, E) be a connected graph onvertices with maximum degre® and separation
numbers. ThenQ (LS¢) € Q((s/A)/8(logn)™1).

Proof. The statement is a direct consequence of Theorems 6 andw. belo O

Beside the reduction method, lower bound proofs in the gquarguery model fall into two main cate-
gories: they are obtained either by the degree argumenp{ilypomial method) of Beals at al. [8] or by
the quantum adversary method of Ambainis [5]. Aaronson §Esuthe latter, and our paper closely follows
his proof scheme. Like in [1], all our sample functions wid path functions generated by paths rooted at
a fixed node of7 (Aaronson calls these paths snakes). Since we need to pesangument that works
for general graphs we invented some useful lemmas aboutrtietge of expander graphs. Another place
where we improve on [1] is that we almost entirely elimindte problem with self intersecting paths. To
do so we use a more general version of the quantum adversanganexplained in the next section.

5.1 Quantum Adversary Method

The quantum adversary method of Ambainis [5] has severalvknextensions. These include the spec-
tral method of Barnum, Saks and Szegedy [7], the weightedradwy method of Ambainis [6], the strong
weighted adversary method of Zhang [31], and the Kolmogoamwplexity method of Laplante and Mag-
niez [19]. All these methods were proven to be equivalenbeerk and Szegedy [26]. Recently, an even
more powerful method using negative weights has been peopog Hayer, Lee an8palek [17].

The spectral method, that expresses the bound in termdad tdteigenvalues of matrices, was derived
from the characterization of quantum query complexity asraidefinite feasibility problem [7]. Though
the spectral method has been stated only for Boolean fumdtggeneralization to the non-Boolean case is
quite straightforward, as pointed out in [25] and [26]. Wél weed the more general form of the method,
that we state here. For an entry-wise non-negative symomatitrix M, let us denote its largest eigenvalue

by A\(M).



Theorem 5 (Spectral Method). Let A : S — T be a functional oracle problem whefeC . LetT be
an arbitrary S x S nonnegative symmetric matrix that satisfldg, g] = 0 wheneverA(f) = A(g). For
x € [n] letT', be the matrix:

(o0 if f(z)=g(x)
L2[f,9] = { U[f,g] if f(z)# g(x).

Then:

Q(A) € ( D) ) )

maxji<gzg<n )\(Fm)

5.2 Path Arrangement
Let G(V, E) be a connected graph. For a directed path (po, p1, ..., p;) we set

start(P) = Po; end(P) = DI; length(P) =)

We call pg the starting point of° andp; the end point. All paths other than the empty path have arsgart
and an end point (which may coincide). For a p&tlve denote byP© the path that we obtain by deleting
both the starting and end points frofh Formally, P = (p1,...,p;_1). Note that if P is just an edge
(po,p1) thenP® = ¢, the empty path. For path3 = (pg,...,p;) and@ = (qo,- - -, qr) With go = p; their
joinis PQ = (po,...,p1,q1---,qr). A path issimpleif no vertex occurs more than once in it.

We often view a pathP as a multi-set. For a patR andz € V' letmult(z, P)=|{j | p; = «}|, thatis
the number of time# goes throughr, and letmult(P) = max,cy mult(z, P).

N

(@) (b)

Figure 1: Figure (a) shows a set of three inter-cluster pagiweenN; and N;. Figure (b) shows trees;
andTj;. With thicker lines it also shows the edges of an intra-elugath withinT; and another one within

T;.

Definition 4 (Path arrangement and Inter/Intra-cluster path). A path arrangemetfibr G with parameter
m is a set of connected, disjoint subséfs, ..., N,, C V with some fixed spanning tre&3$ of G(N;)
together with a set of directed patf&; (7, k) }1<i jze<m (1 < 4,5 # k < mmeansl < i,j,k < m with
the additional condition thaj # k) such that

1. Ei(j, k) N N; = {start(E;(j, k))} for1l <i,j #k <m;
2. Ei(4,k) N N, = {end(E;(j,k))} forl <i,j#k<m;

3. Ez(]7k)e mEi/(j7k)e - @ for 1 <1 7& ilaj 7é k< m;

7



4. E;(j,k) is simple forl <i,j # k <m.

In the path arrangement the sed§ are called theclustersfor 1 < i < m. The pathst;(j, k) are called
inter-cluster pathandi is theenumerator numbef E;(j, k). For z,y € N;, theintra-cluster pattR;(z, y)
is defined as the shortest path franto y in 7;.

Definition 5 (Path arrangement parameter). Thepath arrangement parametefG) of G is the maximal
m such that there is path arrangement 1Grwith parametemn.

To bring an example to the above definitions consider the twnsional/n by \/n grid, G2, with
vertex sefi” = I x J (we suppose that is a square numbef,and.J are paths of lengtR/n). Two vertices
in V' are connected if either thelrcoordinates are the same and thegoordinates are connected or théir
coordinates are the same and thleaoordinates are connected. We create a path arrangementlugters
will be the sets{i} x J for all i € I. Clearly, every cluster induces a connected grap&'ip,. For two
clusters{i} x J and{i'} x J, defineP,; ; as the unique shortest path connectirgnd:’ in I, and consider
the collection of paths

Ej(i,i') = Py x {j},

wherej runs through all elements of. These paths will serve as inter-cluster paths in betweernvib
clusters. It is easy to check that all conditions of Defimtibare satisfied and therefore(G2 ) > /n.
From Fact 2 below it follows that:(G2,,,) < 24/n+ 1, and therefore we conclude that{ G2 ,,) € ©(y/n).

Another example is the complete graphi,, on the vertex setV” with |V| = n. Here the individual
nodes can be defined as the clusters and the inter-clustes jpabetween any two nodesw € V are
E;(v,w) = (v,w), the same for all < ¢ < n. The disjointness property for these paths holds, since
(v,w)® = (). We conclude that(K,,) = n.

Fact 2. m(G) < vnA + 1 for all graphsG.

Proof. Let a be the size of the smallest clustes: = mini<;<m,|N;| with a = |Nj,|. We show that
aA > m — 1. Indeed, notice thaiA is an upper bound on the size of the edge-boundary/ ,pf Now,
either there is another cluste¥;,, to which there is no direct edge frond;,, and so then disjoint inter
cluster paths fromV,, to N;, requirem outgoing edges fron¥V;o, or IV;o has a direct edge to each other
cluster, which requires at least — 1 outgoing edges. Also, triviallg(m — 1) < am < n (this is the only
place where we use thaf;, is the smallest). In summang — 1 < aA andm — 1 < n/a. We get now

m — 1 < +v/nA by multiplying the above two inequalities, and taking thea® root of both sides. [

5.3 Separation Number versus Path Arrangement Parameter
We will show that the path arrangement parametgi7) is in 2(1/s/A). We start with some easy lemmas.

Definition 6. A graphG(V, E) is a (n1, n2, \)-expanderif for every subset/ C V(G) such thatn; <
|H| < no, we have thalog H| > \|H|.

Lemma 2. Every connected grapty on n vertices which is arin/4,3n/4, A)-expander has an induced
subgraphG’ with at leastn /2 vertices which is 40, n/2, \)-expander.

Proof. For X C V we denote the subgraph 6finduced onX by G(X). Assume that the statement of the
lemma is false. Then with evety C V such thaf X| > n/2 we can associate a non-emptyC X with
the property thatX | < n/2 and|9g(x) X| < A|X].

DefineXy, = V andX; = X;_; \ X;_; fori > 1. Since|X;| is strictly smaller thanX;_, | there has to
be an indext such that X| > n/2 but| Xy 1| < n/2. We define

Y = V\Xk-f—l if |V\Xk+1| §3’I’L/4,
V\ X,  otherwise
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Figure 2: Figure (a) shows that @ is not an expander with respact to sets smaller figr4, we can
iteratively split off the bad-behaving sets. In the figure thack region represents the vertex-boundary of
the union. The figure helps to understand Equation (5), winietords says that the union of bad-behaving
sets is also bad-behaving. Figyte helps to understand the choice #6r We could have selected any index
j such that the size &f = X, U ... U X; is betweer]V'|/4 and3|V'| /4.

Since|X,| < n/2, in both cases it holds that/4 < |Y| < 3n/4. ThereforeldgY| > A|Y|. By another
argument we show that the boundaryYofs small, thus getting a contradiction. Suppose that V' \ X},
the other case is similar. Notice that

Y =XoUX;U---UXp_y,
whereU denotes the disjoint union. Therefore

k-1

06Y = (0cY)NXe € |J(Oaix)Xi) NXx) UaG(X (5)
=0

By our assumption the last set has size less #afy|+- - -+ | X;,_| = A|Y|, which is a contradiction. (]

Lemma 3. For every connected grap&(V, E) and for everyl < k£ < |V| we can find at least|V|/k|
vertex disjoint connected subgraphstéfeach with at leask /A vertices.

Proof. SetN, = (). Let! be the smallest integer such th{at- 1)k > |V|, observe that = [|V|/k]. Itis
enough to findV C V such thatz(N) andG(V \ N) are connected and/ A < |N| < k. Indeed, then by
induction we can pickV; for i = 1,...,[ such thatV; is connected, has size betweef\ andk, and is a
subset oV’ \ U/Z| N;.

We now prove the existence of the abaVe If £ = n then we just sefv = V. Otherwise letl be a
spanning tree off with rootry. Letr; be the child ofry which roots the subtre€; of T, with the greatest
number of nodes among all children«f Similarly, letry be the child ofry which roots the subtreé, of
T, with the greatest number of nodes among all children;pktc, until we getls, a tree with|T| < k.
The size ofI_, is strictly greater thark, therefore the size df; is at least(|V (T,_1)| — 1)/A > k/A.
ThusV (T5) is a good choice foV. O

Lemma4. LetG(V, E) be a(0,|V|/2, A)-expander, and lelV;, No C V' be disjoint subsets, both of size at
leastk. Then there are at leash = Ak pathsEnq, ..., E,, such that

1. E;N Ny = {start(E;)} forl <i<m;

2. E;N Ny = {end(EZ)} forl <i<m;



3. EfNE; =0 for1 <i#i <m;
4. E;is simple forl <i < m.

Proof. If there is an edgév, w) with v € Nj, w € Ny then we can set; = (v,w) for1 < i < m.
Otherwise contraclV; into a single nodex; and NV, into a single noder;. Assume that there are no paths
in G that satisfy 1-4. Then there are no paths satisfying 1-2eith follows that in the contracted graph,
G’, one cannot findn vertex-disjoint paths that conneet andns. This, in turn, by Menger’s theorem [23]
implies that there is a vertex cat C V of size smaller tham: which separates; andn.. Let C] be the
component of7’ that contains:; and C’, be the component aff’ that contains:,, and let the expanded
version of these components ¢ andC>. Without loss of generality we can assume that |C| < n/2,
which leads to a contradiction, sinbgC; C C, |C| < m = Ak. O

Theorem 6. Let G be a connected graph with maximum degfeeseparator numbes and path arrange-
ment parametem. Then we haven > max{|/s/2A],1}.

Proof. If s < 2A then the statement of the theorem is trivially true. OthsewietHd be the subset of
for which the right hand side of (1) is maximized. Then= s(G(H)), which implies thatG(H) is an
(|H|/4,3|H|/4,s/|H|)-expander. By Lemma 2 there is &1 C H such thatH'| > |H|/2 andG(H') is
an(0,|H|/2,s/|H|)-expander. We shall construct the required path arrangeimside G(H'). The graph
G(H') is connected since all of its components have t0heH | /2, s/|H|)-expanders, and this is possible
only if G(H’) has a single component. In order to use Lemma 3, wk setH’|,/2A/s. Observe that <
|H'| sinces > 2A. Also, k > 1 since the size of the vertex boundary of a any subséf’oéf size|H’| /2

is at leasts. By Lemma 3 we find clusterd/y, . .. ’NL\/WJ such thaiN;| > |H'|/\/sA/2 and G(N;)

is connected fol < i < |y/s/2A]. Here we used thah(G(H')) < A. To finish the proof now all we
need is to construct the set of intra-cluster paths. Obsbaté(H') is also an0, |H'|/2, s/| H|)-expander
since|H'| < |H|. Therefore by Lemma 4 betwee¥; and N; we can find(|H'|/\/sA/2) x (s/|H|)
external paths. Sindéf’| > |H|/2, the previous expression is at legst/2A. We have thus constructed a
path arrangement with parametay/'s/2A |, and therefore, according to Definition 5 the path arranggme
parameter of7 is at least \/s/2A |. O

5.4 The Adversary Matrix

Let G(V, E) be a connected graph, we want to define our adversary matrixSfp. We fix a path arrange-
ment with parametem = m(G) for which we use the notations of Definition 4. We set= \/m /10
for the rest of the section. To evefy= rq...ry, € [m]?**! with ry = 1, we define a directed path
P(F) = P(7,0)P(7,1)... P(7,2a — 1) which will be the join of2a paths. Even indices will name clus-
ters, odd indices will name enumerator numbers of intratelupaths. We fix an arbitrary starting node
Tstart € N1, and for0 < ¢ < 2a — 1 we define:

Ry (zstart, start(P(7, 1))) ifi=0
P(F, Z) = Eri (T’Z‘_l, T'H_l) if 4 is odd
R, (end(P(T,i — 1))),start(P(7,i +1))) ifiisevenan® <i < 2a — 2.

For7 and7 let div(7,7) be the first such thatr; # r,. We set
IV, 7] = mVTT) i div(7,7) is odd andra, # 14,
’ 0 otherwise.
Observe that the rows (and columns)bfare indexed by sequences and not function¥ @s required.
This is just a formal matter. With every sequencere associate the path(7) and with every such path

we associate the path functiofp ;) as in Section 4. As an index; really corresponds to the function
fpe- We have chosen a weight function with the property that ifpiei a pair of paths with probability
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that is proportional to the weight of the pair, then the utaiaty about where the members of this pair
will separate from each other is the largest. This uncdgtagimaximized when the probability that the
separation happens at an (odd) index betwieeand2a — 1 is uniformly 1/a. The exponential increase of
the weight function inliv(7,7) ensures exactly this.

The matrixI” is not yet the adversary matrix we need, we have to zero ou¢ sows and columns that
correspond to “bad sequences.” Let us recall thatt(z, P(7)) is the number of times the paf(7) goes
through the vertex.. A sequence is repetitiveif there are indice$ < i # j < 2a such that; = rj, it
is criss-crossingf there is anz € V such thatmult(z, P(7)) > 100log |V|. Finally 7 is badif it is either
repetitive or criss-crossing otherwise itgeod We define our adversary matrix as:

T, 7] = I'[7,7] if both 7 and7 are good
BT 0 otherwise.

Theorem 7. For every connected grapt onn vertices, and with path arrangement parameterwe have
Q.(LS¢) € Q(m!/*/logn).

Proof. The statement is an immediate consequence of the spectit@ban@heorem 5), and Lemmas 5 and
6 below. 0

5.4.1 Eigenvalue Lower Bound
Recall thafl" is the adversary matrixp is the path arrangement parametetzpfanda = /m/10.
Lemma5. A\(T') € Q(am?t1).

Proof. The matrixI" hasm?® rows. In order to lower bound(T") we simply use the entry-sum estimate,
that isA(T") > >__ . I'[F,7']/m??. First we estimate the entry-sum Bf. Since all rows and columns &f
have the same sum, we will sum up the elements in an arbitosryrmdexed withr. In that row, we group
the columns together accordingdov (7, 7'), and get

a—1
YNIFEFI =) > Iy [7, 7).
7/ =0 7:div(7,7")=21+1
For the group of columns indexed with such thatdiv(7,7) = 25 + 1, the corresponding entries of our
row sum up tan?*(m — 1)m?*=%-2(m — 1). Therefore we obtain
ST TR = 1+ o(l)m> ©)
7 :div(T,7)=21+1

Sincediv(7,7’) can have: different values, this implies the estimation
ST 7] = (14 o(1))am® . ™)
?/

We now upper bound the number of bad rows and columns. The ewofilmon-repetitive sequences
is (m —1)...(m —2a) > (m — 2a)?*. With our choice ofz = \/m/10, this is approximately.—'/2%m2*
which is greater thaf.9m?2.

Pick now randomly a non-repetitive We claim that for a fixed:, the probability thatnult(z, P(7)) >
100logn + 1 is upper bounded by

a 1
<100 log n) m(m—1)...(m —100logn)’ (8

To see that, fix the even indices anyhow and condition on tkiagi There can be only at most one
even index, sayq, such thatr € P(7,2¢). There has to b&00logn odd indices2i + 1, for which

11



x € P(T,2i + 1)© since inter-cluster paths are simple. However, once the idices are fixed, we get
an independence between paths belonging to different aliickis, except that because of the non-repetitive
nature ofr their enumerator number should be different. (Note thatef@mry1 < j # k& < m, where
x ¢ N; U Ny there is at most onésuch thatr € E;(j, k) by property 3 of Definition 4.) From this the
above formula follows.

The expression in (8) is easily upper-boundedbly/n). Applying the union bound over all € V', we
get that for a random non-repetitivethe probability thaimult(P (7)) > 100logn + 1iso(1). We got that
that the number of good rows (and columns) is at I8a®t?*(1 — o(1)). Since all rows and columns of
I" have the same sum, we conclude that taking0oLit2?*(1 + o(1)) rows and0.1m?*(1 + o(1)) columns
decreases the entry sumloby at most a factor of.2 + o(1). Thus

MT) € Q(am? ).

5.4.2 Eigenvalue Upper Bound
Recalling from Theorem 5 the definition bf,, we have forx € V,

Px[ﬁ?/] _ { F[Fv T/] if fP(?)(x) 7£ fP(?’)(x)

0 otherwise.

As always,m is the path arrangement parametethfanda = /m/10.

Lemma 6. A\(I';) € O(y/am**Ttlogn) forallz € V.

Proof. In order to give an upper bound oL, ), we decompos&, asT, = ;%" 'Y where

rO[F, 7] = L. [77] if min{mult(z, P(7)), mult(z, P(7'))} = j
+HT= 0 otherwise.

Such a decomposition is possible since the entries comespto criss-crossing sequences are zefo, in
and therefore i",.

We will use two known properties of thefunction. Firstly, it is sub-additive, that iS(M; + Ms) <
A(M7) + A(M2). Secondly, according to a generalization of Mathias’ lentua toSpalek and Szegedy
(Lemma 2 in [26]), for any matrix// with non-negative coefficients,

AMM) < maxbéo \/< ;M[p, s]) <¥ Mis, q]) 9)

" p.a:Mlpyg

Because of sub-additivity, it is sufficient to show thal'’) € O(y/am?**1) for 0 < j < 100log n.
Fix j < 100logn. Using (9) we get

: )i ) (ot =
)\(ng)) = F,F’:min{mult(x,]%le)i)},{mult(x,P(F’))}:j \/< Z ij [T’ T”]) ( Z FJ}J [T”’ T/]) ’ (10)

F// F//

Fix good sequences and7 such thatmult(z, P(7)) = j andmult(z, P(7')) > j. We can bound
S TY [ 7] in (10) from above byy .., T4 [F, 7] which isO(am?*+1) from (7). We claim that

> TUF 7 € O(m** ). (11)

F//

The statement of the lemma follows then immediately usig.(1
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We now turn to the proof of (11). Fob < i < 2a, we define the pathsB(7,i) =
P(7,0)P(T,1)... P(F,i — 1) (B(r,i) = 0, wheni = 0) andT'(7,i) = P(7,i)P(F,i + 1)... P(7,2a).
Observe thatP(7) is B(7,i)T(7,:) for everyi. We setu = max{i | = € P(7,7)}, whenj > 0, and
u = —1 whenj = 0. For each) <1 < a — 1, we define

S, = > rOF, 7.

7 div(7, 7 ) =21+1

Depending ori we estimateS;. Let7” be a random sequence (selected from good) with the conditain
div(7,7') = 2l + 1. Observe thaB(7, 2! + 1) and B(7", 2l + 1) may differ only on the elements o¥,.,.

Also, F(])[_ 71 = 0 whenmult(z, P(7")) < j.
P(r)

- P(r)

(@) (b)

Figure 3: Figure (a) shows the situation whn< «. Figure (b) shows the situation wheh > «. In both
cases we win because the probability tR&f"”) goes through: is small.

.2l < wandz ¢ N,,, thenmult(z, B(7",20 + 1)) = mult(z, B(F,2l + 1)) < mult(z, P(7)).
Thereforefr” contrlbutes taS; only whenz € T'(7”, 2l + 1). Sincex belongs to an inter-cluster path
with probability at mostl/m, the union bound implies that this happens with probabgitymost

2a/m. Using (6) we conclude thaff; < 22m2e+1,

2. 1f 21 > wandz ¢ N,, then the only way thafp(z) # fper)(z) is whenz € T(7",21 + 1).
Therefore as above we conclude tiat< 2220+,

3. If 2l = worx € N,,, then we have only the triviah?**! upper bound ors;.

Becauser is good there is only at most ordesuch thatr € N,.,,. In summary, we can estimate the
row-sum associated withas

Z Sl < a 2a+1 +2m2a+1 c O( Q(I-i-l)7
0<i<a-—1

because by our choiecee O(y/m).

5.5 Putting things together

Proof of Theorem 1:
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Proof. From Theorem 2 we know thd®(LS¢) € O(logn(A + s)). We claim that
logn(A + s) € O((max{VA,logn, (s/A)8/logn})).
Indeed, we have (trivially):
slogn = (VA)*(logn)((s/A)"/*/log n)®,

where the right hand side is clearly@{(max{v/A, logn, (s/A)Y/®/1logn})'?). SinceA log n is obviously
in O((max{v/A,logn, (s/A)Y8/logn})'?), the claim follows.

Let us suppose first that is connected. In that cagg, (LS¢) is simultaneously if2(v/A), Q(log n)
andQ((s/A)'/®/logn) by Fact 1 and Theorems 3 and 4, and the statement follows.

Otherwise setzy = G and letGy, ..., Gy be the connected components@ffor somek. Setd; =
D(LS¢,) andg; = Q(LSg,) for 0 < i < k. Lett be the index of the component for whigh= go. Then
do < d; andd; € O(q}?) sinceG, is connected. O

We conjecture that one can significantly improve on the egpbf9 in Theorem 1.
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