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Abstract
The community of programming language research loves the Curry-Howard correspondence be-
tween proofs and programs. Cut-elimination as computation, theorems for free, call/cc as
excluded middle, dependently typed languages as proof assistants, etc.

Yet we have, for all these years, missed an obvious observation: “the structure of programs
corresponds to the structure of proof search”. For pure programs and intuitionistic logic, more
is known about the latter than the former. We think we know what programs are, but logicians
know better !

To motivate the study of proof search for program structure, we retrace recent research on
applying focusing to study the canonical structure of simply-typed λ-terms. We then motivate the
open problem of extending canonical forms to support richer type systems, such as polymorphism,
by discussing a few enticing applications of more canonical program representations.

1998 ACM Subject Classification F.3.3.4 Type structure, F.4.1.2 Lambda calculus and related
systems, F.4.1.8 Proof theory

Keywords and phrases programs proofs focusing canonicity

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

1.1 Canonical representations for arithmetic expressions in one variable
To introduce the idea of canonical representation of programs, let us start with an example
in a simpler domain, simple arithmetic expressions over one fixed variable x.

expression a, b ::= n ∈ N | a+ b | a− b | a× b | x

Suppose we are interested in the meaning of expressions, where the meaning of a is taken
to be the evaluation function that takes in input the value of the variable x and returns
the value of a with this parameter choice. You may think of inputs and outputs as natural
numbers – or elements of a given ring.

Our presentation of expressions above has some nice properties, in particular it makes it
obvious that the set of expressions is closed over addition and multiplication; it is easy to
compose expressions from smaller expressions. But it also admits pairs of expressions that
are syntactically distinct but have the same meaning, such as 2 + 2 and 4, or (a+ b)× c and
a× c+ b× c. We call these pairs redundancies.

There exists another common representation of these expressions: by applying simplifica-
tion rules that preserve meaning, we can turn such expression a into a polynomial such as,
for example, 2x3 + 4x− 1, which can be described formally as either 0 or a non-empty sum∑

06k6d ckx
k of monomials of the form ckx

k with ck ∈ Z and cd 6= 0, for a natural number
d called the degree of the polynomial.

We see our arithmetic expressions and the polynomials as two different representations
of the same sort of objects – their meanings as evaluation functions. Polynomials, as a
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23:2 Search for Program Structure

syntactic representation, have less redundancies than our expressions: 2 + 2 and 4 are distinct
expressions, but they are represented by the same polynomial 4x0. When a representation
has less redundancies than another, we say that it is more canonical. In fact, one can easily
show that polynomials have no redundancies at all: if two polynomials are syntactically
distinct, they have distinct meanings. When a representation has this property, we say that
it is canonical.

A more canonical representation has more structure: its definition encodes more of the
meaning of the objects being represented. A canonical representation is very rigid, a lot of
information about the object is apparent in its syntax, which often makes it easier to operate
on it. For example, it is non-obvious whether an arithmetic expression a is constant (for all
values of x), while this question can be easily decided for polynomials – it is constant when
it is 0 or its degree is 0. In general, polynomials are much more convenient to manipulate for
virtually any application, and they are the ubiquitous choice of representation when studying
these objects.

1.2 Canonical representations of simply-typed λ-terms and its
applications.

In this article, we discuss the design and use-cases of canonical representations of programs
expressed in typed λ-calculi, which are more complex than arithmetical expression: finding a
good notion of canonical representation can already be challenging.

Because canonical representations reveal so much, in their structure, of the meaning or
identity of the programs, we should expect them to play a central role in answering many
questions about programs. However, until recently theoretical difficulties hampered such
practical applications.

In Section 2 (Theory), we present a recent brand of work that brought a much better
understanding of canonical forms in the simply-typed case, inspired by ideas from logic
and proof theory, in particular focusing and saturation. This inspiration is an instance of
the Curry-Howard correspondence between proofs and programs that is different in nature
from the its previous use-cases that are familiar to functional programmers, and closer
to some formal approaches to logic programming. We then discuss why extending these
representations outside the simply-typed systems – to type systems with polymorphism,
closer to realistic programming languages or proof assistants – is difficult and interesting
future work.

In Section 3 (Practice), we discuss potential applications of canonical representations of
typed programs.

Full abstraction, discussed in Section 3.1. Full abstraction, as a formal property of a
translation from a source to a target language, requires that the translation preserves the
equivalence between source programs. We discuss how having canonical representations
on the source gives surprisingly strong full abstraction results; rather than a practical
application, this gives new ways to think about full abstraction results and their con-
sequences, by giving a new family of fully-abstract translations that behave in a fairly
different ways from those obtained through more typical proof techniques.
Equivalence checking, discussed in Section 3.2. Being able to mechanically check for
equivalence opens the door to many interesting practical applications, such as automati-
cally verifying that a “refactoring” change indeed preserved the meaning of the program
as intended – a somewhat tedious task that human reviewers currently have to perform –
and solving some ambiguity situations or conflicts arising from a “diamond inheritance”
situation. Because we know that for general programming language the question of
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equivalence fatally becomes undecidable, we must be careful to consider applications
where “time out” is an acceptable answer.
Program synthesis, studied in Section 3.3. Type-directed program synthesis algorithms
try to enumerate all expressions of a certain type until they find one that satisfies
certain user-provided conditions, such as input-output pairs or unit tests. More canonical
representations eliminate redundancies – two syntactically distinct expressions of the
same program behavior – so using them would seem very beneficial for program synthesis,
by reducing the search space of program expressions to search. In fact, as we will show,
existing work on program synthesis used some simplifications presented as heuristics,
that are all instances of the simplifications leading to focusing-based more canonical
representations.
On the other hand, canonical representations may also require additional book-keeping,
and to a certain point decrease raw efficiency of term enumeration. We propose studying
these situations where de-normalization is desirable, starting from canonical representa-
tions, rather than studying partial heuristics starting from naive program representations.

2 Theory

2.1 Functional and logic programming
We have lived for too long in a world where logical justifications for programming language
research were separated in two disconnected areas:

Functional programming, whose computational behavior is given by term reduction,
corresponding in logic to cut-elimination or in general elimination of detours in proofs.
Logic programming, whose computational behavior is given by proof search.

It is natural for functional programmers to think about complete proofs that correspond
to the program terms they are familiar with. They study relations between proofs or between
programs, typically by a reduction relation that expresses computation, and an equivalence
relation that expresses indistinguishability.

Curry-Howard then transfers intuition back and forth between program-formers with
a computational interpretation and proof -formers with an interpretation as a reasoning
principle. Some success stories include relating control operators to classical reasoning
principles (Griffin 1989), functional-reactive or event-driven programming to linear temporal
logic (Jeffrey 2012; Paykin, Krishnaswami, and Zdancewic 2016), session types to linear
logic propositions (Caires and Pfenning 2010), and building proof assistants with convenient
computational principles out of advanced dependent type theories (Agda, Coq, LF, PRL...).

Logic programming considers partial proofs – derivations with some unfilled subgoals left to
prove – to describe the state of a computation that evolves by proof search (Miller, Nadathur,
Pfenning, and Scedrov 1991), either stopping when a complete proof is reached or enumeration
all possible completions. Proposition-formers embed certain search principles that give rise to
new computational behavior, possibly bound to the choice of well-designed search strategies.
Besides proving a rich generalization of Prolog that is pleasing to proof theorists and type
theorists alike, success stories include using linear logic to specify concurrent and distributed
systems (López, Pfenning, Polakow, and Watkins 2005; Schack-Nielsen and Schürmann 2008)
or to study interactive fiction gameplays and interactive storytelling (Martens 2015).

We encourage functional programmers to start caring about proof search as well. When
logicians propose a new strategy for proof search in a given logic, it avoids traversing
redundant derivations of the same proof. In terms of programming, it removes redundant
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23:4 Search for Program Structure

expressions of the same program. This lets functional programmers better understand the
structure and identity of programs, by suggesting more canonical representations.

2.2 Identity in logic and programming
We make a careful distinction between a program, that is a specific behavior that the user
has in mind when she implements it in a programming language, and its expression as a
specific term in a given system of representation – defined by a syntax, typing rules, etc. A
program can have arbitrarily many expressions; we say that two expressions are equivalent if
they represent the same program. For example, refactoring is the process of moving from one
expression of a program to another, that is judged more amenable to further modification.

In comparison to the arithmetic expressions of Section 1.1, programs (program behaviors)
correspond to evaluation functions, and expressions correspond to terms, either in the syntax
of simple arithmetic expressions – one choice of representation – or as polynomials – another
choice.

I Definition 1 (Canonicity). A representation T is more canonical than a representation
S if they represent the same programs, and there is a mapping b c : T → S such that the
equivalence classes of T (the maximal sets of expressions of the same program) are mapped
by b c to subsets of the equivalence classes of S. For example, β-normal λ-terms are more
canonical than arbitrary λ-terms. A representation T is canonical if each equivalence class is
a singleton – all equivalent representations are syntactically equal. For example, if you take
a reasonable definition λ-calculus with integers, and restrict yourself to closed terms of type
integer, then β-normal forms are canonical.

For programmers there is usually an extremely clear definition of the behavior of an
expression, and therefore of what it means for two expressions to be equivalent. It may
depend on what they decided to observe – they may, for example, ignore or pay attention
to time and memory consumption – but is non-controversial as soon as the observable are
agreed upon.

Logicians also make a distinctions between the expression of a formal proof and the
mathematical proof it represents, and may consider that two derivations, two formal proofs
are “morally the same”. But how to define this distinction is not at all obvious: ordinary
users of proofs do not consider their behavior, they are merely satisfied that they exist at all
and could not care less about their formal identity.

How to explain, then, the following state of affairs? The identity of proofs has been
studied for a long time by logicians, who proposed many different means of representing a
mathematical proof, meant to better capture its identity, to strive at canonicity: natural
deduction, sequent calculus, hypersequents / deep inference, focused sequents, tableaux,
connection matrices, proof nets, etc. On the other hand, λ-terms reign as the ubiquitous
representations of functional programs and, besides normalization of closed programs, the
question of choosing alternative means of expression is rarely considered.
I Remark. We propose a tentative explanation – an excuse: canonicity is bad for programming.
The choice of a highly non-canonical representation of programs allows programmers rich
means of expressions of the same program. Two distinct expressions of the same program
may correspond to stylistic difference, or an expression of intent in the way the program being
worked on will evolve over time. Non-canonicity may be essential for flexibility, clarity and
modularity. This is similar to the fact that human mathematicians do, in fact, use products
P ×Q of arbitrary polynomials P,Q when it is what they want to express, despite this not
within the grammar of polynomials themselves – the product is only a simple arithmetic
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expression, which is simpler to produce. Yet, just as polynomials, if we want to write tools to
consume programs, better understanding canonical representations can be essential.

2.3 Focusing for canonicity of simply-typed effectful λ-calculus
Focusing is based on the logical notion of invertibility. An inference rule is invertible when
applying it during proof search cannot get you stuck: its premises are provable if and only
if its conclusion is provable. Consider the logical rules corresponding to construction of
functions, pairs and sums:

Γ, A ` B
Γ ` A→ B

Γ ` A1 Γ ` A2

Γ ` A1 ×A2

Γ ` Ai

Γ ` A1 +A2
i ∈ {1, 2}

The rule for functions and pairs are invertible, but the rule for sum is not: using it means
making a choice, and it is possible to get into a dead-end – if you try to prove A1 but
only A2 was provable. On the side of destructors, the opposite is true: deciding to apply a
function may get you in a dead-end if you don’t know how to build an argument for it, while
eliminating a sum merely considers two possible outcomes, losing no information.

Focusing, originally introduced for linear logic in Andreoli (1992), is a series of conditions
on proofs: some proofs are valid focused proofs, and other are not. First, if invertible rules
can never get you in a dead-end, you can make them mandatory: focusing forces them to
be applied eagerly, as much as possible. Second, once you can only apply non-invertible
rules, the user has to select a formula (of the context or the goal), and focused imposes that
apply non-invertible rules be applied to it as long as possible. For example, if the goal is
(X1 +X2) + (Y 1 + Y 2), focusing demands not only that they make a (non-invertible) choice
for the head sum connective, but also choose between one of the Xi (or Y i) by doing a
nested sum introduction. As another example, if a function variable f : X → Y → Z is in
the context, selecting it means that one has to pass all arguments at once, passing both a
X and a Y argument – stopping after applying X to work on another formula would be an
invalid focused proof. Intuitively, using this function is only useful to get the final result Z,
so it is always possible to either never apply it (if Z is not needed), or delay the application
of X until Y is also available.

Zeilberger (2008) proposed to consider focused proofs as a syntax for a programming
language, guided by the observation that focusing could justify the dual semantic restrictions
on polymorphism in effectful call-by-value and call-by-name languages – this work explains
the value restriction for strict intersection types and the context restriction for lazy union
types appearing in Dunfield and Pfenning (2004), and the explanation was extended to
second-order universal and existential polymorphism in Munch-Maccagnoni (2009).

The idea of invertibility is one way to understand why adding sums make equivalence
harder. We say that a type connective is positive if its right introduction rule is non-invertible,
and negative otherwise: (→,×, 1) are negatives, and (+, 0) are positive. It is easy to decide
equivalence of the simply-typed λ-calculus with only connectives of one polarity: we previously
remarked that it is easy to define canonical forms in the negative fragment STLC(→,×, 1),
but it is equally easy in the positive fragment STLC(+,0). It is only when both polarities are
mixed that things become difficult.

A key result of Zeilberger (2009, Separation Theorem, 4.3.14) is that a focusing-based
presentation of the simply-typed λ-calculus is canonical in the effectful setting where we
assume that function calls may perform side-effects – at least using the specific reduction
strategy studied in CBPV (Levy 1999). Two syntactically distinct effectful focused program
expressions are observationally distinct – the canonicity proof relies on two distinct error
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effects, to distinguish evaluation order, and an integer counter to detect repeated evaluation.
The fact that any λ-term can be given a focused form comes from a completeness theorem, the
analogous of completeness of focusing as a subset of logical proofs. However, this syntax is not
canonical anymore if we consider the stronger equivalences of pure functional programming,
where duplicated or discarded computations cannot be observed.

Let us write P ,Q for positive types, types that start with a positive head connective,
and N,M for negative types, that start with a negative head connective. In a λ-term in
focused form with types of both polarities – see a complete description in Scherer (2016,
Chapter 10) – a non-invertible phases can be of two forms which we shall now define. It
can start with a positive neutral (p : P ), which is a sequence of non-invertible constructors
of the form σi for positive types, they commit to a sequence of risky choice to build the
value to return. Or it can start with a negative neutral n[y : N ], that performs a series of
function applications n p or pair projections πi n to a variable y : N from the context. Such
a negative neutral term, if it is of the type of an atomic goal (n : X), is returned unchanged.
If it is of some positive type P , it is bound to a variable name to be decomposed decomposed
by the following invertible phase: let (x : P ) = n[y : N ] in . . .. One way to think of these
two choices is that positive neutrals (p : P ) build a part of the output value, while negative
neutrals n[y : N ] observe a part of the input environment.

2.4 Saturation for local canonicity of simply-typed pure λ-calculus
Focusing enforces a form of backward search structure on canonical program representations:
the invertible structure of terms is purely determined by the types of the goal and the context.
To obtain canonical forms for pure terms, Scherer and Rémy (2015) had to use intuitions
from proof search again, by forcing the non-invertible part of terms to have the structure of a
forward search: at the end of each invertible phase, try to saturate the context by making as
much observations let (x : P ) = n[y : N ] in . . . as possible, returning a value (x : P ) only
when introducing new observations does not teach us anything new. We call terms that
follow this discipline saturated terms – for a more detailed explanation of saturation, see
Scherer (2016, Chapter 11).

There is no redundancy among saturated terms, but the completeness theorem is weaker
than for focusing alone. To have the saturation process terminate, one has to fix in advance
a finite set of possible observations for each context. For any such choice, only finitely
many λ-terms can be given a saturated normal form – and conversely, for any finite set
of λ-terms there exists a saturation strategy that allows to represent them as saturated
normal form. This is enough for practical applications – testing whether a type has a unique
inhabitant, testing whether two terms are equivalent (two is finitely many) – but still a
technical limitation.

3 Practice

These results on the simply-typed λ-calculus are very encouraging, but they do not provide
canonical forms in presence of parametric polymorphism, which gives even stronger equational
principles. In other words, canonical forms for practically used programming languages are
still out of reach.

We argue that building them would give us a much better understanding of what our
programs are, and open the door for important applications.
1. Easy ways to build fully abstract translations.
2. Program synthesis.
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3. Equivalence procedures.

3.1 Full abstraction

A translation from one program representation to another, a compiler for example, is said
to be fully abstract1 if two programs are observationally equivalent if and only if their
translations are observationally equivalent.

Full abstraction is a strong property that gives a lot of information of a compilation
process: it tells us that any equational reasoning at the source level remain valid at the
target level. One can think of it as a usability property (knowing the source language is
enough) or a security property (the compiler protects programs from being separated by
attacks at the target level)

As a result of its strength, it is a difficult property to establish : many translations that
we intuitively believe are fully-abstract have only been proved so very recently, or are not
known to be. For example, fully-abstract translations from the simply-typed λ-calculus to
the untyped λ-calculus or from the simply-typed λ-calculus (with recursive types) to System
F were only established in 2016 (Devriese, Patrignani, and Piessens 2016; New, Bowman,
and Ahmed 2016), and type-erasing fully-abstract translations from System F are an open
problem. Yet we can, with apparent ease, provide you with very strong results.

I Theorem 2 (Full abstraction for free!). Take any finite subset S of the pure simply-typed
λ-calculus with functions, pairs, sums and units. Take any system T in which any λ-term
can be embedded: the untyped λ-calculus, System F, impure System F with references and
call/cc, the Calculus of Constructions... There is a fully-abstract translation from S to T .

Proof. For any pure λ-term e in S, let us define bsc its canonical form as defined in Scherer
(2016), seen as a λ-term. We assumed that the λ-calculus embeds into T . We translate s
into the embedding of bsc.

By definition of canonicity, if two terms s, t are observationally equivalent, then bsc and
btc are syntactically equal, and in particular their embedding in T is the same program. In
other words, this translation is fully abstract. J

This result is a bit puzzling2. For example, we are not requiring the type A → B of
pure functions in the pure simply-typed λ-calculus to be translated in T into a type of pure
functions: the embedding into ML with non-termination and references, for example, would
return a term at the type of ML impure functions. Yet the translation is fully-abstract.

Full-abstraction proofs are delicate because they are often built on the ability to back-
translate contexts of the target language into the source language – completely or approxi-
mately. The proof technique established in Devriese, Patrignani, and Piessens (2016) might
be able to back-translate contexts of the calculus of (inductive) construction, but it sounds
like a daunting amount of work. Instead, we paid the cost of coming up with canonical
representations in the first place; once you have them for your source language, you get
fully-abstract translations for free!

1 Full abstraction was originally introduced as a quality criterion for denotational semantics instead of
syntactic program translation. We mention this is Section 4.2 (Game semantics).

2 Note that it is not an immediate consequence of strong normalization for the simply-typed λ-calculus,
otherwise it would extend to System F as well.
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3.2 Equivalence procedures

Canonical representations also give procedures to decide equivalence for a programming
language: to check whether two representations are equivalent, one can check whether their
canonical forms are syntactically equal. Conversely, it is often – but not always – the case
that equivalence procedures can be read back as a way to describe canonical forms for a
language.

We know surprisingly little about deciding program equivalence. Equivalence in presence
of non-empty sum types has remained an advanced, somewhat active research topic since it
was proved decidable in Ghani (1995), and equivalence in presence of the empty type (zero-ary
sums) was decided only recently (Scherer 2017). We know that observational equivalence for
System F is undecidable, but while the (equally undecidable) problem of type inference has
been actively studied since at least Pfenning (1988), we know of no research on equivalence
algorithms for polymorphic calculi.3 Similarly, an impressive amount of effort has been
invested in automatically checking that an implementation respects a specification (despite
the undecidability barriers), but almost none went into automatic checking of implementation
equivalence – as if this question jumped straight from automata to process calculi, without
ever touching functional programs.

We hope that studying proof search and canonical representations in presence of poly-
morphism will stimulate work on semi-decidable equivalence algorithms for powerful type
systems. The applications of equivalence procedures are everywhere, and we will mention
some of them:
1. Robust equivalence checking opens the door to automatic verification of refactoring code

transformations. Refactoring edits are typically designed to be easily reviewable by
human programmers, so they should be within reach of an equivalence algorithm, even if
it is very incomplete. Note that this very quickly involves the tricky equivalence of sums:
moving a condition test earlier or later in a program is an instance of β-expansion on
booleans (a sum type).

2. ML module systems have generative and applicative functors, the later being characterized
by the fact that two independent applications of the same functor to the same parameter
return compatible modules. This means that two independent libraries that made the
same instantiation choice are compatible, instead of having to be modified to depend
on a common functor applications. However, equality of module parameters, “static
equivalence”, is implemented in a very syntactic and restrictive way, essentially requiring
that both independent libraries refer to a shared definition of the parameter. To liberate
independent libraries, we should let each define their parameter, and check that they are
equivalent.

3. The question of equivalence is also underlying the problem of coherence of implicit
elaboration mechanisms such as type-classes and implicits. To remain predictable,
language designs try to guarantee that each implicit elaboration problem has a unique
solution across the user code – either by imposing somewhat ad-hoc priority/ordering
restrictions or by imposing non-modular conditions, such as imposing all implicit instances
to be declared at the toplevel. If we had reliable equivalence checking, we could for
example allow local declarations under the condition that local instances remain coherent
with outer instances – checking equivalence for all pairs of elaboration chains for the same

3 One notable exception is the work of Bernardy, Jansson, and Claessen (2010) on polymorphic testing,
which is secretly about program equivalence.
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instance – or automatically determine which global instances need to be locally disabled
to preserve coherence.

4. In general equivalence checking is the proper design tool to handle “diamond inheritance”
situations. If a declaration inherits from two classes exporting the same method definition,
existing languages either impose an arbitrary choice, or fail, or require a renaming;
renaming is correct, but cumbersome in the common case where both definitions are
equivalent – sometimes in non-trivial ways. This is common for example when modeling
mathematical hierarchies: a finite monoid is both a monoid and a finite set, which both
exports (non-conflicting) definitions of a carrier set.

3.3 Program synthesis
In Scherer and Rémy (2015) we used canonical forms for the simply-typed λ-calculus to
answer the following question: when it is the case that a given type has a unique inhabitant
modulo program equivalence? This unicity situation is a perfect opportunity for program
synthesis, as the code that programmer would have in mind is completely determined by the
type information flowing from the context. We presented some interesting examples (unique
inhabitants at non-trivial types of lens operators), but of course unicity rarely happens in
common programs today, only in highly polymorphic library functions, or code written with
rich dependent types (Scherer 2013).

More practical-minded work on type-directed program synthesis, such as the recent works
of P.-M. Osera and Zdancewic (2015), Frankle, P. Osera, Walker, and Zdancewic (2016),
and Polikarpova, Kuraj, and Solar-Lezama (2016), proceeds by enumerating arbitrary many
programs at a given type, looking for one that satisfies a user-provided specification – expressed
as a set of input-output examples, or a refinement type. Even if the specifications can be
woven inside the search procedure to reduce the search space, there is still a combinatorial
explosion in the number of synthesized AST nodes that makes scaling to rich programs
extremely challenging.

By reducing the redundancy among the programs of a given size, canonical forms provide
order-of-magnitude4 reduction in search space. In fact, many of the experimentally-motivated
space reduction heuristics proposed in P.-M. Osera and Zdancewic (2015) are subsumed by
focusing.

We propose three ways in which the study of canonical forms could interact and enrich
future research on type-directed functional program synthesis:
1. We believe that instead of starting from a λ-term enumeration and carving out to reduce

the search space, synthesis algorithms could be usefully expressed as directly from the
search procedure for canonical forms – if they are known for the type system at hand –
or the most-canonical representation known.

2. On the other hand, sometimes strong canonicity imposes some bookkeeping that can
actually degrade search performance – Frankle, P. Osera, Walker, and Zdancewic (2016)
reports that sometimes they willingly avoid η-expansion to reduce term size. Syntactic
descriptions of “weakly” focused programs that do not impose full deep inversion has
been proposed (Munch-Maccagnoni 2013), but we need to build empirical and theoretical
understanding of when and why de-canonicalization is useful for synthesis.

3. Finally, synthesis algorithms today mix techniques that are easily explained by the proof
search-inspired point of view we promote in the present article, and others, such as the

4 The order-of-magnitude claim comes from Frankle, P. Osera, Walker, and Zdancewic (2016).
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predicate interpolation used in Polikarpova, Kuraj, and Solar-Lezama (2016), that are not
justified in these terms. It would be interesting to find justifications for them in purely
logical terms – as logicians have historically have been able to do for various aspects
of logic programming, such as forward vs. backward-search (Chaudhuri, Pfenning, and
Price 2008) or magic sets (Chaudhuri 2010).

4 Advanced topics

4.1 Full abstraction seen differently
In Theorem 2 (Full abstraction for free!) we demonstrated that knowing a canonical rep-
resentation for a source language lets us build fully-abstract translation to many different
target languages with almost no assumption of those targets.

To be clear, we do not currently expect this approach to scale to the realistic languages we
are interested to get fully-abstract compilers and translations for, because of the decidability
barrier for canonical representations. Getting a more canonical representation is useful for the
applications mentioned so far, but this approach to full abstraction requires fully canonical
representations, and may therefore remain restricted to idealized languages. Nonetheless,
in the rest of this section, we explore what we can learn about full abstraction from this
extreme setting.

This full-abstraction argument is interesting because it gives a concrete example of the
general idea that full-abstraction results from a source to a target language need not be built
on back-translation techniques. Most of the known full-abstraction results rely on the ability
to back-translate some parts of target terms and contexts – for example those whose type is
the translation, in the target type system, of a source type – to the point where practitioners
would sometimes conflate full-abstraction with the ability to back-translate. We demonstrate
that knowing more about the source equivalence lets you work less on the relation between
the source and target languages.

Full abstraction is also often seen as a security property, and considering our proof
technique in this light is interesting. If we consider distinguishing two terms as an “attack”,
the statement of full abstraction says that the translation protects the source terms of any
additional distinguishing power (attacks) in the target language; this may be achieved by
having the compiler insert some sort of “protective wrapper” around the translated terms, to
disable the more low-level (malicious?) features of the target language – see Fournet, Swamy,
Chen, Dagand, Strub, and Livshits (2013) for example.

In our canonicity-based full abstraction result, there is no protective layer (neither static
or dynamic) around the terms. Instead of disabling the observation features of the target
language, we make sure that each source term will behave as all others equivalent terms
under any additional observation from the target.

For example, consider the type (X → Y )→ X → Y → Y in the pure simply-typed λ-
calculus and its two inhabitants λf x y. f x and λf x y. y. To get a fully-abstract translation
into a target calculus with side-effects such as input-output, one would typically wrap the two
terms into a protective barrier that prevents using side-effects to tell if the f argument is used
or not – in this example, the two terms are not equivalent, so they will remain distinguishable,
but the protective barrier would be used in any case. This protection could be static, using
a type of pure functions in the target language to forbid effects in f , or dynamic, using
some kind of IO mocking/reification to block external observers from seeing writes. In
our translation, no such protection is used; instead, saturation transforms both terms, in
the source language (before translation), into terms of the form λf x y. let y′ = f x in . . .,



G. Scherer 23:11

where the . . . are y′ for the first program and y for the second. No protective wrapping is
necessary anymore: bad f -observing side-effects will make the same observation on both
normal forms.

Finally, one may wonder about the efficiency impact of the normalization into a canonical
form – in particular the saturation. At the source type (X → Y )→ X → Y → Y in the
example above, we turned λf x y. y into λf x y. let y′ = f x in y, introducing an apparently
useless computation. In the general case, many such observations of the context may be
introduced by saturation – how much depends on the finite set of terms that delimits the
observable horizon. However, notice that this price needs only be paid if the function type
X → Y is translated into a type of impure functions in the target. If it is translated to a
pure function type, then the unused binding let y′ = f x can be removed after embedding
in the target language. In general, saturation may introduce many additional observations,
but only the ones that are required for full abstraction to hold need to be preserved; simple
type-directed target simplification strategies may be able to convert back to target programs
much closer to what non-canonicity-based fully-abstract compiler would produce.

4.2 Game semantics

Some readers may wonder about a relation between canonicity of syntactic representations
that we propose to discover using focusing, and the full abstraction property of some
denotational semantics obtained through game semantics. The comparison is as follows.

Game semantics provide a way to describe programs as games or, more precisely, strategies
(as mathematical objects in a denotational semantics, but they could be given a concrete
syntax), that allow to express an extremely broad scope of computational behaviors. In
particular, two distinct such objects are distinct behaviors (there is no redundancy), but
in general a lot of those objects do not correspond to interpretations any program of the
language you are starting with: they may exhibit various kind of non-determinism, state,
demand sensitivity, all sorts of weird things. Then you progressively carve out subsets of
those objects that have nice behavioral properties (for example, innocent strategies), ruling
out the strangest behaviors. If you do this enough, you can manage to remove all the
non-standard stuff, and the remaining objects are exactly the programs of your language:
you have a fully-abstract model.

The path to canonical forms goes in the opposite direction. We start with a syntax that,
obviously, contains only expressions of the programs of our language, but a lot of these
expressions may describe the same behavior. Then we carve out redundant expressions by
proposing more and more canonical representations. If we do this enough, we can manage to
remove all the redundancy, and the remaining expressions are exactly the programs of our
language: we have a canonical representation.

In the best case, a language is so well-understood that both processes have reached
completion: we have canonical representations and fully abstract denotations of it that are
in one-to-one correspondence. This has been worked out for propositional linear logic in
Laurent (2005).

5 Conclusion

Syntax is a powerful tool to study and manipulate program behavior, and we emphasize the
problem of finding more canonical syntactic representations of our program, that have less
redundancy and are thus closer to a canonical description of their behavior.
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We claim that this research programme can take heavy inspiration from proof-theoretic
results and methods to study the structure of proof search, extending a new arm of the
Curry-Howard correspondence.

Recent results have already been obtained for simply-typed systems, giving precise
descriptions of normal forms for both effectful and pure λ-calculi. The extension to parametric
polymorphism, and other advanced type systems (dependent types...) is an open problem
that you should consider working on!

Powerful type systems, with their stronger equational reasoning principles, should not
only make programming more expressive and safer, they should make it easier. We need
better programming tools for that to happen, and hopefully more canonical representations
are one way to make this happen.
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A Appendix: Noam’s history of focusing

Noam Zeilberger’s work contains, expressed very clearly, the result that focusing gives a
canonical term language for effectful programs – Zeilberger (2009, Separation Theorem,
4.3.14). Interestingly, this aspect is not emphasized in the general work, not is the connection
to logic programming (despite the direct connection to Frank Pfenning’s work), and the
formulation in terms of a Curry-Howard correspondence between term canonicity and proof
search is not to be found in his thesis – it seems to be a contribution of the present article.

We tried to guess how Noam Zeilberger ended up working with focusing and its applications
to functional programming problems. We assumed that familiarity with focusing came first
from the literature on logic programming, and applications to the simply-typed λ-calculus
came only later. We asked him, and it turns out we were completely wrong. Most of his
reply, lightly edited, is quoted below:

The original reason I started thinking about evaluation order and pattern-
matching was actually to understand intersection and union types. I was intrigued
by the paper on "Tridirectional typechecking" by Joshua Dunfield and Frank
(Dunfield and Pfenning 2004), where they showed that the union-elimination rule
requires an "evaluation context restriction" in the presence of effects, dual to the
value restriction on intersection-introduction which Rowan Davies and Frank had
found was necessary for CBV+effects ("Intersection types and computational effects",
Davies and Pfenning 2000). I was not completely satisfied with the treatment of
subtyping in these papers, though. Rowan and Frank’s paper explained that the
subtyping distributivity law

(1) (A→ B) ∧ (A→ C) 6 A→ (B ∧ C)

from classical intersection type systems is unsound for CBV+effects, while Joshua
and Frank’s paper showed that the dual rule for unions

(2) (A→ C) ∧ (B → C) 6 (A ∨B)→ C

is unsound for CBN+effects (they didn’t mention this explicitly, but it can be
deduced from their examples showing the necessity of an evaluation context restric-
tion on union-elimination). The solution in both papers was to simply drop these
principles (1) and (2), but it’s a fact that (1) is sound for CBN even in the presence
of effects, while (2) is sound for CBV+effects. What I noticed (which really is kind
of folklore) was that it’s possible to reduce these questions of subtyping to typing
by taking an "identity coercion" interpretation of subtyping. For example, it is
possible to "derive" principle (1) by typing the eta-expansion of a function variable:

f : (A→ B) ∧ (A→ C) ` fn x => f(x) : A→ (B ∧ C)

The point is that the corresponding typing derivation goes away if we place a
value restriction on intersection-introduction, because the subexpression f(x) is not
a value. My hypothesis was that it should derive all of the subtyping laws which
are sound for a given evaluation order by typing the appropriate identity coercion,
but this places constraints on the design of the type system, that the typing rules
be "sufficiently complete". In particular, subtyping rules such as

(A ∗B) ∧ (A ∗ C) 6 A ∗ (B ∧ C)
A ∗ (B ∨ C) 6 (A ∗B) ∨ (A ∗ C)

(A+B) ∧ (A+ C) 6 A+ (B ∧ C)
A+ (B ∨ C) 6 (A+B) ∨ (A+ C)
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seemed to require inversion principles based on pattern-matching to be built into
the typing rules. It took a few more steps to get to focusing. Here’s a followup
mail I wrote to Robert Harper on June 1 2006:

I think I understand what you were getting at earlier – would you find it
more acceptable to speak of call-by-value vs call-by-name connectives? Or
maybe strict vs lazy connectives? Part of what this work is about is that
we have to treat (for example) strict product and lazy product as different
logical connectives, with different introduction and elimination rules. You
can pattern-match against values of "strict type", and pattern-match against
*covalues* of "lazy type". If you are familiar with the idea of focusing, strict
(aka "positive") connectives are synchronous on the right and asynchronous
on the left, whereas lazy (aka "negative") connectives are synchronous on
the left and asynchronous on the right.

[...] It may not be necessary to segregate distinct "call-by-value" and
"call-by-name" type systems as I did in the version of the paper you have, and
instead just take their union as a system mixing strict and lazy connectives
– I haven’t worked that out.
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