
FabULous Interoperability for ML and a Linear
Language

Gabriel Scherer12, Max New1, Nick Rioux1, and Amal Ahmed13

1 Northeastern University, US
2 INRIA Saclay, France
3 INRIA Paris, France

Abstract. Instead of a monolithic programming language trying to
cover all features of interest, some programming systems are designed by
combining together simpler languages that cooperate to cover the same
feature space. This can improve usability by making each part simpler
than the whole, but there is a risk of abstraction leaks from one language
to another that would break expectations of the users familiar with only
one or some of the involved languages.
We propose a formal specification for what it means for a given language
in a multi-language system to be usable without leaks: it should embed
into the multi-language in a fully abstract way, that is, its contextual
equivalence should be unchanged in the larger system.
To demonstrate our proposed design principle and formal specification
criterion, we design a multi-language programming system that combines
an ML-like statically typed functional language and another language
with linear types and linear state. Our goal is to cover a good part
of the expressiveness of languages that mix functional programming
and linear state (ownership), at only a fraction of the complexity. We
prove that the embedding of ML into the multi-language system is fully
abstract: functional programmers should not fear abstraction leaks. We
show examples of combined programs demonstrating in-place memory
updates and safe resource handling, and an implementation extending
OCaml with our linear language.

1 Introduction

Feature accretion is a common trend among mature but actively evolving pro-
gramming languages, including C++, Haskell, Java, OCaml, Python, and Scala.
Each new feature strives for generality and expressiveness, and may provide a
large usability improvement to users of the particular problem domain or pro-
gramming style it was designed to empower (e.g., XML documents, asynchronous
communication, staged evaluation). But feature creep in general-purpose lan-
guages may also make it harder for programmers to master the language as a
whole, degrade the user experience (e.g., leading to more cryptic error messages),
require additional work on the part of tooling providers, and lead to fragility in
language implementations.

A natural response to increased language complexity is to define subsets
of the language designed for a better programming experience. For instance, a
subset can be easier to teach (e.g., “Core” ML4, Haskell 98 as opposed to GHC
Haskell, Scala mastery levels5); it can facilitate static analysis or decrease the
risk of programming errors, while remaining sufficiently expressive for the target
users’ needs (e.g., MISRA C, Spark/Ada); it can enforce a common style within
a company; or it can be designed to encourage a transition to deprecate some
ill-behaved language features (e.g., strict Javascript).

Once a subset has been selected, it may be the case that users write whole
programs purely in the subset (possibly using tooling to enforce that property),
but programs will commonly rely on other libraries that are not themselves
implemented in the same subset of the language. If users stay in the subset while
using these libraries, they will only interact with the part of the library whose
interface is expressible in the subset. But does the behavior of the library respect
the expectations of users who only know the subset? When calling a function
from within the subset breaks subset expectations, it is a sign of leaky abstraction.

How should we design languages with useful subsets that manage complexity
and avoid abstraction leaks?

We propose to look at this question from a different, but equivalent, angle:
instead of designing a single big monolithic language with some nicer subsets, we
propose to consider multi-language programming systems where several smaller
programming languages interact together to cover the same feature space. Each
language or sub-combination of languages is a subset, in the above sense, of the
multi-language, and there is a clear definition of abstraction leaks in terms of user
experience: a user who only knows some of the languages of the system should be
able to use the multi-language system, interacting with code written in the other
languages, without have their expectations violated. If we write a program in Java
and call a function that, internally, is implemented in Scala, there should be no
surprises—our experience should be the same as when calling a pure Java function.
Similarly, consider the subset of Haskell that does not contain IO (input-output
as a type-tracked effect): the expectations of a user of this language, for instance
in terms of valid equational reasoning, should not be violated by adding IO back
to the language—in the absence of the abstraction-leaking unsafePerformIO.

We propose a formal specification for a “no abstraction leaks” guarantee
that can be used as a design criterion to design new multi-language systems,
with graceful interoperation properties. It is based on the formal notion of full
abstraction which has previously been used to study the denotational semantics
of programming languages [Meyer and Sieber, 1988, Milner, 1977, Cartwright and
Felleisen, 1992, Jeffrey and Rathke, 2005, Abramsky, Jagadeesan, and Malacaria,
2000], and the formal property of compilers [Ahmed and Blume, 2008, 2011,
Devriese, Patrignani, and Piessens, 2016, New, Bowman, and Ahmed, 2016,
Patrignani, Agten, Strackx, Jacobs, Clarke, and Piessens, 2015], but not for user-
facing languages. A compiler C from a source language S to a target language T

4 https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html
5 http://www.scala-lang.org/old/node/8610

https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html
http://www.scala-lang.org/old/node/8610

is fully abstract if, whenever two source terms s1 and s2 are indistinguishable in S,
their translations C(s1) and C(s2) are indistinguishable in T . In a multi-language
G+E formed of a general-purpose, user-friendly language G and a more advanced
language E—one that provides an escape hatch for experts to write code that
can’t be implemented in G—we say that E does not leak into G if the embedding
of G into the multi-language G+ E is fully abstract.

To demonstrate that our formal specification is reasonable, we design a novel
multi-language programming system that satisfies it. Our multi-language λUL
combines a general-purpose functional programming language λU (unrestricted)
of the ML family with an advanced language λL (linear) with linear types and
linear state. It is less convient to program in λL’s restrictive type system, but
users can write programs in λL that could not be written in λU: they can use
linear types, locally, to enforce resource usage protocols (typestate), and they
can use linear state and the linear ownership discipline to write programs that
do in-place update to allocate less memory, yet remain observationally pure.

Consider for example the following mixed-language program. The blue frag-
ments are written in the general-purpose, user-friendly functional language, while
the red fragments are written in the linear language. The boundaries UL and
LU allow switching between languages. The program reads all lines from a file,
accumulating them in a list, and concatenating it into a single string when the
end-of-file (EOF) is reached.
let concat_lines path : String = UL(
loop (open LU(path)) LU(Nil)
where rec loop handle LU(acc : List String) =
match line handle with
| Next line LU(handle) -> loop handle LU(Cons line acc)
| EOF handle -> close handle; LU(rev_concat "\n" acc))

The linear type system ensures that the file handle is properly closed: removing
the close handle call would give a type error. On the other hand, only the parts
concerned with the resource-handling logic need to be written in the red linear
language; the user can keep all general-purpose logic (here, how to accumulate
lines and what to do with them at the end) in the more convenient general-
purpose blue language—and call this function from a blue-language program.
Fine-grained boundaries allow users to rely on each language’s strength and to
use the advanced features only when necessary.

In this example, the file-handle API specifies that the call to line, which reads
a line, returns the data at type ![String]. The latter represents how U values of
type String can be put into a lump type to be passed to the linear world where
they are treated as opaque blackboxes that must be passed back to the ML
world for consumption. For other examples, such as in-place list manipulation
or transient operations on an persistent data structure, we will need a deeper
form of interoperability where the linear world creates, dissects or manipulates
U values. To enable this, our multi-language supports translation of types from
one language to the other, using a type compatibility relation σ ' σ between λU
types σ and λL types σ.

We claim the following contributions:

1. We propose a formal specification of what it means for advanced language
features to be introduced in a (multi-)language system without introducing a
class of abstraction leaks that break equational reasoning. This specification
captures a useful usability property, and we hope it will help us and others
design more usable programming languages, much like the formal notion of
principal types served to better understand and design type inference systems.

2. We design a simple linear language, λL, that supports linear state (Section 2).
This simple design for linear state is a contribution of its own. A nice
property of the language (shared by some other linear languages) is that the
code has both an imperative interpretation—with in-place memory update,
which provides resource guarantees—and a functional interpretation—which
aids program reasoning. The imperative and functional interpretations have
different resource usage, but the same input/output behavior.

3. We present a multi-language programming system λUL combining a core ML
language, λU (U for Unrestricted, as opposed to Linear) with λL and prove
that the embedding of the ML language λU in λUL is fully abstract (Section 3).
Moreover, the multi-language is designed to ensure that our full abstraction
result is stable under extension of the embedded ML language λU.

4. We define a logical relation and prove parametricity for λUL. The logical
relation illustrates, semantically, why one can reason functionally about
programs in λUL despite the presence of state and strong updates (Section 4).

5. We evaluate the resulting language design by providing examples of hybrid
λUL programs that exhibit programming patterns inaccessible to ML alone,
such that safe in-place updates and typestate-like static protocol enforcement
(Section 5).

2 The λU and λL languages

Types σ ::= α | σ1 × σ2 | 1 | σ1→ σ2 | σ1 + σ2 | µα. σ | ∀α. σ
Expr. e ::= x | 〈e1, e2〉 | π1 e | π2 e | 〈〉 | e1; e2 | λ(x :σ). e | e1 e2 |

inji e | case e′ of x1. e1 | x2. e2 | foldµα.σ e | unfold e | Λα. e | e [σ]

Values v ::= x | 〈v1, v2〉 | 〈〉 | λ(x :σ). e | inj1 v | inj2 v | foldµα.σ v | Λα. v
Contexts Γ ::= · | Γ , x :σ | Γ , α

Fig. 1. Unrestricted Language: Syntax

The unrestricted language λU is a run-of-the-mill idealized ML language with
functions, pairs, sums, iso-recursive types and polymorphism. It is presented in
its explicitly typed form—we will not discuss type inference in this work. The full
syntax is described in Figure 1, and the typing rules in Figure 2. The dynamic
semantics is completely standard. Having binary sums, binary products and
iso-recursive types lets us express algebraic datatypes in the usual way.

Γ `u e : σ

x :σ ∈ Γ
Γ `u x : σ Γ `u 〈〉 : 1

Γ `u e : 1 Γ `u e′ : σ

Γ `u e; e′ : σ

Γ `u e1 : σ1 Γ `u e2 : σ2

Γ `u 〈e1, e2〉 : σ1 × σ2

Γ `u e : σ1 × σ2

Γ `u πi e : σi

Γ , x :σ `u e : σ′

Γ `u λ(x :σ). e : σ→ σ′
Γ `u e : σ′→ σ Γ `u e′ : σ′

Γ `u e e′ : σ

Γ `u e : σi

Γ `u inji e : σ1 + σ2

Γ `u e : σ1 + σ2

Γ , x1 : σ1 `u e1 : σ
Γ , x2 : σ2 `u e2 : σ

Γ `u case e of x1. e1 | x2. e2 : σ

Γ `u e : σ[µα. σ/α]

Γ `u foldµα.σ e : µα. σ

Γ `u e : µα. σ

Γ `u unfold e : σ[µα. σ/α]

Γ , α `u v : σ

Γ `u Λα. v : ∀α. σ
Γ `u e : ∀α. σ Γ ` σ′

Γ `u e [σ′] : σ[σ′/α]

Fig. 2. Unrestricted Language: Static Semantics

The novelty lies in the linear language λL, which we present in several steps.
As is common in λ-calculi with references, the small-step operational semantics is
given for a language that is not exactly the surface language in which programs
are written, because memory allocation returns locations ` that are not in the
grammar of surface terms. Reductions are defined on configurations, a local store
paired with a term in a slightly larger internal language. We have two type
systems, a type system on surface terms, that does not mention locations and
stores—which is the one a programmer needs to know—and a type system on
configurations, which contains enough static information to reason about the
dynamics of our language and prove subject reduction. Again, this follows the
standard structure of syntactic soundness proofs for languages with a mutable
store.

We present the surface language and type system in Section 2.1, except for the
language fragment manipulating the linear store which is presented in Section 2.2.
Finally, the internal terms, their typing and reduction semantics are presented in
Section 2.3.

2.1 The Core of λL

Figure 3 presents the surface syntax of our linear language λL. For the syntactic
categories of types σ, and expressions e, the last line contains the constructions
related to the linear store that we only discuss in Section 2.2.

Types σ ::= σ1⊗σ2 | 1 | σ1(σ2 | σ1⊕σ2 | µα. σ | α | !σ | Box 1 σ | Box 0

Expr. e ::= x | 〈e1, e2〉 | let 〈v1, v2〉= e1 in e2 | 〈〉 | e1; e2 | λ(x :σ). e | e1 e2 |
inj1 e | inj2 e | case e′ of x1. e1 | x2. e2 | foldµα.σ e | unfold e |
share e | copy e | new e | free e | box e | unbox e

Values v ::= x | 〈v1, v2〉 | 〈〉 | λ(x :σ). e | inj1 v | inj2 v | foldµα.σ v | share v

Contexts Γ ::= · | Γ , x :σ

Fig. 3. Linear Language: Surface Syntax

In technical terms, our linear type system is exactly propositional intuitionistic
linear logic, extended with iso-recursive types. For simplicity and because we
did not need them, our current system also does not have polymorphism or
additive/lazy pairs σ1 &σ2. Additive pairs would be a trivial addition, but
polymorphism would require more work when we define the multi-language
semantics in Section 3.

In less technical terms, our type system can enforce that values be used
linearly, meaning that they cannot be duplicated or erased, they have to be
deconstructed exactly once. Only some types have this linearity restriction;
others allow duplication and sharing of values at will. We can think of linear
values as resources to be spent wisely; for any linear value somewhere in a term,
there can be only one way to access this value, so we can interpret the language
as enforcing an ownership discipline where whoever points to a linear value owns
it.

The types of linear values are the type of linear pairs σ1⊗σ2, of linear disjoint
unions σ1⊕σ2, of linear functions σ1(σ2, and of the linear unit type 1. For
example, a linear function must be called exactly once, and its result must in
turn be consumed – such linear functions can safely capture linear resources.
The expression-formers at these types use the same syntax as the unrestricted
language λU, with the exception of linear pair deconstruction let 〈v1, v2〉= e1 in e2,
which names both members of the deconstructed pair at once. A linear pair type
with projection would only ever allow to observe one of the two members; this
would correspond to the additive/lazy pairs σ1 &σ2, where only one of the two
members is ever computed.

The types of non-linear, duplicable values are the types of the form !σ—the
exponential modality of linear logic. If e has type σ, the term share e has type
!σ. Values of this type are not uniquely owned, they can be shared at will. If
the term e has duplicable type !σ, then the term copy e has type σ: this creates
a local copy of the value that is uniquely-owned by its receiver and must be
consumed linearily.

This resource-usage discipline is enforced by the surface typing rules of λL,
presented in Figure 4. They are exactly the standard (two-sided) logical rules of
intuitionistic linear logic, annotated with program terms. The non-duplicability
of linear values is enforced by the way contexts are merged by the inference

Γ 1 . Γ 2

(Γ 1, x : !σ) . (Γ 2, x : !σ)
def
= (Γ 1 . Γ 2), x : !σ

(Γ 1, x :σ) . Γ 2
def
= (Γ 1 . Γ 2), x :σ (x /∈ Γ 2)

Γ 1 . (Γ 2, x :σ)
def
= (Γ 1 . Γ 2), x :σ (x /∈ Γ 1)

Γ `l e : σ

!Γ , x :σ `l x : σ

Γ 1 `l e1 : σ1 Γ 2 `l e2 : σ2

Γ 1 . Γ 2 `l 〈e1, e2〉 : σ1⊗σ2

Γ `l e : σ1⊗σ2

Γ ′, x1 :σ1, x2 :σ2 `l e′ : σ

Γ . Γ ′ `l let 〈x1, x2〉= e in e′ : σ

!Γ `l 〈〉 : 1

Γ `l e : 1 Γ ′ `l e′ : σ

Γ . Γ ′ `l e; e′ : σ

Γ , x :σ `l e : σ′

Γ `l λ(x :σ). e : σ(σ′

Γ `l e : σ′(σ Γ ′ `l e′ : σ′

Γ . Γ ′ `l e e′ : σ

Γ `l e : σi

Γ `l inji e : σ1⊕σ2

Γ `l e : σ1⊕σ2

Γ ′, x1 : σ1 `l e1 : σ
Γ ′, x2 : σ2 `l e2 : σ

Γ . Γ ′ `l case e of x1. e1 | x2. e2 : σ

!Γ `l e : σ

!Γ `l share e : !σ

Γ `l e : !σ

Γ `l copy e : σ

µα. σ

unfold
−(›−

foldµα.σ

σ[µα. σ/α] 1

new
−(›−
free

Box 0 Box 1 σ

unbox
−(›−
box

(Box 0)⊗σ

Fig. 4. Linear Language: Surface Static Semantics

rules: if e1 is type-checked in the context Γ 1 and e2 in Γ 2, then the linear pair
〈e1, e2〉 is only valid in the combined context Γ 1 . Γ 2. The (.) operation is
partial; this combined context is defined only if the variables shared by Γ 1 and
Γ 2 are duplicable—their type is of the form !σ. In other words, a variable at a
non-duplicable type in Γ 1 . Γ 2 cannot possibly appear in both Γ 1 and Γ 2: it
must appear exactly once6.

A good way to think of the linear judgment Γ `l e : σ is that the evaluation of
e consumes the linear variables of Γ ; it is thus natural that the strict pair 〈e1, e2〉
would need separate sets of resources Γ 1 and Γ 2, as it evaluates both members to
return a value. On the other hand, case elimination case e of x1. e1 | x2. e2 reuses
the same context Γ ′ in both branches e1 and e2: only one will be evaluated, so
they do not compete for resources.

The variable rule does not expect a context of the form Γ , x :σ but of the form
!Γ , x :σ. Here !Γ is a notation for the pointwise application of the (!) connective
to all the types in Γ—i.e., all types in !Γ are of the form !σ. This means that the
variable rule can only be used when all variables in the context are duplicable,
except maybe the variable that is being used. A context of the form Γ , x :σ
would allow us to forget some variable present in the context; in our judgment
Γ `l e : σ, all non-duplicable variables in Γ must appear (once) in e.

The form !Γ is also used in the typing rule for share e: a term can only be made
duplicable if it does not depend on linear resources from the context. Otherwise,
duplicating the shared value could break the unique-ownership discipline on these
linear resources.

Finally, the linear isomorphism notation for fold and unfold in Figure 4
defines them as primitive functions, at the given linear function type, in the
empty context – using them does not consume resources. This notation also
means that, operationally, these two operations shall be inverses of each other.
The rules for the linear store type Box 1 σ and Box 0 are described in Section 2.2.

Lemma 1 (Context joining properties) Context joining (.) is partial but
associative and commutative. In particular, if (Γ 1 . Γ 2) . Γ ′ is defined, then
both Γ i . Γ ′ are defined.

2.2 Linear Memory in λL

The surface typing rules for the linear store are given at the end of Figure 4.
The linear type Box 1 σ represents a memory location that holds a value of type
σ. The type Box 0 represents a location that has been allocated, but does not
currently hold a value. The primitive operations to act on this type are given as
linear isomorphisms: new allocates, turning a unit value into an empty location;
conversely, free reclaims an empty location. Putting a value into the location
and taking it out are expressed by box and unbox , which convert between a
pair of an empty location and a value, of type (Box 0)⊗σ, and a full location,
of type Box 1 σ.
6 Standard presentations of linear logic force contexts to be completely distinct, but have
a separate rule to duplicate linear variables, which is less natural for programming.

For example, the following program takes a full reference and a value, and
swaps the value with the content of the reference:

λ(p : (Box 1 σ)⊗σ). let 〈r, x〉= p in let 〈l, xl〉= unbox r in 〈box 〈l, x〉, xl〉

The programming style following from this presentation of linear memory is
functional, or applicative, rather than imperative. Rather than insisting on the
mutability of references—which is allowed by the linear discipline—we may
think of the type Box 1 σ as representing the indirection through the heap that
is implicit in functional programs. In a sense, we are not writing imperative
programs with a mutable store, but rather making explicit the allocations and
dereferences happening in higher-level purely functional language. In this view,
empty cells allow memory reuse.

This view that Box 1 σ represents indirection through the memory suggests we
can encode lists of values of type σ by the type LinList σ

def
= µα. 1⊕Box 1 (σ⊗α).

The placement of the box inside the sum mirrors the fact that empty list is
represented as an immediate value in functional languages. From this type
definition, one can write an in-place reverse function on lists of σ as follows:

fix λ(rev_into : LinList σ(LinList σ(LinList σ).
λ(xs : LinList σ). λ(acc : LinList σ).

case unfold xs of
| y. (y; acc)
| y. let 〈l, p〉= unbox y in

let 〈xs, x〉= p in
rev_into xs (fold (inj2 (box 〈l, 〈x, acc〉〉)))

This definition uses a fixpoint operator fix that can be defined, in the standard
way, using the iso-recursive type µα. α(σ(σ′ of the strict fixpoint combinator
on functions σ(σ′.

Our linear language λL is a formal language that is not terribly convenient
to program directly. We will not present a full surface language in this work,
but one could easily define syntactic sugar to write the exact same function as
follows:

rev_into Nil acc = acc
rev_into (Cons 〈x, xs〉@ l) acc = rev_into xs (Cons 〈x, acc〉@ l)

One can read this function as the usual functional rev_append function on
lists, annotated with memory reuse information: if we assume we are the unique
owner of the input list and won’t need it anymore, we can reuse the memory of
its cons cells (given in this example the name l) to store the reversed list. On the
other hand, if you read the box and unbox as imperative operations, this code
expresses the usual imperative pointer-reversal algorithm.

This double view of linear state occurs in other programming systems with
linear state. It was recently emphasized in O’Connor, Chen, Rizkallah, Amani,
Lim, Murray, Nagashima, Sewell, and Klein [2016], where the functional point of
view is seen as easing formal verification, while the imperative view is used as a
compilation technique to produce efficient C code from linear programs.

2.3 Internal λL Syntax and Typing

To give a dynamic semantics for λL and prove it sound, we need to extend
the language with explicit stores and store locations. Indeed, the allocating
term new 〈〉 should reduce to a “fresh location” ` allocated in some store s, and
neither are part of the surface-language syntax. The corresponding internal typing
judgment is more complex, but note that users do not need to know about it to
reason about correctness of surface programs. The internal typing is essential for
the soundness proof, but also useful for defining the multi-language semantics in
Section 3.

The syntax of internal terms and the internal type system are presented in
Figure 5. Reduction will be defined on configurations (s | e), which are pairs of
a store s and a term e. Stores s map locations ` to either nothing (the location
is empty), written [` 7→ ·], or a value paired with its own local store, noted
[` 7→ (s | v)]. Having local stores in this way, instead of a single global store as is
typical in formalizations of ML, directly expresses the idea of “memory ownership”
in the syntax: a term e “owns” the locations that appear in it, and a configuration
(s | e) is only well-typed if the domain of s is exactly those locations. Each store
slot, in turn, may contain a value and the local store owned by the value; in
particular, passing a full location of type Box 1 σ transfers ownership of the
location, but also of the store fragment captured by the value.

Our internal typing judgment Ψ ;Γ `l s | e : σ checks configurations, not just
terms, and relies not only on a typing context for variables Γ but also on a store
typing Ψ , which maps the locations of the configuration to typing assumptions of
two forms: (·; · ` ` : Box 0) indicates that ` must be empty in the configuration,
and (Γ ;Ψ ` ` : Box 1 σ) indicates that ` is full, and that the value it contains
owns a local store of type s and the resources in Γ .

Just as linear variables must occur exactly once in a term, locations have
linear types and thus occur exactly once in a term. Our typing judgment uses
disjoint store typings Ψ1] Ψ2 to enforce this linearity. Similarly, leaf rules such
as the variable, unit, and location rules enforce that both the store typing and
the store be empty, which enforces that all locations are used in the term.

Locations ` are always linear, never duplicable. To allow sharing terms that con-
tain locations, the internal language uses the internal construction share(s :Ψ). e,
that captures a local store s : Ψ . This notation is a binding construct: the loca-
tions in s are bound by this shared term, and not visible outside this term. In
particular, the typing rule for share(s :Ψ). e checks the term e in the store s, but
it is itself only valid paired with an empty store, under the empty store typing.
When new copies of a shared term are made, the local store is copied as well:
this is necessary to guarantee that locations remain linear—and for correctness
of linear state update.

The typing rule for functions λ(x :σ). e lets function bodies use an arbitrary
store typing Ψ . This would be unsound if our functions were duplicable, but it is
a natural and expressive choice for linear, one-shot functions. To make a function
duplicable, one can share it at type !(σ(σ′), whose values are of the canonical

Types σ (unchanged from Figure 4)
Expressions e + ::= · · · | ` | share(s :Ψ). e

with share e
def
= share(∅ : ·). e

Values v + ::= · · · | ` | share(s :Ψ). v

Store s ::= ∅ | s[` 7→ (s | v)] | s[` 7→ ·]
Configurations ::= (s | e)

Store typing Ψ ::= · | Ψ, (·; · ` ` : Box 0)
| Ψ, (Ψ ′;Γ ` ` : Box 1 σ)

s1 ++ s2 Union of stores on disjoint locations Ψ1] Ψ2

Union of store typings on disjoint locations

Ψ ;Γ `l s | e : σ Γ `l e : σ
def
= ·;Γ `l ∅ | e : σ

Ψ1;Γ 1 `l s1 | e1 : σ1 Ψ2;Γ 2 `l s2 | e2 : σ2

Ψ1] Ψ2;Γ 1 . Γ 2 `l s1 ++ s2 | 〈e1, e2〉 : σ1⊗σ2

Ψ ;Γ `l s | e : σ1⊗σ2 Ψ ′;Γ ′, x1 :σ1, x2 :σ2 `l s′ | e′ : σ

Ψ] Ψ ′;Γ . Γ ′ `l s++ s′ | let 〈x1, x2〉= e in e′ : σ

·; !Γ , x :σ `l ∅ | x : σ ·; !Γ `l ∅ | 〈〉 : 1

Ψ ;Γ `l s | e : 1 Ψ ′;Γ ′ `l s′ | e′ : σ

Ψ] Ψ ′;Γ . Γ ′ `l s++ s′ | e; e′ : σ

Ψ ;Γ , x :σ `l s | e : σ′

Ψ ;Γ `l s | λ(x :σ). e : σ(σ′
Ψ ;Γ `l s | e : σ′(σ Ψ ′;Γ ′ `l s′ | e′ : σ′

Ψ] Ψ ′;Γ . Γ ′ `l s++ s′ | e e′ : σ

Ψ ;Γ `l s | e : σi

Ψ ;Γ `l s | inji e : σ1⊕σ2

Ψ ;Γ `l s | e : σ1⊕σ2 Ψ ′;Γ ′, x1 : σ1 `l s′ | e1 : σ Ψ ′;Γ ′, x2 : σ2 `l s′ | e2 : σ

Ψ] Ψ ′;Γ . Γ ′ `l s++ s′ | case e of x1. e1 | x2. e2 : σ

Ψ ; !Γ `l s | e : σ

·; !Γ `l ∅ | share(s :Ψ). e : !σ

Ψ ;Γ `l s | e : !σ

Ψ ;Γ `l s | copy e : σ

(·; · ` ` : Box 0); !Γ `l [` 7→ ·] | ` : Box 0

Ψ ;Γ `l s | v : σ

(Ψ ;Γ ` ` : Box 1 σ);Γ . !Γ ′ `l [` 7→ (s | v)] | ` : Box 1 σ

µα. σ

unfold
−(›−

foldµα.σ

σ[µα. σ/α] 1

new
−(›−
free

Box 0 Box 1 σ

unbox
−(›−
box

(Box 0)⊗σ

Fig. 5. Linear Language: Internal Static Semantics

form share(s :Ψ). λ(x :σ). e. It is the sharing construct, not the function itself,
that closes over the local store.

With the macro-expansion share e
def
= share(∅ : ·). e, any term e of the surface

language (Figure 3) can be seen as a term of the internal language (Figure 5). In
particular, we can prove that the surface and internal typing judgments coincide
on surface terms.

Lemma 2 If e is a surface term of λL, then the surface judgment Γ `l e : σ
holds if and only if the internal judgment ·;Γ `l ∅ | e : σ holds.

The following technical results are used in the soundness proof for the language
– the subject-reduction result.

Lemma 3 (Inversion principle for λL values) In any complete derivation
of Ψ ;Γ `l s | v : σ, either v is a variable x, or the derivation starts with the
introduction rule for σ.

For example, if we have Ψ ;Γ `l s | v : !σ, then we know that v is either a
variable or of the form share(s′ :Ψ ′). v′ for some v′, but also that s = ∅, Ψ = ·
and that Γ is of the form !Γ ′ for some Γ ′. The latter is immediate if v is
share(s′ :Ψ ′). v′, and also holds if v is a variable.

Lemma 4 (Weakening by duplicable contexts) Ψ ;Γ ′ `l s | e : σ implies
Ψ ; !Γ , Γ ′ `l s | e : σ.

2.4 Reduction of Internal Terms

Figure 6 gives a small-step operational semantics for the internal terms of λL.
We separate the head reductions (L

) from reductions in depth (
L
↪→). The head

reduction of the linear types of the core language do not involve the store and are
standard. For the store primitives of Figure 4 acting on Box 0 ,Box 1 σ, we reuse
the isomorphism notation to emphasize that the related primitives are inverses
of each other.

There are several reduction rules for copy (share e), one for each type connec-
tive. These reductions perform a deep copy of the value, stopping only on ground
data (〈〉), function values, and shared sub-terms: when copying a !!σ into a !σ,
there is no need for a deep copy. When it encounters a location, copy (share `)
reduces to a new allocation. If the location contains a value, the new location is
filled with a copy of this value.

The copying rule for functions performs a copy of the local store s of the shared
function. The locations in s are bound on the left-hand-side of the reduction,
and free on the right-hand-side: this reduction step allocates fresh locations, and
the store typing of the term changes from · on the left to Ψ on the right. The
fact that reduction changes the store typing is not unique to this rule, it is also
the case when directly copying locations. In ML languages with references, the
store only grows during reduction. That is not the case for our linear store: our
reduction may either allocate new locations or free existing ones.

head reduction e
L
 e′ (s | e)

L
 (s′ | e′)

let 〈x1, x2〉= 〈v1, v2〉 in e
L
 e[v1/x1][v2/x2]

〈〉; e
L
 e

(λ(x :σ). e) v
L
 e[v/x]

case (inji v) of x1. e1 | x2. e2
L
 ei[v/xi]

unfold (foldµα.σ v)
L
 v

e
L
 e′

(s | e)
L
 (s | e′)

(∅ | 〈〉)
new

L

L

free

([` 7→ ·] | `) (s[` 7→ ·] | 〈`, v〉)
box

L

L

unbox

([` 7→ (s | v)] | `)

copy (share(s1 ++ s2 :Ψ1] Ψ2). 〈v1, v2〉)
L
 if locs(si) = locs(Ψ i) = locs(vi)
〈copy share(s1 :Ψ1). v1, copy share(s2 :Ψ2). v2〉

copy (share(∅ : ·). 〈〉) L
 〈〉

copy (share(s :Ψ). inji v)
L
 inji copy (share(s :Ψ). v)

copy (share(s :Ψ). fold v)
L
 fold (copy (share(s :Ψ). v))

(∅ | copy (share(s :Ψ). λ(x :σ). e))
L
 (s | λ(x :σ). e)

copy (share(∅ : ·). (share(s :Ψ). v))
L
 share(s :Ψ). v

copy (share([` 7→ ·] : (·; · ` ` : Box 0)). `)
L
 new 〈〉

copy (share([` 7→ (s | v)] : (Ψ ; !Γ ` ` : Box 1 σ)). `)
L
 box 〈new 〈〉, copy (share(s :Ψ). v)〉

linear reduction contexts Ψ ;Γ `l s | K[� :σ] : σ′

K ::= � :σ | 〈K, e2〉 | 〈v,K〉 | let 〈v1, v2〉=K in e2 |
K; e | K e | v K | copy K |
inj1K | inj2K | caseK of x1. e1 | x2. e2 |
foldµα.σK | unfoldK |
new K | free K | box K | unbox K

typing rules of terms, plus: ·; · `l ∅ | (� :σ) : σ

reduction (s | e)
L
↪→ (s′ | e′)

(s | e)
L
 (s′ | e′)

(s | e)
L
↪→ (s′ | e′)

Ψ ;Γ `l s′′ | K[� :σ] : σ′ (s | e)
L
↪→ (s′ | e′)

(s′′ ++ s | K[e])
L
↪→ (s′′ ++ s′ | K[e′])

Ψ ;Γ `l s | e : σ (s | e)
L
↪→ (s′ | e′) Ψ ′;Γ `l s′ | e′ : σ

(∅ | share(s :Ψ). e)
L
↪→ (∅ | share(s′ :Ψ ′). e′)

Fig. 6. Linear Language: Operational Semantics

We define a grammar of (deterministic) reduction contexts, which contain
exactly one hole � in evaluation position. However, we only define linear contexts
K that do not share their hole: we need a specific treatment of the share(s :Ψ). e
reduction. Its subterm e is reduced in the local store s, but may create or free
locations in the store; so we need to update the local store and its store typing
during the reduction.

Theorem 1 (Progress) If Ψ ;Γ `l s | e : σ, then either e is a value v or there

exists (s′ | e′) such that (s | e)
L
↪→ (s′ | e′).

Proof. By induction on the typing derivation of e, using induction hypothesis
in the evaluation order corresponding to the structure of contexts K. If one
induction hypothesis returns a reduction, we build a bigger reduction (

L
↪→) for

the whole term. If all induction hypotheses return a value, the proof depends
on whether the head term-former is an introduction/construction form or an
elimination/destruction form. An introduction form whose subterms are values is
a value. For elimination forms, we use Lemma 3 (Inversion principle for λL values)
on the eliminated subterm (a value), to learn that it starts with an introduction
form, and thus forms a head redex with the head elimination form, so we build a
head reduction (

L
).

Lemma 5 (Non-store-escaping substitution principle) If

Ψ ′;Γ , x :σ `l s′ | e : σ′ Ψ ;Γ ′ `l s | v : σ Γ . Γ ′ x /∈ Ψ

then

Ψ] Ψ ′;Γ . Γ ′ `l s++ s′ | e[v/x] : σ′

Proof. The proof, summarized below, proceeds by induction on the typing deriva-
tion of e.

Most cases need an additional case analysis on whether the substituted type
σ is a duplicable type of the form !σ′′, as it influence whether it may appear
in zero or several subterms of e. (This is a price to pay for contraction and
weakening happening in all rules for convenience, instead of being isolated in
separate structural rules.)

For example, in the variable case, e may be the variable x itself, in which case
we know that Γ is empty and conclude immediately. But e may also be another
variable y if x is duplicable and has been dropped. In that case, we perform
an inversion (Lemma 3) on the v premise to learn that Ψ is empty and Γ ′ is
duplicable, and can thus use Lemma 4 (Weakening by duplicable contexts).

In the 〈e1, e2〉 case, if x is a linear variable it only occurs in one subterm
on which we apply our induction hypothesis. If x is duplicable, inversion on
the v premises again tells us that Γ ′ is duplicable. We know by assumption
that (Γ 1 . Γ 2) . Γ ′; because Γ ′ is duplicable, we can deduce from Lemma 1
(Context joining properties) that the Γ i . Γ ′ are also defined, which let us

apply an induction hypothesis on both subterms ei. To conclude, we need the
computation

(Γ 1 . Γ ′) . (Γ 2 . Γ ′)
= Γ 1 . Γ 2 . (Γ ′ . Γ ′)
= Γ 1 . Γ 2 . Γ ′

which again comes from duplicability of Γ ′.
The assumption x /∈ Ψ enforces that the resource x is consumed in the term e

itself, not in one of the values [` 7→ (s | v)] in the store: otherwise x would appear
in the store typing (Γ ; ` ` Ψ : Box 1) of this location in Ψ . It is used in the case
where e : σ is a full location ` : Box 1 σ′. If x could appear in the value of ` in
the store, we would have substitute it in the store as well – in our substitution
statement, only the term is modified. Here we know that this value is unused, so
it has a duplicable type and we can perform an inversion in the other cases.

Lemma 6 (Context decomposition) If Ψ ′;Γ ′ `l s′ | K[� :σ] : σ′ holds, then
Ψ ′′;Γ ′′ `l s′′ | K[e] : σ′ holds if and only if there exists Ψ, Γ , s such that
Ψ ′′ = Ψ] Ψ ′, Γ ′′ = Γ . Γ ′, s′′ = s++ s′ and Ψ ;Γ `l s | e : σ.

Theorem 2 (Subject reduction for λL) If Ψ ;Γ `l s | e : σ and (s | e)
L
↪→

(s′ | e′), then there exists a (unique) Ψ ′ such that Ψ ′;Γ `l s′ | e′ : σ.

Proof. The proof is done by induction on the reduction derivation.
The head-reduction rules involving substitutions rely on Lemma 5 (Non-

store-escaping substitution principle); note that in each of them, for example
(λ(x :σ′). e′) e′′, the substituted variable x is bound in the term e, and thus does
not appear in the store s: the non-store-escaping hypothesis holds.

For the copy rule and the store operators, we build a valid derivation for
the reduced configuration by inverting the typing derivation of the reducible
configuration.

In the non-head-reduction cases, the share case is by direction, and the context
case K[e] uses Lemma 6 (Context decomposition) to obtain a typing derivation
for e, and the same lemma again rebuild a derivation of the reduced term K[e′].

3 Multi-language semantics

To formally define our multi-language semantics we create a combined language
λUL which lets us compose term fragments from both λU and λL together, and
we give an operational semantics to this combined language. Interoperability is
enabled by specifying how to transport values across the language boundaries.

Multi-language systems in the wild are not defined in this way: both languages
are given a semantics, by interpretation or compilation, in terms of a shared
lower-level language (C, assembly, the JVM or CLR bytecode, or Racket’s core
forms), and the two languages are combined at that level. Our formal multi-
language description can be seen as a model of such combinations, that gives a
specification of the expected observable behavior of this language combination.

Another difference from multi-languages in the wild is our use of very fine-
grained language boundaries: a term written in one language can have its subterms
written in the other, provided the type-checking rules allow it. Most multi-
language systems, typically using Foreign Function Interfaces, offer coarser-
grained composition at the level of compilation units. Fine-grained composition
of existing languages, as done in the Eco project [Barrett, Bolz, Diekmann, and
Tratt, 2016], is difficult because of semantic mismatches. In Section 5 (Hybrid
program examples) we demonstrate that fine-grained composition is a rewarding
language design, enabling new programming patterns.

3.1 Lump Type and Language Boundaries

The core components the multi-language semantics are shown Figure 7—the
communication of values from one language to the other will be described in
the next section. The multi-language λUL has two distinct syntactic categories of
types, values, and expressions: those that come from λU and those that come from
λL. Contexts, on the other hand, are mixed, and can have variables of both sorts.
For a mixed context Γ , the notation !Γ only applies (!) to its linear variables.

The typing rules of λU and λL are imported into our multi-language system,
working on those two separate categories of program. They need to be extended
to handle mixed contexts Γ instead of their original contexts Γ and Γ . In the
linear case, the rules look exactly the same. In the ML case, the typing rules
implicitly duplicate all the variables in the context. It would be unsound to
extend them to arbitrary linear variables, so they use a duplicable context !Γ .

To build interesting multi-language programs, we need a way to insert a
fragment coming from a language into a term written in another. This is done
using language boundaries, two new term formers LU(e) and UL(s :Ψ | e) that
inject an ML term into the syntactic category of linear terms, and a linear
configuration into the syntactic category of ML terms.

Of course, we need new typing rules for these term-level constructions, clari-
fying when it is valid to send a value from λU into λL and vice versa. It would
be incorrect to allow sending any type from one language into the other—for
instance, by adding the counterpart of our language boundaries in the syntax
of types—since values of linear types must be uniquely owned so they cannot
possibly be sent to the ML side as the ML type system cannot enforce unique
ownership.

On the other hand, any ML value could safely be sent to the linear world. For
closed types, we could provide a corresponding linear type (1 maps to !1, etc.),
but an ML value may also be typed by an abstract type variable α, in which case
we can’t know what the linear counterpart should be. Instead of trying to provide
translations, we will send any ML type σ to the lump type [σ], which embeds ML
types into linear types. A lump is a blackbox, not a type translation: the linear
language does not assume anything about the behavior of its values—the values
of [σ] are of the form [v], where v : σ is an ML value that the linear world cannot
use. More precisely, we only propagate the information that ML values are all
duplicable by sending σ to ![σ].

Types σ | σ
σ (unchanged from Figure 1)
σ + ::= · · · | [σ]

Values v | v

v (unchanged from Figure 1)
v + ::= · · · | [v]

Expressions e | e

e + ::= · · · | UL(s :Ψ | e)

with UL(e) def
= UL(∅ : · | e)

e + ::= · · · | LU(e)

Contexts Γ ::= · | Γ , x :σ | Γ , α | Γ , x :σ

Typing rules Γ `lu e : σ Ψ | Γ `ul s | e : σ

with Γ `ul e : σ
def
= · | Γ `ul ∅ | e : σ

(Typing rules of Γ `u e : σ reused, with mixed context !Γ)
(Typing rules of Ψ ;Γ `l s | e : σ reused, with mixed context Γ)

!Γ `lu e : σ

· | !Γ `ul ∅ | LU(e) : ![σ]
Ψ | !Γ `ul s | e : ![σ]

!Γ `lu UL(s :Ψ | e) : σ

Reduction rules

(Reduction rules of λU and λL reused unchanged)
e

U
↪→ e′

LU(e) L
↪→ LU(e′)

LU(v) L
 [v] UL(∅ : · | share [v])

U
↪→ v

Ψ | Γ `ul s | e : σ (s | e)
L
↪→ (s′ | e′) Ψ ′ | Γ `ul s′ | e′ : σ

UL(s :Ψ | e)
U
↪→ UL(s′ :Ψ ′ | e′)

Fig. 7. Multi-language: Lump and Boundaries

The typing rules for language boundaries insert lumps when going from λU

to λL, and remove them when going back from λL to λU. In particular, arbitrary
linear types cannot occur at the boundary, they must be of the form ![σ].

Finally, boundaries have reduction rules: a term or configuration inside a
boundary in reduction position is reduced until it becomes a value, and then
a lump is added or removed depending on the boundary direction. Note that
because the v in UL(s :Ψ | v) is at a duplicable type ![σ], we know by inversion
that the store is empty.

3.2 Interoperability: Static Semantics

If the linear language could not interact with lumped values at all, our multi-
language programs would be rather boring, as the only way for the linear extension
to provide a value back to ML would be to have received it from λU and pass it
back unchanged (as in the lump embedding of Matthews and Findler [2009]). To
provide a real interaction, we provide a way to extract values out of a lump ![σ],
use it at some linear type σ, and put it back in before sending the result to λU.

Interoperability context Σ ::= · | Σ,α ' !β

Compatibility relation Σ `ul σ ' σ with σ ' σ def
= · `ul σ ' σ

Σ `ul 1 ' !1

Σ `ul σ1 ' !σ1 Σ `ul σ2 ' !σ2

Σ `ul σ1 × σ2 ' !(σ1⊗σ2)

Σ `ul σ1 ' !σ1 Σ `ul σ2 ' !σ2

Σ `ul σ1 + σ2 ' !(σ1⊕σ2)

Σ `ul σ ' !σ Σ `ul σ′ ' !σ′

Σ `ul σ→ σ′ ' !(!σ(!σ′)

Σ `ul σ ' ![σ]

Σ `ul σ ' !σ

Σ `ul σ ' !!σ

Σ `ul σ ' !σ

Σ `ul σ ' !(Box 1 σ)

Σ,α ' !β `ul σ ' !σ

Σ `ul µα. σ ' !(µβ. σ)

(α ' !β) ∈ Σ
Σ `ul α ' !β

Interoperability primitives and derived constructs:

![σ]

σunlump
−(›−

lumpσ
σ whenever · `ul σ ' σ σLU(e) def

= σunlump LU(e)

ULσ(e) def
= UL(lumpσ e)

Fig. 8. Multi-language: Static Interoperability Semantics

The correspondence between intuitionistic types σ and linear types σ is
specified by a heterogeneous compatibility relation σ ' σ defined in Figure 8
(Multi-language: Static Interoperability Semantics). The specification of this
relation is that if σ ' σ holds, then the space of values of ![σ] and σ are
isomorphic: we can convert back and forth between them. When this relation
holds, the term-formers lumpσ and σunlump perform the conversion. (The
position of the index σ emphasizes that the input e of lumpσ e has type σ, while
the output of σunlump e has type σ.)

For example, we have ![(σ→σ′)] ' !(![σ](![σ′]). Given a lumped ML function,
we can unlump it to see it as a linear function. We can call it from the linear side,
but have to pass it a duplicable argument since an ML function may duplicate its
argument. Conversely, we can convert a linear function into a lumped function
type to pass it to the ML side, but it has to have a duplicable return type since
the ML side may freely share the return value.

Our lumpσ and σunlump primitives are only indexed by the linear type σ,
because a compatible ML type σ can be uniquely recovered, as per the following
result.

Lemma 7 (Determinism of the compatibility relation) If σ ' σ and σ′ '
σ then σ = σ′.

Proof. By induction on the syntax of σ: the judgment Σ `ul σ ' σ is syntax-
directed in its σ component.

Note that the converse property does not hold: for a given σ, there are many σ
such that σ ' σ. For example, we have 1 ' !1 but also 1 ' !!1. This corresponds
to the fact that the linear types are more fine-grained, and make distinctions
(inner duplicability, dereference of full locations) that are erased in the ML
world. The σ ' ![σ] case also allows you to (un)lump as deeply or as shallowly
as you need: σ1 × (σ2 × σ3) is compatible with both !(![σ1]⊗ ![σ2 × σ3]) and
!(![σ1]⊗ (![σ2]⊗ ![σ3])). We could not systematically translate the complete type
σ, as type variables cannot be translated and need to remain lumped. Allowing
lumps to “stop” the translation at arbitrary depth is a natural generalization.

Lemma 8 (Substitution of recursive hypotheses) If Σ,α ' !β `ul σ ' σ,
α /∈ σ, and Σ `ul σ′ ' !σ′ then Σ `ul σ[σ′/α] ' σ[σ′/β].

Proof. By induction on the σ ' σ derivation. There are two leaf cases: the
case recursive hypotheses, which is immediate, and the case of lump σ ' ![σ].
In this latter case, notice that σ is a type of λU, so in particular it does not
contain the variable β; and we assumed α /∈ σ so we also have α /∈ σ, so
σ[σ′/α] = σ ' ![σ] = σ[σ′/β].

The term LU(e) turns a e : σ into a lumped type ![σ], and we need to unlump
it with some σunlump for a compatible σ ' σ to interact with it on the linear
side. It is common to combine both operations and we provide syntactic sugar
for it: σLU(e). Similarly ULσ(e) first lumps a linear term then sends the result
to the ML world.

3.3 Interoperability: Dynamic Semantics

〈〉 ↔!1 share 〈〉

v1 ↔!σ1 share(s1 :Ψ1). v1

v2 ↔!σ2 share(s2 :Ψ2). v2

locs(s1) = locs(Ψ1) = locs(v1)
locs(s2) = locs(Ψ2) = locs(v2)

〈v1, v2〉 ↔!(σ1 ⊗σ2) share(s1 ++ s2 :Ψ1] Ψ2). 〈v1, v2〉

v↔!σi share(s :Ψ). v

inji v↔!(σ1 ⊕σ2) share(s :Ψ). inji v

σ ' σ σ′ ' σ′

e→!(!σ(!σ′) shareλ(x : !σ). σ
′
LU(e ULσ(x))

σ ' σ σ′ ' σ′

λ(x :σ).ULσ
′
(copy e σLU(x)))←!(σ(σ′) e v↔![σ] share [v]

v↔!σ share v

v↔!!σ share (share v)

v↔!σ share(s :Ψ). v

v↔!Box 1 σ share([` 7→ (s | v)] : (·; ` ` Ψ : Box 1 σ)). `

v↔!σ[µα.σ/α] share(s :Ψ). v

foldµα.σ v↔!µα.σ share(s :Ψ). (foldµα.σ v)

(∅ | share [v])

σunlump
L

L

lumpσ
(∅ | v)

whenever v→σ v

whenever v←σ v

Fig. 9. Multi-language: Dynamic Interoperability Semantics

We were careful to define the compatibility relation such that σ ' σ only
holds when ![σ] and σ are isomorphic, in the sense that any value of one can be
converted into a value of another. Figure 9 defines the operational semantics of
the lumping and unlumping operations precisely as realizing these isomorphisms.
For concision, we specify the isomorphisms as relations, following the inductive
structure of the compatibility judgment itself. We write (↔) when a rule can be
read bidirectionally to convert in either directions (assuming the same direction
holds of the premises), and (←) or (→) for rules that only describe how to
convert values in one direction.

Lemma 9 (Substitution of polymorphic variables) If Σ `ul σ ' σ and
α /∈ Σ, then Σ `ul σ[σ′/α] ' σ[σ′/α] and their lumping operations coincide on
all values.

Proof. By induction on σ ' σ. In the variable leaf case, we know α /∈ Σ. In the
lump leaf case σ ' ![σ], the goal σ[σ′/α] ' ![σ[σ′/α]] is immediate.

Theorem 3 (Value translations are functional) If σ ' σ, then for any
closed value v : σ there is a unique v : σ such that v →σ v, and conversely
for any closed value v : σ there is a unique v : σ such that v←σ v.

Proof. Remark that in the statement of the term, when we quantify over all closed
values v : σ, we implicitly assume that in the general case values of v live in the
empty global store – otherwise we would have a value of the form Ψ ; · `l s | v : σ.
This is valid because all types σ in the image of the type-compatibility relation
are duplicable types of the form !σ′, so by Lemma 3 (Inversion principle for λL
values) we know that v is in fact of the form share(s :Ψ). e′, living in the empty
store.)

The two sides of the result are proved simultaneously by induction on σ ' σ,
using inversion to reason on the shapes of v and v. Note that the inductive cases
remain on closed values: the only variable-binder constructions, λ-abstractions,
do not use the recursion hypothesis.

In the recursive case µα. σ ' !(µα. σ), to use the induction hypothesis on the
folded values we need to know that the unfolded types σ[µα. σ/α] and σ[µα. σ/α]
are compatible. This is exactly Lemma 8 (Substitution of recursive hypotheses),
using the hypothesis µα. σ ' !(µα. σ) itself.

Lemma 10 (Lumping cancellation) The lump conversions lumpσ and σunlump
cancel each other modulo βη. In particular,

σLU(ULσ(v)) =βη v ULσ(σLU(v)) =βη v

Proof. By induction on σ, and then by parallel induction on the derivations of
type compatibility and value compatibility. The parallel cases are symmetric
by definition, only the function case !(!σ(!σ′) needs to be checked. A simple
computation, using the induction hypothesis on the smaller types !σ and !σ′,
shows that composing the two function translations gives an η-expansion – plus
the βη-steps from the induction hypotheses.

Note that the β-η rules used (for functions and !_) have been proved admissible
for the logical relation, so in particular sound with respect with contextual
equivalence.

Implementation consideration In a realistic implementation of this multi-language
system, we would expect the representation choices made for λU and λL to be
such that, for some but not all compatible pairs σ ' σ, the types σ and σ
actually have the exact same representation, making the conversion an efficient
no-op. An implementation could even restrict the compatibility relation to accept
only the pairs that can be implemented in this way. That is, it would reject
some λUL programs, but the “graceful interoperability” result that is our essential
contribution would still hold.

3.4 Full Abstraction from λU into λUL

We can now state and prove the major meta-theoretical result of this work, which
is the proposed multi-language design extends the simple language λU in a way
that provably has, in a certain sense, “no abstraction leaks”.

Definition 1 (Contextual equivalence in λU) We say that e, e′ such that
Γ `u e, e′ : σ are contextually equivalent, written e ≈ctxu e′, if, for any ex-
pression context C[�] such that · `u C[e] : 1, the closed terms C[e] and C[e′] are
equi-terminating.

Definition 2 (Contextual equivalence in λUL) We say that e, e′ such that
Γ `lu e, e′ : σ are contextually equivalent, written e ≈ctxlu e′, if, for any expression
context C[�] such that · `lu C[e] : 1, the closed terms C[e] and C[e′] are equi-
terminating.

4 Multi-language parametricity

We discussed the design choice of manipulating lumps [σ] of any ML type, not
just the type variable that motivates them. In the presence of polymorphism,
this generalization is also an important design choice to preserve parametricity.

Let us define idσ(e)
def
= lumpσ (σunlump e), and consider a polymorphic term

of the form Λα.UL(. . . id![α] . . .). The (un)lumping operations on a lumped type
such as ![α] are just the identity: the lumped value is passed around unchanged,
so id![α](v) will reduce to v. Now, if we instantiate this polymorphic term with a
ML type σ, it will reduce to a term UL(. . . id![σ] . . .) whose unlumping operation
is still on a lumped type, so is still exactly the identity.

On the contrary, if we allowed lumps only on type variables, we would have
to push the lump inside σ, and the (un)lumping operations would become more
complex: if σ starts with an ML product type _×_, it would be turned into a
shared linear pair !(_⊗_) by unlumping, and back into an ML pair by lumping.
In general, idσ may perform deep η-expansions of lumped values. The fact that,
after instantiation of the polymorphic term, we get a monomorphic term that has
different (but η-equivalent) computational behavior would cause meta-theoretic
difficulties; this is the approach that was adopted in previous work on multi-
languages with polymorphism by Perconti and Ahmed [2014], and it made some
of their proofs using a logical relations argument substantially more complicated.
In the logical relation, polymorphism is obtained by allowing each polymorphic
variable to be replaced by two types related by an “admissible” relation R, and
the notion of admissibility of this previous work had to force relations to be
compatible with η-expansion, which complicates the proofs.

In contrast, our handling of lump types as turning arbitrary types into black-
boxes makes type instantiation obviously parametric. To formally demonstrate
this aspect of our design, we develop a step-indexed logical relation (Figure 10)
that proves that our multi-language satisfies a strong parametricity property that
is not disrupted by the linear sublanguage or the cross-language boundaries.

The logical relation is a family of relations indexed by closed “relational types”
which extend the grammar of σ, σ, which include a case for admissible relations R
that is used to enable parametric arguments. The step index j in the definitions
decreases strictly whenever related values of a type σ or σ are defined in terms
of a non-strictly-smaller type; this happens in the definition of the relation at

recursive types V Jµα. σKj . Because the language is non-terminating, our relation
does not define an equivalence but an approximation: two expressions (e1, e1)

are related in E JσKj if e1 approximates e2: if e1 reduces to a value in less than j
steps, then e2 must reduce to a related value.

The definition of admissible relations Rel[σ1, σ2], used to define when λU

values of polymorphic types are related, V J∀α. σK, is completely standard, which
demonstrates that our notion of boundaries preserves simple parametricity rea-
soning.

Although we have a stateful linear language, the logical relations for the
linear types have more in common with a language with explicit closures—this is
another consequence of the remark in Section 2.2 (Linear Memory in λL) that the
language can also be interpreted using a functional semantics. The relations for
closed λL values and expressions, V JσK and E JσK, are indexed by a type but do
not depend on a store typing: the related values may have different, non-empty
store typings. This allows to relate two programs that are equivalent but allocate
different references in different ways. Furthermore, since all state is linear, we
don’t need additional machinery to relate stores, since all the values in a store
owned by a value will be reflected in the value. For example, the relation for
empty locations V JBox 0 K relates any two arbitrary (empty) locations, and the
relation for non-empty locations V JBox 1 σK relates possibly-distinct locations
that contain related values.

Logical relations effectively translate global invariants of the system into
properties of type connectives. For example, consider the reduction rule for
lumped values: UL(∅ : · | share [v])

U
↪→ v. In this rule we implicitly assumed that

a linear value of the shape [v] at type ![σ] would occur in an empty local store.
The term share [v] desugars into share(∅ : ·). [v], but it is not immediately obvious
that this should always be the case since it is possible to compute a value of type
![σ] by allocating references and using them. The intuitive reason why the store
becomes empty when a value [v] is reached is that linear sub-terms e within v
may only occur within a language boundary UL(s :Ψ | e): linear sub-terms have
their own local store, so there are no globally visible linear locations for [v] to
refer to. This global reasoning is elegantly expressed in a type-directed way in our
logical relation by the definition of related values at lump type, which encodes
the invariant that they always have an empty store:

V J[σ]Kj def
= {((∅ | [v1]), (∅ | [v2])) | (v1, v2) ∈ V JσKj}

From the logical relation defined on closed λUL terms and values, we define
logical approximation relations on open terms Γ ` e1 .log e2 : σ and Γ `l (s1 |
e1) .log (s2 | e2) : σ by asking for the open terms and values to be related under
all related environments in the standard way—see Appendix A for full details.
This lets us demonstrate the Fundamental Property to validate the construction
of our logical relation, showing that all typing rules are admissible.

Theorem 4 (Fundamental Property)

1. If !Γ `u e : σ then !Γ ` e .log e : σ

Atom[σ]
def
= {v | · `u v : σ}

Rel[σ1, σ2]
def
= {R : N→ P(Atom[σ1]×Atom[σ2]) | ∀j ≤ j′. Rj

′
⊂ Rj}

V JRKj def
= Rj

V Jσ1→ σ2Kj
def
= {(λ(x1 : (σ1)1). e1, λ(x2 : (σ1)2). e2) | ∀j′ ≤ j, (v1, v2) ∈ V Jσ1Kj

′
. (e1[v1/x1], e2[v2/x2]) ∈ E Jσ2Kj

′
}

V J∀α. σKj def
= {(Λα. v1, Λα. v2) | ∀σ1, σ2,R ∈ Rel[σ1, σ2]. (v1, v2) ∈ V Jσ[R/α]Kj}

V J1Kj def
= {((∅ | 〈〉), (∅ | 〈〉))}

V Jσ⊗σ′Kj def
= {((s1 ++ s′1 | 〈v1, v

′
1〉), (s2 ++ s′2 | 〈v2, v

′
2〉)) | ((s1 | v1), (s2 | v2)) ∈ V JσKj ∧ ((s′1 | v′1), (s

′
2 | v′2)) ∈ V Jσ′Kj}

V Jσ′(σKj def
= {((s1 | λ(x :σ′). e1), (s2 | λ(x :σ′). e2)) |

∀j′ ≤ j, s′1, s′2, ((s′′1 | v1), (s
′′
2 | v2)) ∈ V Jσ′Kj

′
.

s′1 = s1 ++ s′′1 ∧ s′2 = s2 ++ s′′2 ⇒ ((s′1 | e1[v1/x]), (s′2 | e2[v2/x])) ∈ E JσKj
′
}

V Jµα. σKj def
= {((s1 | foldµα.σ v1), (s2 | foldµα.σ v2)) | ∀j′ < j.((s1 | v1), (s2 | v2)) ∈ V Jσ[µα. σ/α]Kj

′
}

V J!σKj def
= {((∅ | share(s1 :Ψ1). v1), (∅ | share(s2 :Ψ2). v2)) | ((s1 | v1), (s2 | v2)) ∈ V JσKj}

V JBox 0 Kj def
= {(([`1 7→ ·] | `1), ([`2 7→ ·] | `2))}

V JBox 1 σKj def
= {(([`1 7→ (s1 | v1)] | `1), ([`2 7→ (s2 | v2)] | `2)) | ((s1 | v1), (s2 | v2)) ∈ V JσKj}

V J[σ]Kj def
= {((∅ | [v1]), (∅ | [v2])) | (v1, v2) ∈ V JσKj}

E JσKj def
= {(e1, e2) | ∀j′ ≤ j. e1

U
↪→

j′

v1 ⇒ ∃v2. e2
U
↪→
∗

v2 ∧ (v1, v2) ∈ V JσKj−j
′
}

E JσKj def
= {((s1 | e1), (s2 | e2)) | ∀j′ ≤ j, (s′1 | v1).(s1 | e1)

L
↪→

j′

(s′1 | v1)⇒

∃(s′2 | v2).(s2 | e2)
L

↪→∗ (s′2 | v2) ∧ ((s′1 | v1), (s
′
2 | v2)) ∈ V JσKj−j

′
}

Fig. 10. Multi-language Logical Relation (excerpt)

2. If Ψ ;Γ `l s | e : σ then Γ `l (s | e) .log (s | e) : σ

We also prove that the logical relation is sound with respect to contextual
equivalence. For this, we define contextual approximation relations Γ ` e1 .ctx e2 :
σ and Γ `l (s1 | e1) .ctx (s2 | e2) : σ, by asking that e1, (s1 | e1) terminate more
often than e2, (s2 | e2) when run under arbitrary contexts—see Appendix A for
details.

Theorem 5 (Soundness of Logical Relation with respect to Contextual Equivalence)
(.log) ⊂ (.ctx).

5 Hybrid program examples

5.1 In-Place Transformations

In Section 2.2 (Linear Memory in λL) we proposed a program for in-place reversal
of linear lists defined by the type LinList σ

def
= µα. 1⊕Box 1 (σ⊗α). We can

also define a type of ML lists List σ
def
= µα. 1 + σ × α. Note that ML lists are

compatible with shared linear lists, in the sense that List σ ' !(LinList ![σ]). This
enables writing in-place list-manipulation functions in λL, and exposing them to
beginners at a λU type:

rev xs
def
= ULLinList ![σ](share (rev_into copy (LinList ![σ]LU(xs)) Nil))

This example is arguably silly, as the allocations that are avoided by doing
an in-place traversal are paid when copying the shared list to obtain a uniquely-
owned version. A better example of list operations that can profitably be sent
on the linear side is quicksort, whose code we give in Figure 11 (Quicksort). An
ML implementation allocates intermediary lists for each recursive call, while the
surprisingly readable λU implementation only allocates for the first copy.

5.2 Typestate Protocols

Linear types can enforce proper allocation and deallocation of resources, and in
general any automata/typestate-like protocols on their usage by encoding the
state transitions as linear transformations. In the simple example of file-descriptor
handling in the introduction, additional safety compared to ML programming
can be obtained by exposing file-handling functions on the λU side, with linear
types. We assumed the following API for linear file handling, which enforces a
correct usage protocol:

open : !(![Path](Handle)
line : !(Handle((Handle⊕ (![String]⊗Handle)))
close : !(Handle(1)

Another interesting example of protocol usage for which linear types help
is the use of transient versions of persistent data structures, as popularized by
Clojure. An unrestricted type Set αmay represent persistent sets as balanced trees

partition : !(!α (Bool) (LList !α (LList !α ⊕ LList !α
partition p li = partition_aux p (Nil, Nil) li
partition_aux p (yes, no) Nil = (yes, no)
partition_aux p (yes, no) (Cons l x xs) =
let (yes, no) =
if copy p x
then (Cons l x yes, no)
else (yes, Cons l x no) in

partition_aux p (yes, no) xs

lin_quicksort : LList !α (LList !α
lin_quicksort li = quicksort_aux li Nil
quicksort_aux Nil acc = acc
quicksort_aux (Cons l head li) acc =
let p = share (fun x -> x < head) in
let (below, above) = partition p li in
quicksort_aux below (Cons l head (quicksort_aux above acc))

quicksort li UL(li) = UL(share (lin_quicksort (copy li)))

Fig. 11. Quicksort

with logarithmic operations performing path-copying. A transient call returns a
mutable version of the structure that supports efficient batch in-place updates,
before a persistent call freezes this transient structure back into a persistent tree.
To preserve a purely functional semantics, we must enforce that the intermediate
transient value is uniquely owned. We can do this by using the linear types for
the transient API:
type Set α
val add : Set α → α → Set α (* path copy *)
...
type MutSet α
val add: !(MutSet α (α (MutSet α) (* in-place update *)
...
val transient : !(![Set α] (MutSet ![α])
val persistent : !(MutSet ![α] (![Set α])

6 Conclusion

In our proposed multi-language design, a simple linear type system mirroring the
standard rules of intuitionistic linear logic can be equipped with linear state and
usefully complement a general-purpose functional ML language, without breaking
equational reasoning or parametricity—and without requiring a significantly more
complex meta-theory.

Fine-grained language boundaries allow interesting programming patterns
to emerge, and full abstraction provides a novel rigorous specification of what
it means for multi-language design to avoid abstraction leaks from advanced
features into the general-purpose or beginner-friendly languages.

6.1 Related Work

Having a stack of usable, interoperable languages, extensions or dialects is at
the forefront of the Racket approach to programming environments, in particular
for teaching [Felleisen, Findler, Flatt, and Krishnamurthi, 2004].

Our multi-language semantics builds on the seminal work by Matthews and
Findler [2009], who gave a formal semantics of interoperability between a dynami-
cally and a statically typed language. Others have followed the Matthews-Findler
approach of designing multi-language systems with fine-grained boundaries—for
instance, formalizing interoperability between a simply and dependently typed
language [Osera, Sjöberg, and Zdancewic, 2012]; between a functional and typed
assembly language [Patterson, Perconti, Dimoulas, and Ahmed, 2017]; between
an ML-like and an affinely typed language, where linearity is enforced at runtime
on the ML side using stateful contracts [Tov and Pucella, 2010]; and between the
source and target languages of compilation to specify compiler correctness [Per-
conti and Ahmed, 2014]. However, all these papers address only the question of
soundness of the multi-language; we propose a formal treatment of usability and
absence of abstraction leaks.

The only work to establish that a language embeds into a multi-language
in a fully abstract way is the work on fully abstract compilation by Ahmed
and Blume [2011] and New, Bowman, and Ahmed [2016] who show that their
compiler’s source language embeds into their source-target multi-language in a
fully abstract way. But the focus of this work was on fully abstract compilation,
not on usability of user-facing languages.

The Eco project [Barrett, Bolz, Diekmann, and Tratt, 2016] is studying
multi-language systems where user-exposed languages are combined in a very
fine-grained way; it is closely related in that it studies the user experience in
a multi-language system. The choice of an existing dynamic language creates
delicate interoperability issues (conflicting variable scoping rules, etc.) as well as
performance challenges. We propose a different approach, to design new multi-
languages from scratch with interoperability in mind to avoid legacy obstacles.

We are not aware of existing systems exploiting the simple idea of using
promotion to capture uniquely-owned state and dereliction to copy it—common
formulations would rather perform copies on the contraction rule.

The general idea that linear types can permit reuse of unused allocated
cells is not new. In Wadler [1990], a system is proposed with both linear and
non-linear types to attack precisely this problem. It is however more distant
from standard linear logic and somewhat ad-hoc; for example, there is no way to
permanently turn a uniquely-owned value into a shared value, it provides instead
a local borrowing construction that comes with ad-hoc restrictions necessary
for safety. (The inability to give up unique ownership, which is essential in our

list-programming examples, seems to also be missing from Rust, where one would
need to perform a costly operation of traversing the graph of the value to turn
all pointers into Arc nodes.)

The RAML project [Hoffmann, Aehlig, and Hofmann, 2012] also combines
linear logic and memory reuse: its destructive match operator will implicitly
reuse consumed cells in new allocations occurring within the match body. Multi-
languages give us the option to explore more explicit, flexible representations of
those low-level concern, without imposing the complexity to all programmers.

A recent related work is the Cogent language [O’Connor, Chen, Rizkallah,
Amani, Lim, Murray, Nagashima, Sewell, and Klein, 2016], in which linear state is
also viewed as both functional and imperative – the latter view enabling memory
reuse. The language design is interestingly reversed: in Cogent, the linear layer is
the simple language that everyone uses, and the non-linear language is a complex
but powerful language that is used when one really has to, named C.

Our linear language λL is sensibly simpler, and in several ways less expressive,
than advanced programming languages based on linear logic [Tov and Pucella,
2011], separation logic [Balabonski, Pottier, and Protzenko, 2016], fine-grained
permissions [Garcia, Tanter, Wolff, and Aldrich, 2014]: it is not designed to stand
on its own, but to serve as a useful side-kick to a functional language, allowing
safer resource handling.

One major simplification of our design compared to more advanced linear or
separation-logic-based languages is that we do not separate physical locations from
the logical capability/permission to access them (e.g., as in Ahmed, Fluet, and
Morrisett [2007]). This restricts expressiveness in well-understood ways [Fahndrich
and DeLine, 2002]: shared values cannot point to linear values.

Alms [Tov and Pucella, 2011], Quill [Morris, 2016] and Linear Haskell [Bernardy,
Boespflug, Newton, Jones, and Spiwack, 2018] add linear types to a functional lan-
guage, trying hard not to lose desirable usability property, such as type inference
or the genericity of polymorphic higher-order functions. This is very challenging;
for example, Linear Haskell gives up on principality of inference7. Our multi-
language design side-steps this issue as the general-purpose language remains
unchanged. Language boundaries are more rigid than an ideal no-compromise
language, as they force users to preserve the distinction between the general-
purpose and the advanced features; it is precisely this compromise that gives a
design of reduced complexity.

Finally, on the side of the semantics, our system is related to LNL [Benton,
1994], a calculus for linear logic that, in a sense, is itself built as a multi-language
system where (non-duplicable) linear types and (duplicable) intuitionistic types
interact through a boundary. It is not surprising that our design contains an
instance of this adjunction: for any σ there is a unique σ such that σ ' !σ, and
converting a σ value to this σ and back gives a !σ and is provably equivalent, by
boundary cancellation, to just using share .

7 Thanks to Stephen Dolan for pointing out that λf.λx. f x has several incompatible
Linear Haskell types.

Acknowledgments

We thank our anonymous reviewers for their feedback, as well as Neelakantan
Krishnaswami, François Pottier, Jennifer Paykin, Sylvie Boldo and Simon Peyton-
Jones for our discussions on this work.

This work was supported in part by the National Science Foundation under
grants CCF-1422133 and CCF-1453796, and the European Research Council
under ERC Starting Grant SECOMP (715753). Any opinions, findings, and
conclusions expressed in this material are those of the authors and do not
necessarily reflect the views of our funding agencies.

Bibliography

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF. Inf. Comput., 163(2):409–470, 2000. 2

Amal Ahmed and Matthias Blume. Typed closure conversion preserves observa-
tional equivalence. In International Conference on Functional Programming
(ICFP), Victoria, British Columbia, Canada, pages 157–168, September 2008.
2

Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation
via multi-language semantics. In International Conference on Functional
Programming (ICFP), Tokyo, Japan, pages 431–444, September 2011. 2, 27

Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3 : A linear language with
locations. Fundamenta Informaticae, 77(4):397–449, June 2007. 28

Thibaut Balabonski, François Pottier, and Jonathan Protzenko. The design
and formalization of Mezzo, a permission-based programming language. ACM
Transactions on Programming Languages and Systems, 38(4):14:1–14:94, August
2016. 28

Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Fine-
grained language composition: A case study. In ECOOP, July 2016. 16,
27

P Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models.
In International Workshop on Computer Science Logic, 1994. 28

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton
Jones, and Arnaud Spiwack. Linear haskell: practical linearity in a higher-order
polymorphic language. PACMPL, 2(POPL):5:1–5:29, 2018. doi: 10.1145/
3158093. URL http://doi.acm.org/10.1145/3158093. 28

Robert Cartwright and Matthias Felleisen. Observable sequentiality and full
abstraction. In ACM Symposium on Principles of Programming Languages
(POPL), Albuquerque, New Mexico, pages 328–342, 1992. 2

Dominique Devriese, Marco Patrignani, and Frank Piessens. Fully-abstract com-
pilation by approximate back-translation. In ACM Symposium on Principles
of Programming Languages (POPL), St. Petersburg, Florida, 2016. 2

Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical linear types
for imperative programming. In PLDI’02, PLDI ’02, 2002. 28

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. The teachscheme! project: Computing and programming for every
student. Computer Science Education, 14(1):55–77, 2004. 27

Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of
typestate-oriented programming. TOPLAS, 2014. 28

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource Aware ML. In 24rd
International Conference on Computer Aided Verification (CAV’12), volume
7358 of Lecture Notes in Computer Science, pages 781–786. Springer, 2012. 28

http://doi.acm.org/10.1145/3158093

Alan Jeffrey and Julian Rathke. Java Jr.: Fully abstract trace semantics for a
core Java language. In European Symposium on Programming (ESOP), 2005.
2

Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-
language programs. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 31(3):12, 2009. 18, 27

A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables.
In ACM Symposium on Principles of Programming Languages (POPL), San
Diego, California, pages 191–203, 1988. 2

Robin Milner. Fully abstract models of typed lambda calculi. Theoretical
Computer Science, 4(1), 1977. 2

J. Garrett Morris. The best of both worlds: Linear functional programming
without compromise. In ICFP, 2016. 28

Max S. New, William J. Bowman, and Amal Ahmed. Fully abstract compi-
lation via universal embedding. In International Conference on Functional
Programming (ICFP), Nara, Japan, September 2016. 2, 27

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim,
Toby Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. Refine-
ment through restraint: Bringing down the cost of verification. In ICFP, 2016.
9, 28

Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent inter-
operability. In Programming Languages meets Program Verification (PLPV),
January 2012. 27

Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and
Frank Piessens. Secure compilation to protected module architectures. ACM
Transactions on Programming Languages and Systems, 37(2):6:1–6:50, April
2015. 2

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. Fun-
TAL: Reasonably mixing a functional language with assembly. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), Barcelona, Spain, June 2017. To appear. Available at
http://www.ccs.neu.edu/home/amal/papers/funtal.pdf. 27

James T Perconti and Amal Ahmed. Verifying an open compiler using multi-
language semantics. In ESOP, 2014. 22, 27

Gordon Plotkin and Martín Abadi. A logic for parametric polymorphism. In
Typed Lambda Calculi and Applications, 1993. 32

Jesse Tov and Riccardo Pucella. Stateful contracts for affine types. In European
Symposium on Programming (ESOP), March 2010. 27

Jesse A Tov and Riccardo Pucella. Practical affine types. In POPL, 2011. 28
Philip Wadler. Linear Types Can Change the World! In Programming Concepts
and Methods, 1990. 27

A Logical relation

To define the logical relation in a precise way, we introduce a new grammar of
“relational types” ρ, ρ, that simply extend the grammar of σ, σ to include a case
for a relation on λU types (R, σ1, σ2).

Introducing this lightweight syntax for relations here is a middle way between
definitions that use an explicit relational substitution (cluttering the relation
with yet another index) and a full-blown logic for parametricity as in Plotkin
and Abadi [1993]

ρ ::= . . . all cases for σ, but using ρ, ρ recursively | (R, σ1, σ2)

ρ ::= all cases for σ, but using ρ, ρ recursively

Fig. 12. Relation Type Syntax

Every ρ has two associated types, the types of terms that it relates, which we
denote (ρ)1, (ρ)2. It is defined as follows:

((R, σ1, σ2))1
def
= σ1

((R, σ1, σ2))2
def
= σ2

(α)i
def
= α

(ρ1 × ρ2)i
def
= (ρ1)i × (ρ2)i

(1)i
def
= 1

(ρ1→ ρ2)i
def
= (ρ1)i→ (ρ2)i

(ρ1 + ρ2)i
def
= (ρ1)i + (ρ2)i

(µα. ρ)i
def
= µα. (ρ)i

(∀α. ρ)i
def
= ∀α. (ρ)i

(ρ1⊗ ρ2)i
def
= ρ1⊗ ρ2

(1)i
def
= 1

(ρ1(ρ2)i
def
= (ρ1)i((ρ2)i

(ρ1⊕ ρ2)i
def
= (ρ1)i⊕ (ρ2)i

(µα. ρ)i
def
= µα. (ρ)i

(α)i
def
= α

(!ρ)i
def
= !(ρ)i

(Box 1 ρ)i
def
= Box 1 (ρ)i

(Box 0)i
def
= Box 0

First, we define when closed values are related at each type, indexing by a
natural number to break the circularity of recursive types. The relations are
defined by nested induction on j, ρ, ρ, any time a bigger type is used in a definition,
the step-index j is decremented.

The definition of E JσKj shows that this is an assymetric relation capturing a
notion of approximation, not equivalence.

Next, we extend the relations to open terms by defining open terms to be
related when they are related when closed by related substitutions.

The Fundamental Property is the key to proving parametricity results.

Lemma 11 (Fundamental Property)

1. If !Γ `u v : σ then !Γ `v v .log v : σ
2. If !Γ `u e : σ then !Γ ` e .log e : σ
3. If Ψ ;Γ `l s | e : σ then !Γ `l (s | e) .log (s | e) : σ

Atom[σ]
def
= {v | · `u v : σ}

Rel[σ1, σ2]
def
= {R : N→ P(Atom[σ1]×Atom[σ2]) | ∀j ≤ j′. Rj

′
⊂ Rj}

V J(R, σ1, σ2)Kj
def
= Rj

V J1Kj def
= {(〈〉, 〈〉)}

V Jρ× ρ′Kj def
= {(〈v1, v

′
1〉, 〈v2, v

′
2〉) | (v1, v2) ∈ V JρKj ∧ (v1, v2) ∈ V JρKj}

V Jρ1 + ρ2Kj
def
= {(inji v1, inji v2) | (v1, v2) ∈ V JρiKj}

V Jµα. ρKj def
= {(fold(µα.ρ)1 v1, fold(µα.ρ)2 v1) | ∀j′ < j. (v1, v2) ∈ V Jρ[µα. ρ/α]Kj

′
}

V Jρ1→ ρ2Kj
def
= {(λ(x1 : (ρ1)1). e1, λ(x2 : (ρ1)2). e2) |

∀j′ ≤ j, (v1, v2) ∈ V Jρ1Kj
′
. (e1[v1/x1], e2[v2/x2]) ∈ E Jρ2Kj

′
}

V J∀α. ρKj def
= {(Λα. v1, Λα. v2) | ∀σ1, σ2,R ∈ Rel[σ1, σ2]. (v1, v2) ∈ V Jρ[(R, σ1, σ2)/α]Kj}

V J1Kj def
= {((∅ | 〈〉), (∅ | 〈〉))}

V Jρ⊗ ρ′Kj def
= {((s1 ++ s′1 | 〈v1, v

′
1〉), (s2 ++ s′2 | 〈v2, v

′
2〉)) |

((s1 | v1), (s2 | v2)) ∈ V JρKj ∧ ((s′1 | v′1), (s
′
2 | v′2)) ∈ V Jρ′Kj}

V Jρ1⊕ ρ2Kj
def
= {((s1 | inji v1), (s2 | inji v2)) |

((s1 | v1), (s2 | v2)) ∈ V JρiKj}
V Jµα. ρKj def

= {((s1 | foldµα.ρ v1), (s2 | foldµα.ρ v2)) |
∀j′ < j.((s1 | v1), (s2 | v2)) ∈ V Jρ[µα. ρ/α]Kj

′
}

V Jρ′(ρKj def
= {((s1 | λ(x : ρ′). e1), (s2 | λ(x : ρ′). e2)) |

∀j′ ≤ j, s′1, s′2, ((s′′1 | v1), (s
′′
2 | v2)) ∈ V Jρ′Kj

′
.

s′1 = s1 ++ s′′1 ∧ s′2 = s2 ++ s′′2 ⇒
((s′1 | e1[v1/x]), (s′2 | e2[v2/x])) ∈ E JρKj

′
}

V J!ρKj def
= {((∅ | share(s1 :Ψ1). v1), (∅ | share(s2 :Ψ2). v2)) |

((s1 | v1), (s2 | v2)) ∈ V JρKj}
V JBox 0 Kj def

= {(([`1 7→ ·] | `1), ([`2 7→ ·] | `2))}
V JBox 1 ρKj def

= {(([`1 7→ (s1 | v1)] | `1), ([`2 7→ (s2 | v2)] | `2)) |
((s1 | v1), (s2 | v2)) ∈ V JρKj}

V J[ρ]Kj def
= {((∅ | [v1]), (∅ | [v2])) | (v1, v2) ∈ V JρKj}

E JρKj def
= {(e1, e2) | ∀j′ ≤ j. e1

U
↪→

j′

v1 ⇒

∃v2. e2
U

↪→∗ v2 ∧ (v1, v2) ∈ V JρKj−j
′
}

E JρKj def
= {((s1 | e1), (s2 | e2)) |

∀j′ ≤ j, (s′1 | v1).(s1 | e1)
L
↪→

j′

(s′1 | v1)⇒

∃(s′2 | v2).(s2 | e2)
L

↪→∗ (s′2 | v2)∧
((s′1 | v1), (s

′
2 | v2)) ∈ V JρKj−j

′
}

Fig. 13. Logical Approximation for Closed Terms

G J·Kj def
= {((∅, ∅) | ∅)}

G JΓ , x :σKj def
= {((s1 ++ s′1, s2 ++ s′2) | γ[x 7→ (v1, v2)]) |

((s1, s2) | γ) ∈ G JΓ Kj ∧ ((s′1 | v1), (s
′
2 | v2)) ∈ V J(γ)R(σ)Kj}

G JΓ , x :σKj def
= {((s1, s2) | γ[x 7→ (v1, v2)]) |

((s1, s2) | γ) ∈ G JΓ Kj ∧ (v1, v2) ∈ V J(γ)R(σ)Kj}
G JΓ , αKj def

= {((s1, s2) | γ[α 7→ (R, σ1, σ2)]) |
R ∈ Rel[σ1, σ2] ∧ ((s1, s2) | γ) ∈ G JΓ Kj}

!Γ ` e1 .
log e2 : σ

def
= ∀j ≥ 0, ((∅, ∅) | γ) ∈ G J!Γ Kj .((γ)1(e1), (γ)2(e2)) ∈ E J(γ)R(σ)Kj

!Γ `v v1 .
log v2 : σ

def
= ∀j ≥ 0, ((∅, ∅) | γ) ∈ G J!Γ Kj .((γ)1(v1), (γ)2(v2)) ∈ V J(γ)R(σ)Kj

Γ `l (s1 | e1) .
log (s2 | e2) : σ

def
=

∀j ≥ 0, ((s′1, s
′
2) | γ) ∈ G JΓ Kj .

((s1 ++ s′1 | (γ)1(e1)), (s2 ++ s′2 | (γ)2(e2))) ∈ E J(γ)R(σ)Kj

Fig. 14. Logical Approximation for Open Terms

!Γ ` e1 .
ctx e2 : σ

def
= ∀C. · `u C[e1] : 1 ∧ · `u C[e2] : 1 ∧C[e1]

U

↪→∗ 〈〉 =⇒ C[e2]
U

↪→∗ 〈〉

Γ `l (s1 | e1) .
ctx (s2 | e2) : σ

def
= ∀C. · `u C[(s1 | e1)] : 1 ∧ · `u C[e1](s2 | e2) :

1 ∧ C[(s1 | e1)]
U

↪→∗ 〈〉 =⇒ C[(s2 | e2)]
U

↪→∗ 〈〉

Fig. 15. Contextual Approximation

Finally, we prove our logical relation is sound with respect to contextual
equivalence, that is, it can be used as a more tractible way to prove contextual
equivalence results, such as lump/unlump cancellation.

Theorem 6 (Soundness of Logical Relation) .log⊂.ctx

The proof is by induction on contexts, showing that every term formation
rule preserves logical relatedness. These “compatibility” lemmas are extensive,
but their proofs are simple. Their proofs are in the extended technical report.

	 FabULous Interoperability for ML and a Linear Language

