Ambiguous pattern variables

Gabriel Scherer, Luc Maranget, Thomas Réfis

July 29, 2016

The or-pattern (p | ¢) matches a value v if either p
or ¢ match v. It may happen that both p and ¢ match
certain values, but that they don’t bind their variables
at the same places. OCaml specifies that the left pat-
tern p then takes precedence, but users intuitively expect
an angelic behavior, making the “best” choice. Subtle
bugs arise from this mismatch. When are (p | ¢) and
(g | p) observably different?

To correctly answer this question we had to go back
to pattern matrices, the primary technique to compile
patterns and analyze them for exhaustivity, redundant
clauses, etc. There is a generational gap: pattern match-
ing was actively studied when most ML languages were
first implemented, but many of today’s students and
practitioners trust our elders to maintain and improve
them. Read on for your decadely fix of pattern matching
theory!

A bad surprise Consider the following OCaml match-
ing clause:

| (Const n, a) | (a, Const n)
when is_neutral n -> a

This clause, part of a simplification function on some
symbolic monoid expressions, uses two interesting fea-
tures of OCaml pattern matching: when guards and or-
patterns.

A clause of the form p when ¢ -> e matches a pattern
scrutinee if the pattern p matches, and the guard g, an
expression of type bool, evaluates to true in the envi-
ronment enriched with the variables bound in p. Guards
occur at the clause level, they cannot occur deep inside
a pattern.

The semantics of our above example seems clear: when
given a pair whose left or right element is of the form
Const n, where n is neutral, it matches and returns the
other element of the pair.

Unfortunately, this code contains a subtle bug: when
passed an input of the form (Const v, Const n) where
v is not neutral but n is, the clause does not match!
This goes against our natural intuition of what the code

means, but it is easily explained by the OCaml seman-
tics detailed above. A guarded clause p when g -> ¢
matches the scrutinee against p first, and checks g sec-
ond. Our input matches both sides of the or-pattern;
by the specified left-to-right order, the captured environ-
ment binds the pattern variable n to the value v (not n).
The test is_neutral n fails in this environment, so the
clause does not match the scrutinee.

A new warning This is not an implementation bug,
the behavior is as specified. This is a usability bug, as
our intuition contradicts the specification.

There is no easy way to change the semantics to match
user expectations. The intuitive semantics of “try both
branches” does not extend gracefully to or-patterns that
are in depth rather that at the toplevel of the pattern.
Another approach would be to allow when guards in
depth inside patterns, but that would be a very inva-
sive change, going against the current design stance of
remaining in the pattern fragment that is easy to com-
pile — and correspondingly has excellent exhaustiveness
and usefulness warnings. The last resort, then, is to at
least complain about it: detect this unfortunate situa-
tion and warn the user that the behavior may not be the
intended one. The mission statement for this new warn-
ing was as follows: “warn on (p; | ¢2) when ¢ when an
input could pass the guard g when matched by ps, and
fail when matched by p;”.

We introduced this new warning in OCaml 4.03, re-
leased in April 2016.

Specification and non-examples A pattern p may
or may not match a value v, but if it contains or-patterns
it may match it in several different ways. Let us define
matches(p,v) as the ordered list of matching environ-
ments, binding the free variables of p to sub-parts of v;
if it is the empty list, then the pattern does not match
the value.

A variable x € p is ambiguous if there exists a value v
such that distinct environments of matches(p,v) map x

to distinct values, and stable otherwise. We must warn
when a guard uses an ambiguous variable.

x is stable in ((x, None, _) | (x, _, None)), as it
will always bind the same sub-value for any input.

x is stable in ((x, None, _) | (_, Some _, x)), as
no value may match both sides of the or-pattern.

Pattern matrices Pattern matrices are a common
representation for pattern-matching algorithms. A m xn
pattern matrix corresponds to a m-disjunction of pattern
on n arguments matched in parallel:

P11 P12 Pin | (p11,012, -+, P1m)
P21 P22 P2.n i | (p2’17p272, ,pQ?n)

: : : | ...
Pm,1 Pm,2 Pmn ‘ (pm,lapm,Qa T apm,n)

A central operation is to split a matrix into sub-
matrices along a given column, for example the first col-
umn. Consider the matrix

Ki(q1,1) D1,2 DP1n
Ko(q,1,G22) D22 D2.n
- P3a P3.n
Ko(qa1,qa2) Da2 Dan

The first element of a n-tuple matching some row of
the matrix starts with either (1) the head constructor Ky,
or (2) Ko, or (3) another one. The three following sub-
matrices thus describe the shape of all possible values
matching this pattern — with the head constructor of the
first column removed:

(1) o b P 2,1 G422 P22 P2.n
- P31 DP3.n (2) ’ " pan Do
(3) [— D31 p37n] Ga1 Qa2 P42 Dan

A variable is stable in a matrix if it is stable in each of
its sub-matrices.

If a pattern in the column we wish to split does not
start with a head constructor or _, but with an or-
pattern, one can simplify it into two rows:

[((h | g2) 7"] wor

After repeated splitting, a column ends up with only
nullary constructors or universal patterns _; the next

split removes the column. Eventually, repeated splitting
terminates on a matrix with several rows but no columns.

Binding sets When splitting a matrix into sub-
matrices, we peel off a layer of head constructors, and
thus lose information on any variable bound at this po-
sition in the patterns.

To correctly compute stable variables, we need to keep
track of these binding sites: we enrich pattern matrices
with information on what variables were peeled off each
row. Our matrices are now of the form

Bi1 Biy | pi1 pie
: S .
B 1 B |
where the B, are binding sets, sets of variables found
in the same position during pattern traversal. Variables
of different columns correspond to different binding po-
sitions, so they may bind distinct values.

The type-checker ensures that the two sides of an or-
pattern (p | ¢) bind the same variables, and that pat-
terns are otherwise linear — each variable occurs once.
This guarantees that all rows bind the same environ-
ment, and that each variable occurs either in a single
pattern of the row, or in one of the binding sets.

Variable binding at the head of the leftmost pattern
are moved it to the rightmost binding set.

.. Byl (pasx ...]=[.. (BuUu{z})|p..]
[Bl,l’X] = [(BLZU{.Z‘})’,]

Pin

Pm,1 Pm2 Pmn

We insert a new binding set when splitting on the head
constructor of the first pattern row: head variables of the
new rows bind to a different position.

[Bi1 Biy | K(qi,---,q1) pi2 Di;m]
= [Bia Biy 0| @ qk Pi2 Pim]

When traversal ends on a matrix with empty rows, we
compute stability of this matrix from the binding sets:

Binding sets along a given column correspond to vari-
ables that are bound at the same position for all possible
ways to enter this sub-matrix. The intersection of these
sets thus gives the stable variables of the column. Be-
cause the variable sets are disjoint, a variable stable for
a column cannot appear anywhere else.

Acknowledgments This subtle bug was brought to
our attention by Arthur Charguéraud, Martin Clochard
and Claude Marché. Francois Pottier made the elegant
remark that ambiguity corresponds to non-commutative
or-patterns — (p | ¢) different from (¢ | p).

