
Ambiguous pattern variables

Gabriel Scherer, Luc Maranget, Thomas Réfis

Northeastern University

September 22, 2016

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 1 / 17

The problem

type α exp =

| Const of α
| Mul of α exp * α exp

let is_neutral n = (n = 1)

let mul a b = match a, b with

| (Const n, v) | (v, Const n)

when is_neutral n -> v

| a, b -> Mul (a, b)

mul (Const 2) (Const 1)

= Mul (Const 2, Const 1)

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 2 / 17

The problem

type α exp =

| Const of α
| Mul of α exp * α exp

let is_neutral n = (n = 1)

let mul a b = match a, b with

| (Const n, v) | (v, Const n)

when is_neutral n -> v

| a, b -> Mul (a, b)

mul (Const 2) (Const 1)

= Mul (Const 2, Const 1)

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 2 / 17

The problem

type α exp =

| Const of α
| Mul of α exp * α exp

let is_neutral n = (n = 1)

let mul a b = match a, b with

| (Const n, v) | (v, Const n)

when is_neutral n -> v

| a, b -> Mul (a, b)

mul (Const 2) (Const 1)

= Mul (Const 2, Const 1)

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 2 / 17

ML patterns (formally)

p ::= pattern
| wildcard
| p as x variable binding
| K (p1, ..., pn) constructor pattern
| p | q or-pattern

Variable patterns x are sugar for (as x).

Pair patterns (p, q) are a special case of constructor pattern.

A clause of the form

| p when g -> e

matches p first, then test if g holds, and only then takes the branch to e.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 3 / 17

The Clash

(p | q) when g → e
readers think the guard g will test both p and q – angelic choice.

The specification clearly says otherwise:
(p | q) is left-to-right, and only then g is tried.

Note: specifying evaluation order is not always good, after all...

Note: automatically turning this into (p when g) | (q when g) does
not work:

changing the semantics of existing code: nope

nested guards don’t exist and would break exhaustivity checking, etc.

side-effects in g would be duplicated

what about nested or-patterns? (p | q) may be deep.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 4 / 17

The Clash

(p | q) when g → e
readers think the guard g will test both p and q – angelic choice.

The specification clearly says otherwise:
(p | q) is left-to-right, and only then g is tried.

Note: specifying evaluation order is not always good, after all...

Note: automatically turning this into (p when g) | (q when g) does
not work:

changing the semantics of existing code: nope

nested guards don’t exist and would break exhaustivity checking, etc.

side-effects in g would be duplicated

what about nested or-patterns? (p | q) may be deep.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 4 / 17

The Clash

(p | q) when g → e
readers think the guard g will test both p and q – angelic choice.

The specification clearly says otherwise:
(p | q) is left-to-right, and only then g is tried.

Note: specifying evaluation order is not always good, after all...

Note: automatically turning this into (p when g) | (q when g) does
not work:

changing the semantics of existing code: nope

nested guards don’t exist and would break exhaustivity checking, etc.

side-effects in g would be duplicated

what about nested or-patterns? (p | q) may be deep.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 4 / 17

The Clash

(p | q) when g → e
readers think the guard g will test both p and q – angelic choice.

The specification clearly says otherwise:
(p | q) is left-to-right, and only then g is tried.

Note: specifying evaluation order is not always good, after all...

Note: automatically turning this into (p when g) | (q when g) does
not work:

changing the semantics of existing code: nope

nested guards don’t exist and would break exhaustivity checking, etc.

side-effects in g would be duplicated

what about nested or-patterns? (p | q) may be deep.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 4 / 17

The Clash

(p | q) when g → e
readers think the guard g will test both p and q – angelic choice.

The specification clearly says otherwise:
(p | q) is left-to-right, and only then g is tried.

Note: specifying evaluation order is not always good, after all...

Note: automatically turning this into (p when g) | (q when g) does
not work:

changing the semantics of existing code: nope

nested guards don’t exist and would break exhaustivity checking, etc.

side-effects in g would be duplicated

what about nested or-patterns? (p | q) may be deep.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 4 / 17

The Clash

(p | q) when g → e
readers think the guard g will test both p and q – angelic choice.

The specification clearly says otherwise:
(p | q) is left-to-right, and only then g is tried.

Note: specifying evaluation order is not always good, after all...

Note: automatically turning this into (p when g) | (q when g) does
not work:

changing the semantics of existing code: nope

nested guards don’t exist and would break exhaustivity checking, etc.

side-effects in g would be duplicated

what about nested or-patterns? (p | q) may be deep.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 4 / 17

At least complain about it!

Warn when

p when g → e

and

a value may match p in several ways (or-patterns)

the test g may depend on which choice is taken: it contains
ambiguous pattern variables

(a, (p | q)) when a < 10 → ...

(a, p) | (a, q) when a < 10 → ...

(Some v, e) | (e, Some v) when v = 0 → ...

(Some v, None) | (None, Some v) when v = 0 → ...

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 5 / 17

At least complain about it!

Warn when

p when g → e

and

a value may match p in several ways (or-patterns)

the test g may depend on which choice is taken: it contains
ambiguous pattern variables

(a, (p | q)) when a < 10 → ...

(a, p) | (a, q) when a < 10 → ...

(Some v, e) | (e, Some v) when v = 0 → ...

(Some v, None) | (None, Some v) when v = 0 → ...

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 5 / 17

At least complain about it!

Warn when

p when g → e

and

a value may match p in several ways (or-patterns)

the test g may depend on which choice is taken: it contains
ambiguous pattern variables

(a, (p | q)) when a < 10 → ...

(a, p) | (a, q) when a < 10 → ...

(Some v, e) | (e, Some v) when v = 0 → ...

(Some v, None) | (None, Some v) when v = 0 → ...

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 5 / 17

At least complain about it!

Warn when

p when g → e

and

a value may match p in several ways (or-patterns)

the test g may depend on which choice is taken: it contains
ambiguous pattern variables

(a, (p | q)) when a < 10 → ...

(a, p) | (a, q) when a < 10 → ...

(Some v, e) | (e, Some v) when v = 0 → ...

(Some v, None) | (None, Some v) when v = 0 → ...

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 5 / 17

At least complain about it!

Warn when

p when g → e

and

a value may match p in several ways (or-patterns)

the test g may depend on which choice is taken: it contains
ambiguous pattern variables

(a, (p | q)) when a < 10 → ...

(a, p) | (a, q) when a < 10 → ...

(Some v, e) | (e, Some v) when v = 0 → ...

(Some v, None) | (None, Some v) when v = 0 → ...

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 5 / 17

Our contribution

an algorithm to detect ambiguous pattern variables

implemented in OCaml 4.03 (released last April)

Demo

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 6 / 17

How to implement this warning? (Attempts.)

As for all pattern matching questions (compilation, exhaustivity,
usefulness...):

pattern matrices

(the take-away of this talk)

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 7 / 17

Pattern matrix
A matrix: a space of matcheable values that share a common prefix.

C1[�1, . . . ,�n]
C2[�1, . . . ,�n]

. . .
Cn[�1, . . . ,�n]


p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n


rows: disjunction, alternative

columns: sub-patterns matched in parallel

contexts: common prefix, possibly different bindings

((S �) as v ,�)
(S �, (� as v))

[
true N

S false

]
represents

| ((S true) as v , N)
| (S , S false as v)

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 8 / 17

Matrix operation: splitting a row (1)

All head constructors.

C1[�,�]
C2[�,�]
C3[�,�]

 N p1,2

S p2,1 p2,2

S p3,1 p3,2



=⇒

C1[N,�]
[
p1,2

] C2[S �,�]
C3[S �,�]

[
p2,1 p2,2

p3,1 p3,2

]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 9 / 17

Matrix operation: splitting a row (1)

All head constructors.

C1[�,�]
C2[�,�]
C3[�,�]

 N p1,2

S p2,1 p2,2

S p3,1 p3,2


=⇒

C1[N,�]
[
p1,2

] C2[S �,�]
C3[S �,�]

[
p2,1 p2,2

p3,1 p3,2

]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 9 / 17

Matrix operation: splitting a row (2)

Some head constructors.

C1[�,�]
C2[�,�]
C3[�,�]

 N p1,2

x p2,2

S p3,1 p3,2



=⇒
C1[�,�]
C2[�,�]
C3[�,�]

 N p1,2

(N | S) as x p2,2

S p3,1 p3,2



=⇒

C1[�,�]
C2[� as x ,�]
C2[� as x ,�]

C3[�,�]


N p1,2

N p2,2

S p2,2

S p3,1 p3,2



Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 10 / 17

Matrix operation: (3)

No head constructors.

C1[�,�]
C2[�,�]
C3[�,�]

 p1,2

x p2,2

p3,2


=⇒

C1[,�]
C2[x,�]
C3[,�]

p1,2

p2,2

p3,2



Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 11 / 17

Matrix operation: (3)

No head constructors.

C1[�,�]
C2[�,�]
C3[�,�]

 p1,2

x p2,2

p3,2


=⇒

C1[,�]
C2[x,�]
C3[,�]

p1,2

p2,2

p3,2



Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 11 / 17

Typical matrix-based algorithm, simplified

Manipulate sets of matrices.

Start from a single matrix (single-element set).
Split matrices, repeat.
Stop when all matrices are empty.

Compute your answer from that.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 12 / 17

Our algorithm, on an example (1)
(S v, a) | (a, S v) when is_neutral v → ...

�
[
(S v , a) | (a, S v)

]

�
�

[
(S v , a)
(a, S v)

]
(�,�)
(�,�)

[
S v a
a S v

]
(�,�)

(� as a,�)
(� as a,�)

S v a
S S v
N S v


(S �,�)

(S � as a,�)

[
v a

S v

]
(N as a,�)

[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 13 / 17

Our algorithm, on an example (1)
(S v, a) | (a, S v) when is_neutral v → ...

�
[
(S v , a) | (a, S v)

]
�
�

[
(S v , a)
(a, S v)

]

(�,�)
(�,�)

[
S v a
a S v

]
(�,�)

(� as a,�)
(� as a,�)

S v a
S S v
N S v


(S �,�)

(S � as a,�)

[
v a

S v

]
(N as a,�)

[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 13 / 17

Our algorithm, on an example (1)
(S v, a) | (a, S v) when is_neutral v → ...

�
[
(S v , a) | (a, S v)

]
�
�

[
(S v , a)
(a, S v)

]
(�,�)
(�,�)

[
S v a
a S v

]

(�,�)
(� as a,�)
(� as a,�)

S v a
S S v
N S v


(S �,�)

(S � as a,�)

[
v a

S v

]
(N as a,�)

[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 13 / 17

Our algorithm, on an example (1)
(S v, a) | (a, S v) when is_neutral v → ...

�
[
(S v , a) | (a, S v)

]
�
�

[
(S v , a)
(a, S v)

]
(�,�)
(�,�)

[
S v a
a S v

]
(�,�)

(� as a,�)
(� as a,�)

S v a
S S v
N S v



(S �,�)
(S � as a,�)

[
v a

S v

]
(N as a,�)

[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 13 / 17

Our algorithm, on an example (1)
(S v, a) | (a, S v) when is_neutral v → ...

�
[
(S v , a) | (a, S v)

]
�
�

[
(S v , a)
(a, S v)

]
(�,�)
(�,�)

[
S v a
a S v

]
(�,�)

(� as a,�)
(� as a,�)

S v a
S S v
N S v


(S �,�)

(S � as a,�)

[
v a

S v

]
(N as a,�)

[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 13 / 17

Our algorithm, on an example (2)

(S v, a) | (a, S v) when is_neutral v → ...

(S v ,�)
(S as a,�)

[
a
S v

]
(N as a,�)

[
S v
]

(S v , (� as a))
(S v , (� as a))
(S as a,�)

SN
S v

 (N as a,�)
[
S v
]

(S v , (S � as a))
(S as a,�)

[
v

]
(S v , N)

[
·
]

(N as a,�)
[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 14 / 17

Our algorithm, on an example (2)

(S v, a) | (a, S v) when is_neutral v → ...

(S v ,�)
(S as a,�)

[
a
S v

]
(N as a,�)

[
S v
]

(S v , (� as a))
(S v , (� as a))
(S as a,�)

SN
S v

 (N as a,�)
[
S v
]

(S v , (S � as a))
(S as a,�)

[
v

]
(S v , N)

[
·
]

(N as a,�)
[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 14 / 17

Our algorithm, on an example (2)

(S v, a) | (a, S v) when is_neutral v → ...

(S v ,�)
(S as a,�)

[
a
S v

]
(N as a,�)

[
S v
]

(S v , (� as a))
(S v , (� as a))
(S as a,�)

SN
S v

 (N as a,�)
[
S v
]

(S v , (S � as a))
(S as a,�)

[
v

]
(S v , N)

[
·
]

(N as a,�)
[
S v
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 14 / 17

Our algorithm, on an example (3)

(S v, a) | (a, S v) when is_neutral v → ...

(S v , (S as a))
(S as a, v)

[
·
·

]
(S v , N)

[
·
]

(N as a, S v)
[
·
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 15 / 17

Our algorithm, on an example (3)

(S v, a) | (a, S v) when is_neutral v → ...

(S v , (S as a))
(S as a, v)

[
·
·

]
(S v , N)

[
·
]

(N as a, S v)
[
·
]

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 15 / 17

Actual implementation

No need for sets of matrices: we recursively traverse the set/tree of splits.
Long time, but short space.

Most algorithms don’t keep contexts, they retain only what they need. In
our case, variable bindings positions.

See the extended abstract for a more algorithmic presentation.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 16 / 17

Conclusion

Arthur Charguéraud, Martin Clochard and Claude Marché: a problem

us: a solution

Future work: negative information.

Gabriel Scherer, Luc Maranget, Thomas Réfis (Northeastern University)Ambiguous pattern variables September 22, 2016 17 / 17

