
ArtiCheck: well-typed generic fuzzing for module interfaces

Thomas Braibant Jonathan Protzenko Gabriel Scherer
INRIA

http://gallium.inria.fr/blog/

Abstract
In spite of recent advances in program certification, testing remains a
widely-used component of the software development cycle. Various
flavors of testing exist: popular ones include unit testing, which
consists in manually crafting test cases for specific parts of the code
base, as well as quickcheck-style testing, where instances of a type
are automatically generated to serve as test inputs.

These classical methods of testing can be thought of as internal
testing: the test routines access the internal representation of the
data structures to be checked. We propose a new method of external
testing where the library only deals with a module interface. The
data structures are exported as abstract types; the testing framework
behaves like regular client code and combines functions exported
by the module to build new elements of the various abstract types.
Any counter-examples are then presented to the user.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

Keywords functional programming, testing, quickcheck

1. Introduction
Software development is hard. Industry practices still rely, for the
better part, on tests to ensure the functional correctness of programs.
Even in more sophisticated circles, such as the programming lan-
guage research community, not everyone has switched to writing
all their programs in Coq. Testing is thus a cornerstone of the de-
velopment cycle. Moreover, even if the end goal is to fully certify a
program using a proof assistant, it is still worthwhile to eliminate
bugs early by running a cheap, efficient test framework.

Testing boils down to two different processes: generating test
cases for test suites; then verifying that user-written assertions and
specifications of program parts are not falsified by the test suites.

QuickCheck [5] is a popular, efficient tool for that purpose. First,
it provides a combinator library based on type-classes to build test
case generators. Second, it provides a principled way for users to
specify properties over functions. For instance, users may write
predicates such as “reverse is an involution”. Then, the QuickCheck
framework is able to create instances of the type being tested, e.g.
lists of integers. The predicate is tested against these test cases, and
any counter-example is reported to the user.

[Copyright notice will appear here once ’preprint’ option is removed.]

Our novel approach is motivated by some limitations of the
QuickCheck framework. First, data-structures often have internal
invariants that would not be broken when using the API of the
data-structure. Thus, testing one particular function of such an API
requires generating test-cases that meet these invariants. Yet, writing
good generators for (involved) data-structures is tedious, or even
plain hard. Consider the simple problem of generating binary search
trees (BST), for instance. Being smarter than merely generating
trees and filtering out those which are not search trees requires
reimplementing a series of insertions and deletions into BSTs. But
these functions are certainly already part of the code that is tested!

We argue that this low-level manipulation could be taken care
of by the testing framework. That is, we argue that the framework
should be able, by itself, to combine functions exported by the
module we wish to test in order to build instances of the data-types
defined in the same module. If the module exports the properties and
the invariants that should hold, then the testing framework needs not
see the implementation. In a nutshell, we want to move towards an
external testing of abstract modules.

In the present document, we describe a library that does precisely
that, dubbed ArtiCheck. The library is written in OCaml. While
QuickCheck uses type-classes as a host language feature to conduct
value generation, we show how to implement the proof search in
library code – while remaining both type-safe and generic over the
tested interfaces, thanks to GADTs.

2. The essence of external testing
In the present section, we illustrate the essential idea of external
testing through a simple example, which is that of a module
SIList whose type t represents sorted integer lists. The invariant
is maintained by making t abstract and requiring the user to go
through the exported functions empty and add.

This section, unfolding from the initial example, introduces the
key ideas of external testing: a GADT type that describes well-typed
applications in the simply-typed lambda calculus; a description of
module signatures that we wish to test; type descriptors that record
all the instances of a type that we managed to construct.

The point of view adopted in this section is intendedly simplis-
tic. The design, as presented here, contains several obvious short-
comings. It allows, nonetheless, for a high-level overview of our
principles, and paves the way for a more thorough discussion of our
design (§3).

Here is the signature for our module of sorted integer lists. The
sorted function represents the invariant that the module intends
to preserve. The module admits a straightforward implementation,
which we also show.

module SIList: sig
type t
val empty: t
val add: t -> int -> t
val sorted: t -> bool

1 2017/3/3

end = struct
type t = int list
let empty = []
let rec add x = function

| [] -> [x]
| t::q -> if t<x then t::add x q else x::t::q

let rec sorted = function
| [] | [_] -> true
| t1::(t2::_ as q) -> t1 <= t2 && sorted q

end

Roughly speaking, our goal is to generate, as if we were client code
of the module, instances of type t using only the functions exported
by the module. Therefore, one of our first requirements is a data
structure for keeping track of the t’s created so far. We also need to
keep track of the integers we have generated so far, since they are
necessary to call the add function: ArtiCheck will thus manipulate
several ty’s for all the types it handles.

type ’a ty = { (* Other implementation details omitted *)
mutable enum: ’a list;
fresh: (’a list -> ’a) option; }

A type descriptor ’a ty keeps track of all the instances of ’a we
have created so far in its enum field. Built-in types such as int do
not belong to the set of types whose invariants we wish to check. For
such types, we provide a fresh function that generates an instance
different from all that we have generated so far.

From the point of view of the client code, all we can do is
combine add and empty to generate new instances. ArtiCheck, as a
fake client, should thus behave similarly and automatically perform
repeated applications of add so as to generate new instances. We
thus need a description of what combinations of functions are legal
for ArtiCheck to perform.

In essence, we want to represent well-typed applications in the
simply-typed lambda-calculus. This can be embedded in OCaml
using generalized algebraic data types (GADTs). We define the
GADT (’a, ’b) fn, which describes ways to generate instances
of type ’b using a function of type ’a. We call it a function
descriptor.

type (_,_) fn =
| Ret: ’a ty -> (’a,’a) fn
| Fun: ’a ty * (’b, ’c) fn -> (’a -> ’b, ’c) fn
(* Helpers for creating [fn]’s. *)
let (@->) ty fd = Fun (ty,fd)
let returning ty = Ret ty

The Ret case describes a constant value, which has type ’a and
produce one instance of type ’a. For reasons that will soon become
apparent, we also record the descriptor of type ’a. Fun describes the
case of a function from ’a to ’b: using the descriptor of type ’a, we
can apply the function to obtain instances of type ’b; combining that
with the other (’b, ’c) fn gives us a way to produce elements of
type ’c, hence the (’a -> ’b, ’c) fn conclusion.

let rec eval : type a b. (a,b) fn -> a -> b list =
fun fd f ->

match fd with
| Ret _ -> [f]
| Fun (ty,fd) -> List.flatten (

List.map (fun e -> eval fd (f e)) ty.enum)
let rec codom : type a b. (a,b) fn -> b ty =

function
| Ret ty -> ty
| Fun (_,fd) -> codom fd

The eval function is central: taking a function descriptor fd, it
recurses over it, thus refining the type of its argument f. The use
of GADTs allows us to statically prove that the eval function only
ever produces instances of type b. The codom function allows one to

find the type descriptor associated to the return value (the codomain)
of an fn.

Using the two functions above, it then becomes trivial to generate
new instances of ’b.

let use (fd: (’a, ’b) fn) (f: ’a): unit =
let prod, ty = eval fd f, codom fd in
List.iter (fun x ->

if not (List.mem x ty.enum)
then ty.enum <- x::ty.enum

) prod

The function takes a function descriptor along with a matching
function. The prod variable contains all the instances of ’b we just
managed to create; ty is the descriptor of ’b. We store the new
instances of ’b in the corresponding type descriptor.

In order to wrap this up nicely, one can define signature descrip-
tors. An entry in a signature descriptor is merely a function of a
certain type ’a along with its corresponding function descriptor.
Once this is done, the user can finally call our library to gener-
ate random instances and test the functions found in the signature
description.

type sig_elem = Elem : (’a,’b) fn * ’a -> sig_elem
type sig_descr = (string * sig_elem) list
let si_t : SIList.t ty = ...
let int_t = ... (* integers use a [fresh] function*)
let sig_of_silist = [

("empty", Elem (returning si_t, SIList.empty));
("add", Elem (int_t @-> si_t @-> returning si_t, SIList.add));]

let _ =
Arti.generate sig_of_silist;
assert (Arti.counter_example si_t SIList.sorted = None)

3. Implementing ArtiCheck
The simplistic design we introduced in §2 conveys the main ideas
behind ArtiCheck, yet fails to address a wide variety of problems.
The present section reviews the issues with the current design and
incrementally addresses them.

3.1 A better algebra of types
Type descriptions only model function types so far. We want to
support products and sums, to be able to generate them when they
appear in function arguments, and to use them to discover new
values when they are returned as function results.

One of the authors naïvely suggested that the data type be
extended with cases for products and sums, such as:

| Prod: (’a,’c) fn * (’b,’c) fn -> (’a * ’b,’c) fn

It turns out that the constructor above does not model product
arguments. If ’a is int -> int and ’b is int -> float, not only
do the ’c parameters fail to match, but the ’a * ’b parameter in
the conclusion represents a pair of functions, rather than a function
that returns a pair! Another snag is that the type of eval makes no
sense in the case of a product. If the first parameter of type (’a,
’b) fn represents a way to obtain a ’b from the product type ’a,
then what use is the second parameter of eval?

Datatypes and function types are used in fundamentally different
ways by the generator, which suggests splitting the fn type into two
distinct GADTs – inspired by the focusing literature [9]. The GADT
(’a, ’b) negative (neg for short) represents a computation of
type ’a that produces a result of type ’b. The GADT ’a positive
(pos for short) represents a value, that is, the result of a computation.

type (_, _) neg =
| Fun : ’a pos * (’b, ’c) neg -> (’a -> ’b, ’c) neg
| Ret : ’a pos -> (’a, ’a) neg
and _ pos =

2 2017/3/3

| Ty : ’a ty -> ’a pos
| Sum : ’a pos * ’b pos -> (’a, ’b) sum pos
| Prod : ’a pos * ’b pos -> (’a * ’b) pos
| Bij : ’a pos * (’a, ’b) bijection -> ’b pos
and (’a, ’b) sum = L of ’a | R of ’b
and (’a, ’b) bijection = (’a -> ’b) * (’b -> ’a)

The pos type represents first-order data types: products, sums and
atomic types, that is, whatever is on the rightmost side of an arrow.
We provide an injection from positive to negative types via the Ret
constructor: a value of type ’a is also a constant computation.

We do not provide an injection from negative types to positive
types, which would be necessary to model nested arrows, that
is, higher-order functions. One can take the example of the map
function, which has type (’a -> ’b) -> ’a list -> ’b list:
we explicitly disallow representing the ’a -> ’b part as a Fun
constructor, as it would require us to synthesize instances of a
function type (see §6 for a discussion). Note that the user can still
use the Ty constructor to represent ’a -> ’b as an atomic type,
initialized with its own test functions.

Our GADT does not accurately model tagged, n-ary sums of
OCaml, nor records with named fields. We thus add a last Bij case;
it allows the user to provide a two-way mapping between a built-in
type (say, ’a option) and its ArtiCheck representation (() + ’a).
That way, ArtiCheck can work with regular OCaml data types by
converting them back-and-forth.

This change of representation incurs some changes on our
evaluation functions as well. The eval function is split into several
parts, which we detail right below.

let rec apply: type a b. (a, b) neg -> a -> b list =
fun ty v -> match ty with
| Fun (p, n) ->

produce p |> concat_map (fun a -> apply n (v a))
...

and produce: type a. a pos -> a list =
fun ty -> match ty with
| Ty ty -> ty.enum
| Prod (pa, pb) ->

cartesian_product (produce pa) (produce pb)
...

let rec destruct: type a. a pos -> a -> unit =
function
| Ty ty -> (fun v -> remember v ty)
| Prod (ta, tb) -> (fun (a, b) ->

destruct ta a; destruct tb b)
...

(* Putting it all together *)
let _ = ...

let li = apply fd f in
List.iter destruct li; ...

Let us first turn to the case of values. In order to understand what
ArtiCheck ought to do, one may ask themselves what the user can
do with values. The user may destruct them: given a pair of type ’a
* ’b, the user may keep the first element only, thus obtaining a new
’a. The same goes for sums. We thus provide a destruct function,
which breaks down positives types by pattern-matching, populating
the descriptions of the various types it encounters as it goes. (The
remember function records all instances we haven’t encountered
yet in the type descriptor ty.)

Keeping this in mind, we must realize that if a function takes
an ’a, the user may use any ’a it can produce to call the function.
For instance, in the case that ’a is a product type ’a1 * ’a2, then
any pair of ’a1 and ’a2 may work. We introduce a function called
produce, which reflects the fact the user may choose any possible
pair: the function exhibits the entire set of instances we can build
for a given type.

Finally, the apply function, just like before, takes a computation
along with a matching description, and generates a set of b. However,
it now relies on product to exhaustively exhibit all possible
arguments one can pass to the function.

We are now able to accurately model a calculus rich enough to
test realistic signatures involving records, option types, and various
ways to create functions.

3.2 Efficient construction of a set of instances
The (assuredly naïve) scenario above reveals several pain points
with the current design.
• We represent our sets using lists. We could use a more efficient

data structure.
• If some function takes, say, a tuple, the code as it stands will

construct the set of all possible tuples, map the function over
the set, then finally call destruct on each resulting element
to collect instances. Naturally, memory explosion ensues. We
propose a symbolic algebra for sets of instances that mirrors the
structure of positive types and avoids the need for holding all
possible combinations in memory at the same time.

• A seemingly trivial optimization sends us off the rails by gener-
ating an insane number of instances. We explain how to optimize
further the code while still retaining a well-behaved generation.

Sets of instances The first, natural optimization that comes to
mind consists in dropping lists in favor of a more sophisticated
data type. For reasons that will become obvious in the following,
we chose to replace lists with arbitrary containers that have the
following (object-like) type:

type ’a bag = {
insert : ’a -> ’a bag;
fold : ’b . (’a -> ’b -> ’b) -> ’b -> ’b;
cardinal : unit -> int; }

For instance, we use an implementation of polymorphic, persistent
sets (implemented as red-black trees), as a replacement for lists.

Not holding sets in memory A big source of inefficiency is the
call to the cartesian_product function above (§3.1). We hold in
memory at the same time all possible products, then pipe them into
the function calls so as to generate an even bigger set of elements.
Only when the set of all elements has been constructed do we
actually run destruct, only to extract the instances that we have
created in the process.

Holding in memory the set of all possible products is too
expensive. We adopt instead a symbolic representation of sets, where
unions and products are explicitly represented using constructors.
This mirrors our algebra of positive types.

type _ set =
| Set : ’a bag -> ’a set
| Bij : ’a set * (’a, ’b) bijection -> ’b set
| Union : ’a set * ’b set -> (’a,’b) sum set
| Product : ’a set * ’b set -> (’a * ’b) set

This does not suppress the combinatorial explosion. The instance
space is still exponentially large; what we gained by changing
our representation is that we no longer hold all the “intermediary”
instances in memory simultaneously. This allows us to write an
iter function that constructs the various instances on-the-fly.

let rec iter: type a. (a -> unit) -> a set -> unit =
fun f s -> match s with

| Set ps -> ps.fold (fun x () -> f x) ()
| Union (pa,pb) ->

iter (fun a -> f (L a)) pa;
iter (fun b -> f (R b)) pb;

| Product (pa,pb) ->
iter (fun a -> iter (fun b -> f (a,b)) pb) pa

| Bij (p, (proj, _)) -> iter (fun x -> f (proj x)) p

3 2017/3/3

Sampling sets The above optimizations make it possible to build
in a relatively efficient manner sets of instances that can be con-
structed using a small amount of function calls (let’s call them small
instances). That is, we naturally implement a breadth-first search of
the instance space, which is unlikely to produce many interesting
test-cases before we reach a size limit. Indeed, the distribution of
instances is skewed: there are more instances obtained after n calls
than there are after n+1 calls. It may thus be the case that by the
time we reach three of four consecutive function calls, we’ve hit the
maximum limit of instances allowed for the type, since it often is
the case that the number of instances grows exponentially.

To solve this issue, we turn to reservoir sampling, which is a
method to choose a sample of elements from a set that is typically
too big to be held in memory. The solution from the literature is
a variant of Knuth’s shuffle, and is quite elegant. The idea is as
follows: build a collection of k elements; then for each element e of
index i such that k < i, pick a number j at random between 1 and
i: if j is less than k, replace the j-th element of the collection by e,
and do nothing otherwise. In the end, each element that was added
has the same probability of being in the collection.

Unfortunately, iterating over the collection to produce new
instances of types biases the generation towards small instances.
To understand why, imagine that the collection contains initially
many 1 and that we produce new elements for the sampling process
by taking the sum of two elements of the collection. The final
distribution is very likely to be skewed toward small integers...

Sampling sets, done right What we are looking for is a set-like
data-structure, that can be used to sample the elements that are
added to it. This can be implemented quite simply using a hash-set,
with fixed size buckets. The idea is that when a bucket becomes
full, we drop one element. That way, we manage to keep a good
balance between the size of our instances sets, and the diversity of
the instances.

We have experimented with the three container structures de-
scribed above: “regular” sets, “sampled” sets and hash-sets. Out of
the three, the latest is the one that gives the most interesting results
empirically. However, it is likely that other kind of containers, or
other tunings of the exploration procedures could make “interesting”
instances pop up early.

3.3 Instance generation as a fixed point computation
The apply/destruct combination only demonstrates how to gen-
erate new instances from one specific element of the signature. We
need to iterate this on the whole signature, by feeding the new
instances that we obtain to other functions that can consume them.

This part of the problem naturally presents itself as a fixpoint
computation, defined by a system of equations. Equations between
variables (type descriptors) describe ways of obtaining new instances
(by applying functions to other type descriptors). Of course, to
ensure termination, we need to put a bound on the number of
generated instances. When presenting an algorithm as a fixpoint
problem, it is indeed a fairly standard technique to make the lattice
space artificially finite in order to obtain the termination property.

Implementing an efficient fixpoint computation is a surprisingly
interesting activity, and we are happy to use an off-the-shelf fixpoint
library, F. Pottier’s Fix [11], to perform the work for us. Fix can
be summarized by the signature below, obtained from user-defined
instantiations of the types variable and property.

module Fix = sig
type valuation = variable -> property
type rhs = valuation -> property
type equations = variable -> rhs
val lfp: equations -> valuation end

A system of equations maps a variable to a right-hand side. Each
right-hand side can be evaluated by providing a valuation so as to
obtain a property. Valuations map variables to properties. Solving
a system of equations amounts to calling the lfp function which,
given a set of equations, returns the corresponding valuation.

A perhaps tempting way to fit in this setting would be to define
variables to be our ’a ty (type descriptor) and properties to be ’a
lists (the instances we have built so far); the equations derived
from any signature would then describe ways of obtaining new
instances by applying any function of the signature. This doesn’t
work as is: since there will be multiple values of ’a (we generate
instances of different types simultaneously), type mismatches are to
be expected. One could, after all, use yet another GADT and hide
the ’a type parameter behind an existential variable.

type variable = Atom: ’a ty -> variable
type property = Props: ’a set -> property

The problem is that there is no way to statically prove that having
an ’a var named x, calling valuation x yields an ’a property
with a matching type parameter. This is precisely where the mutable
state in the ’a ty type comes handy: even though it is only used as
the input parameter for the system of equations, we “cheat” and use
its mutable enum field to store the output. That way, the property
type needs not mention the type variable ’a anymore, thus removing
any typing difficulty – or the need to change the interface of Fix.

We still, however, need the property type to be a rich enough
lattice to let Fix decide when to stop iterating: it should come with
equality- and maximality-checking functions, used by Fix to detect
that the fixpoint is reached. The solution is to define property as
the number of instances generated so far along with the bound we
have chosen in advance:

type variable = Atom : ’a ty -> variable
type property = { required : int; produced : int }
let equal p1 p2 = p1.produced = p2.produced
let is_maximal p = p.produced >= p.required

4. Expressing correctness properties
We mentioned earlier (§2) the counter_example function.

val counter_example: ’a pos -> (’a -> bool) -> ’a option

The function takes a description of some (positive) datatype ’a,
iterates on the generated instances of this type and checks that a
predicate ’a -> bool holds for all instances, or returns a counter-
example otherwise. At a more abstract level, this means that we
are checking a property of the form ∀(x ∈ t), T (x) where T (x) is
simply a boolean expression. Multiple quantifiers can be simulated
through the use of product types, such as in the typical formula of
association maps:

∀(m ∈ map(K,V), k ∈ K, v ∈ V), find(k, add(k, v, m)) = v

which can be expressed as follows (where *@ is the operator for
creating product type descriptors):

let lookup_insert_prop (k, v, m) =
lookup k (insert k v m) = v

let () = assert (None =
let kvm_t = k_t *@ v_t *@ map_t in
counter_example kvm_t lookup_insert_prop)

One then naturally wonders what a good language would be
for describing the correctness properties we wish to check. In the
example above, we naturally veered towards first-order logic, so as
to express formulas with only prenex, universal quantification. The
universal quantifiers are to be understood with a “test semantics”,
that is, they mean to quantify over all the random instances we
generated. Can we do better? In particular, can we capture the

4 2017/3/3

full language of first-order logic, as a reasonable test description
language for a practical framework?

It feels natural to use first-order logic as a specification language
in the context of structured verification, such as with SMT solvers or
a finite model finder [4]. However, supporting full first-order logic
as a specification language for randomly-generated tests is hard for
various reasons.

For instance, giving “test semantics” to an existentially-quantified
formula such as ∃(x ∈ t).T (x) is awkward. Intuitively, there is not
much meaning to the formula. The number of generated instances is
finite; that none satisfies T may not indicate a bug, but rather that the
wrong elements have been tested for the property. Conversely, find-
ing a counter-example to a universally-quantified formula always
means that a bug has been found. Trying to distinguish absolute
(positive or negative) results from probabilistic results opens a world
of complexity that we chose not to explore.

Surprisingly enough, there does not seem to be a consensus in the
literature about random testing for an expressive, well-defined subset
of first-order logic. The simplest subset one directly thinks of is for-
mulas of the form: ∀x1 . . . xn, P (x1, . . . , xn) ⇒ T (x1, . . . , xn)
where P (x1, . . . , xn) (the precondition) and T (x1, . . . , xn) (the
test) are both quantifier-free formulas.

The reason this implication is given a specific status is to make
it possible to distinguish tests that succeeded because the test
was effectively successful from tests that succeeded because the
precondition was not met. The latter are “aborted” tests that bring
no significant value, and should thus be disregarded. In ArtiCheck,
we chose to restrict ourselves to this last form of formulas.

5. Examples
5.1 Red-black trees
The (abridged) interface exported by red-black trees is as follows.
The module provides iteration facilities over the tree structure
through the use of [8] zippers. Our data structures are persistent.

module type RBT = sig
type ’a t
val empty : ’a t
val insert : ’a -> ’a t -> ’a t
type direction = Left | Right
(* type ’a zipper *)
type ’a ptr (* = ’a t * ’a zipper *)
val zip_open : ’a t -> ’a ptr
val move : direction -> ’a ptr -> ’a ptr option end

This examples highlights several strengths of ArtiCheck.
First, two different types are involved: the type of trees and the

type of zippers. While an aficionado of internal testing may use
the empty and insert functions repeatedly to create new instances
of ’a t, it becomes harder to type-check calls to either insert or
zip_open. Our framework, thanks to GADTs, generates instances
of both types painlessly and automatically.

Second, we argue that a potential mistake is detected trivially
by ArtiCheck, while it may turn out to be harder to detect using
internal testing. If one removes the comments, the signature reveals
that pointers into a tree are made up of a zipper along with a tree
itself. It seems fairly natural that the developer would want to
reveal the zipper type; it is, after all, a fundamental feature of the
module. An undercaffeinated developer, when writing internal test
functions, would probably perform sequences of calls to the various
functions. What they would fail to do, however, is destructing pairs
so as to produce a zipper associated with the wrong tree. This
particularly wicked usage would probably be overlooked. ArtiCheck
successfully destructs the pair and performs recombinations, thus
finding the bug.

5.2 Binary Decision Diagrams
Binary Decision Diagrams (BDDs) represent trees for deciding
logical formulas. The defining characteristic of BDDs is that they
enforce maximal sharing: wherever two structurally equal sub-
formulas appear, they are guaranteed to refer to the same object
in memory. A consequence is that performing large numbers of
function calls does not necessarily means using substantially more
memory: it may very well be the case that significant sharing occurs.

We mentioned earlier that our strategy for external testing
amounted, in essence, to representing series of well-typed function
calls in the simply typed lambda calculus using in GADT. If we
only did that and skipped section §3, externally-testing BDDs would
be infeasible, as we would end up representing a huge number of
function calls in memory.

Conversely, with the design we exposed earlier, we merely record
new instances as they appear without holding the entire set of
potential function calls in memory. This allows for an efficient,
non-redundant generation of test cases (instances).

5.3 AVL trees
AVL trees are a classic of programming interviews; many a graduate
student has been scared by the mere mention of them. It turns out
that tenured professors should be scared too: the OCaml implemen-
tation of sets, written using AVL trees by a respectable researcher,
contained a bug that went unnoticed for more than ten years. The
bug was discovered when another enthusiastic researcher set out to
formalize the said library in Coq. The bug was fixed, and all was
well. Out of curiosity, we decided to run ArtiCheck on the faulty
version of the library. After registering only four functions with
ArtiCheck, the bug was correctly identified by our library, with
arguably less pain than the full Coq formalization required.

6. Related and Future Work
Genericity of value generation The idea of generating random
sequences of operations instead of random internal values is not
novel; for example, QuickCheck was used as is to test imperative
programs [6], by generating random values of an AST of operations,
paired to a monadic interpreter of those syntactic descriptions.
However, those examples in the literature only involve operations
for a single return type, corresponding to the return type of the AST
evaluation function. To integrate operations of distinct return types
in the same interface description, one needs GADTs or some other
form of type-level reasoning.

When multiple value types are involved, we found it helpful
to think of well-typed value generation as term/proof search. Our
well-typed rule to generate random values at type τ from a function
at type σ → τ and random values at type σ could be expressed, in
term of QuickCheck Arbitrary instances, as a deduction rule of
the form
instance Arbitrary b, Arbitrary (a -> b) => Arbitrary b

However, Haskell’s type-class mechanism would not allow this
instance deduction rule, as it does not respect its restrictions for
principled, coherent instance elaboration. Type classes are a helpful
and convenient host-language mechanism, but they are designed for
code inference rather than arbitrary proof search. Our library-level
implementation of well-typed proof search using GADTs gives us
more freedom, and is the central idea of ArtiCheck.

It is of course possible to see chaining of function/method calls
as a metaprogramming problem, and generate a reified description
of those calls, to interpret through an external script or reflection/JIT
capability, as done in the testing tool Randoop [10]. Doing the
generation as a richly-typed host language library gives us stronger
type safety guarantees: even if our value generator is buggy, it will
never compose operations in a type-incorrect way.

5 2017/3/3

Testing of higher-order or polymorphic interfaces The type de-
scription language we use captures a first-order subset of the simply-
typed lambda-calculus. A natural question is whether it would be
possible to support random function generation – embed negative
types into positives. A simple way to generate a function of type t
-> u is to just generate a u at each call; QuickCheck additionally
uses the t argument to produce additional entropy. This is not com-
pletely satisfying as it does not use the argument at type t (which
may not be otherwise reachable from the interface) to produce new
values of type u. To have full test coverage for higher-order func-
tional, one should locally add the argument to the set of known
elements at type t, and re-generate values at type u in that extended
environment.

It would also be interesting to support representation of polymor-
phic operations; we currently only describe monomorphic instan-
tiations. Bernardy et. al. [3] have proposed a parametricity-based
technique to derive specific monomorphic instances for type argu-
ments, which also reduces the search space of values to be tested.
Supporting this technique would be a great asset of a testing library,
but it is definitely not obvious how their pen-and-paper derivation
could be automatized, especially as a library function.

Bottom-up or top-down generation We have presented the
ArtiCheck implementation as a bottom-up process: from a set
of already-discovered values at the types of interest, we use the
constructors of the interface to produce new values. In contrast, most
random checking tools present generation in a top-down fashion:
pick the head constructor of the data value, then generate its sub-
components recursively. One notable exception is SmallCheck [12],
which performs exhaustive testing for values of bounded depth.

The distinction is however blurred by several factors. Fix im-
plements demand-driven computation of fixpoints: if you request
elements at type u and there is an operation t -> u, it will re-
cursively populate values at type t, giving the actual operational
behavior of the generator a top-down flavor. Relatedly, SmallCheck
has a Lazy SmallCheck variant that uses laziness (demand-driven
computation) to avoid fleshing out value parts that are not inspected
by the property being tested.

Furthermore, the genericity of our high-level interface makes
Articheck amenable to a change in the generation technique;
we could implement direct top-down search without changing the
signature description language, or most parts of the library interface.

Richer property languages We discussed in Section 4 the diffi-
culty of isolating an expressive fragment of first-order logic as a
property language that could be given a realizable testing semantics.
As it performs exhaustive search (up to a bound), SmallCheck is able
to give a non-surprising semantics to existential quantification. As
we let user control for each interface datatype whether an exhaustive
collection or a sampling collection should be used, we could support
existential on exhaustively collected types only.

In related manner, Berghofer and Nipkow’s implementation of
QuickCheck for Isabelle [2] stands out by supporting full-fledged
first-order logic for random checking. In the Isabelle proof assistant,
it is common to define computations as inductive relations/predicates
that can be given a (potentially non-deterministic) functional mode;
instead of directly turning correctness formulas into testing pro-
grams, they translate formulas into inductive datatypes, which are
then given a computational interpretation.

This is remarkable as it not only allows them to support a rich
specification language, but also gives a principled explanation for
the ad-hoc semantics of preconditions in testing frameworks (a
failing precondition does not count as a passed test); instead of
seeing a precondition P[x] as returning a boolean from a randomly-
generated x, they choose a mode assignment that inverts it into
a logic program generating the xs accepted by the precondition.

This gives a logic-based justification to various heuristics used in
other works to generate random values more likely to pass the
precondition, either domain-specific [7] or SAT-based [1].

Conclusion
We have presented the design of ArtiCheck, a novel library that
allows one to check the invariants of a module signature by simulat-
ing user interaction with the module. ArtiCheck behaves like a fake
client: it calls functions, constructs and destructs products or sums,
and for each element check that the invariants are verified. The key
to performing this in a generic, abstract manner relies on GADTs,
which abstract the different types that may be manipulated into a
common representation.

We identified various performance problems that arise. The
library handles them via a symbolic representation of types in
combination with a little bit of mutable state to avoid handling
large, intermediary results in memory.

The result is a self-contained library that wraps the core concepts
of external testing and offers clients a cheap and efficient way to
test their programs. The library, for instance, successfully detects
infamous issues such as the AVL re-balancing issue in the standard
library of OCaml, with a much lower cost than a complete machine-
assisted verification of the module.

While the library exposes the essence of external testing and
has already proven worthwhile, we believe there is potential for
improvement and expansion into a fully-fledged testing library. The
code, along with the entire history of the present paper, is available
online at https://github.com/braibant/articheck.

References
[1] Ki Yung Ahn and Ewen Denney. Testing first-order logic axioms in

program verification. In Gordon Fraser and Angelo Gargantini, editors,
TAP, volume 6143 of LNCS, pages 22–37. Springer, 2010.

[2] Stefan Berghofer and Tobias Nipkow. Random testing in isabelle/hol.
In SEFM, pages 230–239. IEEE Computer Society, 2004.

[3] Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing
polymorphic properties. In Andrew D. Gordon, editor, ESOP, volume
6012 of LNCS, pages 125–144. Springer, 2010.

[4] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterex-
ample generator for higher-order logic based on a relational model
finder. In Matt Kaufmann and Lawrence C. Paulson, editors, ITP,
volume 6172 of LNCS, pages 131–146. Springer, 2010.

[5] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In Martin Odersky and Philip
Wadler, editors, ICFP, pages 268–279. ACM, 2000.

[6] Koen Claessen and John Hughes. Testing monadic code with
quickcheck. SIGPLAN Notices, 37(12):47–59, 2002.

[7] Koen Claessen and Hans Svensson. Finding counter examples in
induction proofs. In Bernhard Beckert and Reiner Hähnle, editors,
TAP, volume 4966 of LNCS, pages 48–65. Springer, 2008.

[8] Gérard Huet. The zipper. 7(5):549–554, 1997.

[9] Chuck Liang and Dale Miller. Focusing and polarization in intuitionis-
tic logic. In Jacques Duparc and Thomas A. Henzinger, editors, CSL,
volume 4646 of LNCS, pages 451–465. Springer, 2007.

[10] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed
random testing for java. In Richard P. Gabriel, David F. Bacon,
Cristina Videira Lopes, and Guy L. Steele Jr., editors, OOPSLA
Companion, pages 815–816. ACM, 2007.

[11] François Pottier. The Fix library. http://gallium.inria.fr/
~fpottier/fix/fix.html.en, 2014.

[12] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck
and lazy smallcheck: automatic exhaustive testing for small values. In
Andy Gill, editor, Haskell, pages 37–48. ACM, 2008.

6 2017/3/3

https://github.com/braibant/articheck
http://gallium.inria.fr/~fpottier/fix/fix.html.en
http://gallium.inria.fr/~fpottier/fix/fix.html.en

	Introduction
	The essence of external testing
	Implementing ArtiCheck
	A better algebra of types
	Efficient construction of a set of instances
	Instance generation as a fixed point computation

	Expressing correctness properties
	Examples
	Red-black trees
	Binary Decision Diagrams
	AVL trees

	Related and Future Work

