
Frozen inference constraints for type-directed
disambiguation

Olivier Martinot, Gabriel Scherer

Abstract
We present work-in-progress on type inference in presence
of type-directed name disambiguation (where an ambigu-
ous name is resolved using type information), following the
approach of constraint-based type inference.
Our specific goal is to implement inference for OCaml

sum/variant constructor disambiguation, and our approach
is to introduce “frozen constraints”, a more general constraint
mechanism. We have a prototype implementation of frozen
constraints in the Inferno library, and discuss the implemen-
tation and meta-theoretical challenges.

1 Introduction
OCaml allows to use datatypes (sums/variants and records)
with overlapping variant constructor or record field names;
in this case it uses type-based disambiguation to tell which
constructor or field is meant, or warns. (This feature was
added in OCaml 4.01 in 2013; it is also found in other lan-
guages, Agda for example.)

type t = A

type u = A

let x : t = A

let y : u = A

let z = A

> ^

> Warning 41 [ambiguous-name]:

> A belongs to several types: u t

> The first one was selected.

> Please disambiguate if this is wrong.

OCaml performs this disambiguation by propagating type
annotations in subterms, a simple form of bidirectional type
inference. This is robust and predictable, but it relies on
arbitrary choices (in applications t u, do we want to propa-
gate information from t to u or the other way around?; in
let p = e in ..., do we want to propagate information
from the pattern p to e or conversely?) that can frustrate
users.
In this work, we decided to look at what a unification-

based propagation of disambiguation informationwould look
like. We implemented a prototype of type-based constructor
disambiguation within a constraint-based type inference
engine, Inferno [Pottier 2014a,b].

In constraint-based inference, typability of the user pro-
gram is translated into a typing constraint whose unknowns
are type (meta)variables, and passed to a constraint solver.
Type-inference designers and implementors are encouraged
to pick a relatively generic constraint language, with a few
expressive constructs/combinators, to keep the solver simple.
The specifics of their type-system is translated away dur-
ing the constraint-generation phase, in terms of these more
general constraints. Correspondingly, we propose a new con-
straint construct, frozen constraints, that is less specific than
disambiguation of variant constructors.

2 Frozen constraints
Frozen constraints represent situations where more type
information is needed to decide how we want to type-check
something.
Let us write 𝛼 ∈ V for inference (meta)variables, 𝜏 ∈ T

for partially-inferred types containing inference variables,
and 𝐶 ∈ C for inference constraints.
A frozen constraint ⟨𝛼⟩𝑓 is built by pairing an inference

variable 𝛼 , the needed variable of the constraint, and a func-
tion 𝑓 : T → C from partially-inferred types to constraints,
the callback. The intent is to wait until 𝛼 gets unified to a
non-variable type 𝜏 , and have the frozen constraint then be-
have as the constraint 𝑓 (𝜏). (This is an informal description
of the expected solver behavior.)

2.1 Constructor disambiguation using frozen
constraints

Constraint generation for a term 𝑡 is typically described
as a function J𝑡K𝛼 that generates a constraint 𝐶 , where the
inference variable𝛼 represents the expected type for the term
𝑡 in its context. For example, the constraint for an application
can be defined as

J𝑡 𝑢K𝛼
def
= ∃𝛽𝑡 .∃𝛾𝑢 . ((𝛽𝑡 = 𝛾𝑢 → 𝛼) ∧ J𝑡K𝛽𝑡 ∧ J𝑢K𝛾𝑢)

To support constructor disambiguation, we generate for a
constructor application K 𝑡 the constraint

JK 𝑡K𝛼
def
= ∃𝛽𝑡 . (⟨𝛼⟩𝑓K,𝛽𝑡 ∧ J𝑡K𝛽𝑡)

where 𝑓K,𝛽𝑡 is a callback that is called once 𝛼 has been (par-
tially) inferred to some non-variable type, typically a datatype
𝐷 . At this point there is no ambiguity anymore: several con-
structors K may exist in scope, but at most one of them has
type 𝐷 . 𝑓K,𝛽𝑡 will look for 𝐷 in the type declaration envi-
ronment, and a unification constraint between 𝛽𝑡 and the
argument type of its constructor K. Type-inference fails with

https://gitlab.inria.fr/fpottier/inferno/
https://gitlab.inria.fr/fpottier/inferno/

Olivier Martinot, Gabriel Scherer

an error if 𝛼 has been unified with a type that is not a sum/-
variant type, or if it has no constructor K.

This use of frozen constraints does not try to disambiguate
constructors in all possible cases. For example, if may be that
there are two constructors K declared in the environment,
but the type of 𝑡 is only compatible with one of them; our
approach makes no attempt to enumerate the declarations of
K and try them with backtracking. This differs from previous
proposals for disambiguation using disjunctive constraints
– generating a disjunction of constraints, one for each con-
structor K in the environment. We don’t guess, we wait for
the context to propagate disambiguation information on the
type of K. This is much closer in spirit and behavior to the
bidirectional propagation of type annotations, but it uses
general unification rather than bidirectional propagation, so
it would apply in more situations.

For example, the following uses of the constant construc-
tor 𝐾 at type 𝐷 would be disambiguated, illustrating the
absence of an arbitrary direction of progagation to type
applications: (𝜆(𝑥 : 𝐷). 𝑡) 𝐾 , and (𝑥 : 𝐷 → 𝜏) 𝐾 , and
(𝜆𝑥. match 𝑥 with K → 𝑢) (𝑡 : 𝐷).

Remark. Onemay think of this approach to typed-directed
disambiguation as a limited form of qualified types (say, type-
class inference). Inference for qualified types collects usage
constraints from terms (as our frozen constraints); at general-
ization time, unsolved usage constraints are turned into qual-
ified constraint abstractions, to be instantiated separately by
each caller. We use frozen constraints for a language feature
for which the qualified-type approach is not desirable: we
do not want ad-hoc polymorphism on constructor names,
their meaning should be exactly the same for all callers of
the surrounding definition. We discuss in the next section
the issues that arise at generalization-time.

Another interesting distinction is that frozen constraints
may in general produce arbitrary constraints once unfrozen,
whereas a qualified type constraint or type-class typically
can express only simpler constraints on its qualified names.
It is not obvious, for example, how one could allow for dis-
ambiguation of GADT constructors using qualified types
– how to express the still-unknown existential types and
equality constraints in the qualified constraint, and how to
type-check its application under this constraint.

3 Implementation challenges
When encountering a frozen constraint ⟨𝛼⟩𝐶 , our solver
waits for 𝛼 to be unified with some non-variable type struc-
ture. At the very end of the solving process, if some con-
straints remain frozen, we don’t make any guess but fail
with a type error – the user needs to adds annotations to
disambiguate the program.

The difficulty is the interaction between frozen constraints
and let-generalization. Suppose a definition let 𝑥 = 𝑡 in the
middle of the program, where we want let to be typed using

Hindley-Milner generalization. If a frozen constraint ⟨𝛼⟩𝑓
is generated within the constraint for 𝑡 , and remains frozen
once the solver finishes working on 𝑡 , what should we do?
Should we fail now, or delay the frozen constraint, and how
does this interact with generalization?
We reason on whether 𝛼 itself is generalizable. If 𝛼 is

generalizable, then this means that no type in the rest of the
program mentions 𝛼 . No inference work in the rest of the
program will ever deduce a non-variable structure for 𝛼 , so
we can as well fail now with an error.

If 𝛼 is not generalizable, it is tempting to postpone the
resolution of ⟨𝛼⟩𝑓 and go on with generalization. But this
is unsound: the constraints generated by 𝑓 once 𝛼 will be
known may mention other inference variables currently in
scope, some of which may be in generalizable position. If we
generalize without looking at 𝑓 , they will be out of scope by
the time ⟨𝛼⟩𝑓 gets unfrozen.

Our solution is to reason on 𝑓 as a closure: we reason on the
set of inference variables that are “captured” by 𝑓 , mentioned
in any possible expansion of 𝑓 – in our implementation we
ask the programmer of the constraint generator to list these
captured variables.

If none of the captured variables of the callback are gener-
alizable, then the frozen constraint can safely be delayed to
later – failing now would be incomplete. If some of the cap-
tured variables, say 𝛽 , are generalizable, we have a problem
again: it is unsound in general to generalize now without
unfreezing ⟨𝛼⟩𝑓 , but is is incomplete to fail now, because un-
freezing 𝛼 would result in a constraint 𝑓 (𝛼) that may unify
𝛽 with a non-generalizable type.
Consider for example the following program:
fun old ->

let g x = 1 + old (K x) in
(g 0, (old : D -> int))

When inferring let g x = ... before generalization, K x
produces a frozen constraint whose needed variable is its
return type 𝛼 , and the use of the old function makes this
𝛼 non-generalizable, The callback of the frozen constraint
mentions the inference variable of x, which is generaliz-
able. Generalizing now would give the polymorphic type
'a -> int, which is unsound. But failing is incomplete, as
the program contains an annotation (old : D -> int) that
would unfreeze the frozen constraint, whose solving would
in turn correctly infer x depending on the declaration of K.

The more complete approach in this case (which we hope
is actually complete) is to suspend disbelief : if generaliza-
tion encounters a young variable 𝛽 that is needed by a yet-
unsolved callback function frozen on the non-generalizable
𝛼 , we stop mid-way through generalization, producing a
partially-frozen scheme ∀𝛼1 ..𝛼𝑛 ⟨𝛼⟩𝛽 𝛽 remains in an
uncertain state until 𝛼 is unfrozen, and we continue infer-
ring the rest of the program, hoping to be able to un-freeze
𝛼 . When our solver encounters an instantiation constraint

Frozen inference constraints for type-directed disambiguation

𝑥 ⩽ 𝜏 , for a use of a let-bound variable 𝑥 whose generaliza-
tion is suspended on the needed variable 𝛼 , it must generate
a fresh variable 𝛾 for the suspended part ⟨𝛼⟩𝛽 . Once 𝛼 gets
unfrozen, the solver must be able to come back and unify
this 𝛾 with the correct generalization of 𝛽 .

To summarize, when encountering a still-frozen constraint
⟨𝛼⟩𝑓 at generalization time:

1. If 𝛼 is generalizable, fail.
2. If 𝛼 and all the variables mentioned/captured by 𝑓 are

non-generalizable, proceed with generalization and
keep the frozen constraint for later.

3. If 𝛼 is non-generalizable, but some variables captured
in 𝑓 are generalizable, suspend generalization of those
variables and try type-checking the rest of the pro-
gram.

3.1 Generalization tree
The standard approach to efficiently implement generaliza-
tion is to track the rank of each inference variable, where the
rank measures the number of nested let-bindings between
the place where the inference variable is currently scoped
and the root of the term. As inference progresses, unifica-
tions widen the scope of variables, so they become bound in
earlier let-binding, their rank decreases. The generalizable
variables are exactly those whose rank remained exactly the
rank of the let-binding we are about to exit.
In particular, Inferno implements its inference state as a

dynamic array of of regions1 (sets of variables bound in the
same let-binding), indexed by their rank. Unfortunately, this
implementation is not flexible enough to implement “gener-
alization suspension”: if the generalization of the most recent
region gets partially suspended due to frozen constraints, the
region must be kept alive to store the suspended variables.
Inference continue in the rest of the program, but we may
then enter a new let-binding that creates a new region, that
is neither a child nor an ancestor of the suspended region.
We need to move from a linear array/stack of regions to a
tree of generalization regions.

With a tree of generalization regions, the notion of “rank”
does not uniquely identify a variable region anymore. When
unifying two variables, it is not enough to compute their
minimum rank and assign it to both. They move to the near-
est common ancestor in the tree, which may be older than
the region of both variables.
However, rank optimizations are still partially applica-

ble. For example, when we generalize a leaf region, all the
variables we traverse/inspect were created in this, and some
were moved to one of its ancestors. All regions of interest lie
in a path from the current region to the root of the region
tree, so they may be uniquely indexed by their rank.

1For more intuition on the connection to region-based memory allocation,
see Kiselyov.

4 Theoretical challenges
We can give a simple semantics to frozen constraints, in the
usual style of a judgment 𝜙 ⊩ 𝐶 stating that 𝜙 is a solution to
the constraint 𝐶 , where 𝜙 is a mapping from inference vari-
ables to fully-inferred types, which do not mention inference
(meta)variables anymore.

𝜙 ⊩ 𝑓 (𝜙 (𝛼))
𝜙 ⊩ ⟨𝛼⟩𝑓

However, our solver is not complete with respect to this
semantics. Consider for example the complete constraint
(on a free existential variable 𝛼) 𝐶 def

= ⟨𝛼⟩(𝜆_. 𝛼 = int): this
constraint contains no information on how to guess𝛼 outside
the callback, but once we unfreeze it it tells us that 𝛼 must
be int. Our solver will not unfreeze the constraint and fail
with a typing error, but the assignment 𝛼 ↦→ int is a solution:
[𝛼 ↦→ int] ⊩ ⟨𝛼⟩(𝜆_. 𝛼 = int) holds.
We believe that the solver is right and the semantics is

wrong, or rather, that the semantics fails to match our intu-
ition of the semantics should be. Our intent is that the value
of a needed variable 𝛼 should not be guessed, but deduced –
without knowing the constraint. A semantics that encour-
ages guessing types out of thin air is simpler, but it does
not capture our intuition and we believe that it would be
complex and costly to implement in practice.

We are still looking for a stricter semantics that forbids this
kind of “out of thin air” solution, by imposing that the value
of 𝛼 is determined outside the frozen constraint. (This may
be similar to some works in type inference that some part of
their derivations to be principal, to forbid over-specialized
solutions.) The question is how to do this while preserving
a declarative specification, as simple as possible.

Acknowledgments
We are very grateful to François Pottier and Didier Rémy for
fruitful discussions on this work.

References
Oleg Kiselyov. How OCaml type checker works – or what polymorphism

and garbage collection have in common. URL http://okmij.org/ftp/ML/
generalization.html.

François Pottier. Hindley-Milner elaboration in applicative style. In ICFP,
September 2014a. URL http://gallium.inria.fr/~fpottier/publis/fpottier-
elaboration.pdf.

François Pottier. the Inferno library: https://gitlab.inria.fr/fpottier/inferno,
2014b.

https://gitlab.inria.fr/fpottier/inferno/
http://okmij.org/ftp/ML/generalization.html
http://okmij.org/ftp/ML/generalization.html
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
https://gitlab.inria.fr/fpottier/inferno

	Abstract
	1 Introduction
	2 Frozen constraints
	2.1 Constructor disambiguation using frozen constraints

	3 Implementation challenges
	3.1 Generalization tree

	4 Theoretical challenges
	Acknowledgments
	References

