
Full reduction in the face of absurdity

Gabriel Scherer1 and Didier Rémy1

INRIA,
{gabriel.scherer,didier.remy}@inria.fr

Abstract. Core calculi that model the essence of computations use full
reduction semantics to be built on solid grounds. Expressive type sys-
tems for these calculi may use propositions to refine the notion of types,
which allows abstraction over possibly inconsistent hypotheses. To pre-
serve type soundness, reduction must then be delayed until logical hy-
potheses on which the computation depends have been proved consistent.
When logical information is explicit inside terms, proposition variables
delay the evaluation by construction. However, logical hypotheses may be
left implicit, for the user’s convenience in a surface language or because
they have been erased prior to computation in an internal language. It
then becomes difficult to track the dependencies of computations over
possibly inconsistent hypotheses.

We propose an expressive type system with implicit coercions, consis-
tent and inconsistent abstraction over coercions, and assumption hiding,
which provides a fine-grained control of dependencies between compu-
tations and the logical hypotheses they depend on. Assumption hiding
opens a continuum between explicit and implicit use of hypotheses, and
restores confluence when full and weak reductions are mixed.

1 Introduction

The Curry-Howard isomorphism trained generations of statically-typed-language
designers to be able to instantly switch their point of view from programs to
proof terms, and from types to logic statements. Proof assistants based on type
theory let us use our functional programming intuitions to program proofs. One
example of the merits of such a re-unification is the strikingly simple and natural
treatment of axioms in the functional languages of those assistants: assuming an
axiom P is just abstracting over a variable (x : P) of the corresponding type,
and using this assumption is done by applying or pattern matching this bound
variable x. These languages generally allow full reduction, in particular reducing
under unapplied λ-abstractions. For example, a Coq program abstracting over
an axiom P is of the form λ(x : P) a, where a may be computed as usual, but
the reduction of subterms depending on x will be blocked.

There is a subtle but important contrast with how logical assumptions have
been dealt with in languages designed mostly for programming rather than prov-
ing, such as ML or Haskell. Typical examples are the reasoning on type equalities
in the ML module system, or in Generalized Algebraic Data Types (GADTs).

Consider the following example that implements application up to type equality,
given in OCaml-like syntax:

type (,) eq = Refl : (α, α) eq

let apply : ∀α1α2β. (α 1 → β) → α2 → (α1 , α 2) eq → β
= fun f x Refl → f x

With GADTs, the equality assumption is present at the term level, marked
by a λ-abstraction over the type (α1, α2) eq, but the use of this equality is
implicit : equality assumptions introduced by abstraction or pattern-matching
can be silently used in the corresponding term clauses. This implicitness can
be explained away by translating source terms into an intermediate language,
such as System FC [Vytiniotis and Jones, 2011] that marks uses of equality
assumptions with explicit coercions – providing a treatment similar to logical
assumptions in proof assistants. But it can also be formalized directly, as in the
presentation of GADTs extended to arbitrary logic constraints by Simonet and
Pottier [2007], or Dependent ML by Xi [2007].

It is well-known however that, with implicit use of potentially-absurd as-
sumptions, it is no longer safe to use full reduction under those assumptions.
Assuming (fst : (α ∗ β) → α) and (true : bool), the term apply fst true reduces
to

fun (Refl : (bool, (α ∗ β)) eq) → fst true

Reducing under this abstraction would mean computing fst true, i.e. the appli-
cation of a destructor to a constructor of an incompatible type, which is called
a runtime error. Interestingly, this issue does not happen with an explicit han-
dling of logical assumptions. In System FC, the above example would reduce to
the following normal form (assuming that the assumption γ has been used to
convert the type of the argument true rather than the type of the function fst):

fun (Refl (γ : bool ˜# (α ∗ β)) → fst (true . γ)

Here, bool ˜# (’a ∗ ’b) is the type of coercions that prove the equality between
bool and (’a ∗ ’b), and (true . γ) is the application of the coercion γ to true.
This application cannot be reduced until the formal variable γ has been instan-
tiated (that is, never, if we are in an empty context with a sound type system).
Meaning, γ remains in between fst and true preventing the application. Although
System FC is a weak calculus (abstracting on term or coercion variables blocks
reduction), full reduction could be used in a similar, explicit system.

We are convinced that it is important to also study the implicit presentation
directly. There is a convergence of designs that indicates that implicit use of as-
sumptions is significantly more convenient to the programmer. For a less-obvious
example than GADTs in ML or Haskell, the book Programming in Martin-Löf
Type Theory [Nordström et al., 1990] uses a type theory with extensional equal-
ity, which allows implicit use of equality assumptions, especially to simplify pro-
gramming with quotient types. We want to study λ-calculi that match how
users wish to program and define the operational behavior of programs directly
at this level.

2

Besides, we deem unfortunate the absolute reign of weak reduction on λ-
calculi designed for programming. We argue that while one could have a weak-
reduction semantics for reasoning about runtime complexity, a more abstract full
reduction understanding is better to reason about correctness – as an important
step towards equational reasoning on open terms.

In fact, type systems of programming languages are designed for full re-
duction strategies, and left unchanged when restricting the semantics to weak
reduction strategies. For example, the type systems of ML, System F and its
derivatives (Fη [Mitchell, 1988], F<: [Cardelli, 1993], MLF [Le Botlan and Rémy,
2003], etc.) are all sound for full reduction. While type systems are regularly im-
proved to accept more well-typed programs, they do not try in general to take
advantage of weak reduction strategies to accept nonsense under yet unapplied
abstractions, e.g. λ(x) 1 true, on the basis that these errors won’t be reachable by
a weak-reduction strategy. Early error detection is highly desirable for modular
development of programs—especially when defining library functions that have
not been applied yet.

One interesting counterexample is typechecking record concatenation, which
delays the resolution of typing constraints based on the evaluation strategy [Pot-
tier, 2000] in order to avoid the heavy cost of early consistency checking. How-
ever, in such cases, it is important that the programmer be aware of this de-
pendence of type soundness on the evaluation strategy—precisely because this
is not the default.

Full reduction also models reduction of open terms, or the introduction of
axioms.

We claim that (pure) lambda-calculi for programming languages ought to
strive to support full reduction; this design pressure should result in a better un-
derstanding of programming constructs. For example, soundness of full reduction
subsumes soundness for any evaluation strategy such as call-by-name and call-
by-value; and full reduction is used in practice in dependently-typed languages
such as Coq or Agda, with significant efforts spent to make it practical [Grégoire
and Leroy, 2002, Boespflug et al., 2011].

We could summarize the topic of this article with the following question.
We know how to design calculi with explicit uses of logical assumptions and full
reduction, or calculi with implicit uses of assumptions and weak reduction. Can
we merge those apparently incompatible feature pairs into a single calculus, close
to the non-encumbered terms the programmer wishes to write?

Consistent and inconsistent abstraction Intuitively, an abstraction on a type is
consistent when we can prove at the point of abstraction that there always exists
a possible instantiation for it in the current typing context; otherwise, we say it
is inconsistent. A typical example of a consistent abstraction is an abstraction
over a type variable α that has the kind ? of concrete types, as we know that
at least int has kind ? so it is a valid instance for α. Abstraction over a type
variable may also be constrained by a proposition that restricts the possible
instances of the type variable. An example of an unsatisfiable proposition is the

3

inter-convertibility int ' (int → τ), which is absurd for any type τ . Hence, an
abstraction over a type variable α such that int ' (int→ α) is inconsistent.

Previous work by Cretin [2014] and Cretin and Rémy [2014] introduced the
calculus Fcc, built around consistent coercion abstraction, a mechanism that al-
lows implicit abstraction over coercions and uses typing-transforming coercions,
provided we prove at their abstraction point that they are instantiable; such
coercions are completely erasable – they are not at all present at the term level.
This generalizes the traditional ML-style polymorphism in an expressive way,
encompassing the type systems of System F, MLF, F<:, Fη, and Fω. To be able
to also abstract over hypotheses that may not be consistent, Cretin and Rémy
added a distinct mechanism of inconsistent polymorphism that is present at the
term level and blocks reduction.

If an Fcc term a has type τ in the context Γ, α : κ, and we can prove that the
kind κ is instantiable by producing some type Γ ` σ : κ, we will consider that a
has type ∀(α : κ) τ in context Γ. The Curry-style presentation, with no explicit
syntax for type abstraction at the term level – we just write a, not Λ(α : κ) a –
highlights that this form of polymorphism is erasable.

If on the contrary we do not know how to prove that κ is instantiable (or do
not wish to do so), we may use inconsistent abstraction by building the term
∂ a at the distinct type1 Π(α : κ) τ . This form blocks the reduction of a and is
thus explicit at the term level.

To the explicit incoherent abstraction corresponds an explicit incoherent ap-
plication, which unblocks computation: if the type σ has kind κ, then κ is in fact
inhabited and a ♦ has type τ [σ/α]. This corresponds to the following inference
rules:

Γ ` σ : κ Γ, α : κ ` a : τ

Γ ` a : ∀(α : κ) τ

Γ ` a : ∀(α : κ) τ Γ ` σ : κ

Γ ` a : τ [σ/α]

Γ, α : κ ` a : τ

Γ ` ∂ a : Π(α : κ) τ

Γ ` a : Π(α : κ) τ Γ ` σ : κ

Γ ` a ♦ : τ [σ/α]

Even in full reduction (when reduction under λ’s is allowed), reduction re-
mains forbidden under ∂ ’s; an inconsistent abstraction is eliminated by the cor-
responding application, (∂ a) ♦, which reduces to a letting the evaluation of a
be resumed. In contrast, consistent abstraction is erasable by construction: it is
absent from the term itself, which alone determines reduction.

Issues with Fcc In the absence of inconsistency abstraction, the language Fcc has a
full reduction semantics and is confluent. However, both properties break when
introducing inconsistent abstraction, since inconsistent abstraction blocks the
evaluation to maintain soundness. This amounts to introducing a form of weak
reduction inside the language. While some reductions under ∂ are unsound and
must be blocked, others may be harmless and could be safely reduced—but this

1 The notation Π(α : κ) τ has nothing to do with dependent types.

4

is not allowed. This is going against our claim that core calculi ought to support
full reduction to the largest possible extent.

Besides, it is well known that mixing weak and strong reductions may break
confluence, and this problem affects Fcc. If b reduces to b′, then (λ(x) ∂ x) b can
reduce to either (λ(x) ∂ x) b′ and then ∂ b′, or to ∂ b, which cannot be further
reduced and, in particular, does not reduce to ∂ b′ (or one of its reducts), as
confluence would require.

These issues were well-understood by Cretin and Rémy [2014] and left for
future work. We present an improved variant of Fcc that solves both problems
simultaneously. In the course of doing so, we also encountered some more minor
issues in the details of Fcc, which allowed us to also improve the system as a
whole.

Propositional truths and hiding The language Fcc uses a blocking construct ∂ a to
introduce the inconsistent abstraction Π(α : κ) τ . This does not match, however,
the way potentially absurd assumptions are handled in dependent type theories,
such as Coq, where reduction is blocked at the point of use of the assumption,
not its point of introduction. This distinction is essential, in particular, to allow
writing certified programs as Coq program terms: if the axioms (e.g. classical
logic or proof irrelevance) are only used in logic parts of the formalization (under
terms at type Prop), they get removed by extraction; a program whose correct-
ness proof uses axioms can compute – while it would be blocked if we used our
∂ to introduce the axiom.

We therefore split inconsistent abstraction into two more atomic notions.
First, an abstraction form introduces the assumption, but does not allow its
implicit use yet; this does not block computation – the assumption is as frozen.
Second, an elimination construct on frozen assumptions makes them available
for implicit use – but blocks reduction.

Since the elimination construct blocks reduction, it needs to be present at the
term level; it refers to assumption names introduced by the abstraction construct,
which therefore also needs to be in terms – but without blocking reduction. In
fact, we just reuse λ-abstraction for that purpose: locked assumptions are term
variables at a new type [P] of propositional truths, representing the assumption
that the proposition P is true.

We write � for the introduction of propositional truths, and δ(a, φ.b) for
its elimination. Informally,2 if the proposition P holds in the typing context Γ,
then � is a witness of P at type [P]. The corresponding elimination rule, δ(a, φ.b)
computes a at type [P], while blocking the reduction of b, type-checked under
the assumption φ : P , until a turns into a concrete witness �. Then, δ(�, φ.b)
can be reduced to the pseudo-substitution b[�/φ] whose effect is to remove all
occurrences of φ in b, and, finally, the reduction of b can proceed.

With these new constructions, we may use standard abstraction λ(x : [P]) a
to abstract over a proposition P without blocking the evaluation of a, which
means that a cannot use P yet. In particular, a may be of the form a[δ(x, φ.b1),

2 The language is formally defined in §2.

5

δ(x, φ.b2)], allowing the implicit use of the proposition P in subterms b1 and b2,
which cannot be reduced, while full reduction is still allowed in a.

Propositional truth elimination allows the user to express the fact that an
assumption P may not actually be used directly at its abstraction site, but only
“at some later time”. Conversely, there are situations where an elimination on P
is needed to type-check parts of a term a and is no longer needed to typecheck
some subterm b of a. To enable reduction of b in such a case, we introduce
assumption hiding hideφ in b, which enforces that the proposition variable φ will
not be used implicitly in the subterm b. In exchange for losing this convenience,
we regain the full reduction behavior for b.

While assumption hiding has been introduced for programming reasons, it is
also instrumental in restoring confluence. The loss of confluence happens when
a substitution places a reducible term in an irreducible context. We may now
restore confluence by inserting appropriate hidings during substitution when
traversing proposition eliminators so as to preserve reducibility.

Contributions The central, novel idea of our work is the interaction of the ex-
plicit and implicit modes of use of logical assertions in a programming calculus
admitting full-reduction. From a theoretical point of view, implicitness was a
somewhat-neglected design choice, and we propose a continuum between im-
plicit and explicit uses thanks to propositional truths and assumption hiding
(Section 2.2). It reveals, for example, that GADTs are fundamentally different
from the usual algebraic datatypes. From a practical point of view, this gives the
user flexible control over the scope of logical assumptions to prevent them from
leaking into unrelated parts of his program—while retaining the convenience of
their implicit invocation.

Another, more technical contribution is a new formal full-reduction calculus
Fth, with inconsistent coercion abstraction that is confluent (Section 3.5). It
is notable that the construction that regains confluence (hiding) was initially
motivated by increasing the programmer’s convenience.

Besides, there are several other contributions:
– We improve some details of the existing Fcc calculus, updating its mechanized

soundness proof accordingly. Although coercion calculi in the spirit of Fcc are
neither surface nor internal languages, they are good at exploring the design
space; hence, even small improvements are valuable in the long term.

– We extend (3.5) the confluence proof technique of Takahashi [1995] so that it
scales to larger calculi expressed in the Wright-Felleisen style, using reduction
contexts to factor out common patterns and avoid a combinatorial increase
in the number of cases.

– When translating between two given calculi, precisely establishing a bisim-
ulation generally requires the use of an administrative variant of the target
calculus; in our case, we need an administrative arrow type that is incompat-
ible with the usual arrow type. While this is a common trick in the literature,
its soundness proof is not as obvious as one would expect. We provide precise
proofs that would be applicable to any calculus with several computational
type constructors, e.g. arrows and products.

6

TermVar
Γ, x : σ,∆ ` x : σ

TermLam
Γ ` τ : ? Γ, x : τ ` a : σ

Γ ` λ(x) a : τ → σ

TermApp
Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

TermProd
Γ ` a : τ1 Γ ` b : τ2

Γ ` (a, b) : τ1 ∗ τ2

TermProj
Γ ` a : τ1 ∗ τ2
Γ ` πi a : τi

TermSumIntro
Γ ` a : τi

Γ ` σi a : τ1 + τ2

TermSumElim
Γ ` a : τ1 + τ2 Γ, x1 : τ1 ` b1 : σ Γ, x2 : τ2 ` b2 : σ

Γ ` a(x1.b1 | x2.b2) : σ

TermCoerce
Γ,Σ ` a : τ Γ ` (Σ ` τ) . σ

Γ ` a : σ

TermWit
Γ ` Q

Γ ` � : [Q]

TermAssume
Γ ` a : [P] Γ, φ : P ` b : σ

Γ ` δ(a, φ.b) : σ

TermHide
Γ
 ∆ Γ ` ∃∆ Γ,∆ ` a : τ

Γ, φ : P,∆ ` hideφ in a : τ

Fig. 1. Fth term typing judgment Γ ` a : τ

2 A calculus with propositional truths

In this section, we formally present our calculus, Fth – with propositional truths
and hiding. As another instance of calculus based on erasable coercions, it is
strongly inspired by the previous work on Fcc by Cretin and Rémy [2014] and
follows the same global structure of judgments. Yet, we do not assume familiarity
with Fcc.

3

We first present the general structure of judgments and the constructs that
are common to both Fcc and Fth, together with their typing rules (§2.1). We then
detail the novel features of Fth, namely propositional truths and assumption
hiding (§2.2). Last, we present the dynamic semantics of Fth (§2.3). In §2.4, we
introduce a variant of Fth that is used to prove the soundness of Fth by translation
to Fcc in several steps (§3).

2.1 Consistent coercion calculus

Cretin and Rémy [2014] use a general notion of erasable coercions with abstrac-
tion over consistent coercions to present different type system features, such
as polymorphism, subtyping, and more in a common framework where these
features can be easily composed together. The restriction that only consistent
coercions can be abstracted over is key to erasability.

3 Fcc also supports equi-recursive types; we left them out of this presentation as they
are orthogonal to reduction under inconsistent assumptions. It is the only feature of
Fcc as previously described that is absent from Fth.

7

a, b ::= x, y . . . | λ(x) a | a a | (a, a) | πi a Terms

| σi a | a(x.a | y.a)

| � | δ(a, φ.a) | hideφ in a
τ, σ ::= α, β . . . | τ → τ | τ ∗ τ Types

| τ + σ

| ∀(α : κ) τ | (τ, σ) | πi τ | () | [P]

κ ::= ? | 1 | κ ∗ κ | {α : κ | P} Kinds

P,Q ::= > | P ∧ P | ∀(α : κ)P | ∃κ | (Σ ` τ) m τ Prop.

Γ,Σ,∆ ::= ∅ | Γ, x : τ | Γ, α : κ | Γ, φ : P Contexts

Fig. 2. Syntax of terms, types, kinds and propositions

Our calculus has four syntactic categories: terms a, b; types τ, σ; kinds κ; and
propositions P,Q. The syntax of each category and that of typing environments
Γ, are described in Figure 2.

The static semantics is given by four main judgments: a typing judgment
Γ ` a : σ; a kinding judgment Γ ` σ : κ; a proposition satisfiability judgment
Γ ` P ; a coercion judgment Γ ` (Σ ` τ) . σ; plus a context consistency
judgment Γ ` ∃∆ and well-formedness judgments Γ
 t where t may be an
environment, a kind, a proposition, or a coercion.

Terms We first describe terms of the consistent subset of Fth, which are the
terms of the untyped λ-calculus with products and sums, extended with one
additional construct for coercions. Other constructs for manipulating inconsis-
tent assumptions, namely, propositional truth and assumption hiding will be
presented in §2.2.

The term typing judgment is defined by the rules in Figure 1. The intro-
duction and elimination rules for arrows (TermVar, TermLam, TermApp) and
products (TermProd, and TermProj) are standard.

A remarkable feature of coercion calculi is that there is exactly one rule that
does not change the term (and thus does not influence the dynamic semantics):
the coercion rule TermCoerce. All runtime-irrelevant typing constructions, such
as subtyping conversion and polymorphism introduction and elimination, are
factorized into coercions. To express polymorphism, these coercions are typing
coercions (Σ ` τ) . σ rather than type coercions τ . σ: they also affect the
typing environment Γ in which the coercion is used, by extending Γ with Σ
when typechecking the premise of type τ , as described by Rule TermCoerce.

This factorization has been explained in previous works of Cretin and Rémy
[2014] and is orthogonal to our point of interest in the present paper, namely,
the interplay between program types and logical propositions in a programming
system. We thus focus our presentation on propositions in general rather than
coercions, and propositional truths would naturally extend to many other pro-
gram logics, such as arithmetic reasoning or general refinement types. Still, by
maintaining a crisp separation between (Curry-style) program terms that com-

8

CoerRefl
Γ ` τ . τ

CoerTrans
Γ,Σ1 ` (Σ2 ` τ3) . τ2

Γ ` (Σ1 ` τ2) . τ1

Γ ` (Σ1,Σ2 ` τ3) . τ1

CoerGen
Γ ` ∃κ

Γ ` (α : κ ` τ) . ∀(α : κ)τ

CoerInst
Γ ` σ : κ

Γ ` ∀(α : κ)τ . τ [σ/α]

CoerArrow
Γ,Σ ` τ ′ . τ Γ ` τ ′ : ? Γ ` (Σ ` σ) . σ′

Γ ` (Σ ` (τ → σ)) . (τ ′ → σ′)

CoerProd
Γ ` (Σ ` τ) . τ ′

Γ ` (Σ ` σ) . σ′

Γ ` (Σ ` τ ∗ σ) . τ ′ ∗ σ′

CoerSum
Γ ` (Σ ` τ1) . τ ′1 Γ ` (Σ ` τ2) . τ ′2

Γ ` (Σ ` τ1 + τ2) . τ ′1 + τ ′2

CoerWit
Γ, φ : P ` Q
Γ ` [P] . [Q]

CoerProp
Γ ` (Σ ` τ) m σ Γ ` ∃Σ

Γ ` (Σ ` τ) . σ

Fig. 3. Coercion judgment Γ ` (Σ ` τ) . σ

pute and derivations on which we statically reason, consistent coercion calculi
are good systems in which to think about implicit versus explicit uses of logic
reasoning in program terms.

Coercions Despite the fact that coercions are included in the syntactic class of
propositions, there are still two separate judgments Γ ` (Σ ` τ) . σ and Γ ` P .
The term-typing coercion rule uses the coercion judgment Γ ` (Σ ` τ) . σ,
but one can also prove that a coercion, seen as a proposition, is satisfiable:
Γ ` (Σ ` τ) m σ. There is a technical difference between those judgments:
Γ ` (Σ ` τ) . σ is only provable when the coercion context Σ is consistent, but
this not an requirement of Γ ` (Σ ` τ) m σ.

The coercion judgment is defined in Figure 3. Besides structural rules of
reflexivity (CoerRefl) and transitivity (CoerTrans), coercions have rules for
polymorphism (type abstraction CoerGen and type application CoerInst), and
rules CoerArrow, CoerProd, and CoerWit for distributivity of coercions un-
der computational type constructors (those that describe the shape of terms and
appear in the term typing judgment). Formulating rules for both polymorphism
and distributivity under computational type constructors as coercions let us
easily compose them: the Fη rules for instantiation of polymorphism under con-
structors naturally fall out as derived rules in consistent coercion calculi. Finally,
Rule CoerProp injects any propositional proof of a coercion (seen as a proposi-
tion) into the coercion judgment – when the coercion context is consistent. We
refer the reader to Cretin and Rémy [2014] for a detailed presentation.

Notice how the introduction rule for polymorphism CoerGen requires the
quantified-over kind κ to be inhabited—the proposition ∃κ denoting kind inhab-
itation. This is the cornerstone of the distinction between consistent and incon-
sistent polymorphism: to abstract over a potentially-absurd kind or proposition

9

PropVar
Γ, φ : P,∆ ` P

PropAnd
Γ ` P1 Γ ` P2

Γ ` P1 ∧ P2

PropProj
Γ ` P1 ∧ P2

Γ ` Pi

PropGen
Γ
 κ Γ, α : κ ` P

Γ ` ∀(α : κ)P

PropInst
Γ ` ∀(α : κ)P Γ ` τ : κ

Γ ` P [τ/α]

PropTrue
Γ ` >

PropConv
Γ ` P P =β P

′ Γ
 P ′

Γ ` P ′

PropKind
Γ ` τ : {α : κ | P}

Γ ` P [τ/α]

PropInh
Γ ` σ : κ

Γ ` ∃κ

PropCoer
Γ ` (Σ ` τ) . σ Γ,Σ ` τ : ?

Γ ` (Σ ` τ) m σ

Fig. 4. Proposition satisfiability judgment Γ ` P

KindVar
Γ, α : κ,∆ ` α : κ

KindArrow
Γ ` τ : ? Γ ` σ : ?

Γ ` τ → σ : ?

KindProd
Γ ` τ : ? Γ ` σ : ?

Γ ` τ ∗ σ : ?

KindSum
Γ ` τ : ? Γ ` σ : ?

Γ ` τ + σ : ?

KindWit
Γ
 P

Γ ` [P] : ?

KindAll
Γ
 κ Γ, α : κ ` τ : ?

Γ ` ∀(α : κ) τ : ?

KindUnit
Γ ` () : 1

KindPair
Γ ` τ : κ1 Γ ` σ : κ2

Γ ` (τ, σ) : κ1 ∗ κ2

KindProj
Γ ` τ : κ1 ∗ κ2

Γ ` πi τ : κi

KindRefine
Γ ` τ : κ Γ, α : κ
 P Γ ` P [τ/α]

Γ ` τ : {α : κ | P}

KindForget
Γ ` τ : {α : κ | P}

Γ ` τ : κ

KindConv
Γ ` τ : κ κ =β κ

′ Γ
 κ′

Γ ` τ : κ′

Fig. 5. Kinding judgment Γ ` τ : κ

(you have no inhabitation proof at hand), one must instead use the inconsistent
abstraction, which changes the term as it blocks the reduction.

Kinding, satisfiability, and consistency Figures 5, 4, and 6 present those three
related judgments.

The proposition satisfiability judgment Γ ` P is defined in Figure 4. Besides
coercions (Σ ` τ) m σ, the propositional features inherited from Fcc are relatively
limited: there are the features used to subsume existing System F variants with
some form of constrained quantification (Fη, F<:, MLF etc.), but more proposi-
tions could be added. The trivial true proposition, conjunction of propositions,
and type-polymorphic propositions have obvious introduction and elimination
rules.

The kind inhabitation proposition ∃κ is true whenever kind κ is inhabited
by some type σ; we use the judgment Γ ` ∃κ instead of Γ ` σ : κ when only
consistency matters. It is defined in Figure 4. Inhabitation is lifted to whole
contexts in Figure 6, as the judgment Γ ` ∃∆.

10

ContEmpty
Γ ` ∃∅

ContTerm
Γ ` ∃∆ Γ,∆ ` τ : ?

Γ ` ∃(∆, x : τ)

ContType
Γ ` ∃∆ Γ,∆ ` ∃κ

Γ ` ∃(∆, α : κ)

ContProp
Γ ` ∃∆ Γ,∆ ` P

Γ ` ∃(∆, φ : P)

Fig. 6. Context consistency judgment Γ ` ∃∆

Kinding rules are defined in Figure 5. Kinding rules for base types are stan-
dard. The unit kind 1 is inhabited by the type-level trivial value (). Refinement
kinds are the only construction introducing propositions in kinds—and thus in
types: a refinement kind {α : κ | P} is inhabited by the types τ of kind κ
such that the proposition P [τ/α] holds. For example, the bounded quantifica-
tion ∀(α ≤ τ)σ can be expressed as ∀(α : {α : ? | α m τ})σ.

Product kinds allow quantifying over several kinds at once; in combination
with refinement kinds, this gives an expressive and convenient way to use re-
finement conditions P (α, β) that depend on several variables. In particular,
∀(γ : {γ : κ1 ∗ κ2 | P (π1 γ, π2 γ)}) τ cannot be expressed in the general case
as a double abstraction of the form ∀(α : κ1)∀(β : {β : κ2 | P (α, β)}) τ ; the
consistency proof in the former case requires a witness γ : κ1 ∗ κ2 that satis-
fies P , while the consistency proof of the second abstraction in the latter case
requires to provide a witness β : κ2 for any fixed (rigid) variable α : κ1. De-
pending on P , the first form may be consistent and the second inconsistent; to
split bindings while keeping consistency, one has to constrain the domain of α
by writing ∀(α : {α : κ1 | ∃{β : κ2 | P (α, β)}})∀(β : {β : κ2 | P (α, β)}) τ , which
inconveniently duplicates the proposition.

The reader may have recognized in refinement kinds a restricted form of
(kind-level) dependent product. Indeed, this would exactly be a dependent prod-
uct if the propositions were included into the kinds – dependent products would
then unify product kinds, refinement kinds, and conjunction of propositions.
However, Fcc’s irrelevant handling of proposition proofs gives us very simple,
clutter-free elimination rules for the refinement kind, which do not have to ap-
pear in the syntax of types. We occasionally benefit from that convenience.

The presence of type-level data structures (in our case product kinds) implies
a need for type-level computation and identification of computationally-equal
objects, in particular in rules PropConv and KindConv. The conversion rules
for kinds and propositions allow to interchange well-formed objects equal upto
β-reduction of projections, πi (τ1, τ2) =β τi, and is closed by congruence and
equivalence to all types, propositions, and kinds.

Well-formedness Figure 7 presents the well-formedness judgments of Fcc for con-
texts, kinds and propositions, which are all standard.

2.2 Propositional truths and hiding

The type [P] represents the type of dynamic witnesses that P is satisfied. The
type-checking rule for types of the form [P] are listed in Figure 1. This type is

11

Γ
 ? Γ
 1
Γ
 κ1 Γ
 κ2

Γ
 κ1 ∗ κ2

Γ
 κ Γ, α : κ
 P

Γ
 {α : κ | P}
Γ
 >

Γ
 κ

Γ
 ∃κ
Γ
 P Γ
 Q

Γ
 P ∧Q
Γ
 κ Γ, α : κ
 P

Γ
 ∀(α : κ)P

Γ
 Σ Γ,Σ ` τ : ? Γ ` σ : ?

Γ
 (Σ ` τ) . σ
Γ
 ∅

Γ
 ∆ Γ,∆ ` τ : ? x /∈ Γ,∆

Γ
 ∆, x : τ

Γ
 ∆ Γ,∆
 κ α /∈ Γ,∆

Γ
 ∆, α : κ

Γ
 ∆ Γ
 P φ /∈ Γ,∆

Γ
 ∆, φ : P

Fig. 7. Well-formedness judgments

introduced by the token �, a ground value that inhabits [P] exactly when the
proposition P is satisfied in the current typing environment (Rule TermWit). It
is eliminated by the construction δ(a, φ.b), where a must have a propositional
truth type [Q], and b is type-checked in an extended context where the assump-
tion φ : Q is implicitly available (Rule TermAssume) – until it is hidden again
in some subterm of the form hideφ in a′.

As any other computational type, there is a distributivity coercion for propo-
sitional truths, Rule CoerWit (Figure 3), which following Fcc design principle,
can be derived and justified from the context δ(�, φ.�), as an η-expansion of the
identity context �. Rule CoerWit tells us that a witness for a proposition P of
type [P] can be coerced into a witness for a proposition Q of type [Q] whenever
P implies Q as a proposition.

Finally, the typing rule TermHide (Figure 1) for hideφ in a in context Γ, φ :
P,∆ is a form of weakening of φ. It is only valid under the condition that
Γ ` ∃∆ holds. This does not mean that ∆ must be consistent (it can depend
on variables in Γ that were introduced by blocking elimination), but that it is
consistent relative to Γ.

Kind-level propositions. Propositional truths are named as such because they
are constructed and abstracted over in terms, with an explicit elimination con-
struction; by contrast with the definitional judgment Γ ` P which only lives in
typing derivations. Note that it is possible to see propositions as kinds: the kind
{α : 1 | P}, which could be abbreviated as 〈P 〉, is inhabited by () exactly when
the proposition P is satisfiable.

2.3 Dynamic semantics

The dynamic semantics of Fth is defined in figures 8, 9 and 10. Because of as-
sumption hiding, the notion of elimination contexts is non-standard: irreducible
terms may have reducible subterms. In fact, the head β-reduction steps are also
non-standard, because of the way hiding constructions are added during substi-
tution of reducible values, so as to preserve confluence.

12

(λ(x) a) b ◦→ a[b/x]∅

δ(�, φ.b) ◦→ b[�/φ]

(σi a)(x1.b1 | x2.b2) ◦→ bi[a/xi]∅

πi (a1, a2) ◦→ ai

Context
a ◦→ b unguarded(E)

E[a] −→ E[b]

cth ::= λ(x) a | (a, b) | σi a | �
dth ::= � b | πi � | �(x1.b1 | x2.b2) | δ(�, φ.b)
Eth

4
= {E[a] | unguarded(E), a = dth[cth], a 6◦→}

Fig. 8. Dynamic semantics of Fth

unguarded(E)
4
= (guard∅(E) = ∅)

guardS(λ(x)E)
4
= guardS(E)

guardS(a E)
4
= guardS(E)

guardS(E a)
4
= guardS(E)

guardS(δ(E, φ.b))
4
= guardS(E)

guardS(δ(a, φ.E))
4
= guardS∪{φ}(E)

guardS(hideφ inE)
4
= guardS\{φ}(E)

guardS(�)
4
= S

Fig. 9. Guards

Reduction and head reduction We define a β-reduction relation (−→) that is
congruent to reduction contexts, and a head β-reduction relation (◦→) that only
applies to head β-redexes (Figure 8). Distinguishing head reductions is important
for the confluence proof (Section 3.5). Those reductions are fairly standard,
except for the use of non-standard notions of substitution, and a side-condition
on contexts described below.

Reduction contexts Full reduction is meant to allow any reduction path, so in
general all one-hole term contexts E are reduction contexts. In Fth, subterms
that are in the scope of an implicit assumption, or equivalently of a proposi-
tion variable, must still be blocked. We use an auxiliary function guardS(E)
to compute the set of proposition variables, called the guards, under which
the hole � of the single-hole context E is blocked, extended with an initial
set S. The predicate unguarded(E) is then an abbreviation for the empty-
ness of guard∅(E). Reduction contexts are the unguarded one-hole contexts
E. For example, δ(a, φ.�) is not a reduction context, whereas (λ(x) �) and
δ(w1, φ.δ(w2, ψ.hideψ in hideφ in �)) are. Unguardedness is checked by an ad-
ditional premise in Rule Context.

Hiding substitution a[b/x]S In order to preserve confluence it is essential that β-
reduction preserves reducibility of subterms. A counter-example for confluence
in Fcc, translated in Fth, is the term (λ(x) δ(y, φ.x)) b. The problem is that b
appears in a reducible position but would become irreducible after one head
reduction step, i.e. in the term δ(y, φ.b)—with the usual notion of reduction.

Our solution is to define the reduction of λ-redexes using a non-standard
notion of substitution, a[b/x]∅ that inserts assumption hidings as necessary for

13

x[b/x]S
4
= hideS in b

y[b/x]S
4
= y (if y 6= x)

�[b/x]S
4
= �

(λ(y) a)[b/x]S
4
= λ(y) a[b/x]S (if y 6= x)

(a a′)[b/x]S
4
= a[b/x]S a

′[b/x]S

δ(a, φ.a′)[b/x]S
4
= δ(a[b/x]S , φ.a

′[b/x]S∪{φ})
(if φ /∈ S)

(hideφ in a)[b/x]S
4
= hideφ in a[b/x]S\{φ}

x[�/φ]
4
= x

�[�/φ]
4
= �

(λ(x) a)[�/φ]
4
= λ(x) a[�/φ]

(a a′)[�/φ]
4
= a[�/φ] a′[�/φ]

δ(a, ψ.a′)[�/φ]
4
= δ(a[�/φ], ψ.a′[�/φ])

(hideφ in a)[�/φ]
4
= a

(hideψ in a)[�/φ]
4
= hideψ in a[�/φ]

(if ψ 6= φ)

Fig. 10. Hiding and unhiding substitutions

substituted terms to remain reducible. For instance, δ(y, φ.x)[b/x]∅ is equal to
δ(y, φ.hideφ in b). In general, this hiding substitution can be indexed by any
guard, which is the list of logical assumptions made so far during term traversal.

The hiding substitution is defined on Figure 10 where
4
= stands for definition

equality and hideS in b is syntactic sugar for repeated hiding for all variables
in the set S. Some cases that are simple traversals have been omitted.

Un-hiding substitution b[�/φ] When the witness a of a propositional elimination
δ(a, φ.b) is blocked over reduces to �, we know that the proposition witnessed
by a is true, and the reduction of b can proceed. We remove each occurrence
of hideφ in each subterm of b, as it is not only unnecessary, but could also
block now-reducible β-redexes if it remained: a[�/φ] removes all occurrences of
“hideφ” in the term b while traversing b. It is also defined in Figure 10. Note
that the typing rule for assumption hiding guarantees that φ cannot appear in
the subterm of hideφ – and this property is preserved by reduction.

Errors Head reduction occurs when a destructor of some computational type
meets a constructor of the same type. An immediate error is a term whose head
is a destructor applied on a constructor of a different type. Figure 8 defines
destructor contexts dth and constructor terms cth; the set Eth of errors is then
defined as immediate errors occurring in a reduction context. Note that being
stuck on a free variable is not an error, that errors may still further reduce (if
it contains other reducible positions with valid redexes), and that a non-error
term may contain an immediate error blocked under a propositional elimination,
such as λ(x) δ(x, φ.π1 true) in our introductory example of abstracting over an
equality between int and bool.

Below, we define errors for variants of our calculus in the same way, gener-
ated from a definition of constructor terms, destructor contexts, and the head
reduction relation. Given a language of terms with a reduction relation and a
set of errors E , we say that a term a is sound if no reduction sequence starting
from a ends in E .

14

2.4 Two variants of Fth: Ft and Fcc

The soundness of Fth is proved by translation into Fcc, which has been proved
sound [Cretin and Rémy, 2014]. In fact, the translation is in two steps, using an
intermediate calculus Ft. Below, we formally define the calculi Ft and Fcc.

Removing assumption hiding. The language Ft is obtain from Fth by restricting
to terms without hiding and by modifying the semantics of β-reduction so that
it does not introduce hiding: the λ-reduction rule is (λ(x) a) b ◦→ a[b/x]. (As a
consequence, Ft is not confluent.)

The rest of the definition is unchanged; in absence of hiding, unguarded con-
texts unguarded(E) degenerate to a simpler, context-free definition that includes
λ(x) � and δ(�, φ.b), but not δ(a, φ.�); and unhiding substitutions b[�/φ] leave
terms unchanged. Error terms Et are the subset of Eth of terms without hiding.

Primitive inconsistent abstraction. Fcc uses a different primitive of inconsis-
tent abstraction to work with inconsistent propositions, or rather potentially-
uninhabited kinds. Its construction ∂ a, mentioned in the introduction, blocks
reduction immediately and has a type of the form Π(α : κ) τ stating that it
assumes a type α : κ while κ may be uninhabited. Conversely, a ♦ unblocks a
computation of type Π(α : κ) τ , whenever the kind κ can be shown inhabited.
The head reduction rule is (∂ a) ♦ ◦→ a, and reduction contexts are as before,
if we consider that guardS(∂ E) is defined as guardS∪φ(E) where φ is a fresh
propositional variable. The typing rules for those constructs are as follows:

IncohIntro
Γ
 κ Γ, α : κ ` a : τ

Γ ` ∂ a : Π(α : κ) τ

IncohElim
Γ ` a : Π(α : κ) τ Γ ` σ : κ

Γ ` a ♦ : τ [σ/α]

KindIncoh
Γ
 κ

Γ, α : κ ` τ : ?

Γ ` Π(α : κ) τ : ?

CoerIncoh
Γ, α : κ′,Σ ` σ : κ Γ ` ∃Σ
Γ, α : κ′ ` (Σ ` τ [σ/α]) . τ ′

Γ ` (Σ ` Π(α : κ) τ) . Π(α : κ′) τ ′

The set Ecc of Fcc error terms is generated from its head reduction, its con-
structor terms (as in Fth, but without � and with (∂ a)) and its destructor con-
texts (as in Fth, but without δ(�, φ.b) and with (� ♦)).

3 Soundness and confluence

In this section, we prove our two technical results, confluence and soundness
of Fth. The proof proceeds by a series of translations, proving that the source
language is sound if the target language is sound as well. In §3.1, we recall the
Fcc soundness result from previous work. In §3.2, we show a translation from the
sublanguage Ft to (an administrative variant of) Fcc. This establishes soundness
of Ft. In §3.5, we prove confluence of Fth using parallel reductions. For this we
precisely define Fth multi-hole contexts, which give convenient tools to reason
on its dynamic semantics. Finally, §3.6 proves soundness of Fth, using the tools
introduced for the confluence proof.

15

3.1 Soundness of Fcc

Fcc comes with a (computer-checked) soundness proof for its (non-deterministic)
reduction: starting from a well-typed term, no reduction path can lead to an
erroneous stuck term. For deep reasons detailed in previous work, subject reduc-
tion (preservation of typing by reduction) does not hold for Fcc. Therefore, the
soundness proof uses more semantic tools, building a model of the type system
where types are sets of terms.

Theorem 1 (Previous work, Cretin and Rémy [2014] Soundness of Fcc).
Terms that are well-typed in Fcc in a consistent environment are sound. That is,
if ∅ ` ∃Γ and Γ ` a : τ , then a is sound.

Soundness in a language with (full)-reduction is a stronger result than in
a variant of the language for a fixed deterministic reduction strategy (such as
call-by-value, call-by-name or call-by-need): if Ω is a well-typed non-terminating
term4 and f an error, then (λ(x)f) Ω is sound in a call-by-value strategy (and
symmetrically (λ(x) Ω) f in call-by-name). For any weak reduction strategy,
even λ(x)f is sound.

The gap between the soundness result provided by a type system and the
soundness property actually required by a deterministic or weak reduction se-
mantics is not specific to Fcc. It suggests that full reduction may be a better
setting to study and fully understand programming languages. It reduces pro-
gram in a composable way that resembles both the type system composability
and, we think, the programmer’s reasoning. Reducing under binders rules out
ignored error that would only appear at application time (later, or not at all if
this part is not tested well-enough), and a program that gets stuck under some
(other) reduction strategies usually correspond to a programming error.

Note that inconsistent abstraction gives Fcc non-erroneous term that are nev-
ertheless ruled out by the type system for a good reason: ∂ f corresponds to
λ(x)f in weak systems. There is something inherently problematic with ab-
stracting over logic properties that may never be proved correct (that distin-
guishes this example from the previous ones): it of course introduces the pres-
ence of code that may or may not be dead code – we may never know. Yet it is
important that we be allowed to write such programs. For example, in a system
that would let us reason on computational complexity, we may want to express
programs that abstract over the assumption P = NP, or P 6= NP, study their
properties and prove them correct.

3.2 Translating propositional truths to Fcc

We now define a translation J K of terms, types and judgment derivations into Fcc.
Informally, the idea of the translation is a form of CPS-encoding: we can translate

4 Well-typed non-terminating terms do not exist in some strongly-normalizing subsets
of Fcc (the presentation without recursive types), but appear in natural extensions
and in most current programming languages we may want to study through the Fcc
lens.

16

a witness of type [P] into a continuation consuming any inconsistent abstraction
Π(α : 〈P 〉) τ to return a τ . Witness construction � would become the elimina-
tion continuation λ(x) (x ♦), while propositional elimination δ(a, φ.b) uses the
translation of a as a continuation: JaK (∂ JbK).

The actual translation on terms and types is close to the informal description
above, with an important difference. The informal translation gives the expected
computational behavior to well-typed terms, but has the defect of mapping some
terms that are errors in Ft to terms in Fcc that may still further reduce: for
example, δ((λ(x)x), φ.y) is a stuck Ft term, but its translation (λ(x)x) (∂ y)
can be further reduced.

Because the soundness proof of Fcc is done semantically, and subject reduction
does not hold for this calculus, it is important that our translation of Ft terms
be well-behaved even on ill-typed terms. Indeed, we want to translate whole
reduction paths starting from a known Ft term which, even if well-typed, may
reduce to ill-typed terms (but, as we prove in this section, not an error). We also
want to reason about the translation of those sound, ill-typed reducts.

To get a translation of δ((λ(x)x), φ.y) that is stuck, we use a slight variant of
Fcc, called F[cc, for the target language. It is equipped with an “administrative”
copy of the arrow type (τ →[σ), of λ-abstraction (λ[(x) a) and application
(a[b). The type system and reduction semantics are exactly those of Fcc, with
each rule (in the static and dynamic semantics) about λ-abstractions duplicated
into an identical “administrative” variant. For example:

Γ ` a : τ →[σ Γ ` b : τ

Γ ` a[b : σ

The administrative λ[is entirely separate from the usual λ, and in particular

(λ(x) a)
[
b and (λ[(x) a) b do not reduce and thus are both errors.

We can now formally define the translation from Ft to F[cc, which makes ju-
dicious use of administrative constructions to preserve stuck terms. It is defined
below on the Ft-specific constructions; it just preserves the structure of other
constructions and translate their subterms (we use for unused variable bind-
ings):

J[P]K
4
= ∀(β : ?) (Π(: { : 1 | JP K})β)→[β

Jδ(a, φ.b)K
4
= JaK[(∂ JbK)

J�K 4
= λ[(x) (x ♦)

JΓ, φ : P K
4
= JΓK , α : { : 1 | JP K}

For example, the translation of the error δ((λ(x)x), φ.y) is now (λ(x)x)
[

(∂ y),
which is also an error. One cannot build a counter-example of the form δ((λ[(x) a),
φ.b) as the administrative variants are not part of the input language Ft. One
can show by induction that the translation preserves errors and typing.

Lemma 1 (Error preservation of Ft).
A term a is an error in Ft if and only if JaK is an error in F[cc.

17

Lemma 2 (Typing preservation of Ft).
If Γ ` a : τ in Ft, then JΓK ` JaK : JτK in F[cc.

Proof. The translation J K is extended to derivations in Figure 11. For each
inference rule that proves a judgment from some premises, we show that the
translation of the judgment is admissible from the translation of the premises.
Direct induction shows that the translation of a valid derivation for the Ft judg-
ment Γ ` a : τ is a valid derivation for the F[cc judgment JΓK ` JaK : JτK – and
mutually for all judgment forms.

Only the translations for inference rules of Ft-specific features are shown: the
other inference steps are directly mapped in the expected way, for example

t
Γ ` τ1 : ? Γ ` τ2 : ?

Γ ` τ1 ∗ τ2 : ?

|
4
=

JΓK ` Jτ1K : ? JΓK ` Jτ2K : ?

JΓK ` Jτ1K ∗ Jτ2K : ?

�

Independently of typing preservation, we also prove a bisimulation property
between Ft and F[cc. We first need three technical lemmas, proved by immediate
induction.

[Substitution of the Ft translation] Ja[b/x]K = JaK [JbK /x].
[Injectivity of the Ft translation]
If JaK = Ja′K in F[cc, then a = a′.
[Context decomposition of the Ft translation] E is a Ft reduction context

if only if JEK is a F[cc reduction context, and moreover JE[a]K = JEK [JaK].
It is not quite the case that any single-reduction step in Ft is turned into a
single-reduction step of F[cc, because the reduction of the translation of δ(�, φ.b),
that is (λ[(x) (x ♦))

[
(∂ JbK), does an extra administrative λ[-reduction step

before the expected ∂ -reduction. We define the relation (◦→[) of administra-
tive head β-reductions as the subset, in F[cc, of reductions in (◦→) of the form

(λ[(x) a)
[
b ◦→ a[b/x], and (−→[), the administrative β-reductions, its closure

(◦→[) under reduction contexts.
For any relation (R), we define the relation R? by a R? b if and only if

(a R b) ∨ (a = b).

Lemma 3 (Bisimulation of Ft by F[cc).
For any a −→ a′ in Ft, we have JaK −→?

[b −→ Ja′K for some b in F[cc.

Conversely, if JaK −→ b in F[cc, then a −→ a′ for some a′ such that either
b = Ja′K or JaK −→[b −→ Ja′K.

Proof. By lemma 3.2, the translation preserves context decomposition. Let us
first show that we can, without loss of generality, study head reduction steps
only.

If E[a] −→ E[a′] because a ◦→ a′, then it suffices to show that JaK ◦→?
[b ◦→

Ja′K to get JE[a]K ◦→?
[JEK [b] ◦→ JE[a′]K, as JEK is an reduction context.

In the other direction, we must be careful in presence of administrative reduc-
tions. If there is no administrative step and JE[a]K −→ JEK [b] because b = Ja′K,

18

t
Γ
 P

Γ ` [P] : ?

|
4
=

JΓK , β : ?, : 1
 JP K JΓK , β : ?, : { : 1 | JP K} ` β : ?

JΓK , β : ? ` Π(: { : 1 | JP K}β : ?) JΓK , β : ? ` β : ?

JΓK , β : ? ` (Π(: { : 1 | JP K}β))→[β : ?

JΓK ` ∀(β : ?) Π(α : { : 1 | JP K}) →[β : ?

t
Γ ` a : [P] Γ, φ : P ` b : σ

δ(a, φ.b) : σ

|
4
=

JΓK ` JaK : ∀(β : ?) (Π(α : { : 1 | JP K})β)→[β

JΓK ` JaK : (Π(α : { : 1 | JP K}) JσK)→[JσK

JΓK , α : { : 1 | JP K} ` JbK : JσK
JΓK ` ∂ JbK : Π(α : { : 1 | JP K}) JσK

JΓK ` JaK[(∂ JbK) : JσK

t
Γ ` P

Γ ` � : [P]

|
4
=

JΓK , β : ?, x : Π(α : { : 1 | JP K})β ` JP K
JΓK , β : ?, x : Π(α : { : 1 | JP K})β ` 1 : { : 1 | JP K}

JΓK , β : ?, x : Π(α : { : 1 | JP K})β ` x ♦ : β

JΓK , β : ? ` λ[(x) (x ♦) : (Π(α : { : 1 | JP K})β)→[β

JΓK ` λ[(x) (x ♦) : ∀(β : ?) (Π(α : { : 1 | JP K})β)→[β

t
Γ, φ : P ` Q
Γ ` [P] . [Q]

|
4
=

Γ, β : ?
 P Γ, β : ?, : { : 1 | JP K} ` 1 : { : 1 | JQK} Γ, β : ?, : { : 1 | JP K} ` β . β
Γ, β : ? ` (Π(: { : 1 | JQK})β) . (Π(: { : 1 | JP K})β)

Γ, β : ? ` ((Π(: { : 1 | JP K})β)→[β) . ((Π(: { : 1 | JQK})β)→[β)

Γ ` (∀(β : ?) (Π(: { : 1 | JP K})β)→[β) . (∀(β : ?) (Π(: { : 1 | JQK})β)→[β)

Fig. 11. Translation of Ft into F[cc

it suffices to show a ◦→ a′. If there is an administrative step, JE[a]K −→[

JEK [b] −→ Jb′K with a ◦→[b, it is not immediate that b′ is indeed of the form
JE[a′]K for some b ◦→ Ja′K: the second reduction could happen in a different
reducible position. But this cannot happen, because not reducing the ∂ -redex
that results from the administrative reduction would give a term that is not
in the image of the translation: all λ[-redexes in translated terms come from

Jδ(�, φ.a′)K = (λ[(x) (x ♦))
[

(∂ Ja′K), and reducing those always creates a ∂ -
redex, which cannot happen in a translated term. So a single-reduction step of
the form JEK [(∂ Ja′K) ♦] −→ Jb′K is only possible if Jb′K = JE[a′]K. We therefore
have JaK ◦→[b ◦→ Ja′K and it suffices to show a ◦→ a′.

For redexes that are present in both Ft and F[cc, we can prove the forward
and backward simulation at the same time. We show that the translation of
any Ft-redex maps its Ft-reduction to a F[cc-reduction, and conversely that any

19

F[cc-reduction on this redex, from a translated term, goes to a translated term
and can be mapped back into a Ft-reduction. We use the substitution lemma 3.2
for reductions defined with substitutions:

– πi (a, b) ◦→ ai and Jπi (a, b)K = πi (JaK , JbK) ◦→ JaiK; this is the only head
(,)-redex in the image of the Ft translation.

– (λ(x) a) b ◦→ a[b/x] and J(λ(x) a) bK = (λ(x) JaK) JbK ◦→ JaK [JbK /x] =
Ja[b/x]K; this is the only head λ-redex in the image of the translation.

– σi a(x1.b1 | x2.b2) ◦→ bi[a/xi] and Ja(x1.b1 | x2.b2)K = JaK (x1. Jb1K | x2. Jb2K) ◦→
JbiK [JaK /xi] = Jbi[a/xi]K; this is the only head σi -redex in the image of the
translation.

(Note that, in the cases above, no head administrative reduction could start from
the translation of the source of the head transition considered.)

In the case of �-redexes δ(�, φ.b) ◦→ b, we have

Jδ(�, φ.b)K
= (λ[(x) (x ♦))

[
(∂ JbK)

◦→[(∂ JbK) ♦
◦→ JbK

Conversely, no head �-redex may appear in a translated term, and the only
λ[-redex comes from the translation of a �-redex, where it reduces to a ∂ -redex
as in the reduction sentence above.

�

Note that when using the backward simulation on a sequence of reductions,
we implicitly use injectivity (Fact 3.2): if we have Ja1K −→ Ja2K and Ja2K −→
Ja3K, we expect to deduce a1 −→ a2 −→ a3. But this would not necessarily hold
if the translation wasn’t injective: we could have Ja2K = JbK for some b distinct
from a2, and the backward simulation result could prove either a2 −→ a3 or
b −→ a3.

All other translations presented in the article are injective and can be used
in the same way.

Corollary 1. If JaK is sound in F[cc, then a is sound in Ft.

Proof. Suppose a −→∗ b, we have to show that b /∈ EFt . By forward simulation 3
we have that JaK −→∗ JbK; if JaK is sound in F[cc, then JbK /∈ EF[

cc
. By forward

preservation of errors 1, we conclude that b /∈ EFt . �

Corollary 2. If F[cc is sound, then so is Ft.

Proof. We must show that well-typed terms in Ft do not go wrong. If a is well-
typed in Ft, then by preservation of typing (lemma 2) JaK is well-typed in F[cc.
Assuming soundness of F[cc, JaK is thus sound. We conclude that a is sound by
the previous corollary 1.

�

20

We note that we do not need the bisimulation result to establish soundness
(relative to F[cc), but only the forward simulation and the forward translation of
errors.

The backward simulation shows that besides having the same soundness
property, Ft and F[cc are also the same in term of number of reductions up to
administrative steps: reasoning on program efficiency can therefore also be trans-
posed from one to the other. In this respect, it may be important to remark that
the one computation step we allowed to neglect, the administrative λ[-reduction,
never performs arbitrary duplication of its argument: whenever it appears in the
translation, the λ[-variable appears exactly once in the body. We could better
enforce this invariant by using a linear type for this administrative construction,
but this would require invasive changes to the type system.

3.3 Translating Fcc into Ft

Just as we presented a translation from Ft into (an administrative variant of)
Fcc to prove Ft’s soundness, it is possible and enlightening to translate Fcc back
into (an administrative variant of) Ft – after fixing a minor defect of Fcc as
previously presented. By lack of space, we have not included this translation in
the conference version of this article, but it is available in the full version.

3.4 Soundness of the administrative arrow

To conclude, from the two previous sections, that Fcc’s soundness implies Ft’s
soundness and conversely, we need to prove the soundness of the administrative
variants relative to their base calculus. While this is a common technique, its
soundness proof is actually not as obvious as one would expect. By lack of space,
the proof is only available in the full version.

This result proves, in particular, the soundness of F[cc relative to Fcc. Along
with Corollary 2, establishing the soundness of Ft relative to F[cc, and the already
established soundness of Fcc (Theorem 1) this concludes the soundness proof
of Ft.

3.5 Confluence of Fth

Multi-hole contexts Figure 12 introduces a new judgment (�i : Si)
i∈I ` E : S,

that is a simple syntactic analysis of the guards of a multi-hole context, that
is the set of propositional variables that block the reduction of each hole. The
judgment can be read as “if the whole term is guarded by S, then the i-th hole
�i is guarded by Si”. A multi-hole context is just a term whose variables are,
by convention, named �i for some i in I, and which appear only once in the
term; we enforce that latter invariant by using disjoint union for the context
union Γ,∆, which corresponds to a simple linear typing discipline. The notation
E[]i∈I corresponds to a context with a family of holes indexed by i, and in
contexts qi∈I∆i is the disjoint union of a family of contexts (∆i)

i∈I . For sake
of brevity, we often leave I implicit and just write i instead of i ∈ I.

21

�i : S ` �i : S ∅ ` x : S
Γ ` E : S\{φ}

Γ ` hideφ inE : S

Γ ` E1 : S ∆ ` E2 : S ∪ {φ}
Γ,∆ ` δ(E1, φ.E2) : S

Γ ` E1 : S ∆ ` E2 : S

Γ,∆ ` (E1 E2), (E1, E2) : S

Γ ` E : S

Γ ` (λ(x)E), (πiE), (σiE) : S

Γ ` E1 : S ∆1 ` E2 : S ∆2 ` E3 : S

Γ,∆1,∆2 ` E1(x1.E2 | x2.E3) : S

a = E[x]i x /∈ E (�i : Si) ` E : S

a[b/x]S
4
= E[hideSi in b]

i

a = E[hideφ in bi]
i φ /∈ E

a[�/φ]
4
= E[bi]

i

Fig. 12. Guard analysis of multi-hole contexts

Notice that guardS(E) for a single-hole context is uniquely defined by � :
guardS(E) ` E : S. This is checked by separately proving that � : guardS(E) `
E : S holds for any single-hole context E and S and that, for E and S given,
there is a unique guard S′ such that � : S′ ` E : S. Both proofs proceed by
induction on E. We also use multi-contexts to re-define the hiding substitution
a[b/x]S defined in §2.3, and the hide-removing substitution a[�/φ] used in the
reduction rule for δ(�, φ.a).

Finally, a multi-context E is a prefix of E′ (or a term, if E′ has no holes) if E′

can be obtained by substituting sub-contexts into the holes of E. The following
derivable substitution rule (proved by a direct induction) lets us reason on the
guards of such a a factorization:

(�i : Si)
i ` Fi : S (∆i ` Fi : Si)

i

qi∆i ` E[Fi]
i : S

··

Parallel reductions We prove confluence using the Tait-Martin-Löf technique of
parallel reductions, with a simple proof argument inspired by Takahashi [1995].
The idea of Takahashi is that parallel reduction (noted a =⇒ b) for the simple λ-
calculus with only arrows can be made deterministic by adding a redex-avoidance
rule (the a 6= (λ()) hypothesis below meaning that a does not start with an
abstraction) to the parallel reduction of application:

a 6= (λ()) a =⇒ a′ b =⇒ b′

a b =⇒ a′ b′
a =⇒ a′ b =⇒ b′

(λ(x) a) b =⇒ a′[b′/x]

Without the redex-avoiding condition a 6= λ() in the application reduction rule,
two reduction paths are available to each β-redex, performing the β-reduction or
not. This gives a parallel condition that may reduce each redex in one step, and
can thus subsume the usual single-step reduction relation by choosing to reduce
exactly one redex. Takahashi remarks that the condition forces all redexes of the

22

E 6→ (�i : ∅)i ` E : ∅ (ai ◦⇒ bi)
i

E[ai]
i =⇒ E[bi]

i

(ai =⇒ a′i)
i R[a′i]

i ?◦→ b

R[ai]
i ◦⇒ b

R ::= (λ(x) �1) �2 | πi (�1,�2) | σi �1(x1.�2 | x2.�3) | δ(�, φ.Eφ[hideφ in�i]
i)

(with unguarded(Eφ) and φ /∈ Eφ)

Fig. 13. Parallel reduction

term to be reduced (Gross-Knuth reduction), and that this modified relation
trivially forces confluence of the parallel reduction, of which it is a special case.

Adapting Takahashi’s idea to a Wright-Felleisen setting of head reduction
and elimination contexts suggests a new formulation, which is to decompose a
reducible term a into the form E[bi]

i where the multi-context E is not reducible
when seen as a term – a generalization of the redex-avoiding condition. For the
same reason that Takahashi’s reduction was deterministic, the decomposition of
a into E[bi]

i where E is not reducible and the bi are head redexes is unique, since
E is the largest head context that does not contain redexes. This decomposition
still let us define parallel reduction, rather than only the Gross-Knuth reduction.

Figure 13 gives the definition of our parallel reduction a =⇒ b, mutually
defined with the head parallel reduction a ◦⇒ b that reduces head redexes . The
notation E 6−→ can be understood in term of the single-step reduction relation,
when E is seen as a term as any other: ¬(∃E′, E −→ E′).

The parallel reduction of E[ai]
i only happens when the ai are all redexes,

as they must be related to some bi by the head parallel reduction (◦⇒) that
only starts from head redexes R[�i]

i. Not all these redexes need to be reduced,
however, as the head beta-reduction step R[a′i]

i ◦→? b is optional. In particular,
taking R[a′i]

i = b for each redex shows that the relation (=⇒) is reflexive.
The restriction that the substituted terms ai are redexes is crucial to mod-

ularly reason about reducibility; for if we substituted the non-redex λ(x) a into
the context (� b), we would get a reducible result while neither the term nor the
context were. No such situation can happen when the plugged terms are head
redexes themselves, as redexes do not overlap.

Lemma 4 (Orthogonality).
Redexes do not overlap: If (�i : ∅)i ` E : ∅ is a one-hole irreducible context

distinct from �, then for any redex contexts R[�j]
j and (R′i[�k]k)i and families

of terms (aj)
j and (bi,k)i,k) we have R[aj]

j 6= E[R′i[bi,k]k]i.

Proof. Immediate by case analysis of all pairs (R,E) of a redex context and an
irreducible context. For example, if R = (λ(x) �1) �2, then:

– if E has (λ(x) �1) �2 as head prefix, it is reducible
– if E is not a prefix of (λ(x) �1) �2, filling its hole can never match R
– if E is (�3 b) or (�3 �4), no head redex put in �3 could match (λ(x) �1)

�

23

The other lemma we need, to prove the unicity of the decomposition by ir-
reducible contexts, is about the structure of reducible positions in a term or
context.

Lemma 5 (Reducible positions).
For any guard S, any term a has a minimal non-empty prefix F such that

(�k : ∅)k ` F [�k]k : S. For any non-empty prefix F ′ of a with (�k′)
k′ ` F ′[�k′]k

′
:

S, F is a prefix of F ′. Furthermore, F is irreducible.

Proof. A direct induction shows that for any a and S, there exists a unique
derivation of ` a : S.

Then, proceeding by induction on this derivation, it suffices to cut its smallest
prefix F whose variables have guard ∅. This prefix is minimal by construction
(the derivation ` a : S being unique).

It is immediate that F is irreducible; for if it had a reducible subterm, F
would be of the form G[b] where b has a head-redex and is in reducible position
in F . We would then have � : ∅ ` G : S as a strict prefix of F , which is absurd.

Lemma 6 (Unique decomposition of irreducible contexts).
If two parallel reductions have the same source, then they use the same

context-redexes decomposition.

Proof. If we have

E 6→ (�i : ∅)i ` E : ∅ (ai ◦⇒ bi)
i

E[ai]
i =⇒ E[bi]

i

E′ 6→ (�
′
j : ∅)j ` E′ : ∅ (a′j ◦⇒ b′j)

j

E′[a′j]
j =⇒ E′[b′j]

j

with E[ai]
i∈I = E′[a′j]

j∈J , we want to prove that I = J , E = E′ and ∀i, ai = a′i.
The proof proceeds by induction, and is independent from the details of Fth as

its useful properties were expressed by the two previous lemmas. The base case
of the induction uses orthogonality (Lemma 4) and the other cases are uniformly
handled by a non-empty minimal context of reducible positions (Lemma 5).

If E is �, the whole term has a head redex; we know by orthogonality 4 that
E′ must be � as well, so the context decomposition is unique. The situation if
E′ is � is symmetrical.

Otherwise, we know that E 6= � and E′ 6= �. We take the minimal non-empty
prefix F (Lemma 5) of E[ai]

i = E′[a′j]
j such that (�k : ∅)k∈K ` F : ∅. As it is a

minimal prefix, we have sub-families (Ek)k, (E′k)k and partitions ((aik)ik∈Ik)k∈K

(with I = qkIk) and ((a′jk)jk∈Jk)k∈K (with J = qkJk) of (ai)
i and (a′j)

j such
that

F [Ek[aik]ik]k = E[ai]
i = E′[a′j]

j = F [E′k[a′jk]jk]k

In particular, for each k ∈ K we have Ek[aik]ik = E′k[a′jk]jk . F is non-empty so
the Ek, E

′
k are strictly smaller than E, E′, so by induction hypothesis we get

24

Ik = Jk, Ek = E′k and (aik)ik = (a′jk)jk . This lets us conclude by

I = qkIk = qkJk = J

and

E = F [Ek]k = F [E′k]k = E′

and

(ai)
i = qk(aik)ik = qk(a′jk)jk = (a′j)

j

�

In the general case of filling a context E with subterms that are not neces-
sarily head redexes, we may still reason on reducibility of the subterms: [Head
reduction through arbitrary contexts]

The following judgment, which is not restricted to irreducible contexts, is
admissible:

(�i : ∅)i ` E : ∅ (ai ◦⇒ bi)
i

E[ai]
i =⇒ E[bi]

i
···

Proof. We proceed by induction on E.

The unique irreducible context E′[�j]
j∈J of E[ai]

i must be E or a prefix of
E, for if E is a prefix of E′ then it is also irreducible, and is the unique such
one. If E′ = E (in particular, if E is the identity context), we can conclude using
the reduction rule for irreducible contexts. Otherwise we have E = E′[Fj [�i]]

j

for a family of sub-contexts (Fj [�i]
i∈Ij)j with I = qjIj , such that each Fj [ai]

i

is a head redex. We will prove that for each j, we have Fj [ai]
i ◦⇒ Fj [bi]

i; this
suffices to conclude with a (◦⇒) derivation as E′ is irreducible.

For each j:

– If Fj is the identity context �i (Ij = {i0} for some i0 ∈ I), we have Fj [ai]
i =

ai0 ◦⇒ bi0 = Fj [bi]
i.

– If Fj is a non-empty suffix of a head reduction context R, we use the (◦⇒)
rule without reducing the head context R; each of R’s subterms include some
ai, in which case we (=⇒)-reduce them to have the bi instead by induction
hypothesis, or do not include any ai and (=⇒)-reduce into themselves by
reflexivity.

Lemma 7 (Composability of parallel reduction).

The following rule, which does not constrain the (ai)
i to be head redexes or

E to be irreducible, is admissible:

(�i : ∅)i ` E : ∅ (ai =⇒ bi)
i

E[ai]
i =⇒ E[bi]

i
··

25

Proof. Let the context/redex decomposition of each ai be Fi[a
′
j]
j∈Ji , such that

we have for each i

(a′j ◦⇒ b′j)
j∈Ji (�j : ∅)j ` Fi : ∅ Fi 6−→
ai = Fi[a

′
j]
j =⇒ Fi[b

′
j]
j = bi

then we can conclude by the following admissible derivation (Lemma 3.5):

(a′j ◦⇒ b′j)
i∈I,j∈Ji (�j : ∅)i∈I,j∈Ji ` E[Fi]

i : ∅

E[ai]
i =⇒ E[bi]

i
···

�

The last technical lemma we need closes a commutative diagram between parallel
reduction and one-step head reduction.

Lemma 8 (Commutation =⇒ and ◦→).
If R[ai]

i =⇒ R[a′i]
i and both R[ai]

i ◦→ b and R[a′i]
i ◦→ b′, then b =⇒ b′.

Proof. R[ai]
i ◦⇒ R[a′i]

i exactly means that for any i we have ai =⇒ a′i. We then
reason by case analysis on R.

The result is immediate if R reduce to a �i context; for example, if R is
π2 (�1, �2), we have R[ai]

i ◦→ a2 and R[a′i]
i ◦→ a′2, so our goal is a2 =⇒ a′2

which is exactly our assumption.
If the head reduction involves a substitution, we need to prove that substitu-

tion preserves reducible positions, which is a non-trivial fact that crucially relies
on the hiding construct. Consider the λ-reduction (λ(x) a1) a2: we need to prove
that a1[a2/x]∅ =⇒ a′1[a′2/x]∅. This proceeds in two steps:

a1[a2/x]∅ =⇒ a1[a′2/x]∅ =⇒ a′1[a′2/x]∅

Let E[�i]
i be the context of x’s occurrences in a1: a1 = E[x]i. There is a

unique family (Si)
i of guards such that (�i : Si)

i ` E : ∅, and the context in
which a2 reduces in a1[a2/x]∅ is, by construction, E[hideSi in �

′
i]
i. By substi-

tution of the guard judgment we have:

(�i : Si)
i ` E : ∅ (�

′
i : ∅ ` hideSi in �

′
i : ∅)i

(�
′
i : ∅)i ` E[hideSi in�

′
i]
i : ∅

···

so
a1[a2/x]∅ = E[hideSi in a2]i =⇒ E[hideSi in a

′
2]i = a1[a′2/x]∅

The second step, a1[a′2/x]∅ =⇒ a′1[a′2/x]∅, comes from the fact that substi-
tuting a variable with a term in a potentially-reducible context does not change
its guards: if (�i : Si) ` E : S, and a contains no �i, then (�i : Si) ` E[a/x] : S
as well. This transformation can be applied to all contexts involved in the deriva-
tion of a1 =⇒ a2; the substituted contexts may become reducible, so we use the
composability lemma (7) to rebuild a derivation of a1[a′2/x]∅ =⇒ a′1[a′2/x]∅.

�

26

Note that it is precisely that last lemma that failed with Ft or Fcc with-
out a hiding construct. Indeed, with b =⇒ b′, reducing (λ(x) δ(y, φ.x)) b to
δ(y, φ.b) does not allow closing the diagram to δ(y, φ.b′), while reducing to
δ(y, φ.hideφ in b) allows closing the diagram by reducing to δ(y, φ.hideφ in b′).

Theorem 2. The parallel reduction relation (=⇒) is confluent.

Proof. We prove, by mutual induction, that:

– (=⇒) is confluent: if a =⇒ b1 and a =⇒ b2, then there exists a b′ such that
b1 =⇒ b′ and b2 =⇒ b′

– (◦⇒) is (=⇒)-confluent: if a ◦⇒ b1 and a ◦⇒ b2, then there exists a b′ such
that b1 =⇒ b′ and b2 =⇒ b′

In the case of (=⇒), by unicity of context/redex decomposition (Lemma 6),
the two reductions are of the form

E 6→ (�i : ∅)i ` E : ∅ (ai ◦⇒ b1i)
i

E[ai]
i =⇒ E[b1i]

i

E 6→ (�i : ∅)i ` E : ∅ (ai ◦⇒ b2i)
i

E[ai]
i =⇒ E[b2i]

i

where only the head parallel reductions (ai ◦⇒ b1i)
i and (ai ◦⇒ b2i)

i may differ.
By mutual induction hypothesis ((=⇒)-confluence of (◦⇒), for each i there is
a b′i such that b1i =⇒ b′i and b2i =⇒ b′i. We can then conclude by defining

b′
4
= E[b′i]

i, as we have E[b1i]
i =⇒ E[b′i]

i and E[b2i]
i =⇒ E[b′i]

i by composability
of the parallel reduction (Lemma 7).

In the case of (◦⇒), let us write a
ε◦→ b, for ε ∈ {0, 1}, when a

?◦→ b, with
ε = 1 when there is a (◦→) step and ε = 0 when a = b.

We have two reductions

(ai =⇒ a′1i)i R[a′1i]i
ε1◦→ b1

R[ai]
i ◦⇒ b1

(ai =⇒ a′1i)i R[a′1i]i
ε2◦→ b1

R[ai]
i ◦⇒ b1

and want a b′ such that b1 ◦⇒ b′ and b2 ◦⇒ b′. By mutual induction hypothesis
(confluence of (=⇒)), we have a family (a′i)

i such that a′1i =⇒ a′i and a′2i =⇒ a′i.

Let us now define b′ to be the unique term such that R[a′i]
i ε

1∨ε2◦→ b′ – we could

simply define it such as R[a′i]
i 1◦→ b′, which gives the Gross-Knuth reduction

used in Takahashi’s proof; but handling the case where ε1 ∨ ε2 = 0 is immediate,
the important case is 1, so this wouldn’t simplify that much.

We can check by case analysis on ε1 and ε2 that b1 ◦⇒ b′ and b2 ◦⇒ b′; we
will only prove b1 ◦⇒ b′, the other result being symmetrical.

– If ε1 = 0, then ε1 ∨ ε2 = ε2, and we have

(a′1i =⇒ a′i)
i R[a′i]

i ε2◦→ b′

b1 = R[a′1i]i ◦⇒ b′

so in particular b1 =⇒ b′.

27

– If ε1 = 1, then we have R[t′1i]i =⇒ R[t′i]
i ◦⇒ b′ and R[t′1i]i ◦→ b1, so we can

conclude b1 =⇒ b′ from the commutation lemma 8.

�

Corollary 3 (Confluence). The relation (−→∗) is confluent.

Proof. We only need to prove that (=⇒∗) = (−→∗), as Pollack Pollack [1995]
proved in a generic way that for any relation R, if R is confluent then R∗ is
confluent as well – so we know that (=⇒∗) is confluent.

The proof proceeds by double inclusion. We prove that (−→) ⊂ (=⇒), and
(by induction) that (=⇒) ⊂ (−→∗).

If a −→ b, then a = E[a′] and b = E[b′] for some reduction context E with
a′ ◦→ b′, which immediately implies a′ ◦→ b′ (no reduction of the subterms, and
one (◦→)-reduction). We can then conclude a = E[a′] =⇒ E[b′] = b by head
reduction through an arbitrary context (Lemma 3.5).

In the other direction, we first remark that for any reduction multi-context
E[�i]

i and family of reductions (ai)
i −→∗ (bi)

i, one has E[ai]
i −→∗ E[bi]

i;
indeed we have

E[ai]
i = E[a1, a2, . . . , an] −→∗ E[b1, a2, . . . , an]

−→∗ E[b1, b2, . . . , an] −→∗ . . . −→∗ E[b1, b2, . . . , bn] = E[bi]
i

Then we prove by mutual induction that both (=⇒) and (◦⇒) are included
in (−→∗). In a derivation of R[ai]

i ◦⇒ R[a′i]
i −→ b, we can inductively convert

all the assumption (ai =⇒ a′i)
i into (ai −→∗ a′i)i, which gives us R[ai]

i −→∗
R[a′i]

i −→ b from the previous remark. In a derivation of E[ai]
i =⇒ E[bi]

i from
(ai ◦⇒ a′i)

i, we get (ai −→∗ a′i)i by induction hypothesis, and our remark lets
us conclude with E[ai]

i −→∗ E[bi]
i.

3.6 Soundness of Fth

The soundness proof of Fth is again a translation from Fth to Ft with a for-
ward simulation. Before getting to the translation proper, we need to study two
transformations used to define it. Hide-extrusion (3.6) removes hiding from a
Fth term, and its correctness property let us simulate forward reductions of the
form δ(�, φ.b) ◦→ b[�/φ]. Hide-normalization (3.6) strengthens the structure of
hiding in a Fth term, in such a way that we can forward-simulate the other Fth
reductions, despite the mismatch between Fth’s hiding substitution a[b/x]S and
Ft’s natural substitution. We finally prove Fth’s soundness (Theorem 3).

Hide-extrusion In a language without hiding such as Ft, it is possible for the
programmer to emulate the effects of hiding by extruding terms out of a block-
ing construction. Instead of δ(a, φ.E[hideφ in b]), one can write let xb =
b in δ(a, φ.E[xb]), where b appears in reducible position; we call this transfor-
mation hide-extrusion. In the general case, E may bind variables or block over

28

δ(b, φ.C[hideφ in a]) ↪→ let x = abs(C, a) in δ(b, φ.C[app(x,C)])

N ::= � b | a � | (�, b) | (a,�) | πi � | σi � | δ(�, φ.b) Non-binding contexts

| �(y1.a1 | y2.a2)

abs(�, a)
4
= a

abs(N [C], a)
4
= abs(C, a)

abs(λ(y)C, a)
4
= λ(y) abs(C, a)

abs(b1(y1.C | y2.b2), a)
4
= λ(y1) abs(C, a)

abs(xb1(y1.b1 | y2.C), a)
4
= λ(y2) abs(C, a)

abs(δ(w, ψ.C), a)
4
= λ(xw) δ(xw, ψ.abs(C, a))

arr(�, τ)
4
= τ

arr(N [C], τ)
4
= arr(C, τ)

arr(λ(y : σ′)C, τ)
4
= σ′ → arr(C, τ)

arr(b1((y1 : σ′
1).C | y2.b2), τ)

4
= σ′

1 → arr(C, τ)

arr(xb1(y1.b1 | (y2 : σ′
2).C), τ)

4
= σ′

2 → arr(C, τ)

arr(δ((w : [P]), ψ.C), τ)
4
= [P]→ arr(C, τ)

app(a,�)
4
= a

app(a,N [C])
4
= app(a,C)

app(a, λ(y)C)
4
= app(a y, C)

app(a, b1(y1.C | y2.b2))
4
= app(a y1, C)

app(a, xb1(y1.b1 | y2.C))
4
= app(a y2, C)

app(a, δ(xw, ψ.C))
4
= app(a �, C)

Fig. 14. Hide-extrusion: translating hide back into plain Ft

other proposition variables, and the translation needs to be refined to preserve b’s
typing environment; for example, δ(a, φ.λ(y) (f (hideφ in b))) is hide-extruded
into let xb = λ(y) b in δ(a, φ.λ(y) (f (xb y))).

Figure 14 gives a formal definition of the hide-extruding rewrite a ↪→ a′

by defining two functions abs(C, a), which abstracts a over all the variables
bound in the context C, and app(b, C), which closes such an abstracted b (when
applied from under the context C) by applying it to the appropriate variables,
accordingly. These definitions are factorized by a grammar N of context frames
that do not bind any variable. If a has type τ , then abs(C, a) has type arr(C, τ),
and conversely if b has type arr(C, τ) then app(b, C) has type τ .

Two important properties of the hide-extrusion transformation – checked by
immediate induction – is that it preserves guards, guard∅(C) = guard∅(abs(C,�)),
and that it makes linear uses of variables: x and C’s bound variables occur ex-
actly once in app(x,C).

Lemma 9 (Typing preservation of hide-extrusion).

If a is well-typed in Fth and a ↪→ b, then b is well-typed, at the same type.

29

Proof. This is easily established from the two following rules, shown derivable
by a direction induction on C.

Γ,� : τ ` C[�] : σ Γ ` a : τ

Γ ` abs(C, a) : arr(C, τ)
· ·

Γ,� : τ ` C[�] : σ Γ ` b : arr(C, τ)

Γ ` C[app(b, C)] : σ
· ·

�

Lemma 10 (Hide-extrusion of errors).
If a ↪→ b, then a is an error if and only if b is an error.

Proof. The destructors in reducible positions are exactly the same in a term and
its extrusion – abs(C, a,) only introduces new constructors on top of the existing
subterm a. A fortiori the reducible error redexes are the same.

�

Lemma 11 (Extrusion Reduction).
For all term a, we have app(abs(C, a), C) (∗a[�/guard∅(C)], where (()

denote linear reductions that never duplicate terms..

Proof. For convenience, let us define S(C)
4
= guard∅(C). Then, by induction on

C:

app(abs(F [C], a), F [C])
= app(abs(C, a), C)
−→hyp a[�/S(C)]

app(abs((λ(y)C), a), λ(y)C)
= app((λ(y) abs(C, a)) y, C)
−→ app(abs(C, a)[y/y]∅, C)
= app(abs(C, a[y/y]guard∅(abs(C,�))), C)

= app(abs(C, a[y/y]S(C)), C)
= app(abs(C, a[(hideS(C) in y)/y]), C)
−→hyp a[(hideS(C) in y)/y][�/S(C)]
= a[�/S(C)]

app(abs(δ(w, φ.C), a), δ(w, φ.C))
= (λ(xw) δ(xw, φ.abs(C, a))) �
−→ app(δ(�, φ.abs(C, a)), C)
−→ app(abs(C, a[�/φ]), C)
−→hyp a[�/φ][�/S(C)]
= a[�/(φ, S(C))]

In the λ(y)C case, we used the fact that the only free occurrences of y in
abs(C, b) are in b, which is checked by immediate induction.

�

30

Each hide-extrusion rewrite removes exactly one hideφ from the source term;
in particular, iterating hide-extrusion terminates, and gives a term without any
hiding construct. We prove in 3.6 that this gives a forward simulation of Fth by
Ft. This is easy to see in the simple case of extrusion through a reduction context
E without any other hideφ:

δ(b, φ.E[hideφ in a]) ↪→ let x = abs(E, a) in δ(b, φ.E[app(x,E)])

The only reducible subterms of the source term are a and b. The subterms b and
a are still reducible in the target term, since in particular guard∅(abs(E, �)) is
empty. If b eventually reduces to �, then the source becomes E[a] which may re-
duce further. The target can reduce to let x = abs(E, a) in E[app(x,E)], which
itself reduces to E[app(abs(E, a), E)], then to E[a] by the previous lemma 11.

Hide-normalization The remaining issue for a forward simulation of Fth by Ft
is the difference between the substitutions used in β-reductions. If (λ(x) a) b
is related to some (λ(x) a′) b′ by hide-extrusion, a[b/x]∅ may not be related to
a′[b′/x] in the general case, as the substitution in Fth may introduce new hiding
constructs that have to be extruded again.

The idea of hide-normalization is to rewrite a term so that both substitutions
coincide, by establishing the invariant that the guard of each bound variable
occurrence is equal to the guard of its binder. For example, in λ(x) δ(y, φ.x) the
guard of x’s binding site is ∅, while its occurrence has guard {φ}. β-reducing
this λ-abstraction would introduce a hideφ. We can statically rewrite it into
λ(x) δ(y, φ.hideφ inx), which is equivalent (unblocking free variables doesn’t
affect reduction), and whose β-reduction doesn’t introduce hiding.

In the general case, we define the hide-normalization function H(a) from Fth
to Fth. It recursively traverses all subterms and is a direct mapping, except on
constructions that bound term variables:

HideNormLam
(�i : Si)

i ` C : ∅ x /∈ C

H(λ(x)C[x]i)
4
= λ(x) H(C[hideSi inx]i)

HideNormCase
(�i : S1,i)

i ` C1 : ∅ (�j : S2,j)
j ` C2 : ∅ y1 /∈ C1 y2 /∈ C2

H(a(y1.C1[y1]i | y2.C2[y2]j))
4
= H(a)(y1.H(C1[hideS1,i in y1]i) | y2.H(C2[hideS2,j in y2]j))

Lemma 12 (Type preservation of hide-normalization).
If a is well-typed in Fth, then H(a) is also well-typed, at the same type.

Proof. If (�i : Si)
i ` E : ∅, we consider the derivation tree of

Γ, x : τ ` E[x]i : σ

Γ ` H(λ(x)E[x]i) : τ → σ

The i-th x-variable rule, occurring under the guard Si = (φj)j∈Ji , is of the form

Γ, x : τ,∆, (φj ,∆j : Pj)
j ` x : τ

31

where the context is ordered: ∆ has no propositional variables, and the φj are
the propositional variables introduced after x in the context, and the ∆j the
context fragments introduced before the next propositional variable. By this
ordering, we know that well-formedness of x does not depend on the ∆j , so we
may strengthen this variable rule, without affecting its validity, into

Γ, x : τ,∆, (φj : Pj)
j ` x : τ

To get a valid derivation of Γ ` E[hideSi inx]i, we simply replace all such leaves
by a valid sub-derivation

Γ, x : τ ` x : τ

Γ, x : τ, (φj : Pj)
j ` hideSi inx : τ

�

Lemma 13 (Error preservation of hide-normalization).
A Fth term a is an error if and only if H(a) is an error.

Proof. This is immediate, as hide-normalization only affects bound variables. It
does not change the structure of constructor or destructors, and thus preserves
errors.

�

Lemma 14 (Hide-normalization is stable by reduction).
If H(a) −→ b′, then b′ is equal to H(b) for some b.

Proof. The “well-hiding” judgment Γ
 a : S

By construction, hide-normalized terms a are exactly those that satisfy Γ

a : ∅, for the following “well-hiding” judgment Γ
 a : S:

WHVar

Γ, x : S,∆
 x : S

WHLam
Γ, x : S
 a : S

Γ
 λ(x) a : S

WHApp
Γ
 a : S Γ
 b : S

Γ
 a b : S

WHProd
Γ
 a : S Γ
 b : S

Γ
 (a, b) : S

WHProj
Γ
 a : S

Γ
 πi a : S

WHSumIntro
Γ
 a : S

Γ
 σi a : S

WHSumElim
Γ
 a : S Γ, x1 : S
 b1 : S Γ, x2 : τ2
 b2 : S

Γ
 a(x1.b1 | x2.b2) : S

WHWit

Γ
 � : S

WHAssume
Γ
 a : S Γ, φ
 b : S ∪ {φ}

Γ
 δ(a, φ.b) : S

WHHide
Γ,∆
 a : S\{φ}

Γ, φ,∆
 hideφ in a : S

Defining hide-normalization in terms of well-hiding

32

To prove properties of hide-normalization we will need a more precise defini-
tion. A natural definition is to recursively define H(Γ, a, S), where Γ is a context
of the well-hiding judgment and S a guard, such that H(a) is H(∅, a, ∅), with the
following characteristic property

∀Γ, a, S, freevars(a) ⊂ Γ =⇒ Γ
 H(Γ, a, S) : S

The definition is as follows:

H((Γ, x : S,∆), x, S′)
4
= hideS′ \ S inx

H(Γ, λ(x) a, S)
4
= λ(x) H((Γ, x : S), a, S)

H(Γ, a b, S)
4
= H(Γ, a, S) H(Γ, b, S)

H(Γ, (a, b), S)
4
= (H(Γ, a, S), H(Γ, b, S))

H(Γ, πi a, S)
4
= πi H(Γ, a, S)

H(Γ, σi a, S)
4
= σi H(Γ, a, S)

H(Γ, a(y1.b1 | y2.b2), S)
4
= H(Γ, a, S)(y1.H((Γ, y1 : S), b1, S) | y2.H((Γ, y2 : S), b2, S))

H(Γ, �, S)
4
= �

H(Γ, δ(a, φ.b), S)
4
= δ(H(Γ, a, S), φ.H((Γ, φ), b, S ∪ {φ}))

H((Γ, φ,∆), hideφ in a, S)
4
= hideφ in H((Γ,∆), a, S\{φ})

H(Γ, �, S)
4
= (Γ
 S)

The last case does not make sense on terms, but it extends the H(Γ, , S) on
contexts: H(Γ, E[�], S) is a context E′[Γ′
 S′] such that, for any a, H(Γ, E[a], S) =
E′[H(Γ′, a, S′)].

Subject reduction of (∅
 ∅) We now show subject reduction for the judgment
∅ ` a : ∅, which shows that hide-normalization is stable by reduction.

It is easily checked by induction that unguarded single-hole contexts unguarded(E)
are exactly those that satisfy

∅
 E[Γ
 ∅] : ∅

Now suppose we have a reduction

a ◦→ b unguarded(E)

E[a] −→ E[b]

we have to show that, for any Γ such that ∅
 E[Γ
 ∅] : ∅ , head reduction
a ◦→ b preserves well-guardedness under E, that is Γ
 a : ∅ implies Γ
 b : ∅.
We do a case analysis on a ◦→ b, reasoning by inversion on the Γ
 a : ∅
derivation.

This is immediate for πi (a1, a2) ◦→ ai: Γ
 πi (a1, a2) : ∅ has hypothesis
Γ
 πi (a1, a2) : ∅, which itself has both hypotheses Γ
 a1 : ∅ and Γ
 a2 : ∅.

For δ(�, φ.b) −→ b[�/φ], inversion on Γ
 δ(�, φ.b)
 ∅ gives us the hypoth-
esis Γ, φ : ∅
 b : φ. We can then inductively check that if Γ, φ
 a : S ∪ {φ}
holds, then Γ
 a[�/x] : S holds as well. This gives us Γ
 b[�/φ] : ∅ as expected.

33

For (λ(x) a) b ◦→ a[b/x]∅, inversion on Γ
 (λ(x) a) b : ∅, gives us the
hypotheses Γ, x : ∅
 a : ∅ and Γ
 b : ∅, and we need to prove that Γ
 a[b/x]∅ :
∅.

To prove this, we first check inductively that if we have Γ, x : Sx,∆
 E[x]i :
S with x /∈ E, then the multi-hole guard judgment (�i : Sx)i ` E : S holds – all
occurrences of the context’s hole are under the same guard, which is character-
istic of hide-normalization.

In particular, from hypothesis Γ, x : ∅
 a : ∅ we know that a is of the form
E[x]i with x /∈ E and (� : ∅)i ` E : ∅. Using the characterization of hiding

substitution in terms of multi-contexts 3.5, we then have E[x]i[b/x]∅
4
= E[b]i

(in each whole we put hide ∅ in b, which is exactly b). In other words, for our
hide-normalized a and b,

a[b/x]∅ = a[b/x]

This is the characteristic property of hide-normalized terms: because we have
added all the necessary hiding on variables already, hiding substitution never
needs to add more, and coincides with the usual substitution.

We then conclude by checking inductively that the well-hiding judgment is
substitutive: for any S, if Γ, x : Sx
 a : S and Γ
 b : Sx, then Γ
 Γ[b/x] : S.

The case of (σi a)(x1.b1 | x2.b2) ◦→ bi[a/xi]∅ is very similar to the λ case.
By inversion we have Γ, xi : ∅
 bi : ∅ for each i ∈ {1, 2}, and thus bi[a/xi]∅ =
bi[a/xi] and Γ
 bi[a/xi] : ∅ by substitutivity.

�

Lemma 15 (Hide-normalization is a forward simulation).
If a −→ b hen H(a) −→ H(b).

Proof. This proof uses the tools of the previous proof that hide-normalization is
preserved by reduction 14.

We prove the following statement, strengthened for induction: for any Γ, S
such that freevars(a) ⊂ Γ, if a −→ b then H(Γ, a, S) −→ H(Γ, b, S).

If we have a reduction

a ◦→ b unguarded(E)

E[a] −→ E[b]

We know that H(Γ, E[�], S) is of the form E′[Γ′ ` ∅], because E′ is both nor-
malized and unguarded and thus verifies ∅
 E′[Γ′
 ∅] : ∅ for some Γ′. It then
suffices to show that H(Γ′, a, ∅) ◦→ H(Γ′, b, ∅), and we can conclude by

H(Γ, E[a], ∅) = E′[H(Γ′, a, ∅)] −→ E′[H(Γ′, b, ∅)] = H(Γ, E[b], ∅)

We then proceed by case analysis on the head redex of a ◦→ b.
If πi (a1, a2) ◦→ ai this is immediate by definition of H(Γ′, , S).
If (λ(x) a) b ◦→ a[b/x]∅ then we need to prove that H(Γ, a[b/x]∅, ∅) = H((Γ, x :

∅), a, ∅)[H(Γ, b, ∅)/x]∅. This is given by proving, by immediate induction on a, the
following strengthened statement

∀S, H(Γ, a[b/x]S , S) = H((Γ, x : ∅), a, S)[H(Γ, b, ∅)/x]S

34

The (σi a)(· · · | . . .) case is similar to the λ-redex above.
Finally, if δ(�, φ.b) ◦→ b[�/φ], we have H(Γ′, δ(�, φ.b), S) = δ(�, φ.H(Γ′, b, S ∪

{φ})) ◦→ H(Γ′, b, S ∪ {φ})[�/φ] and it suffices to check by direct induction on b
that

H(Γ′, b[�/φ], S) = H(Γ′, b, S ∪ {φ})[�/φ]

�

Soundness Given a well-typed Fth term a, its hide-normalized form H(a) is still
well-typed and has the same reduction behavior – errors included. We can com-
pute the maximal hide-extrusion a′ of H(a); this term is well-typed in both Ft and
Fth. All that remains, to establish that the original term a is sound, is to forward-
simulate any reduction path starting from a′ in Ft. This should be done carefully,
however, as it is not the case that the hide-extrusion of H(a) is itself hide-normal;
it is, except on the subterms created by hide-extrusion. Hide-extrusion intro-
duces linearly-used variables to preserve scoping, and of course does insert the
appropriate hiding constructs, as its goal is to remove hiding. Fortunately, we do
not need to hide-normalize the terms produced by hide-extrusion: they remain
well-separated from other subterms during reduction, and are not affected by
β-reduction from other parts of the term.

Theorem 3 (Soundness of Fth). Every well-typed Fth term is sound.

Proof. We will refer in this proof to the definitions and properties stated in the
proof of reduction of hide-normalized terms 14.

Multi-extrusion We will first reformulate hide-extrusion using multi-hole con-
texts instead of single-hole contexts. If E[�i]

i is a multi-hole context, let us
define E[i] as E[�/�i]: this can be seen as a single-context context in the vari-
able �, which is in the i-th position of E[]i (and the other �j for j 6= i at their
usual position). In particular, abs(E[i],) and app(, E[i]) are well-defined.

We can then give the following re-definition of hide-extrusion, using let (xi)
i =

(ai)
i in b as a multi-let syntax with arbitrary ordering.

Extrude
φ /∈ E[�i]

i∈I

δ(b, φ.E[hideφ in ai]
i)# let (xi)

i = (abs(E[i], ai))
i in δ(b, φ.E[app(xi, E[i])]i)

If we index our holes with I = {1, 2, . . . , n}, immediate induction on i ∈ I shows
that the relation (#) is included in the n-th iterated hide-extrusion (↪→n). In
particular, (↪→) and (#) have the same normal forms.

We will note X(a) the normal form of applying (#) to a – including in depth,
under any term context.

Forward Simulation We now show that if a −→ b among hide-normalized Fth
terms, then X(a) −→∗ X(b) in Ft, modulo some extra linear reductions.

35

If we have a reduction

a ◦→ b unguarded(E)

E[a] −→ E[b]

notice that a may not contain a variable φ bound in E, as we have unguarded(E);
this means that E and its hole can be extruded independently: for any a′ we have
X(E[a′]) = X(E[�])[X(a′)/�]. It then suffices to show that if a ◦→ b then X(a) −→∗
X(b) – notice that we obtain a repeated non-head reduction, as reducing extruded
form may require extra work not in head position.

The πi (a1, a2) ◦→ ai case is immediate: X(πi (a1, a2)) = πi (X(a1), X(a2)) ◦→
X(ai) and Γ
 πi (a1, a2) : S implies Γ
 πi (a1, a2) : S

In the case (λ(x) a) b ◦→ a[b/x]∅, we use the fact that our input term was
hide-normalized: the reduction is in fact a pure substitution (λ(x) a) b ◦→ a[b/x].
In Ft we have H((λ(x) a) b) = (λ(x) H(a)) H(b) ◦→ H(a)[H(b)/x] = H(a[b/x]).

The (σi a)(· · · | . . .) case is similar to the λ case.
The last Fth redex to consider is δ(�, φ.b) −→ b[�/φ]. We will write it

in expanded form: b is of the form E[hideφ in ai]
i with φ /∈ E, so we have

δ(�, φ.E[hideφ in ai]
i) −→ E[ai]

i . The source of this reduction (#)-normalizes
to let (xi)

i = (abs(E[i], H(ai)))
i in δ(�, φ.H(E)[app(xi, E[i])]i). We conclude by

the following reduction sequence:

let (xi)
i = (abs(E[i], H(ai)))

i in δ(�, φ.H(E)[app(xi, E[i])]i)
◦→ let (xi)

i = (abs(E[i], H(ai)))
i in H(E)[app(xi, E[i])]i

−→∗ H(E)[app(abs(E[i], H(ai)), E[i])]i

−→∗ H(E)[H(ai)]
i

'(H(E[ai]
i)

Soundness If a is well-typed in Fth, then H(a) is well-typed as well (Lemma 12),
and thus X(H(a)) is well-typed in Ft (Lemma 9). But then, if a had a reduc-
tion path to an error in Fth, H(a) would have one as well, by forward simulation
(Lemmas 15) and preservation of errors (Lemma 13), whose intermediary reducts
would be in normalized form. As X() is a forward simulation on hide-normalized
forms (we just proved this) and preserves errors (Lemma 10), this means that
X(H(a)) would have a reduction path to an error in Ft, which is absurd by sound-
ness of Ft (Theorem ??).

�

4 Related and Future Work

Related Work

Confluence and weak reduction It appears to be folklore that there are three ways
to get confluence in a weak reduction setting. One solution is to allow reduction
under weak binders of subterms that do not use the bound variables [Çağman
and Hindley, 1998]; we cannot apply this method in Fth as uses of propositions

36

are not traced in terms. Another solution is to introduce explicit weakening
when substituting under a binder, so as to preserve the non-dependency with
bound variables. This corresponds to our hiding substitution. Finally, one may
use explicit substitutions and forbid them from going through weak bindings, so
that the substituted terms remain reducible. Interestingly, this happens to be
precisely the computational behavior of terms used in our final soundness proof
(from Fth to Ft), as a result of hide-normalization followed by hide-extrusion.

Some explicit substitution calculi [Kesner, 2007] also have explicit weakening
for the purpose of understanding reduction behavior of substructural systems
(e.g. linear proof nets) where weakening must be applied maximally and this
invariant is preserved by reductions and substitutions. This gives a reduction
semantics that is different from our more relaxed system.

Another system with explicit weakening is Adbmal by Hendriks and van Oost-
rom [2003]. Their weakening construct enforces a well-parenthesized order be-
tween introduction and weakening by removing not just one variable from scope,
but also all variables introduced afterwards. Our hiding construct allows non-
bracketed introduction-hiding sequences, which is more convenient for the pro-
grammer. Interestingly, we also considered a construct hide ? in a to hide all
propositional variables in scope and simplify the definition of hiding substitu-
tions, but the local use of hide-normalization in the soundness proof suffices to
get a similar effect. The scope-extrusion performed before Adbmal’s β-reductions,
which extrudes the weakening above a bound variable to also weaken its binder
is also related to our hide-normalization technique.

System FC The family of works on System FC [Sulzmann et al., 2007] is related
to consistent coercion calculi in general, but also to our specific focus on im-
plicit v.s. explicit use of potentially-inconsistent propositions. Sulzmann et al.
[2007, §3.8] argue that explicit coercions often simplify understanding of compiler
transformations by turning semantically incorrect hard-to-debug optimizations
into scope-breaking transformations that are immediately detected. Implicit use
of logical hypotheses is for user’s convenience, and is not necessary in a compil-
ter intermediate language. Yet, we claim that Fth retain some advantages in an
explicit setting. The explicit reduction-blocking elimination reifies the semantic
boundary into the syntax, which simplifies reasoning for both users and compiler
designers. Another relation to our work is the march towards richer kind sys-
tems. Fcc includes a small set of features to demonstrate its usefulness, but the
features studied for System FC, which moves towards a fully dependent type and
kind sublanguage [Weirich et al., 2013], would also make sense in our setting.
In particular, dependent kinds would make it natural to include propositions
directly as kinds and merge product kinds, refinement kinds, and proposition
conjunction as a single dependent product constructor. Consistency is known to
be a pain point in the metatheory of System FC. It is neither needed nor traced
in arbitrary coercion abstractions – they are not quite erasable as coercion ab-
straction blocks reduction. Yet, it is required for the axioms introduced at the
toplevel – e.g. to model type families. An Fcc-inspired, more explicit treatment
of consistency may structure System FC and provide optimization opportunities.

37

We know that the mode of use of coercions corresponding to bounded quantifica-
tion is consistent and can be erased; but the practical question of how to decide
consistency is not answered in our work.

Future Work

Completing consistent coercion calculi In the process of our work we have en-
countered small glitches in Fcc: rules that we would expect to be derivable, and
that were not in the current system. We have fixed them as necessary for Fth’s
need, but some aspects could still be improved – adding η-expansions in the
kind equality, and understanding whether the context consistency requirement
of coercions could be removed, and recovered by a semantics argument.

Extraction Coq’s extraction process [Letouzey, 2004] compiles a language with
full reduction and explicit uses of hypotheses into OCaml, a language with weak
reduction and implicit uses of hypotheses; Fth might be a good intermediate lan-
guage in which to express and study some of the optimizations happening during
the translation—which is known to be difficult. More generally, the dependent
type community is aware that computation is very different under arbitrary con-
texts [Brady et al., 2003]. We suspect that context consistency could be a good
generalization of the “empty context” assumption. A distinction between propo-
sitional and definitional truths naturally arises in our framework and, interest-
ingly, we have a use for abstracting over definitional truths – while dependent
systems don’t generally consider abstracting over definitional equalities.

Conclusion

We have introduced Fth, a consistent coercion calculus that blocks reductions
under implicit inconsistent assumptions in a fine-grained manner. This solves
both practical issues (user control over reducibility) and theoretical issues (con-
fluence) with a previous calculus of erasable coercions, Fcc, and opens interesting
perspectives on the study of full-reduction calculi for programming language de-
sign, the interplay between type systems and weak reduction strategies, and an
explicit handling of consistency in dependent type systems.

Acknowledgments

Julien Cretin made many helpful remarks on our work; in particular, he sug-
gested to introduce incoherent abstraction on propositions instead of kinds, which
simplifies the presentation. We had fruitful discussions with Luc Maranget and
Thibaut Balabonski about weak reduction; Thibaut Balabonski suggested the
use of multi-hole contexts to unify guards (Figure 9) and hiding substitution
(Figure 10), an idea we used in the proof of confluence.

38

Bibliography

M. Boespflug, M. Dénès, and B. Grégoire. Full reduction at full throttle. In
Certified Programs and Proofs (CPP), 2011.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store their
indices. In TYPES, pages 115–129, 2003.

N. Çağman and J. R. Hindley. Combinatory weak reduction in lambda calculus.
Theoretical Computer Science, 198(1):239–247, 1998.

L. Cardelli. An implementation of FSub. Research Report 97, , 1993.
J. Cretin. Erasable coercions: a unified approach to type systems. PhD thesis,

Université Paris-Diderot, Paris 7, 2014.
J. Cretin and D. Rémy. System F with Coercion Constraints. In Logics In

Computer Science (LICS). ACM, July 2014.
B. Grégoire and X. Leroy. A compiled implementation of strong reduction. ACM

SIGPLAN Notices, 37(9):235–246, 2002.
D. Hendriks and V. van Oostrom. adbmal. In CADE, 2003.
D. Kesner. The theory of calculi with explicit substitutions revisited. In Com-

puter Science Logic, pages 238–252. Springer, 2007.
D. Le Botlan and D. Rémy. MLF: Raising ML to the power of System-F. In

ICFP’80, Aug. 2003.
P. Letouzey. A New Extraction for Coq. In TYPES 2002, Feb. 2004.
J. C. Mitchell. Polymorphic type inference and containment. Information and

Computation, 2/3(76), 1988.
B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löfs type

theory, volume 200. Oxford University Press Oxford, 1990.
R. Pollack. Polishing up the tait-martin-lf proof of the church-rosser theorem,

1995.
F. Pottier. A versatile constraint-based type inference system. Nordic Journal

of Computing, 7(4):312–347, Nov. 2000.
V. Simonet and F. Pottier. A constraint-based approach to guarded algebraic

data types. TOPLAS, 29(1), Jan. 2007.
M. Sulzmann, M. M. T. Chakravarty, S. L. P. Jones, and K. Donnelly. System

f with type equality coercions. In TLDI, pages 53–66, 2007.
M. Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):

120–127, 1995.
D. Vytiniotis and S. P. Jones. Practical aspects of evidence-based compilation

in system FC. , 2011.
S. Weirich, J. Hsu, and R. A. Eisenberg. System FC with explicit kind equality.

In ICFP, pages 275–286, 2013.
H. Xi. Dependent ml an approach to practical programming with dependent

types. J. Funct. Program., 17(2):215–286, 2007.

	Full reduction in the face of absurdity

